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Background

e Graph is everywhere.
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Cora (citation graph) [1] Social graph [2]
Q/ Nodes are often featured with attributes

« Community: Normally, a set of nodes that are densely connected
internally and loosely connected externally.

[1]: https://arxiv.org/pdf/2305.18405.pdf  [2]: https://arxiv.org/pdf/1401.7233.pdf  [3]: https:/arxiv.org/pdf/2302.12177.pdf
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Problem definition

 Attributed Community Search: Given an attributed graph G(V,E, F) and a
query ¢ = (V,, F,) where 1 C v 1s a set of query nodes and F;, =C F'1s aset
of query attributes, the task of attributed community search (AC%) aims to

which preserves both and
attribute homogeneity.

AL, DB DB

« Applications
v Research communities mining.

v Friend recommendation.

Q/ Protein complex identification.



Motivation

» Existing non-learning methods:
Q Structure Inflexibility

[ Q Attribute Irrelevance

>[k-core based ACS model
>k-truss based ACS model

 Existing learning-based methods:
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AQD-GNN
with Feature Fusion
(a) ICS-GNN (one iteration) (b) AQD-GNN

Efficiency and scalability
issue for AQD-GNN
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Q Interdependence among entities

Vanilla GCN
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» Candidate Subgraph Extraction
Q/ Structure-based pruning with density sketch modularity

Q/ Attribute-based pruning

» Consistency-aware Net (CoNet):
V Cross-Attention Encoder

Q/ Structure-Attribute Consistency & Local Consistency



Density sketch modularity

Q/ Graph Modularity is a widely used measure for community cohesiveness.
A higher modularity indicates a more cohesive community

2
Q Classical Modularity cMm(G,C) = 2\1E\ (2 Eo| - % )

, . 1 d
O DCHSlty MOdularlty DM(G, C) = 2—VC‘ (2 C‘ Q‘E‘ ) sum of node degree

2
Density Sketch Modularity psy (G, ¢) = —2‘; g (2|EC - 2C|lg|
c

# of internal nodes
T is a hyperparameter to control granularity

v It checks the difference between the number of internal edges in the
community and the number of expected edges in the community

Q/ When 7 approximates zero, density sketch modularity is as power as classical modularity

Q/ When t approximates one, density sketch modularity is as power as density modularity



Analysis of density sketch modularity

Q/ When employing classic modularity for CS , it suffers from the free-rider effect
and the resolution limit problem

* Free-rider ettect

Given a set of query g, let C' be a community identified based on a goodness function f,
and C* be the optimal solution (either local or global). The goodness function is said to
be affected by the free-rider effect if f(C U C*) > f(C).

Q/ Resulting community may encompass numerous nodes unrelated to the query nodes

* Resolution limit problem

Given a graph G, query q, the objective function f, a community constraint 7',

a community C satisfying T'and containing all the query g, and any community C’
satisfying the constraint 7' such that C' U C' is connected and C N C’ = @, the objective
function is said to suffer from the resolution limit problem if there exists a community C’
such that C U C' satisfies the constraint T' and f(C U C') > f(O).

Q/ Resultant community may be too large to highlight some important structures.



N ectl
Analysis of density sketch modularity

Q/ For any positive 7, whenever density sketch modularity suffers from the
free-rider effect, classic modularity suffers from the free-rider effect as well.

DSM(G,C U Cx) > DSM(G, C)

1 d2, o 1 d2

= ————(2|Boucr| — —=—) > = (2|Ec| — —=)
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= CM(G,CUC*) > CM(G C)

For any positive 7, whenever density sketch modularity suffers from the
v resolution-limit problem, classic modularity suffers from the resolution-limit
problem as well.



Candidate subgraph extraction

* Structure-based pruning

v k-hop neighborhood with largest density sketch modularity (adaptively)
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Figure 4: node-attribute bipartite graph
Q/ k-hop neighborhood with largest bipartite modularity in the node-attribute bipartite graph



CoNet architecture
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o Query Encoding X, = HPWSE x = HEPW P x, = HEPW P

X, XTI
X = softmax(———=), Héfﬂ) = XX,
di+1

Q/ Graph EIlCOdil’lg hi()s,kJrl) = MLPY ((1 + 6(k)) ‘ hg’s,k)’ Zv/eN(v)h”/(s,k)>

Q/ Lemma: ConNet is as powerful as the 1-WL algorithm.



Training Objectives

 Structure-Attribute Consistency
Minimize the Wasserstein-1 distance between
structure distribution and attribute distribution

%% ]P)s,]P)a = inf [E V)~ _
1 ( ) e B I —=vl]]

Wi (Ps, P,) = \|fSl|\lp<1 Eyp, [fu()] — Evep, [fu(V)]
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 Local Consistency
Q/ Neighboring nodes have similar prediction
Ln(H,A) =||A-HH"||,

. Ground-tr|yt|h information

‘Cb(éqv Cl]z) = Z _CQialeg(éql7j) + (1 - qu',j)log(l - éQl,j)
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Experiments
Table 2: Statistics of the datasets
Dataset V| IE| IF9| | N * Query settings
Texas 187 279 1703 5 . .-
ST ToF T T R Q/ Attribute from communities (AFC)
Washt 230 392 1703 | 5 Q/ Attribute from query node (AFN)
Wises £03 269 Lo¥) o/ Empty attribute query (EmA)
Cora 2708 5429 1433 | 7
Citeseer 3312 4715 3703 | 6 e Metrics
Google+ 7856 321,268 2024 | 91 -
PubMed 19,717 44,324 500 | 3 of Fl-score
Reddit 232,965 47,396,905 | 602 | 41 o Average degree (Avg.d)
Orkut 3,072,627 | 117,185,083 | 1000 | 5000 C :  wise ] 4 (CPJ
Friendster || 65,608,366 | 1,806,067,135 | 1000 | 5000 o/ Community pair-wise Jaccard (CPJ)




Experiments
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(d) F1-score of ACS over multi-node query
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Figure 7: Result on attributed community search

Dataset Network

(f) CPJ of ACS over multi-node query

Learning-based method has an average improvement of 54.50% in F1-score compared with
traditional ACS method.

v/

the query attribute.

ALICE has an average improvement of 10.18% compared to SOTA AQD-GNN using AFN as




Experiments

Table 3: Efficiency evaluation on different datasets (in seconds)

‘ Method | Texas Cornell ] Washt | Wisc | Cora l Citeseer | Google+ | Pubmed | Reddit | Orkut | Frienster
ICS-GNN (Train) o . nk rk hk o e o rw o ar
AQD-GNN (Train) 2.2+233 2.1+234 2.5+239 2.9+232 64.1+2214 59.3+4390 834.6+10035 | 3171.8+37059 = = =
ALICE (Train) 2.6+344 2.5+381 3.8+332 1.8+324 16.32+509 59.8+1239 189.8+3256 123.5+4317 8681+1107 | 2594.8+2224 | 65415.6+1244
ICS-GNN (Query) 20.5 25.1 27.4 28.6 167.7 124.3 627.6 112.3 1034.7 1540.8 24253.7
AQD-GNN (Query) | 0.015+0.0021 | 0.014+0.0020 | 0.017+0.0022 | 0.019+0.0020 | 0.427+0.0026 | 0.395+0.0019 | 5.564+0.0019 | 21.14+0.0019 — - —
ALICE (Query) 0.017+0.0053 | 0.017+0.0045 | 0.025 + 0.0044 | 0.014 +0.0050 | 0.104+0.0041 | 0.398+0.0047 | 1.26+0.0053 | 0.823+0.0058 | 5.78+0.0052 | 17.29+0.0045 | 436.1+0.0048

(1) : We report preparation time + train (query) time; (2) : — indicates out of memory or not finished within 7 days; (3) : *** indicates this cell not applicable to this model.
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Figure 9: Scalability evaluation
v ALICE can deal with billion-scale graph while AQD-GNN cannot

Q/ ALICE has a better scalability.
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Summary

* We propose a learning-based framework, named ALICE, for
attributed community search at large scale.

* We design an efficient subgraph extraction algorithm by leveraging
density sketch modularity and node-attribute relationship to
adaptively select promising nodes.

* We propose a GNN-based model ConNet to preserve both
structure-attribute consistency and local consistency among nodes.

* Extensive experiments over 11 popular public datasets,
encompassing one billion-scale graph Friendster, demonstrate the
effectiveness of ALICE.






