

Group-based Fraud Detection Network on e-Commerce Platforms

Jianke Yu1,2 **,** Hanchen Wang1,3, Xiaoyang Wang4, Zhao Li5,6, Lu Qin3, Wenjie Zhang⁴, Jian Liao², Ying Zhang^{1,3}

¹ Zhejiang Gongshang University, ² Alibaba Group, ³ University of Technology Sydney, ⁴University of New South Wales, ⁵ Zhejiang University, 6 Hangzhou Link2Do Technology

KDD 2023

Attributed Bipartite Graph

An attributed bipartite graph is a type of graph which consists of two sets of vertices that are linked by edges. The vertices have additional attributes, making this graph particularly useful for **representing information in the field of e-commerce**.

Group-based Frauds on Attributed Bipartite Graphs

Group-based fraud is becoming increasingly rampant**:** "Ride Item's Coattails" attack (edge classification) Sockpuppet-based Targeted Attack on Reviewing Systems (STARS attack) (vertex classification)

Image source: STARS: Defending against Sockpuppet-Based Targeted Attacks on Reviewing Systems

SOTA method for "Ride Item's Coattails" attack

RICD ($(\alpha, k1, k2)$ -biclique): **fraud detection method** for "Ride Item's Coattails" attack. Can only utilize structural information.

Tianchi competition winner's algorithm: **classification method**. Can only use attribute information.

SOTA method for STARS attack

RTV: fraud detection method for Sockpuppet-based Targeted Attack on Reviewing Systems (STARS). Unable to make good use of label information.

Algorithm RTV **Input:** Rating graph $G = (\mathcal{U} \cup \mathcal{P}, \mathcal{R}, \text{sc})$, weights $\alpha_1, \alpha_2, \beta_1, \beta_2, \gamma_1, \gamma_2, \gamma_3, \gamma_4$, threshold ϵ **Output:** fair(*u*) $\forall u \in \mathcal{U}$, good(*p*) $\forall p \in \mathcal{P}$, rel(*u*, *p*) $\forall (u, p) \in \mathcal{R}$ for each $u \in \mathcal{U}$, $\text{fair}_0(u) \leftarrow \text{norm}(u)$ **for each** $p \in \mathcal{P}$, $\text{good}_0(p) \leftarrow \text{norm}(p)$ for each $(u, p) \in \mathcal{R}$, rel₀ $(u, p) \leftarrow norm(u, p)$ $\mu_f \leftarrow \frac{\sum_{u \in \mathcal{U}} \operatorname{fair}_0(u)}{|\mathcal{U}|}, \mu_g \leftarrow \frac{\sum_{p \in \mathcal{P}} \operatorname{good}_0(p)}{|\mathcal{P}|}$ $t \leftarrow 1$ 5 **for each** $u \in \mathcal{U}$, fair_t $(u) \leftarrow$ value computed as specified in Section 4.1, with rel $(u, p) =$ rel_{t-1} (u, p) 6 for each $p \in \mathcal{P}$, good, $(p) \leftarrow$ value computed as specified in Section 4.1, with rel $(u, p) = rel_{t-1}(u, p)$ for each $(u, p) \in \mathcal{R}$, rel_t $(u, p) \leftarrow$ value computed as specified in Section 4.1, with fair $(u) = \text{fair}_t(u)$ $\Delta \leftarrow \max\left(\sum_{u \in \mathcal{U}} |\text{fair}_{t}(u) - \text{fair}_{t-1}(u)|, \sum_{p \in \mathcal{P}} | \text{good}_{t}(p) - \text{good}_{t-1}(p)|, \sum_{(u, p) \in \mathcal{R}} | \text{rel}_{t}(u, p) - \text{rel}_{t-1}(u, p) | \right)$ 9 10 | if $\Delta > \epsilon$ or $t = 1$ then $t \leftarrow t + 1$ and go to Line 6 **return** fair_t(*u*) $\forall u \in \mathcal{U}$, good_t(*p*) $\forall p \in \mathcal{P}$, rel_t(*u*, *p*) $\forall (u, p) \in \mathcal{R}$

Existing methods

Classification Methods:

• Imbalanced labeled vertices, community information.

Cohesive Subgraph Mining Methods:

• Attribute and label information, suffer from NP-completeness.

Fraud Detection Methods:

• Global topological and attribute information, label information, manual parameter setting.

Group-based Fraud Detection method: GFDN

蕊UTS

Group-based Fraud Detection method: GFDN

Group-based Fraud Detection method: GFDN

蕊UTS

Group-based Fraud Detection method: GFDN

蕊UTS

Structural Feature Initialization

(α, β) -core:

Given a bipartite graph G and integers α , $\beta \in \mathbb{Z}^+$, (α, β) -core of G is denoted as G ' which consists of two vertex sets $U' \subseteq U$ and $V' \subseteq V$.

The (α, β) -core G ' is a maximal bipartite subgraph induced by U' \cup V' from G in which all the vertices in U' have degrees at least α and all the vertices in V' have degrees at least β .

Structural Feature Initialization

GFDN will generate structural features for vertices based on their existence in different (α, β) -core.

$$
\hat{X}_{(\mathcal{U},s)} = X_{(\mathcal{U},s)} \odot (I_{\mathcal{U}}W_{(\mathcal{U},s)}), \ \hat{X}_{(\mathcal{V},s)} = X_{(\mathcal{V},s)} \odot (I_{\mathcal{V}}W_{(\mathcal{V},s)}))
$$

Attributed Bipartite Graph $(\alpha,\!\beta)-\mathrm{core}$

 $W_{(\mathcal{U},s)}$

 $\boxed{W_{(\mathcal{V},s)}}$

Structural Features Element-wise Product All-ones Vector Weight Matrix

Fraudster Community Detection

BDCN - Autoencoder:

Autoencoder in Bipartite Deep Clustering Network (BDCN) can:

1. preserving both structural and attribute information from the input features.

2. Generate high-quality community representation for customer vertices.

It can achieve self-supervised fraud **community detection** using a loss function measures with Student's t-distribution kernel.

Fraudster Community Detection

BDCN - GNN:

GNN in BDCN can aggregate on attribute bipartite graph and preserve the attribute information and structural information of the graph well. The output of each encoding layer will be used.

Training Objective

"Ride Item's Coattails" Attack:

In "Ride Item's Coattails" attack, not all edges related to fraudsters necessarily have attack implications. GFDN will perform **multi-task training** on this issue, predicting both **fraudsters** and **fraudulent attack**.

STARS Attack:

STARS attack detection aims to **detect fraudsters**, in which case GFDN only needs to perform the vertex classification task.

Training Objective

The final loss function will be composed of the loss functions of the aforementioned training objectives, including reconstruction of **autoencoder**, **community prediction**, **fraudster prediction**, and **fraudulent attack prediction**. The sum of the weights of all parts of them is 1.

$$
\mathcal{L} = \omega_{ae} \mathcal{L}_{ae} + \omega_c \mathcal{L}_c + \omega_l \mathcal{L}_l + \omega_e \mathcal{L}_e
$$
\n
$$
\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow
$$
\n
$$
\text{Autoencoder} \quad \text{Commuty} \quad \text{Fraudster} \quad \text{Fraudulent}
$$

Experimental Setup

• **Dataset**

- 4 real-life datasets.
- **Compared methods**
	- 5 learning-based methods.
	- 2 pattern-based methods.
	- 4 fraud detection methods.
	- A naïve model and four ablated GFDNs

• **Parameter settings**

- The number of GNN layer: 4.
- The number of community: 32.
- Hidden dimension: 128.
- The selected GNN is GraphSAGE.
- **Implementation**
	- Structure information extraction: C++
	- Other Parts of the Model :Python + Pytorch Geometric.

Table 1: Datasets for "Ride Item's Coattails" Attack Detection

Table 2: Datasets for STARS Attack Detection

Effectiveness Evaluation Results for "Ride Item's Coattails" Detection

Comparison with Pattern-based Algorithms

Query Time Evaluation of "Ride Item's Coattails" Detection

参UTS

Effectiveness Evaluation Results for STARS Detection

Effectiveness Evaluation Results for STARS Detection

In-Depth Effectiveness Analysis of GFDN

蕊UTS

Parameter Analysis Results in GFDN

参UTS

