
HGMatch: A Match-by-Hyperedge
Approach for Subgraph Matching on

Hypergraphs
Zhengyi Yang1, Wenjie Zhang1, Xuemin Lin2, Ying Zhang3, Shunyang Li1

1 University of New South Wales, 2Shanghai Jiao Tong University, 3University of
Technology Sydney

Graphs vs Hypergraphs

Graph Hypergraph

2

Subgraph Matching on Hypergraphs

Query Hypergraph

Data Hypergraph

3

Subgraph Matching on Hypergraphs

Query Hypergraph

Data Hypergraph

4

Subgraph Matching on Hypergraphs

Query Hypergraph

Data Hypergraph

5

Applications

• Mining Biological Networks
• e.g., protein interactions, gene interactions

• Querying Hypergraph Databases
• e.g., AtomSpace, HyperGraphDB, TypeDB

• Pattern Learning in NLP
• e.g., semantic hypergraphs (each word is a vertex, and each sentence is a hyperedge)

• Q/A over Hypergraph Knowledge Base
• e.g., JF17K dataset (a subset of non-binary relations extracted from Freebase)

6

Example Queries for JF17K Dataset

Which football players represented
different teams in different matches?

Which actors played the same
character in a TV show on different

seasons?

7

Strawman Approach

• Convert the hypergraph to a bipartite graph and apply existing subgraph

matching algorithms
• by taking the incidence matrix and treating this as the incidence matrix of a bipartite graph

• Directly extend existing subgraph matching algorithms to the case of

hypergraphs

• recursively expand the partial embedding vertex-by-vertex by mapping a query vertex to a

data vertex following a given matching order and backtrack when necessary

8

Motivations

1. The match-by-vertex approach in the strawman approaches generally

underutilise high-order information in hypergraphs

• hyperedges are used as a verification condition in the match-by-vertex framework, which can lead

to a huge search space and large enumeration cost

2. It is difficult to compute subgraph matching on massive hypergraphs using

sequential algorithms

• none of the existing subhypergraph matching algorithms supports parallel execution

9

Contributions

1. A match-by-hyperedge framework

• Match the query by hyperedges instead of vertices

• Use set operations to efficiently generate candidates

• Filter out false positives with set comparison

2. A highly optimised parallel execution engine

• Adopt the dataflow model for parallelisation

• Bounded memory consumption with our task-based scheduler

• Load balancing with dynamic work-stealing

10

HGMatch Overview

Data
Hypergraph Load Graph Build Index Indexed Data

Hypergraph

Query
Hypergraph

Generate
Execution Plan

Execution
Plan

Parallel
Execution

Engine
Subhypergraph

Embeddings

Offline Preprocessing

Online Processing

Fetch Cardinality Read data

11

Hypergraph Data Layout

• Hypergraphs are stored as hyperedge tables with inverted hyperedge index

• Hyperedge Signature: a multiset of all vertex labels contained in a hyperedge

Hyperedges

Inverted
Hyperedge

Index

Hyperedge
Signature

12

Match-by-Hyperedge Framework
Suppose partial result 𝑚 = (𝑒!, 𝑒"), we want to

match {𝑢#, 𝑢!, 𝑢", 𝑢$} the next data hyperedge 𝑒.

13

Match-by-Hyperedge Framework
Suppose partial result 𝑚 = (𝑒!, 𝑒"), we want to

match {𝑢#, 𝑢!, 𝑢", 𝑢$} the next data hyperedge 𝑒.

• e must have the same signature with the

query hyperedge

14

Match-by-Hyperedge Framework
Suppose partial result 𝑚 = (𝑒!, 𝑒"), we want to

match {𝑢#, 𝑢!, 𝑢", 𝑢$} the next data hyperedge 𝑒.

• e must have the same signature with the

query hyperedge

• 𝑒 must be incident to 𝑣$ ∈ 𝑒! and 𝑣#, 𝑣! ∈ 𝑒"

15

Match-by-Hyperedge Framework
Suppose partial result 𝑚 = (𝑒!, 𝑒"), we want to

match {𝑢#, 𝑢!, 𝑢", 𝑢$} the next data hyperedge 𝑒.

• e must have the same signature with the

query hyperedge

• 𝑒 must be incident to 𝑣$ ∈ 𝑒! and 𝑣#, 𝑣! ∈ 𝑒"

⟹ 𝐶 𝑒 = 𝑒% ∩ 𝑒% ∩ 𝑒%, 𝑒& = 𝑒%

16

Parallel Execution

• Dataflow Model

• We designed three operators: SCAN, EXPAND, SINK

• Task-based Scheduler

• Computation are broken down into tasks and

scheduled in LIFO order to bound memory

• Dynamic Work Stealing

• Idle worker will steal tasks from others for load

balancing

SCAN({u2,u4})

EXPAND1({u0,u1,u2})

EXPAND2({u0,u1,u3,u4})

SINK

M = {(e1), (e2)}

M = {(e1, e3),
(e2, e4)}

M = {(e1, e3 , e5),
(e2, e4, e6)}

1.TSCAN

2.TEXPAND1<- (e1) 5.TEXPAND1<- (e2)

3.TEXPAND2<- (e1, e3) 6.TEXPAND2<- (e1, e3)

4.TSINK<- (e1, e3 , e5) 7.TSINK<- (e2, e4, e6)

Example Dataflow Graph and Task Tree

17

Experimental Setup

• Hardware: a server with two 20-core Xeon E5-2698 V4 CPU and 512G of

memory

• Baselines: we propose a generic framework to extend existing subgraph

matching algorithms to the case of hypergraphs

• We compared the extended version of CFL (SIGMOD16), DAF (SIGMOD19), CECI

(SIGMOD19), and RapidMatch (VLDB20)

• Queries: randomly sample subhypergraphs from the data hypergraphs with

given number of hyperedges and vertices

18

Datasets

• Datasets: we use 10 real-world hypergraphs as data hypergraphs

19

Index Building

Building Time and Size of Index

20

Single-thread Comparisons

Execution Time for each Query Set
21

Parallel Comparisons

Vary Number of Threads Task-based Scheduling

Work Stealing

22

Thank you!

