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ABSTRACT

In this paper, we study the problem of (p, g)-biclique counting and
enumeration for large sparse bipartite graphs. Given a bipartite
graph G = (U, V, E), and two integer parameters p and g, we aim to
efficiently count and enumerate all (p, q)-bicliques in G, where a (p,
q)-biclique B(L, R) is a complete subgraph of G with L CU,RC V,
|L| = p, and |R| = g. The problem of (p, g)-biclique counting and
enumeration has many applications, such as graph neural network
information aggregation, densest subgraph detection, and cohesive
subgroup analysis, etc. Despite the wide range of applications, to
the best of our knowledge, we note that there is no efficient and
scalable solution to this problem in the literature.

This problem is computationally challenging, due to the worst-
case exponential number of (p, ¢)-bicliques. In this paper, we pro-
pose a competitive branch-and-bound baseline method, namely
BCList, which explores the search space in a depth-first manner, to-
gether with a variety of pruning techniques. Although BCList offers
a useful computation framework to our problem, its worst-case time
complexity is exponential to p + g. To alleviate this, we propose an
advanced approach, called BCList++. Particularly, BCList++ applies
a layer based exploring strategy to enumerate (p, g)-bicliques by
anchoring the search on either U or V only, which has a worst-case
time complexity exponential to either p or g only. Consequently, a
vital task is to choose a layer with the least computation cost. To
this end, we develop a cost model, which is built upon an unbiased
estimator for the density of 2-hop graph induced by U or V. To
improve computation efficiency, BCList++ exploits pre-allocated ar-
rays and vertex labeling techniques such that the frequent subgraph
creating operations can be substituted by array element switch-
ing operations. We conduct extensive experiments on 16 real-life
datasets, and the experimental results demonstrate that BCList++
significantly outperforms the baseline methods by up to 3 orders of
magnitude. We show via a case study that (p, q)-bicliques optimize
the efficiency of graph neural networks.
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Figure 1: An example bipartite graph G.

1 INTRODUCTION

As a natural data structure to model relationships between two
different types of entities [3, 18], bipartite graph has been used in
many real-world applications, such as, online customer-product
networks [39, 41], gene co-expression networks [49], author-paper
networks [8], and graph neural networks [14], etc. Formally, a
bipartite graph G = (U, V, E) consists of two disjoint vertex sets U
and V, where an edge e € E connects a vertex in U and another in V.
An example bipartite graph is shown in Figure 1. Recently, a lot of
research efforts have been devoted to many fundamental problems
in analyzing bipartite graphs, such as («, f)-core query [9, 22, 45],
maximal biclique enumeration [1, 23, 24, 49], butterfly counting [30,
40, 42], and fraud detection [15, 17, 39], to name just a few.

In this paper, we introduce the concept of (p, g)-biclique. Given
a bipartite graph G = (U, V,E), a biclique B(L, R) is a complete
subgraph of G, where L C U, R C V, thatis V(u,v) € LXR, (u,v) €
E(G), and B(L, R) is called a (p, g)-biclique if |L| = p and |R| = q. We
study the problem of (p, ¢)-biclique counting and enumeration for
large sparse bipartite graphs, given two integer parameters p and q.
Motivations. Many real-world bipartite graphs are very large and
sparse, such as those listed in Table 3. A special case of (p, q)-
biclique (where p = 2 and q = 2) called butterfly [30, 40, 42] has
demonstrated great importance in defining basic metrics such as
the clustering coefficient in a bipartite graph [21, 27]. However, in
many graph-based tasks, (p, q)-bicliques, where p and g are not
fixed to 2, are needed. Below are a small list of examples.
(1) GNN Information Aggregation. Graph neural Network (GNN)
has received much research interests in recent years [14, 38, 48]
and has numerous applications. A pivotal operation in a GNN is
to recursively aggregate information from vertices’ neighbors in
graph. A naive method simply propagates information on each
pair of vertices separately, which leads to redundant computations,
since vertices in a graph may often share many neighbors. Inter-
estingly, we remark that (p, g)-biclique enumeration can optimize
the task of GNN information aggregation. Our case study results in
Section 6.4 report that our (p, q)-biclique based method achieves
the most efficient when (p, q) settings are (5, 10) and (4, 10) on two
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datasets IMDB and PPI, respectively, which are employed to evalu-
ate the state-of-the-art algorithm HAG[16]. The results show that
our method achieves near an order of magnitude of performance
improvement over existing methods. Details about how to apply (p,
q)-bicliques to GNN information aggregation are illustrated in our
case study in Section 6.4.

(2) Densest Subgraph Detection. Recently, Mitzenmacher et al. [26]
formulate the concept of (p, g)-biclique density. For a subgraph S
in a bipartite graph, its (p, g)-biclique density is defined as the ratio
between the number of (p, q)-bicliques in S and the size of S. Based
on the (p, g)-biclique density, they study the problem of finding the
(p, g)-biclique densest subgraph in a bipartite graph. They point
out that (p, q)-biclique enumeration is a required procedure in their
methods.

(3) Cohesive Subgroup Analysis. Borgatti et al. [3] study the problem
of identifying cohesive subgroups in bipartite graphs. They consider
using (p, g)-biclique to identify cohesive subgroups in a bipartite
graph, where p and q are greater than or equal to 3. For example, in
a social event bipartite graph with 18 guests and 14 events, (3, 3)-
bicliques can reveal two basic groups together with some outsiders,
which matches the ground truth well.

To the best of our knowledge, the problem of (p, ¢)-biclique

counting and enumeration on large sparse bipartite graphs has
not been thoroughly investigated. The closest related work is the
work of finding (p, ¢)-biclique densest subgraph [26], where (p, q)-
biclique enumeration is a necessary step. The performance of their
solution is not yet satisfactory, since it is developed on top of costly
maximal biclique enumeration. (2, 2)-biclique and (3, 3)-biclique
based densities are adopted to make their solution more practical.
However, even under the setting p = g = 3, their solution cannot
finish in 10 hours on a medium-sized bipartite graph (with 18k
vertices and 92k edges).
Challenges. The problem of (p, g)-biclique counting and enu-
meration is computationally challenging. Given a bipartite graph
G = (U,V,E), a straightforward solution is to enumerate all
(Ig\)(l“;l) combinations of vertex sets and verify whether each
of them is a biclique. However, this approach is obviously cost-
prohibitive, because the number of (p, q)-bicliques in a bipartite
graph can be much larger than the size of the bipartite graph. As-
suming |U| = |V| = n, then the number of (p, g)-bicliques could
be up to O((lg‘) (I‘;I)) ~ O(nP*9). This shows that our problem is
more difficult than other related counting problems, such as but-
terfly counting [30, 42] and bi-triangle counting [47]. For example,
the dataset Twitter in Table 3 contains 2.06 x 108 butterflies and
1.61 x 10'2 bi-triangles, but 1.45 x 1017 (6, 2)-bicliques.

Besides, we aim to support queries with arbitrary p and g values,
which makes our problem even harder. For problems such as butter-
fly counting and bi-triangle counting, where the answers are small
and fixed patterns, one may build many intermediate structures
(e.g., wedges) to facilitate query processing. This is infeasible to our
problem since the intermediate result size would be extremely huge
even for slightly larger p and g values. Last but not least, we aim to
support both counting and enumerating (p, g)-bicliques, which is
generally more difficult than counting only.

Contribution. To tackle the computation challenges, we propose
efficient query processing techniques. In the database research

community, algorithms that combine backtracking with branch-
and-bound techniques are widely adopted to deal with graph based
problems, such as maximal biclique enumeration [1, 49]. Inspired
by these, we propose a competitive branch-and-bound baseline
method, namely BCList, which explores the search space in a depth-
first manner. Specifically, BCList maintains a partial biclique and
recursively adds the candidate vertices into the partial biclique to
generate (p, g)-bicliques. To improve the performance of BCList, we
propose new efficient pruning techniques, such as 2-hop neighbors
to reduce candidate size, size pruning to terminate search branch
early, and vertex ordering to avoid redundant computation.

BCList provides a promising computation framework to solve
our problem. However, observe that BCList utilizes a vertex based
exploring strategy, which has a time complexity of O((|U| +
[V (dmax + domax)PT972), where dpmax and damax are the maxi-
mum degree and 2-hop degree of a vertex in G, respectively. It is
still time costly for BCList to handle queries when p and q are large.

To alleviate these issues, we propose an advanced approach,
called BCList++. In particular, BCList++ applies a layer based ex-
ploring strategy to enumerate (p, g)-bicliques by anchoring the
search on either U or V only. This exploring strategy leads to a
time complexity of O(a(H)?2|E(H)|dmax + A) if the left layer U is
selected, where H is the 2-hop graph constructed on U, E(H) is the
edges in H, a(H) is the arboricity of H [6], dmax is the maximum
degree of a vertex in U, and A is the result size. Compared to BCList,
BCList++ is more efficient w.r.t the values of p and q. It should also
be remarked that many real bipartite graphs are unbalanced in
practice (e.g., Edit-en and Edit-fr in Table 3), and the values of p
and g may be quite different as well. Hence, the performance of
BCList++ could be significantly influenced by the choice of the
search layer (i.e., U or V). Consequently, a vital task is to choose
a layer with the least computation cost. To this end, we develop a
new cost model, built upon an unbiased estimator for the density
of 2-hop graph H, to efficiently estimate the computation cost. We
theoretically analyze the effectiveness of the cost model.

We use pre-allocated arrays and vertex labelling techniques to
implement BCList++ such that the frequent subgraph creating op-
erations can be substituted by array element switching operations.
To further accelerate the computation, we introduce useful graph
reduction techniques and extend our approach to a parallel environ-
ment, where multiple threading is available. Empirical study shows
that BCList++ can significantly outperform the baseline method
BCList and other competitors by up to 3 orders of magnitude. A
case study about our techniques for optimizing the efficiency of
GNN information aggregation is presented.

Our principle contributions are summarized as follows.

e This is the first work to systematically study the problem
of (p, q)-biclique counting and enumeration for large sparse
bipartite graphs. We propose BCList which combines back-
tracking with branch-and-bound techniques, together with
a variety of pruning techniques.

e We propose a layer based approach BCList++, where a cost
model is used to guide the selection of the layer with the
least computation cost. To improve efficiency further, we
implement BCList++ using pre-allocated arrays and vertex
labelling techniques such that the frequent subgraph creating



Table 1: Frequently used notations.

Notation | Meaning
G a bipartite graph
U(G),V(G) | a set of vertices in G
E(G) a set of edges in G
a vertex in a bipartite graph

(u,v) an edge in a bipartite graph

u,v,w

u—v an directed edge from u to v

N(u, G) the neighbors of u in G

d(u, G) the degree of u in G

Na(u,G) | the 2-hop neighbors of u in G

B(L,R) a biclique in a bipartite graph

r(u) the rank of u
H the 2-hop graph of a bipartite graph

N(u,H) | the neighbors of u in a 2-hop graph H

operations can be substituted by array element switching
operations.

e The comprehensive performance evaluation on real data
demonstrates the efficiency of our new techniques proposed
in this paper.

Roadmap. The rest of this paper is organized as follows. In Sec-
tion 2, we introduce basic concepts and problem definition. In Sec-
tion 3, we propose a baseline method. In Section 4, we propose an
advanced approach. Two optimizations are proposed in Section 5.
We conduct extensive experiments in Section 6. Section 7 reviews
the related work and Section 8 concludes the paper.

2 PRELIMINARIES

In this section, we introduce basic concepts and definitions used
in this paper. Table 1 summarizes some notations frequently used
throughout this paper. We consider an unweighted and undirected
bipartite graph G = (U, V, E), where U(G) and V(G) denote two
disjoint vertex sets, i.e., U(G) N V(G) = 0, and E(G) € U(G) X V(G)
denotes the edge set of G. In this paper, we call U(G) and V(G) the
left and right side (or layer) of vertices in G, respectively. An edge
in G is denoted by either (u, v) or (v, u). For each vertex u € U(G),
the neighbors of u is denoted as N(u, G) = {v|(u,v) € E(G)}. The
degree of u, denoted as d(u, G), is the number of neighbors of u, i.e.,
d(u, G) = |N(u, G)|. We have symmetrical definitions for vertices
in V(G). For presentation simplicity, in the rest of the paper, we
omit G in the notations when the context is self-evident.

DEFINITION 1 (BICLIQUE). Given a bipartite graph G =
(U,V,E), a biclique B(L,R) is a complete subgraph of G, where
L C U(G) andR C V(G), i.e, Y(u,v) € L X R, (u,v) € E(G).

DEFINITION 2 ((p, q)-BICLIQUE). Given a bipartite graph G,
and two integer parameters p and q, a (p, q)-biclique B(L,R) is a
biclique of G with |L| = p and |R| = q.

Problem Statement. Given a bipartite graph G = (U, V,E), and
two integer parameters p and g, we study the problem of counting
and enumerating (p, q)-bicliques in G.

ExampLE 1. Consider the bipartite graph in Figure 1. Assum-
ing p = 2 and q = 3, there are two (p, q)-bicliques. They are
({u1, uz}, {v1, vz, v3}) and ({uz, us}, {v2, v3, va}).

In the rest of the paper, we focus on the enumeration problem and
we show how to extend our techniques to the counting problem.

3 THE BASELINE SOLUTION

A brute-force solution for our problem is to enumerate all (Igl) (l‘;l)
combinations of vertex sets and verify whether each of them is a
biclique, which is cost-prohibitive. In the database research commu-
nity, algorithms that combine backtracking with branch-and-bound
techniques are widely adopted to deal with graph based problems,
such as maximal biclique enumeration [1, 49]. Inspired by these, in
this section, we propose a competitive branch-and-bound baseline
method, called BCList. In the following, we first give the main idea
of BCList together with some important pruning techniques, and
then present the overall algorithm.

3.1 Solution Overview
We begin with the concept of partial biclique.

DEFINITION 3 (PARTIAL BICLIQUE). Given a pair of integers p
and q, a partial biclique B(L, R) is biclique with |L| < p and |R| < g,
or|L| <pand|R| <gq.

Main Idea. In a nutshell, BCList maintains a partial biclique and
recursively adds the candidate vertices into the partial biclique to
generate full bicliques, i.e., (p, g)-bicliques. More specifically, BCList
operates on the following four dynamically changing vertex sets:
(i) L, a subset of U containing the left side of vertices in a partial
biclique; (ii) R, a subset of V' containing the right side of vertice in
a partial biclique; (iii) Cr, a subset of U containing the candidate
vertices that may be added to L; (iv) Cg, a subset of V containing the
candidate vertices that may be added to R. In each iteration, BCList
chooses one vertex from Cr, or Cg to expand the partial biclique.
The four vertex sets are utilized and maintained in a depth-first
traversal of a recursion search tree to generate (p, q)-bicliques.

Clearly, to improve the computation efficiency, the key is to
reduce the search space, i.e., the size of recursion search tree. In the
following, we aim to develop efficient pruning and query processing
techniques.

3.2 Pruning Techniques

LeEmMA 1. Given a partial biclique B(L, R), the candidate sets Cf,
and Cg only contain the vertices that are the common neighbors of
vertices in R and L, respectively.

(1) Ifu € Cr, thenVv € R : (u,v) € E; and
(2)Ifv € Cr, thenVu € L: (u,v) € E.

All proofs in this paper are omitted due to space limit!. Based
on Lemma 1, we can substantially reduce the number of candidate
vertices by only considering the common neighbors. In particular,
when the partial bicliques are expanded, Cy, and Cg are contracted.
We have the following corollary based on Lemma 1.

COROLLARY 1. Given a partial biclique B(L, R), and the corre-
sponding candidate sets Cy and Cg,
(1) if |L| = p and |R| + |CRr| = q, then L forms a (p, q)-biclique with
each g-sized subset of R U Cg; and
(2) if |R| = q and |L| + |CL| = p, then R forms a (p, q)-biclique with
each p-sized subset of LU Cp, .

1A full version of this paper is available in [46]



Algorithm 1: Collect2HopNeighbors(G, p, q)
Input : G :a bipartite graph
P, q : two parameters
foreachu e UUV do
Initialize hashmap C with zero;
for each v € N(u, G) do
for each w € N(v, G) do
L if u # w then

A G R W N R

| Clw] — Clw]+1;
7 for each w € C do
8 if u € U and C[w] > qoru € V and C[w] > p then
9 | Na(u, G) = Na(u, G) U {w};

Lemma 1 provides an efficient way to reduce the number of
candidate vertices on the opposite side when a new vertex is added
into the partial biclique. Next, we explore to reduce the number
of candidate vertices on the same side as well. Before that, we
introduce the important concept of 2-hop neighbor.

DEFINITION 4 (7-STRENGTH 2-HoP NEIGHBOR). Given a bi-
partite graph G = (U, V, E) and an integer t, for a vertex w in G, the
t-strength 2-hop neighbors of w, denoted as Nj (w, G), contains all
vertices in G, each of which has at least T common neighbors with w,
ie, NJ (w,G) = {w'|lw’ € UUV and |[N(w,G) N N(w’,G)| = r}.

For presentation convenience, given a bipartite graph G =
(U,V,E), and two integers p and ¢, for each u € U, we define
the 2-hop neighbors of u, denoted as N2(u, G), to be the g-strength
2-hop neighbors of u, i.e., Na(u, G) = qu(u, G). Similarly, for each
v eV, Ny(v,G) = Nl (v,6).

ExaMPLE 2. Consider us in the bipartite graph in Figure 1 again.
We assume p = 2 and q = 3. Since uy is the only 3-strength 2-
hop neighbor of us with common neighbors vo, v3, and v4. We have
Na(us3, G) = {uz}.

LEmMA 2. Given a partial biclique B(L, R), the candidate sets Cr,
and CR only contain the vertices that are common 2-hop neighbors of
L and R, respectively.

(1) Ifu € Cr, thenVw € L: u € Na(w, G); and
(2)Ifv € CR, thenVw € R: v € Na(w, G).

ExAMPLE 3. Following Example 2, suppose L = {us}. Based on
Lemma 2, we have that the candidate set C;, C Ny(us, G), which
implies that we only need to consider uy as the candidate vertex to
expand L, rather than all vertices in {ug, u1, uz, us}.

Collecting 2-hop Neighbors. Algorithm 1 illustrates the details
of collecting the 2-hop neighbors of vertices in a bipartite graph.
For each vertex u in G, we use a hashmap C to keep the 2-hop
neighbors of u along with the number of common neighbors (Line 2).
In the algorithm, we first search the neighbors of u (Line 3), and
then search the 2-hop neighbors (Line 4). If the possible 2-hop
neighbor is a vertex rather than u itself, we increase the entry in
C by 1 (Lines 5-6). After processing all neighbors of u, we check
the candidate 2-hop neighbors, and only keep the g-strength (resp.
p-strength) 2-hop neighbors if u € U (resp. u € V) (Lines 7-9).

Table 2: The neighbor and 2-hop neighbor structure of G.

VertexId N(u,G) Nao(u, G)
Uup :
u : U3, U1
uz V2, U3, V4,01, Vg U3, U]
us : V2, U3, U4, U5
Ug : Us
g :
(%
vyt ui, Ug U3, U4, U1
U3 : V4, U1
Vg : Ug U5
Us :

THEOREM 1. The time complexity of Algorithm 1 is
O(Zuev d,G)? + Tyey d(v, G)?).

Size Pruning. During the search processing, when the size of ver-
tex set is relatively small, we may stop exploiting the current branch
without missing any results.

LemMA 3. Given a partial biclique B(L, R), and the candidate sets
Cr and CR, if |L| + |Cr| < p or|R| + |CRr| < q, the four sets L, R, Cr,
and Cg cannot generate any (p, q)-bicliques.

Vertex Ordering. As a frequently considered factor to improve
the efficiency of many graph search algorithms [6, 7, 42], vertex
ordering can be utilized to avoid generating duplicate results and
thus save computation cost. In the literature, the degree ordering [6,
42] and core ordering [7] are two widely adopted vertex ordering
strategies. Our experimental studies in Section 6 show that the two
orderings achieve comparable performance. Next, we introduce the
degree ordering since it is more computationally efficient.

DEFINITION 5 (VERTEX RANK). Given a bipartite graph G =
(U, V,E), for a vertex u in G, the vertex rank r(u) is an integer where
r(u) € [1,|U U V|]. For two verticesu,v € U UV, r(u) > r(v) if

e d(u) > d(v), or
e du) = d(v) and u.id < v.id?.

Graph Transformation. Given a bipartite graph G, let  be a
degree ordering on G. We say the directed bipartite graph G is
induced by the ordering 7, if U(?})) = U(G), V(E?)) := V(G), and
there is an edgeu — v in G if r(u) > r(v) and (u, v) € E(G).

In the rest of the paper, we slightly abuse the notation of G to
denote its induced directed graph 8, unless otherwise specified.
For a vertex u in G, N(u, G) only keeps the neighbors of u with
a lower vertex rank than u. We have similar changes for d(u, G)
and Ny(u, G). Besides, we sort vertices in U(G), V(G), N(u, G), and
Na(u, G) in descending order of their ranks by preprocessing.

ExAMPLE 4. Following the example in Figure 1. Assumep = 2 and
q = 3. The sorted vertex order is as follows: uz, us, v2, u1, v3, v4, Ug, V1,
vs, ug, vo. Table 2 shows the neighbor and 2-hop neighbor structure of
each vertex after graph transformation. Take u; as example. Although
it has 3 neighbors, namely v1, vy, and vs, we only keep v3 and vy
in N(u1, G). This is because vz has a higher rank than u;. Note that

2We assume u.id < v.idifu € Uandv € V.



Algorithm 2: BCList(G, p, q)
Input : G: a bipartite graph
P, q: two parameters
Output : B:all (p, g)-bicliques
Collect2HopNeighbors(G, p, q);

[

2 Compute the rank r(u) for each u € U(G) U V(G);

3 G « directed version of G, where u — v if r(u) > r(v);

4 VertexBasedListing(0, 0, U(G), V(G));

5 return B;

6 procedure VertexBasedListing(L, R, Cr, CR)

7 if [L| > pand |R|+ |Cr| = qor |R| =2 gand |L| + |CL| = p then
8 if |L| > p then

9

foreach S C RUCg: |S| = g do
| B BU{(L Sk

11 else
12 foreachS C LUCL: |S| =p do
13 L B— BU{S,R};

14 elseif |[L|+ |CL| < p or |R| + |CRr| < q then

15 L return /* Lemma 3 x/;

16 else

17 L' —L,R «R;

18 i—j0;

19 while i < |Cr|and j < |Cr| do

20 u «— Crli], v « Crljl;

21 if r(u) > r(v) then

22 L« LuU{u}

23 Cp < Crli+1:]10 Na(u, G); /* Lemma 2 */;
24 C;? «— CrN N(u, G); /* Lemma 1 */;
25 VertexBasedListing(L’, R’, C’L, C}e);

26 L L -{u};

27 i—i+1

28 else

29 R « R U {v};

30 Cg < Crlj +1:]n Na(v, G); /% Lemma 2 */;
31 C’L «— Cr, N N(v, G); /% Lemma 1 %/;
32 VertexBasedListing(L’, R’, Ci, C;e);

33 R « R - {v};

34 jej+1

vertices in N(u, G) and Ny(u, G) are sorted in descending order of
their ranks.

3.3 The Overall Algorithm of BCList

Based on the above observations, we are ready to present the BCList
algorithm. We first collect the 2-hop neighbors for vertices in G
(Line 1), which is described in Algorithm 1. Then, we compute the
vertex rank for each vertex in the graph (Line 2) and construct
the induced directed graph (Line 3). Finally, we enumerate all (p,
q)-bicliques using the procedure VertexBasedListing (Line 4).

In the procedure VertexBasedListing, we maintain four vertex
sets, i.e.,, L, R, Cr, and Cg, which are initialized as 0, 0, U(G), and
V(G), respectively. During the processing of VertexBasedListing,
we first check if the current branch can generate answers based
on Corollary 1 (Line 7). For example, if |L| > p and |R| + |CRr| = g,

we can collect (p, g)-bicliques from L and each g-sized subset S of
R U Cg (Lines 8-10). Similarly, we might also obtain (p, g)-bicliques
in Lines 11-13. Otherwise, we check if the current branch can be
pruned by applying Lemma 3 (Line 14). Lastly, we search the sub-
spaces (Lines 16-34).

More specifically, we iteratively select the vertices in Cy and
CR to expand the partial biclique, i.e., L and R (Lines 19-34). At
each step, we choose from Cy, and Cg the vertex with the highest
rank (Line 20). Say u (i.e., Cr[i]) has a higher rank than v (i.e.,
Crl[j]) (Lines 21-27). Then, L’ is updated by adding u to L (Line 22).
Based on Lemma 2, C; is updated by computing the intersection
of Cr and Nz(u, G). Note here that we need only to consider the
last |Cr| — i vertices in Cr, since the first i vertices have already
been checked in previous iterations (Line 23). Meanwhile, based on
Lemma 1, we can update C 1’? (Line 24). After that, we enter the new
search space formed by the vertex sets L, R/, Ci, and CI/Q (Line 25).
After finishing the new search space, we should remove u from L’
before going to next iteration (Line 26). Lines 28-34 describe the
symmetrical case where r(Cr[i]) < r(Cr[j]).

ExampLE 5. Following Example 4, we illustrate the overall run-
ning process of BCList. Figure 2 depicts the recursion tree of the entire
search space. Note that a recursion tree contains three types of tree
nodes: (i) open node marked by a dashed rectangle, which we have
to explore further, e.g., so, s1, s3, and sg; (ii) answer node marked by
a green solid rectangle, where we find (p, q)-bicliques, e.g., sy and s4;
(iii) closed node marked by a red solid rectangle, which can be pruned
safely, e.g., s5, s, $7, and sg. Clearly, both answer and closed nodes
are leaf nodes, while open node is an inner node.

We start from the root node sy and iteratively search the sub-
spaces in a depth-first manner by selecting vertices from the candi-
date sets following the vertex rank order. By selecting up, we enter
node s1, where the candidate vertex sets are updated accordingly.
In particular, we have Cr, = Cr N Na(uz,G) = {u3,u1} and Cg =
CrRNN(uz, G) = {vg, v3,v4, v1,v0} based on Lemma 2 and Lemma 1,
respectively. Clearly, we cannot prune s; by Lemma 3 or generate an-
swers by Corollary 1. Therefore, we expand node s1, and enter the
child node sz, where a (p, q)-biclique is found according to Corollary 1,
i.e., ({uz, us}, {va, v3,v4}). Continuing this processing, we can find
another answer node s4 with a (p, q)-biclique ({u1, uz}, {v1, v2, v3}),
while all closed nodes can be pruned by Lemma 3.

Analysis of BCList. Below we first show the correctness of BCList,
and then analyze the time and space complexity of BCList.

THEOREM 2. BCList enumerates (p, q)-bicliques correctly.

Next we focus on the main recursion procedure VertexBasedList-
ing when analyzing the time complexity of BCList. Note that the
time complexity to preprocess the graph for collecting 2-hop neigh-
bor is shown in Theorem 1.

THEOREM 3. The time complexity of BCList is O((|U(G)| +
[V(G))dmax +d2max)P+972), where dmax and dzmax are the max-
imum degree and 2-hop degree of a vertex in G, respectively.

THEOREM 4. The space complexity of BCList is O(|[E(G)| +
UG + [V(G)P).
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Figure 2: (Partial) Recursion tree of the running example of BCList on Figure 1 (p = 2 and q = 3).

3.4 Discussion for Counting Problem

To solve the counting problem, we only need to do minor changes
for BCList. Specifically, in Lines 9-10 and Lines 12-13 of Algorithm 2,
we count the number of results by using (‘z |) and (lil), respectively,
rather than enumerating each subset of S.

4 AN ADVANCED APPROACH

In this section, we propose an advanced approach, namely BCList++,
to solve the problem of (p, q)-biclique counting and enumeration.

4.1 Motivation

Although BClList offers a useful computation framework to our
problem, our empirical study suggests that it still has the following
two drawbacks.

o Drawback 1: Large Search Space. The recursion procedure Ver-
texBasedListing in BCList utilizes a vertex ordering based strategy
to expand the search space, which may lead to a large search space
in terms of both depth and width of the recursion tree when the
value of p + q is large. As a result, it can be inefficient since the
time complexity of BCList is exponential to p + g (see Theorem 3
for detials).

o Drawback 2: Inefficient Direct Implementation. The direct imple-
mentation of BCList does not yield an efficient algorithm because it
has to produce and store a large number of intermediate subgraphs.
That is, we have to produce new L, R, Cr, and Cg for each node
in the recursion tree. It is costly to frequently create such data
structures.

The Advanced Approach — BCList++. Based on the above analy-
sis, we consider the following two aspects to alleviate the drawbacks
of BCList.

e To resolve Drawback 1, we apply a layer based exploring strat-
egy to enumeration (p, q)-bicliques by anchoring the search on
either U or V only. This exploring strategy leads to a time complex-
ity exponential to either p or g (see Theorem 6). To deal with the
unbalanced bipartite graphs and queries with different p and ¢, we
develop an efficient and effective cost model to choose a layer with
the least computation cost.

e To tackle Drawback 2, we implement BCList++ using pre-
allocated arrays and vertex labelling techniques such that the fre-
quent subgraph creating operations can be substituted by array
element switching operations. By using these data structures and
operations, we only need to create them once during the entire
processing of the algorithm.

(uy) Id NuwH) N@u0G)
Up : (%)
ui: V1, U2, U3
U : Ui, u3 Vo, U1, U2, U3, U4

us : V2, U3, U4, U5
@ @ Ug : V4, U5

(a) 2-hop graph H

(b) Neighbor structures
Figure 3: 2-hop graph H and vertex neighbor structures.

4.2 BClList++ Algorithm
We begin with the important concept of 2-hop graph.

DEFINITION 6 (2-Hop GRAPH). Given a bipartite graph G =
(U,V,E), and a pair of parameters p and q, the 2-hop graph H =
(U,E) of G is a graph induced by G with the following properties:
(1) U(H) := U(G)3; and
(2)Vu,v € U(H), (u,v) € E(H) ifu and v are 2-hop neighbors in G.

Given a bipartite graph G and its induced 2-hop graph H, for
each u € U(H), the neighbors of u in H is denoted as N(u, H) =
{v|(u,v) € E(H)}, while N(u, G) is reserved to keep neighbors of u
in G. Note that, we transform H into a directed acyclic graph (DAG)
and sort vertices in U(H) and N(u, H) in descending order of their
ranks as well.

ExAMPLE 6. Continuing our running example, Figure 3(a) shows
the induced 2-hop graph H of G, which contains two edges, i.e.,
up — uy and up — us. This is because there are only two pairs of
2-hop neighbors (i.e., (u1, uz) and (uz, u3)) among vertices in U(H),
Figure 3(b) presents the neighbor structures of vertices in H. Note that,
for each vertexu € U(H), N(u, G) contains all neighbors of u in G.

Moreover, given a 2-hop graph H, a clique c is a complete sub-
graph of H by ignoring the edge direction. We say a clique c is a
p-clique if the number of vertices in c is p. For example, (u1, u2) is
a 2-clique in Figure 3(a).

The Details of BCList++. Algorithm 3 illustrates the details of our
advanced method BCList++. We first choose the layer with least
cost as anchor layer, i.e., U(G), by using a cost model (Lines 1-3),
which is introduced in detail in Section 4.3. Then, we collect the
2-hop neighbors for each vertex in U(G) (Line 4) and compute the

3The construction of H based on V(G) is similar.



Algorithm 3: BCList++ (G, p, q)
Input : G: a bipartite graph
P, q: two parameters
Output : B:all (p, g)-bicliques
if Cost(U(G), p) > Cost(V(G), q) then
Swap(U(G), V(G));
L Swap(p, q);
Collect2HopNeighbors(G, p, q); /* for vertices in U(G) */;
Compute the rank r(u) for each u € U(G);
Construct 2-hop graph H on U(G);
S « p arrays initialized as empty;
LayerBasedListing(0, H, 0);
return B;

[
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10 procedure LayerBasedListing(l, H, L)
11 if [ = p then

12 for each R C S[I/ - 1]: |R| = g do
13 L B— BU{(L,R)};

14 for each u € U(H) do
15 if [ = 0 then
16 L S[l] « N(u, G);

17 else

18 | S« S[U-11nN(u,G);

19 if |S[!]| < gor [N(u, H)| < p—1—1then
20 L Continue;

21 Construct subgraph H’ of H induced by N(u, H);
22 LayerBasedListing(! + 1, H', LU {u});

vertex ranks according to the 2-hop degree of a vertex (Line 5). Next,
we construct the 2-hop graph H based on vertices in U(G) (Line 6).
In Line 7, we initialize a set of p empty arrays to store the common
neighbors in G for vertices in U(H). Finally, we enumerate all (p,
q)-bicliques using LayerBasedListing (Line 8).

Generally, in LayerBasedListing, we recursively enumerate p-
cliques on H, and simultaneously collect their common neighbors
in G using vectors S. By combining the two parts together, we
retrieve the (p, g)-bicliques.

Specifically, we use L to store the clique in H and start from depth
0 (i.e., I = 0). During the processing of LayerBasedListing, we first
check if I = p (Line 11), which implies that we have traversed p
steps and a p-clique is found. We simply collect (p, g)-bicliques from
L and each g-sized subset R of S[I — 1] (Lines 12-13). Otherwise, we
iteratively select vertex u € U(H) to expand the clique L (Lines 14-
22). We start by computing the common neighbors of u and previous
vertices in L using S[!]. Particularly, if | = 0, we simply add all
vertices in N(u, G) to S[I] (Line 16). Otherwise, S[!] is computed by
the intersection between S[/—1] and N(u, G) since S[[—1] stores the
common neighbors of existing vertices in L (Line 18). After that, we
may be able to skip the current branch if the number of common
neighbors is less than q (i.e., [S[I]| < ), or there is not enough
vertices to expand L (i.e., [IN(u, H)| < p — [ — 1). Last, we construct
subgraph H’ of H induced by N(u, H) and enter the sub-space by
expanding L with u (Lines 21-22).

ExampPLE 7. Continuing Example 6, we illustrate the overall
running processing of BCList++. Since the vertices in U(H) are

uy, U1, Us, U, Us, we start from uy. Thus, we have S[0] = N(uz, G) =
{vo, v1,v2, v3,v4}, and the induced subgraph H' contains two iso-
lated vertices u1 and us since N(ug, H) = {u1,u3} (See Figure 3). We
search the sub-space by adding uy to L. Next, we consider u1, and have
that S[1] = {v1,v2, v3} by computing the intersection between S[0]
and N(u1, G). Meanwhile, H' is empty due to the fact that N(uy, H)
is empty. After adding uy to L, we enter the new search space. Since
we havel = p = 2 at this point, we begin to enumerate (p, q)-bicliques
by L and S[1], where ({u1, uz}, {v1, v2, v3}) is found. Continuing this
processing, we can find another (p, q)-biclique ({uz, us}, {va, v3,v4}).

THEOREM 5. BClList++ enumerates (p, q)-bicliques correctly.

Efficient Implementation. BCList++ can be implemented effi-
ciently using the following data structures and operations which
are an adaption of the ones used in [6, 7] for listing cliques in generic
graphs. Note that the only frequently constructed object is the DAG
H in Line 6 and Line 21. This is because L in LayerBasedListing can
be represented as an array of size p and S is a set of p arrays.

For each vertex u € U(H), we use an adjacency list N(u, H) to
store its out-neighbors. No other adjacency lists will be created
during the processing BCList++. Specifically, given the current 2-
hop graph H in the recursion, we make sure that the out-neighbors
of any vertex in H always appear first in N(u, H). Given H and a
vertex u, the subgraph H’ induced by N(u, H) is built as follows.

e Assign each vertex a label initially set to 0.

e For each v € N(u, H), set its label to [ + 1 if its current label
is equal to I. It ensures that v is in the new DAG H’ induced
by N(u, H).

e Foreachv € N(u, H), move all the neighbors in N(v, H) with
label equal to [ + 1 in the first part of N(v, H) (by swapping
vertices) and compute the out-degree of vertex v in the new
DAG H’ to update d(v). The first d(v) vertices in N(v, H)
are thus the out-neighbors of v in H'.

e For each v € N(u, H), set its label back to [ after finishing a
recursion search branch.

4.3 Cost Analysis

In this section, we first analyze the time and space complexity of
BCList++, and then introduce the cost model used by BCList++.

4.3.1 Time and Space Complexity Analysis. We focus on ana-
lyzing the time complexity of the main recursion procedure Layer-
BasedListing. To this end, we follow the methodology used in [6],
which studies the parameterized complexity. Particularly, we use
the concept of arboricity a(H), which is defined as the minimum
number of edge-disjoint spanning forests into which H can be
decomposed.

THEOREM 6. The time complexity of BClList++ is
O(a(HYP2|E(H)|dmax + A) where dmayx is the maximum de-
gree of a vertex in U(G) and A is the result size.

THEOREM 7. The space complexity of BCList++ is O(|E(G)| +
[ECH))).

4.3.2 Cost Model Analysis. In BCList++, the first step is to
choose the layer with the least computation cost to construct the
2-hop graph H (Lines 1-3 in Algorithms 3). Theorem 6 implies that
we need to compute the arboricity a(H) of H, which is suggested



Algorithm 4: DegreeEstimator(G, p, q)

Input : G:abipartite graph G
P, q : two parameters
Output : An estimate of D
Choose a vertex u from U(G) uniformly at random;

[

2 D, < TwoHopDegree(u);

©w

return n - Dy,

procedure TwoHopDegree(u)
Dy 05

C « hashmap;

for each v € N(u, G) do

for each w € N(v, G) do
L if u # w then

/* initialized with zero */;

© e N U R

L Clw] « Clw] +1;
11 for each w € C do
12 if C[w] > q then
13 L D, <« D, +1;

14 return D,

as an open problem [13]. Harold [12] proposes a parametric flow
based method to compute the arboricity of an undirected graph
G = (V, E) with a time complexity of O(|V||E| log(|V|?/|E|)), which
is, however, computationally costly for large graphs.

In practice, we observe that the average degree is a good substi-
tution for the arboricity, since both of them are used to measure the
“density” of a graph. Therefore, we use average degree to estimate
the computation cost of BCList++ due to its high computation ef-
ficiency. A straightforward way is to directly compute the 2-hop
neighbors for vertices in both layers using Algorithm 1. However,
Theorem 1 shows that it is expensive to compute the exact 2-hop
degree for all vertices in G.

In the following, we resort to a random sampling method to

approximate the total 2-hop degree D for a given layer, say U(G).
The intuition is to use the 2-hop degree of a sampled vertex to
estimate the total 2-hop degree of verties in U(G). Since the sampled
local subgraph is typically much smaller than the original graph
G, it is cost-saving to compute the 2-hop degree of sampled vertex
instead.
Degree Estimation. Algorithm 4 illustrates the details of our de-
gree estimation method. Note that we only introduce the compu-
tation for layer U(G), and computation for V(G) is similar. In each
sampling, we choose a vertex u from U(G) uniformly at random
(Line 1). We then compute the 2-hop degree D,, of u using proce-
dure TwoHopDegree (Line 2). Here, we skip introducing the details
since it is basically a subroutine of Algorithm 1. Last, we return
n - Dy, as an estimation for the total 2-hop degree of vertices in
U(G), where n = |U(G)| (Line 3). It is easy to verify that the time
complexity of DegreeEstimator is O(d(u)dmax ), where dpm gy is the
maximum degree of vertices in V(G).

Next, we show that Algorithm 4 yields an unbiased estimation
for the total degree of H. Let Y denote the value returned by Al-
gorithm 4. Let D denote the true value of total degree of H. Let ps
denote the number of degree pairs that attaching the same vertex.
We have the following lemma.

LemmMaA 4. E[Y] = D, and Var[Y] < n(D + ps) — (12))

Let Z be the average of r independent instances of Y. According
to the fact that Var[Z] = Var[Y]/r and Chebyshev’s inequality, we
Var[Z]  Var[Y]
have Pr[|Z — D| > eD] < =
! | ] €?D? re2D?
by running Algorithm 4 multiple independent instances, we can
obtain an (e, §)-estimator using standard method.
1
LeEmMA 5. There is an algorithm that runsr = LA bsy_
€25 D  D?

1

75 independent times of Algorithm 4 and provides an (g, d)-
€

estimator of D.

. Next, we show that

Overall Cost Model. We now proceed to estimate the overall com-
putational cost of LayerBasedListing. According to Theorem 6, for
layer U(G), we have

Cost(U(G), p) = (D/|U(G)|)P"*Ddpmax (1)

where D is estimated by Algorithm 4, and dp,; 4x is the maximum
degree of vertices in U(G). The cost on V(G) can be computed
similarly. We omit A for both Cost(U(G), p) and Cost(V(G), q).

5 OPTIMIZATIONS

In this section, we develop optimizations to further boost the per-
formance of our proposals.

5.1 Graph Reduction

We proceed to show how to reduce the bipartite graph by exploiting
some properties of our problem.

Core Reduction. To reduce the size of the bipartite graph, a promis-
ing way is to remove vertices having degrees that are small enough.
This is because a vertex u contributing a (p, g)-biclique must have
degree at least q if u € U(G), otherwise p. We can repeat this opera-
tion until all remaining vertices satisfy this condition. Particularly,
the remaining subgraph can be formally formulated by the so called
(a, p)-core, which is defined as below [9, 22].

DEFINITION 7 ((a, f)-CORE). Given a bipartite graph G =
(U,V,E), and two integers a and f, the (a, f)-core of G, denoted
by Cq,p(G), is a maximal subgraph of G induced by two vertex
sets Uc € U and Vo C V, in which all vertices in Uc have de-
gree at least a and all vertices in V¢ have degree at least f, i.e.,
Vu € Ue,d(u) = a AVv € Ve, d(v) = B.

Given a bipartite graph G, the state-of-the-art algorithm com-
putes its (a, f)-core in linear time (i.e., O(|E(G)|)) [9]. Intuitively, it
computes (a, f)-core by iteratively removing vertices in U(G) with
degree smaller than a and vertices in V(G) with degree smaller
than f until no more vertices can be removed. We omit the details
of the algorithm for space constraint. Based on the (e, f§)-core, we
derive the following lemma.

LEmMA 6. Given a bipartite graph G = (U, V, E), and two integers
p and q, let C be the (g, p)-core of G. Then, for any (p, q)-biclique
B(L, R) exists in G, B must be in C, i.e., YB(L,R) C G, we have B C C.

5.2 Parallelization

One appealing property of BCList is that it can enumerate (p, q)-
bicliques in parallel when multiple threading is available. That is
because the entire search space of (p, q)-bicliques is materialized by



Algorithm 5: BCList++ IN PARALLEL

1 Line 1-Line 7 of Algorithm 3;

2 for each u € U(H) in parallel do

3 Construct subgraph H’ of H by N(u, H);
L LayerBasedListing(1, H', {u});

4

a recursion tree, in which the answers fall only in the leaf nodes.
BCList can use a thread to process a subtree of the recursion tree
to enumerate a sub-space independently.

Our empirical studies show that BCList++ is much more efficient
and scalable on large datasets. Therefore, in this paper, we focus on
parallelizing BCList++. Particularly, we initiate a thread for each
subgraph H’ of the 2-hop graph H induced by each vertex u € U(H).
Algorithm 5 illustrates the details of parallel version of BCList++.
Specifically, we only need to replace Line 8 of Algorithm 3 with
Lines 2-4 of Algorithm 5.

6 EXPERIMENTAL STUDY

In this section, we empirically evaluate the performance of the
proposed techniques. All experiments are conducted on PCs with
Intel Xeon 2 x 2.4GHz CPU containing 40 cores and 128GB RAM
running Ubuntu 20.04.2 LTS. Unless otherwise specified, we run
algorithms against a single core. We terminate an algorithm if the
running time is more than 10 hours which is denoted as INF.

6.1 Experimental Setup

Algorithms. In the experiments, we evaluate the following algo-
rithms for counting by default.

o BClList. The baseline method proposed in Section 3.

e BCList++. The advanced approach devised in Section 4.

e PMBE. Adapted algorithm from the state-of-the-art for max-
imal biclique enumeration proposed in [1].

e BFC-VP'*. The state-of-the-art butterfly counting algo-
rithm proposed in [42].

e BFC. Butterfly counting algorithm proposed in [30].

It is easy to verify that a (p, g)-biclique must be contained by
maximal bicliques with at least p and g vertices in the left and right
side, respectively. With this property, we can immediately come
up with another baseline method as follows. First, applying the
off-the-shelf maximal biclique enumeration algorithms to list all
maximal bicliques with size constraint, and then enumerating all
(p, g)-bicliques from the obtained maximal bicliques and removing
the duplicates. The state-of-the-art algorithm, called PMBE [1], of-
fers a threshold based solution for maximal biclique enumeration,
which is much more efficient than the version without threshold.
For presentation convenience, we use the name of PMBE to denote
the adapted algorithm for our problem. We obtain the source codes
of PMBE from the authors of [1]. To ensure the fairness, in our
experiments, we only record the time cost of PMBE for enumerat-
ing maximal bicliques, while ignoring the time for enumerating (p,
q)-bicliques and removing duplicates. For BFC-VP** and BFC, we
obtain the source code from the authors of [42] and [30], respec-
tively. All algorithms are implemented in standard C++ with STL
library support and compiled with GNU GCC, except PMBE, which
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Figure 4: Effect of vertex orderings (p = 4 and g = 4).

is implemented in Java and the JVM maximum heap size is set to
large enough for all datasets.

Datasets. We use 16 real datasets selected from different do-
mains with various data properties. All datasets are obtained from
KONECT?, some of which are used to evaluate the algorithms for re-
lated problems [23, 30, 42, 47]. The detailed characteristics of the 16
datasets are shown in Table 3. We choose 4 representative datasets
from Table 3 as default datasets, including Youtube, Stackoverflow,
Twitter, and Edit-id, which cover different types of datasets, and
various graph scales.

Queries. To better evaluate our proposals, we generate multiple
(p, q) settings by fixing the value of p + ¢ = 8 and varying values
of p and g from 2 to 6. Unless otherwise specified, experiments are
conducted with p = 4 and q = 4 by default.

6.2 Performance Tuning

Exp-1: Effect of vertex ordering. We start by evaluating the
effect of vertex ordering. We evaluate three vertex orderings,
including degree, core, and random. Note that, we use the
combination of algorithm name and order name. For example,
BCList(Degree) stands for BCList using degree ordering. Figure 4(a)
shows the results for BCList. Generally, both BCList(Degree) and
BCList(Core) run quite stably compared with BCList(Random),
and BCList(Degree) is slightly faster than BCList(Core). Fig-
ure 4(b) reports the results for BCList++. On one hand, we ob-
serve that BCList++(Degree) achieves the best performance under
most datasets. On the other hand, the performance gap between
BCList++(Degree) and others is very marginal. This implies that the
performance improvement brought by vertex ordering is limited.
In the following experiments, we use degree vertex order for both
BCList and BCList++.

Exp-2: Effect of cost model. We evaluate the effectiveness of the
cost model, which is proposed in Section 4.3. By BCList++(NM), we
denote BCList++ without the cost model. The number of sampling
iterations is set to 0.01 X |[U(H)|, where U(H) is the vertex set in
the selected layer. Figure 5 reports the experiment results. Not
surprisingly, the cost model has a huge impact on the performance
of BCList++. For example, BCList++(NM) cannot even handle the
smallest dataset Youtube when p = 6 and q = 2, while BCList++
can finish in less than one second. It is generally observed that
BCList++ can achieve at least one order of magnitude performance
improvement by using the cost model. Besides, the performance
improvement enlarges quickly as the difference between p and
q increases. This is because the time complexity of BCList++ is
exponential to the value of p or g. Overall, our cost model can
judiciously choose the layer with the least cost by taking both the
graph size and values of p and q into consideration.

*http://konect.cc/



Table 3: Some characteristics of datasets.

Dataset Category [U| | U Type [V] | V Type |E| | E Type du dy d
Record Affiliation 168,337 | Artist 18, 421 | record 233,286 | Membership 1.39 | 12.66 | 2.50
Youtube Affiliation 94,238 | User 30,087 | Group 293,360 | Membership 3.11 9.75 | 4.72
Bookcrossing Rating 77,802 | User 185, 955 | Book 433, 652 | Rate 5.57 2.33 | 3.29
Github Authorship 56,519 | User 120, 867 | Project 440, 237 | Membership 7.79 3.64 | 4.96
CiteSeer Authorship 105, 353 | Author 181, 395 | Publication 512,267 | Authorship 4.86 2.82 | 3.57
Stackoverflow | Rating 545, 196 | User 96, 680 | Post 1,301, 942 | Favorite 2.39 | 13.47 | 4.06
Actor-movie Affiliation 127,823 | Actor 383, 640 | Movie 1, 470, 404 | Appearance 11.50 3.83 | 5.75
Twitter Interaction 175,214 | User 530, 418 | Hashtag 1,890, 661 | Usage 10.80 3.56 | 5.36
IMDB Affiliation 303, 617 | Actor 896, 302 | Movie 3,782,463 | Appearance 12.46 4.22 | 6.30
Edit-en Authorship 18,038 | User 2,192, 849 | Article 4,129, 231 | Edit 363.75 | 2.99 | 5.94
Edit-fr Authorship 6,666 | User 2,402, 444 | Article 4,408,423 | Edit 978.60 2.72 | 5.42
Amazon Rating 2,146,057 | User 1, 230, 915 | Product 5,743, 258 | Rate 2.72 4.74 | 3.46
Edit-id Authorship 125, 481 | User 2,183,494 | Article 6,126,592 | Edit 48.82 2.81 | 5.31
Edit-fa Authorship 134, 986 | User 3,597,380 | Article 10,011, 147 | Edit 74.16 2.78 | 5.36
Edit-ar Authorship 209, 373 | User 2,943,711 | Article 10, 489, 226 | Edit 50.10 3.56 | 6.65
DBLP Authorship | 1,953,085 | Author | 5, 624, 219 | Publication | 12, 282,059 | Authorship 6.29 | 2.18 | 3.24
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Exp-3: Evaluating graph reduction. Figure 6 evaluates the effec-
tiveness of the graph reduction techniques proposed in Section 5.1,
In particular, Figure 6(a) reports the experimental results for BCList,
where BCList(NR) stands for BCList without graph reduction tech-
niques. We observe that, by using graph reduction, BCList can
achieve roughly 10% of performance improvement on Stackover-
flow and Twitter. Figure 6(b) reports the experimental results for
BCList++. It is observed that BCList++ runs 4 times faster on Stack-
overflow than BCList++(NR). However, the benefit brought by graph
reduction seems limited for both BCList and BCList++ on Youtube
and Edit-id. The reason is that the most time-consuming part is the
recursion search for enumerating (p, q)-bicliques.

6.3 Performance Evaluation

Exp-4: Experiments over all datasets. We now proceed to com-
pare BCList++ with the two baseline algorithms BCList and PMBE
on all 16 datasets in terms of both processing time and memory
usage. Processing Time. It is reported in Figure 7(a) that BCList++

ing processing time. Among the two baseline methods, BCList runs
much faster than PMBE does on most datasets. For example, it is
at least 2 orders of magnitude faster than PMBE on Actor-movie,
IMDB, or DBLP. We observe that BCList is beaten by PMBE on
two datasets Edit-en and Edit-fr. The reason is that these datasets
are rather unbalanced, and the number of 2-hop neighbors of ver-
tices on the “heavy” layer is quite large. Generally, PMBE can only
process relatively small datasets, e.g., Record, Youtube, and Cite-
Seer, while neither of the two baseline methods can handle large
datasets, e.g., Edit-id, Edit-fa, and Edit-ar. PMBE even runs into INF
on Github, which only contains 440 thousands of edges. From the
results shown in Figure 7(a), we notice that BCList++ is much more
efficient and scalable than its compititors, and outperforms the
compititors by more than one order of magnitude on datasets such
as Youtube, Github, Stackoverflow, and Twitter etc. This is because
BCList++ adopts an efficient layer based search strategy equipped
with a highly effective cost model as shown Figure 5. Memory Us-
age. Figure 7(b) reports the memory usage of the three algorithms.
Note that we do not show the memory usage for an algorithm if its
running time is INF on the corresponding dataset. In general, BCList
consumes the least amount of memory, and BCList++ consumes
a bit more memory than BCList. This is because we implement
BCList++ with extra arrays to avoid creating the subgraphs fre-
quently. The memory usage of PMBE is much larger than that
of our algorithms. For example, PMBE could consume up to an
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Figure 8: Varying values of p and q.

order of magnitude more memory on datasets such as Youtube and
CiteSeer. The reason is that PMBE needs to build a heavy index
structure to facilitate the enumeration. The only exceptions occur
on Edit-en and Edit-fr where BCList consumes the most amount
of memory. This is still because the amount of 2-hop neighbors of
vertices on the “heavy” layer of such unbalanced bipartite graphs
is large, which however can be avoided by BCList++ by selecting
the other layer using the cost model.

Exp-5: Varying values of p and g. To evaluate the effect of p
and q values, we conduct experiments on the default (p, q) settings
where p + ¢ = 8, and p and q vary from 2 to 6. Figures 8 reports
the experiment results. It is reported that, compared to the baseline
methods, BCList++ is much more friendly to queries when the
ratio between p and q is large. For example, on Twitter shown in
Figure 8(c), when p = 2 and q = 6, BCList runs into INF and PMBE
spends near 10 hours, while it only takes less than 7 seconds for
BCList++ to finish. This is because BCList++ is equipped with a
cost model, which can judiciously select the layer with the least
computation cost as our search layer by considering the values of
p and q. Even under queries with the same values of p and q (i.e.,
p = q = 4), BCList++ is still more than one order of magnitude
faster than its competitors on all datasets.

Exp-6: Evaluating butterfly counting. In this experiment, we
evaluate the performance of algorithms for butterfly counting (i.e.,
p =2 and g = 2). PMBE is excluded from the evaluation because
it failed to give response within 10 hours on most of datasets. Fig-
ure 9 shows the experiment results. Interestingly, we observe that
although BCList++ is not particularly designed for butterfly count-
ing, it is still quite competitive compared with the state-of-the-art
butterfly counting algorithms, such as BFC-VP** and BFC. As we
can see, BCList++ even ranks the first on dataset Youtube and Twit-
ter. BCList++ is relatively slow on Edit-id. This reason is that Edit-id

is a large graph, and BCList++ needs to execute the step of cost
estimation, which deteriorates the performance of BCList++.

We conduct experiments on evaluating the scalability and paral-
lelization of our proposals in the full version of the paper [46].

6.4 Case Study

(p, 9)-biclique can be used to optimize the efficiency of Graph Neu-
ral Network (GNN) which has been one of the most successful and
extensively studied research topics in recent years [14, 38, 48]. A
pivotal operation in a GNN is to recursively aggregate information
from vertices’ neighbors in graph. A naive method simply propa-
gates information on each pair of vertices separately. Observing
that vertices in a graph usually share many neighbors, this naive
method leads to redundant computations. To improve the compu-
tation efficiency, Jia et al. [16] propose a new GNN representation
technique called Hierarchically Aggregated computation Graphs
(HAGs) aiming at reducing the number of sum operations. Interest-
ingly, we observe that (p, g)-biclique enumeration can be applied
on the task of GNN information aggregation.

ExaMPLE 8. A running example for information aggregation in a
GNN under different methods is shown in Figure 10, where Figure 10(a)
shows the input graph. Figure 10(b) shows just a single layer of the
GNN-graph of the input graph in Figure 10(a). For instance, for vertex
A, its new activation hllf‘ at layer k is computed by aggregating its
neighbors’ activations hg_l, hé‘l, and itselfhllf;1 at layer k —1. Thus,
2 sum operations occur on A. The new activations of other vertices
can be computed similarly. Clearly, the naive method generates 8
sum operations in total. In Figure 10(c), HAG considers merging the
common neighbors of A and C, including A, B, and C, where 2 sum
operations are needed for merging them to ay. Similarly, we have that
1 and 2 sum operations occur on az and B, respectively. Therefore, the
total number of sum operations for HAG is 5. Last, in our (p, q)-biclique
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based method, the two sides of vertices of the aggregation layer are
naturally considered as a bipartite graph (Figure 10(d)), where both
sides contain exactly the same number of vertices as input graph. In
the (3, 3)-biclique (marked by dashed rectangle), 2 sum operations
are required, that is merging Ag_q, By_1, and Cy._y together. Besides,
both By and Dy need an extra sum operation. Thus, our (p, q)-biclique
based method needs the least amount of 4 sum operations.

We conduct experiments on two datasets, namely IMDB (with
19, 502 vertices and 197, 806 edges) and PPI (with 56, 944 vertices
and 1,612,348 edges), both of which are employed to evaluate
the performance of HAG [16]. The experiment results shown in
Figure 11 report that our (p, g)-biclique based method achieves the
best performance when (p, ) are (5, 10) and (4, 10) on IMDB and
PPI, respectively, and outperforms the competitors by near an order
of magnitude for GNN information aggregation. We discuss the
algorithm applying details in the full version of the paper [46].

7 RELATED WORK

Motif Counting in Bipartite Graphs. As a special case of our
problem, butterfly counting has attracted many research efforts
recently. Wang et al. [40] for the first time present exact algorithm
for butterfly (rectangle) counting in a bipartite graph, which avoids
enumerating all the butterflies. First, a layer is selected at random.
Then, for each vertex u in the selected layer, we compute its 2-hop
neighbors, and for each 2-hop neighbor w, we count the number
of common neighbors between u and w denoted as ny,,. The num-
ber of butterflies starting from u is simply ("%"). Finally, we add
all the counts together, and the added counts divided by two is
the total number of butterflies. Under the same computation par-
adigm, Sanei-Mehri et al. [30] propose a layer-based method to
improve the efficiency of [40] by selecting the layer with the least
computation cost. Later, Wang et al. [42] propose a vertex priority
based method to further accelerate the computation. Apart from
these exact algorithms, research efforts have also been devoted
to approximate approaches [20, 30, 34]. Recently, Yang et al. [47]
investigate the problem of bi-triangle counting in bipartite graphs,
where a bi-triangle is defined as a 6-cycle. Butterfly based bitruss
decomposition has also been studied in the literature [43, 44].

Maximal Biclique Enumeration in Bipartite Graphs. A
closely related problem is maximal biclique enumeration in bipar-
tite graphs. A biclique is said to be maximal if it is not contained
in any larger bicliques. David Eppstein [10] provides a linear algo-
rithm to list maximal bicliques in any graph of bounded arboricity
(i.e., a(G) = O(1)). In [29], maximal bicliques are enumerated by

BCList++ mm—
GNN-graph
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exhaustively enumerating subsets of vertices in one layer, and ob-
taining the vertices in other layer as their common neighbors, and
then checking the maximality of the obtained bicliques. Li et al. [19]
enumerate the maximal bicliques by using efficient algorithms for
mining closed patterns, which have been extensively studied in
the data mining field. Inspired by the classical BK algorithm [4],
Zhang et al. [49] propose algorithm iMBEA, which combines back-
tracking with branch-and-bound framework, where useful pruning
techniques are employed to filter out the branches that cannot
lead to maximal bicliques. The state-of-the-art approach [1] utilizes
pivot pruning to improve the efficiency of maximal biclique enu-
meration. A variant problem is maximum biclique search, which
has also been extensively studied recently [5, 11, 23, 32, 33].
Listing k-Cliques in Unipartite Graphs. The problem of listing
k-cliques in unipartite graphs has a long research history and a wide
range of applications [2, 28, 31]. The seminal work is the algorithm
of Chiba and Nishizeki [6], which provides an efficient implementa-
tion of a branch-and-bound approach. Under the same framework,
recently, Danisch et al. [7] propose a core ordering based method to
resolve this problem. The advantages of their proposal are demon-
strated by both theoretical and empirical analysis. Other algorithms
initially devised for counting and listing maximal cliques can also
be adapted to deal with k-clique listing [25, 36]. Recently, the prob-
lem of k-clique densest subgraph search has received increasing
attention [26, 31, 35, 37].

8 CONCLUSION

In this paper, we study the problem of (p, g)-biclique counting
and enumeration for large sparse bipartite graphs. To efficiently
solve this problem, we propose a competitive branch-and-bound
baseline method, called BCList, which offers a useful computation
framework to the problem. To improve the computation efficiency,
we propose an advanced approach, namely BCList++, by anchoring
the search on a single layer of the bipartite graph. Effective cost
model and optimization techniques are proposed to enhance the
performance of BCList++. Extensive experiments on 16 real datasets
demonstrate the superior performance of BCList++ compared with
the baseline methods.
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