

Group-based Fraud Detection Network on e-Commerce Platforms

Jianke Yu^{1,2}, Hanchen Wang^{1,3}, Xiaoyang Wang⁴, Zhao Li^{5,6}, Lu Qin³, Wenjie Zhang⁴, Jian Liao², Ying Zhang^{1,3}

¹Zhejiang Gongshang University, ²Alibaba Group, ³University of Technology Sydney, ⁴University of New South Wales, ⁵Zhejiang University, ⁶Hangzhou Link2Do Technology

KDD 2023

Attributed Bipartite Graph

An attributed bipartite graph is a type of graph which consists of two sets of vertices that are linked by edges. The vertices have additional attributes, making this graph particularly useful for **representing information in the field of e-commerce**.

Group-based Frauds on Attributed Bipartite Graphs

Group-based fraud is becoming increasingly rampant: "Ride Item's Coattails" attack (edge classification) Sockpuppet-based Targeted Attack on Reviewing Systems (STARS attack) (vertex classification)

Image source: STARS: Defending against Sockpuppet-Based Targeted Attacks on Reviewing Systems

SOTA method for "Ride Item's Coattails" attack

RICD ((α , k1, k2)-biclique): **fraud detection method** for "Ride Item's Coattails" attack. Can only utilize structural information.

Tianchi competition winner's algorithm: classification method. Can only use attribute information.

Image source: Large-scale Fake Click Detection for E-commerce Recommendation Systems

SOTA method for STARS attack

RTV: fraud detection method for Sockpuppet-based Targeted Attack on Reviewing Systems (STARS). Unable to make good use of label information.

Algorithm RTV **Input:** Rating graph $G = (\mathcal{U} \cup \mathcal{P}, \mathcal{R}, sc)$, weights $\alpha_1, \alpha_2, \beta_1, \beta_2, \gamma_1, \gamma_2, \gamma_3, \gamma_4$, threshold ϵ **Output:** fair(u) $\forall u \in \mathcal{U}$, good(p) $\forall p \in \mathcal{P}$, rel(u, p) $\forall (u, p) \in \mathcal{R}$ for each $u \in \mathcal{U}$, fair₀(u) \leftarrow norm(u) for each $p \in \mathcal{P}$, $good_0(p) \leftarrow norm(p)$ for each $(u, p) \in \mathcal{R}$, rel₀ $(u, p) \leftarrow \text{norm}(u, p)$ $\mu_f \leftarrow \frac{\sum_{u \in \mathcal{U}} \operatorname{fair}_0(u)}{|\mathcal{U}|}, \mu_g \leftarrow \frac{\sum_{p \in \mathcal{P}} \operatorname{good}_0(p)}{|\mathcal{P}|}$ $t \leftarrow 1$ 5 for each $u \in \mathcal{U}$, fair_t(u) \leftarrow value computed as specified in Section 4.1, with rel(u, p) = rel_{t-1}(u, p) 6 for each $p \in \mathcal{P}$, good_t(p) \leftarrow value computed as specified in Section 4.1, with rel(u, p) = rel_{t-1}(u, p) for each $(u, p) \in \mathcal{R}$, rel_t $(u, p) \leftarrow$ value computed as specified in Section 4.1, with fair $(u) = \text{fair}_t(u)$ $\Delta \leftarrow \max\left(\sum_{u \in \mathcal{U}} |\operatorname{fair}_t(u) - \operatorname{fair}_{t-1}(u)|, \sum_{p \in \mathcal{P}} |\operatorname{good}_t(p) - \operatorname{good}_{t-1}(p)|, \sum_{(u,p) \in \mathcal{R}} |\operatorname{rel}_t(u,p) - \operatorname{rel}_{t-1}(u,p)|\right)$ 9 **if** $\Delta > \epsilon$ or t = 1 then $t \leftarrow t + 1$ and go to Line 6 10 **return** fair_t(u) $\forall u \in \mathcal{U}$, good_t(p) $\forall p \in \mathcal{P}$, rel_t(u, p) $\forall (u, p) \in \mathcal{R}$

Existing methods

Classification Methods:

• Imbalanced labeled vertices, community information.

Cohesive Subgraph Mining Methods:

• Attribute and label information, suffer from NP-completeness.

Fraud Detection Methods:

• Global topological and attribute information, label information, manual parameter setting.

Group-based Fraud Detection method: GFDN

ŻUTS

Group-based Fraud Detection method: GFDN

Group-based Fraud Detection method: GFDN

Group-based Fraud Detection method: GFDN

Structural Feature Initialization

(*α*, *β*)-core:

Given a bipartite graph G and integers α , $\beta \in Z^+$, (α, β) -core of G is denoted as G ' which consists of two vertex sets U' \subseteq U and V' \subseteq V.

The (α, β) -core G ' is a maximal bipartite subgraph induced by U' \cup V' from G in which all the vertices in U' have degrees at least α and all the vertices in V' have degrees at least β .

Structural Feature Initialization

GFDN will generate structural features for vertices based on their existence in different (α , β)-core.

$$\hat{X}_{(\mathcal{U},s)} = X_{(\mathcal{U},s)} \odot (I_{\mathcal{U}} W_{(\mathcal{U},s)}), \ \hat{X}_{(\mathcal{V},s)} = X_{(\mathcal{V},s)} \odot (I_{\mathcal{V}} W_{(\mathcal{V},s)})$$

Structural Features Element-wise Product All-ones Vector Weight Matrix

Fraudster Community Detection

BDCN - Autoencoder:

Autoencoder in Bipartite Deep Clustering Network (BDCN) can:

1. preserving both structural and attribute information from the input features.

2. Generate high-quality community representation for customer vertices.

It can achieve self-supervised fraud **community detection** using a loss function measures with Student's t-distribution kernel.

Fraudster Community Detection

BDCN - GNN:

GNN in BDCN can aggregate on attribute bipartite graph and preserve the attribute information and structural information of the graph well. The output of each encoding layer will be used.

Training Objective

"Ride Item's Coattails" Attack:

In "Ride Item's Coattails" attack, not all edges related to fraudsters necessarily have attack implications. GFDN will perform **multi-task training** on this issue, predicting both **fraudsters** and **fraudulent attack**.

STARS Attack:

STARS attack detection aims to **detect fraudsters**, in which case GFDN only needs to perform the vertex classification task.

Training Objective

The final loss function will be composed of the loss functions of the aforementioned training objectives, including reconstruction of **autoencoder**, **community prediction**, **fraudster prediction**, and **fraudulent attack prediction**. The sum of the weights of all parts of them is 1.

$$\mathcal{L} = \omega_{ae} \mathcal{L}_{ae} + \omega_c \mathcal{L}_c + \omega_l \mathcal{L}_l + \omega_e \mathcal{L}_e$$
Autoencoder Community Fraudster Fraudulent

Experimental Setup

Dataset

- 4 real-life datasets.
- Compared methods
 - 5 learning-based methods.
 - 2 pattern-based methods.
 - 4 fraud detection methods.
 - A naïve model and four ablated GFDNs

Parameter settings

- The number of GNN layer: 4.
- The number of community: 32.
- Hidden dimension: 128.
- The selected GNN is GraphSAGE.
- Implementation
 - Structure information extraction: C++
 - Other Parts of the Model : Python + Pytorch Geometric.

Table 1: Datasets for "Ride Item's Coattails" Attack Detection

Dataset	$ \mathcal{S} $	$ \mathcal{U} $	$ \mathcal{V} $	% Fraudulent	% Legitimate
TB	3,085,653	996,090	381,611	0.62%	3.53%
TC	1,050,000	532,345	239,840	2.86%	11.43%

Table 2: Datasets for STARS Attack Detection

Dataset	3	$ \mathcal{U} $	$ \mathcal{V} $	% Fraudulent	% Legitimate
Alpha	24,186	3,286	3,754	3.10%	4.20%
OTC	35,592	4,814	5,858	3.70%	2.80%

Effectiveness Evaluation Results for "Ride Item's Coattails" Detection

	TB Data				TC Data					
	F1	Acc	AUC	Pre	Recall	F1	Acc	AUC	Pre	Recall
LPA	0.2737	0.4627	0.5517	0.1715	0.6785	0.2056	0.4284	0.5276	0.1219	0.6557
SBGNN	0.4789	0.8228	0.7947	0.4279	0.5438	0.3676	0.8074	0.7666	0.2900	0.5018
BiGI	0.5359	0.8540	0.8491	0.5097	0.5649	0.4039	0.8292	0.8044	0.3331	0.5129
SIHG	0.6449	0.8709	0.8692	0.5470	0.7853	0.5947	0.8771	0.8985	0.4735	0.7992
Tianchi	0.6446	0.8752	0.9342	0.5606	0.7581	0.5364	0.8717	0.9107	0.4527	0.6583
RICD	0.6518	0.8405	0.9063	0.4834	1.0000	0.4784	0.8482	0.7474	0.3906	0.6171
(α, β) -core	0.8081	0.9449	0.8757	0.8417	0.7770	0.6348	0.8907	0.8696	0.5093	0.8423
FRAUDAR	0.2580	0.1481	0.4963	0.1483	0.9927	0.2020	0.1124	0.4981	0.1124	0.9961
CF1	0.2407	0.7698	0.5532	0.2371	0.2445	0.1620	0.7981	0.5253	0.1523	0.1731
CF2	0.4675	0.7603	0.7376	0.3497	0.7052	0.3588	0.6837	0.7277	0.2326	0.7844
Naive	0.8109	0.9473	0.9844	0.8736	0.7565	0.6397	0.9090	0.9516	0.7816	0.5414
GFDN-S	0.6867	0.9202	0.9653	0.8284	0.5864	0.6122	0.8783	0.9342	0.4780	0.8514
GFDN-F	0.9212	0.9754	0.9886	0.8821	0.9639	0.6401	0.8976	0.9287	0.5302	0.8076
GFDN-L	0.9398	0.9813	0.9964	0.9050	0.9775	0.7015	0.9192	0.9654	0.6014	0.8417
GFDN-C	0.9423	0.9821	0.9967	0.9086	0.9785	0.7048	0.9226	0.9646	0.6181	0.8198
GFDN	0.9522	0.9853	0.9974	0.9254	0.9806	0.7226	0.9242	0.9713	0.6154	0.8752

Comparison with Pattern-based Algorithms

Query Time Evaluation of "Ride Item's Coattails" Detection

Effectiveness Evaluation Results for STARS Detection

			Alpha					OTC		
	F1	Acc	AUC	Pre	Recall	F1	Acc	AUC	Pre	Recall
FRAUDAR RTV-SUP	0.3800 0.8652	0.2626 0.9452	0.5236 0.8859	0.2346 0.9747	1.0000 0.7778	0.3780 0.7010	0.2547 0.8082	0.5183 0.8736	0.2330 0.5417	1.0000 0.9931
(α, β) -core Naive	0.7857 0.8089	0.8767 0.9018	0.9204 0.9789	0.6471 0.7222	1.0000 0.9192	0.7784 0.7937	0.8711 0.8978	0.9167 0.9508	0.6372 0.7310	1.0000 0.8681
GFDN	0.8919	0.9452	0.9913	0.8049	1.0000	0.9231	0.9623	0.9746	0.8571	1.0000

Effectiveness Evaluation Results for STARS Detection

In-Depth Effectiveness Analysis of GFDN

Parameter Analysis Results in GFDN

Thank you!

Jianke Yu jiankey.zjgsu@gmail.com

Hanchen Wang hanchen.wang@uts.edu.au

