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Background4

Bipartite graph serves as a useful data model when modelling relationships between two different 
types of entities. For example, 

Biomolecular Network Author-paper Network People-location Network

To capture complex situations and network dynamics, bipartite graphs are enriched with node 
attributes, edge importance and edge timestamps, yielding attributed bipartite graphs, weighted 
bipartite graphs and temporal bipartite graphs…..



Motivation5

Specifically, the temporal bipartite graph further records two timestamps (i.e., the starting and ending 
times) for each edge, and it is an effective model in many real-world applications. For example

A people-location network for modeling disease outbreaks, which 
is derived from the paper [1] in Nature. Each edge has two 
timestamps denoting an individual's arriving and leaving times 
(in 24-hour clock) at the location.

[1] Eubank, S., Guclu, H., Kumar, V. A., Marathe, M. V., Srinivasan, A., Toroczkai, Z., & Wang, N. (2004). Modelling disease 
outbreaks in realistic urban social networks. Nature, 429(6988), 180-184.

Physical Contact Pattern:   people visit a 
location simultaneously. For example, physical 
contact exists between Jony and Eric. 

How to identify if an individual is potentially 
infected by a virus carrier through a series of 
physical contacts based on the temporal 
bipartite graph model?

Reachability!



Motivation6

• Even though reachability has been extensively studied on (temporal) unipartite graphs, it remains 
largely unexplored on temporal bipartite graphs.


• Existing works on (temporal) unipartite graphs do not consider the special characteristics of 
temporal bipartite graph structure. 

Temporal Bipartite Reachability:   we are the first to 
study the reachability problem on temporal bipartite 
graphs.  By considering the special characteristics of 
temporal bipartite graph structure, the temporal 
bipartite reachability is actually in a 2-hop manner.

To model the physical contact pattern: time-overlapping 
wedge.

Potentially Infected!!

To model the transmission: time-respecting path (i.e., a 
series of consecutive time-overlapping wedges and the 
times of the passing wedges follow a non-decreasing 
order).



Applications7

The temporal bipartite reachability has many applications, which includes

• Supporting control of disease outbreaks in Epidemiology.

• Tracing metabolic pathways in Biochemistry. 
• Modeling the flow of information in online social networks 
….



Problem Definition
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Basic Concepts9

A temporal bipartite graph  includes:

- a set of vertices  in the upper layer 

- a set of vertices  in the lower layer 

- a set of temporal edges  


s.t. ,  denotes the vertex set, and  
includes the temporal edges where each edge  records the starting time  and ending time 

 of the relationship between  and .   

G(V = (U, L), E)
U(G)
L(G)

E(G)
U(G) ∩ L(G) = ∅ V(G) = U(G) ∪ L(G) E(G) ⊆ U(G) × L(G)

(u, v, ts, te) ts
te u v

A temporal bipartite graph G

Upper Layer

Lower Layer



Basic Concepts10

Wedge: given a temporal bipartite graph  and three vertices , , , a wedge is a path 
starting from , going through  and ending at .

G u v w ∈ V(G)
u v w

Wedges:

Time-overlapping Wedge: a wedge is a time-overlapping wedge, (denoted by 
,  if the time intervals of the two edges are overlapped, i.e., 

. 
W = (e1 = (u, v, ts, te), e2 = (v, w, t′￼s, t′￼e))
min(te, t′￼e) > max(ts, t′￼s)

Time-overlapping Wedges:

[1, 2] [1, 3]



Basic Concepts11

Time-respecting Path: a time-respecting path, denoted by , is a sequence of 
consecutive time-overlapping wedges such that for any , the ending vertex of  equals 
the starting vertex of , and the ending time of  is not larger than the starting time of . 

P = ⟨W1, W2⋯, Wk⟩
i ∈ [1,k − 1] Wi

Wi+1 Wi Wi+1

,  
are two time-overlapping wedges.  is a 
time-respecting path from  to  (marked in red), which 
starts at 1 and ends at 6. 


Similarly, the path marked in blue is also a time-respecting 
path.

W1 = ((u1, v1,1,2), (v1, u2,1,3)) W2 = ((u2, v4,5,7), (v4, u5,4,6))
P = ⟨W1, W2⟩

u1 u5



Basic Concepts12

Single-pair reachability: a vertex  reaches a vertex  within a time interval  (denoted by ), if 
there exists a time-respecting path  from  to  such that the starting time and the ending time of  
fall into .

u w I u ⇝I w
P u w P

I

In the figure, we have . The set of vertices that  
can reach within [1,9] is .  (marked in red) is an 
earliest-arrival path from  to  within [1,9].

u1 ⇝[1,9] u5 u1
{u2, u3, u4, u5} P
u1 u5

Single-source reachability: given a vertex  and a time interval , the single-source reachability aims 
to identify a vertex set including all the same-layer vertices that  can reach within .

u I
u I

Earliest-arrival path: given two vertices , , and a time interval , a time-respecting path  is an 
earliest-arrival path from  to  if it has the minimum ending time among all the paths in , where  
is a set including all the time-respecting paths from  to  within .

u w I P
u w 𝒫 𝒫

u w I



Problem Statement13

Given a temporal bipartite graph , two vertices , and a time interval , we aim to efficiently 
answer the following queries: 


(1) single-pair reachability query, which answers if  can reach  within ; 


(2) single-source reachability query, which returns a set of vertices that  can reach within ;


(3) earliest-arrival path query, which retrieves an earliest-arrival path from  to  within .

G u, w I

u w I

u I

u w I

We first look into the solutions for single-pair reachability queries…



Solution Overview
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BFS-based Online Approaches15

[7] Beamer, S., Asanovic, K., & Patterson, D. (2012, November). 
Direction-optimizing breadth-first search. In SC'12: Proceedings of 
the International Conference on High Performance Computing, 
Networking, Storage and Analysis (pp. 1-10). IEEE.

•  BFS-based Online Approaches: OReach and 

OReach  are two bfs-based online approaches.  

OReach  optimizes the computation of OReach 
by adopting the direction-optimizing breadth-first 
search [7]. 

+

+
BFS starting from u

Reverse BFS starting from w

common vertex



A 2-hop Labeling Index-based Solution (Index Structure)16

• TBP-index: Given a temporal bipartite graph , a TBP-index  includes two label sets, namely in-label 

set  and out-label set . For each vertex , both  and  records a series of triplets. 
Specifically,


- each triplet  indicates that  reaches  within ; 


- each triplet  indicates that  reaches  within .

G L
Lin Lout u ∈ U(G) Lin Lout

(w, ts, te) ∈ Lin(u) w u [ts, te]

(w′￼, t′￼s, t′￼e) ∈ Lout(u) u w′￼ [t′￼s, t′￼e]

A TBP-index of G



A 2-hop Labeling Index-based Solution (Index Structure)17

• Minimal TBP-index: a TBP-index  is a minimal TBP-index if it is complete, and each of its index 
entries is necessary. 


- By complete, it means we can correctly answer all the single-pair reachability queries based on ; 


- By necessary, it means  will become incomplete if we remove any index entry in it.

L

L

L

A minimal TBP-index of G



A 2-hop Labeling Index-based Solution (Query Process)18

Query processing with the index: given a TBP-index , two vertices  and , 

and a time interval ,  reaches  within  if one of the following conditions holds:


(1) ;


(2) 


(3) 


L u ∈ U(G) w ∈ U(G)
[Is, Ie] u w [Is, Ie]

∃(w, ts, te) ∈ Lout(u) : [ts, te] ⊆ [Is, Ie]

∃(u, ts, te) ∈ Lin(w) : [ts, te] ⊆ [Is, Ie]

∃(w′￼, ts, te) ∈ Lout(u), (w′￼, t′￼s, t′￼e) ∈ Lin(w) : ([ts, te] ⊆ [Is, Ie]) ∧ ([t′￼s, t′￼e] ⊆ [Is, Ie]) ∧ (te ≤ t′￼s)

We have  reaches  within [1,9] since 

there exists an entry  
such that the above condition (2) is 
satisfied.

u1 u5

(u1,8,9) ∈ Lin(u5)

The time complexity for answering whether u reaches w is .O( |Lout(u) | + |Lin(w) | )



Efficient Index Construction Algorithms
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Important Concepts20

Dominance: given a vertex , and two index entries  and  in  (or 

),  dominates  if  and . 


Minimal Index Entry: an index entry is a minimal index entry if it cannot be dominated by other index 
entries.


Canonical Index Entry: given a vertex , an index entry  (resp. ) is a 
canonical index entry, if it satisfies the following two conditions: 

(1) it is a minimal index entry; 


(2)  s.t. ,  , ,  and .

u ∈ U(G) (w, ts, te) (w′￼, t′￼s, t′￼e) Lout(u)

Lin(u) (w′￼, t′￼s, t′￼e) (w, ts, te) w = w′￼ [t′￼s, t′￼e] ⊆ [ts, te]

u ∈ U(G) (w, ts, te) ∈ Lout(u) Lin(u)

∄w′￼ ∈ U(G) u ⇝I1
w′￼ w′￼ ⇝I2

w I1 ⊆ [ts, te] I2 ⊆ [ts, te] end(I1) ≤ start(I2)

Each index entry in a minimal TBP-index  is a canonical index entry.L



Basic Index Construction21

To Build a Minimal TBP-index: 

(1) Performing BFS procedure starting from 
each vertex in the vertex order .𝒪

(2) For each starting vertex , compute its 
related minimal index entries through 
MOReach.

uk

(3) Compute canonical index entries and 
add them into the index.



Basic Index Construction - An Example22

Vertex
-

ℒ′￼in
u1
u2
u3
u4
u5

𝒪(u1) < 𝒪(u2) < ⋯ < 𝒪(u5)1. 

2. At Line 4 of Algorithm 3, When indexing 

from ,  is processed in the order of 1, 3, 

6, 8.

u1 ts

{u1,1,3}

{u1,1,6}
{u1,1,5} {u1,3,5}

{u1,3,9}

{u1,6,7}

{u1,8,9}



Advanced Index Construction23

Observation 1: TBP-build incurs high computational cost in maintaining computing minimal index 
entries (or maintaining ).L′￼in

The computation of the minimal index entries starting from  and 
ending at , where ,  and  denote the number of comparison 
operations, removal operations and insertion operations, respectively

u1
u5 Oc Or Oi

For example, to compute the minimal 
index entries between  and , 
TBP-build needs 10 comparisons in 
total. When the candidate index entry 

 comes, TBP-build will 
check if it can dominate or be 
dominated by the existing entry in 

, i . e . ,  ( t w o 
comparison operations).

u1 u5

δ1 = (u1,3,9)

L′￼in(u5) δ2 = (u1,1,6)



24 Advanced Index Construction
Our Solution - we propose the time-priority-based traversal strategy: processing the starting times 
from  in decreasing order when indexing from , and for each starting time, exploring the index 
entries with the minimum ending time first.

uk uk

By doing this, each found candidate index entry cannot be dominated by the 
entries that are explored afterward, and thus the computation in Line 15 of 

TBP-build can be completely pruned.



Advanced Index Construction25

Observation 2: TBP-build incurs high computational cost in computing time-overlapping wedges.

Given  and , TBP-build needs 
to compare  with all the other edges adjacent 
to . However, only 1 out of 3 comparisons 
leads to a valid time-overlapping wedge.

v1 e1 = (u2, v1,1,3)
e1

v1



Advanced Index Construction26

Our Solution: we propose the temporal-based edge partition technique. For each lower-layer vertex, 
we compute its reachability-equivalent partition. By doing this, only edges in the same subset of a 
partition can form time-overlapping wedges.

Reachability-equivalent Partition: Given a temporal bipartite graph , and a lower-layer vertex 

, the reachability-equivalent partition of , denoted by , is a partition  of 

 (i.e., the set of edges adjacent to ), such that :  

(1)  and ;  

(2) ,  and  cannot form a time-overlapping wedge;  

(3)  is maximized.

G
v ∈ L(G) v Sv {E1, E2⋯ET}
E(v) v ∀1 ≤ i ≠ j ≤ T

Ei ∩ Ej = ∅ E(v) = E1 ∪ ⋯ ∪ ET

∀e1 ∈ Ei, e2 ∈ Ej e1 e2

|Sv |

The reachability-equivalent partition of  is
.


Given  and ,  only needs to be 
compared with the edges in the same partition (i.e., 

), which involves only 1 comparison.

v1
Sv1

= {{(u1, v1,1,2), (u2, v1,1,3)}, {(u1, v1,6,8), (u3, v1,6,7)}}

v1 e1 = (u2, v1,1,3) e1

(u2, v1,1,2)



Advanced Index Construction Algorithm27

(1) The time-priority-based traversal strategy.

(2) Compute the reachability-equivalent partition (Line 1), 
and when computing the time-overlapping wedges, 
only compare the edges within the same partition 
(Line 18).



Extensions28

Extension 1: a lock- and atomic-free parallel 
algorithm, namely TBP-build*-PL, to compute a 
minimal TBP-index.


TBP-build*-PL contains two phases. In phase I, 
it generates local indexes for each thread and 
computes the index entries. In phase II, it 
cleans the none canonical index entries in each 
sub-index.
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Extension 2: We propose the inverted in-label set by extending the TBP-index to efficiently 
answer single-source reachability query (SSRQ).

Inverted in-label set: the inverted in-label set of a minimal TBP-index, denoted as 
, is a data structure recording each index entry in  reversely, that is, for each 

, ,  records  in . Accordingly, the 
entry  in  indicates that u reaches w within .

̂Lin Lin
(u, ts, te) ∈ Lin(w) ∀w ∈ U(G) ̂Lin (w, ts, te) ̂Lin(u)

(w, ts, te) ̂Lin(u) [ts, te]

Answer SSRQ: With the above inverted in-label set  and the TBP-index , SSRQ can be 

efficiently answered by linearly scanning  and .

̂Lin L
̂Lin L
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Extension 3: To support fast earliest-arrival path queries (EAPQ), we propose the path-aware 
TBP-index by additionally recording the information of passing vertices.

Path-aware TBP-index: The path-aware TBP-index, denoted by , extends a 
minimal TBP-index  by recording the information of passing vertices in the paths.  

- For , each index entry in  is a tuple  
meaning that u reaches w within , and the first time-overlapping wedge in 
the path is a wedge from u to x via y starting at  and ending at  .  

- , it indicates that w' reaches u within , and 
the last time-overlapping wedge in the path is from x' to u via y' starting at  and 
ending at . 

L*
L

∀u ∈ U(G) L*out(u) (w, ts, te, ⟨x, y, tp⟩)
[ts, te]

ts tp
∀(w′￼, t′￼s, t′￼e, ⟨x′￼, y′￼, t′￼p⟩) ∈ L*in(u) [t′￼s, t′￼e]

t′￼p
t′￼e

Answer EAPQ: Using the path-aware TBP-index , an earliest-arrival path  from u to w (two 
query vertices) can be efficiently retrieved in a recursive manner. 

L* P
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Case Studies32

Case 1: we simulate the process of disease propagation using the temporal bipartite reachability. 
We can see that the number of potentially infected users continues to rise quickly day after day. 
For example, on Gowalla, 15 users are at risk of infection after 1 day, while this figure surges up to 
1072 after 14 days.

Our proposed TBP-index-based algorithm can efficiently identify the potential infected population. On 
Gowalla, our proposed algorithm spends merely 60s identifying the infected population for 10,000 infected 
sources, while the brute-force online algorithm needs more than 1.4 hours to do the same job.

The number of potentially infected users



Case Studies33

Case 2: we show the potential of our proposed method on revealing the transmission chains.


The transmission chains



Datasets and Algorithms34

Index Construction Algorithms:  
(1) TC-build: the TopChain algorithm, which is the state-of-the-art indexing-

based algorithm to answer reachability queries on temporal unipartite graphs. 
The related index is called TC-index.


(2) TC-build-PL: the TopChain algorithm in parallel;

(3) TBP-build: the baseline algorithm to compute TBP-index;

(4) TBP-build*: the advanced algorithm to compute TBP-index;

(5) TBP-build*-PL: the algorithm that constructs a minimal TBP-index in parallel.

Query Algorithms: 
(1) OReach: the online query algorithm;

(2) OReach+: an optimized online query algorithm that bases on the direction-

optimizing breadth-first search;

(3) TC-query: the query algorithm using the TC-index;

(4) TBP-query: the TBP-index-based algorithms that answers the single-pair 

reachability query, single-source reachability query and earliest-arrival path 
query.



Query Performance35

1. OReach+ performs better than OReach, but it is still at least an order of magnitude slower than 
TBP-query and TC-query (index-based algorithms).


2. Our TBP-query is faster than TC-query with up to two orders (on positive cases) or one order 
(negative cases) of magnitude.


3. When answering SSRQ, TBP-query is faster than TC-query with up to two orders of magnitude. 

4. TC-query does not support EAPQ, while our TBP-query can answer EAPQ with reasonable time



Index Construction36

Index Size

1. The size of the projected graph is substantially larger than the original graph size.


2. TBP-index is smaller than TC-index (a partial index) on 9 out of 16 datasets.



Index Construction37

Index Time

1. TBP-build and TBP-build* are slower than TC-index, which is expected as they both compute a 
complete and minimal index, and need additional time to check if an index entry is redundant.


2. TBP-build* can be accelerated by parallelization, making TBP-build*-PL finish the computation 
on graphs with hundreds of millions of edges within reasonable time.



Scalability38

Scalability of TBP-build*-PL on large-scale graphs

We randomly add edges into the two largest datasets to test the scalability of TBP-build*-PL. 
Accordingly, we can see that TBP-build*-PL can handle graphs at billion scale.
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Conclusion40

• A Temporal Bipartite Reachability Model


• A 2-Hop Labeling Index-based Solution


• Efficient Index Construction Algorithms


• Extensive Experiments and Case Studies
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