Efficiently Answering Reachability and Path
Queries on Temporal Bipartite Graphs

Xiaoshuang Chen™, Kai Wang*, Xuemin Lin*, Wenjie Zhang*, Lu Qin*, Ying Zhang”
*University of New South Wales, #University of Technology Sydney

UNSW ZUTS

THE UNIVERSITY OF NEW SOUTH WALES
UNIVERSITY OF TECHNOLOGY SYDNEY

7
> Qutline
4

* |ntroduction
 Problem Definition
e Solution Overview
- BFS-based Online Approaches
- A 2-hop Labelling Index-based Solution
e Efficient Index Construction Algorithms
e Extensions

e Performance Study

T

Introduction

7
+ Background
7

Bipartite graph serves as a useful data model when modelling relationships between two different
types of entities. For example,

AKT Signaling — ‘ dblp nce bibliogray
1 ARP-1 AMPK Signaling - e, Vi N T Ja
TP53 |] _~ Death Receptor /= SN -
| CREB TPS53 ! EGFR Signaling *. =, 1 ™ Welcome to dblp
- p53 Signaling e Sy ! Home e [~ Dag
1 SP1
. s» | - M browse authors | editors . [-]Aboutdblp
r \ ABCDEFGHIJKLMNOPQRSTUVWXYZ
1 ARNT . DNA damage B browse journals
' A== | VElbrowssconfesnces | workshops
KMTZA -1 AR|D48 ! - ABCDEFGHIJKLMNOPQRSTUVWXYZ
- f browse series
[~ S BRCA1 : CoRR LNCS CEUR-WS LNEE IFIP LNI EPTCS LIPICS other
: I ™ MEG3 N mbowsemenegams
" " books & theses reference works edited collections P
" ZFPB4 ' Apoplosis ...
ATM signaling ===/ [dbipblog
L - = #of journals: 1,759
Transcn non 2020-08-18: New dblp URL scheme and API updates [Blog] [Feature Spotlight] = # of publications by year of publication:) .
G factor b 1pd ne g g j p website ... and, in case we did our job right, you may even . Pat|e nts Locatlons
n o imnce l haven't noticed yet: With the latest update, we introduced major changes to the dblp URL scheme. In i
e e Snes GGnG pathways particular, this applies to the URLs of all author bibliographies [...] "i
' read ull post il

Biomolecular Network Author-paper Network People-location Network

To capture complex situations and network dynamics, bipartite graphs are enriched with node

attributes, edge importance and edge timestamps, yielding attributed bipartite graphs, weighted
bipartite graphs and temporal bipartite graphs.....

7

5

7

Motivation

Specifically, the temporal bipartite graph further records two timestamps (i.e., the starting and ending
times) for each edge, and it is an effective model in many real-world applications. For example

(Kelly) (Jony) (Eric) (Zoey) | PhyS|caI Contact Pattern people VISIt a 7

8 8 8 8 location simultaneously. For example, physical

contact eX|sts between Jony and Erlc | |

How to identify if an individual is potentially
Infected by a virus carrier through a series of
physical contacts based on the temporal

(Gym) (Library) (Supermarket) (Restaurant) (Pharmacy) bipartite graph model?

A people-location network for modeling disease outbreaks, which Reachability!
is derived from the paper [1] in Nature. Each edge has two

timestamps denoting an individual's arriving and leaving times

(in 24-hour clock) at the location.

[1] Eubank, S., Guclu, H., Kumar, V. A., Marathe, M. V., Srinivasan, A., Toroczkai, Z., & Wang, N. (2004). Modelling disease
outbreaks in realistic urban social networks. Nature, 429(6988), 180-184.

7
s Motivation
/ e Even though reachability has been extensively studied on (temporal) unipartite graphs, it remains
largely unexplored on temporal bipartite graphs.

e EXxisting works on (temporal) unipartite graphs do not consider the special characteristics of
temporal bipartite graph structure.

Potentially Infected!!
Temporal Bipartite Reachability: we are the first to

(el (ory) (Er) (Zosy) study the reachability problem on temporal bipartite
8 & 8 8 graphs. By considering the special characteristics of

temporal bipartite graph structure, the temporal
bipartite reachability is actually in a 2-hop manner.

To model the physical contact pattern: time-overlapping
wedge.

(Gym) (Library) (Supermarket) (Restaurant) (Pharmacy) o _ _ _
To model the transmission: time-respecting path (i.e., a

series of consecutive time-overlapping wedges and the

times of the passing wedges follow a non-decreasing
order).

7
7 Applications

7

The temporal bipartite reachability has many applications, which includes
* Supporting control of disease outbreaks in Epidemiology.
* Tracing metabolic pathways in Biochemistry.

* Modeling the flow of information in online social networks

T

Problem Definition

9

7
Basic Concepts

A temporal bipartite graph G(V = (U, L), E) includes:

- a set of vertices U(G) in the upper layer

- a set of vertices L(G) in the lower layer

- a set of temporal edges E(G)
s.t. U(G) N L(G) = @, V(G) = U(G) U L(G) denotes the vertex set, and E(G) C U(G) X L(G)
includes the temporal edges where each edge (u, v, f,, t,) records the starting time 7, and ending time
t, of the relationship between © and v.

@ Upper Layer
8-9 1-3 1-2 3- 5

12 34 7-9 4-6
'%.I\
@ Lower Layer

A temporal bipartite graph G

7
10 Basic Concepts

7

Wedge: given a temporal bipartite graph G and three vertices u, v, w € V(G), a wedge is a path
starting from u, going through v and ending at w.

Time-overlapping Wedge: a wedge Is a time-overlapping wedge, (denoted by
W=(e =WW,v,t,t,), e, =(v,w,1,t,)), if the time intervals of the two edges are overlapped, i.e.,
min(z,, ¢,) > max(z,).

AN 1-2 35 /<;
¢ 34 5.7 7-9” 4-6

@ @

Wedges:

7

11 Basic Concepts

7

Time-respecting Path: a time-respecting path, denoted by P = (W, W,---, W,), is a sequence of
consecutive time-overlapping wedges such that for any i € [1,k — 1], the ending vertex of W, equals
the starting vertex of W._ ;, and the ending time of W, is not larger than the starting time of W,_,

Rl S

68

® % @

|

starts at 1 and ends at 6.

path.

Wl — ((ula vlalaz) (v19 M2,1,3)) W2 — ((u29 V4,5 7) (V4, M5,4 6)) |
are two time-overlapping wedges. P = (W,, W,) is a ’
time-respecting path from u, to us (marked in red), which

Similarly, the path marked in blue is also a time-respecting |

7
12 Basic Concepts

/ Single-pair reachability: a vertex u reaches a vertex w within a time interval I (denoted by u ~; w), if

there exists a time-respecting path P from u to w such that the starting time and the ending time of P
fall into 1.

Single-source reachability: given a vertex 1 and a time interval /, the single-source reachability aims
to identify a vertex set including all the same-layer vertices that u can reach within /.

Earliest-arrival path: given two vertices u, w, and a time interval I, a time-respecting path P is an
earliest-arrival path from u to w if it has the minimum ending time among all the paths in &2, where &

is a set including all the time-respecting paths from u to w within /.

e e — w— i e e

In the figure, we have u; w1 5. The set of vertices that 1,

‘can reach within [1,9] is {4y, Us, Uy, Us}. P (marked in red) is an
earliest-arrival path from u, to us within [1,9].

7
13 Problem Statement

7

Given a temporal bipartite graph G, two vertices u, w, and a time interval I, we aim to efficiently
answer the following queries:

(1) single-pair reachability query, which answers if u can reach w within /;
(2) single-source reachability query, which returns a set of vertices that u can reach within /;

(3) earliest-arrival path query, which retrieves an earliest-arrival path from u to w within /.

We first look into the solutions for single-pair reachability queries...

T

Solution Overview

7

15

7

BEFS-based Online Approaches

BFS-based Online Approaches: OReach and
OReach™ are two bfs-based online approaches.

OReach™ optimizes the computation of OReach
by adopting the direction-optimizing breadth-first
search [7].

[7] Beamer, S., Asanovic, K., & Patterson, D. (2012, November).
Direction-optimizing breadth-first search. In SC'12: Proceedings of
the International Conference on High Performance Computing,
Networking, Storage and Analysis (pp. 1-10). IEEE.

Algorithm 1: OReach (OReach™)

Input :a temporal bipartite graph G, two vertices u € U(G) and
w € U(G), and a time interval 7 = [I, I,]:
Output :the single-pair reachability from u to w
1 Q «an empty queue; Q.push((u,Ig)):
2 minT|u| « 0; minT|u'| « oo for Yu' € U(G)\{u};
3 maxMinT |v] « oo for Yo € L(G);

/* for reverse breadth-first search x/
1 P «an empty queue; P.push((w,1.)):

maxT|w]| « oco; maxT|u'] « 0 for Vu' € U(G)\{w}:

w

6

7 fwhile Q # 0 and P # 0 do

83| 1if Q.size < P.size then

e e

10 (', te) «— Q.pop():

11 foreach unvisited e = (', 0. t. 1) of ' : t; = t. do

12 mark e as visited: t « 0;

13 if t; = maxMinT |v]| then continue;

14 foreach w € V(Ng(v)) do

15 foreach ¢'=(o, W', ¢}, 1)) : t;=minT[w']| do

16 if e, ¢’ are time-overlapping: t) <I. then

; LU common vertex |
18 (if minT |w'|<maxT|[w'] then |

i return frue;

19 T puUsShT(wW, o3

20 - if minT|w'| > t then t « minT|w']|;

21 maxMinT |v]| « t:
22 | Reverse BFS starting fromw |
23 § The procedure of performing reverse breadth-first search '

L based on P is similar to Lines 9-21;

24 return false;

7
16 A 2-hop Labeling Index-based Solution (Index Structure)
7

e TBP-index: Given a temporal bipartite graph G, a TBP-index L includes two label sets, namely in-label

set L., and out-label set L .. For each vertex u € U(G), both L, and L

-y ecords a series of triplets.

Specifically,
- each triplet (w, f,,t,) € L, (u) indicates that w reaches u within [#,, ¢,];

- each triplet (W', t, 1)) € L (u) indicates that u reaches w’ within [z, £,].

@ @ Vertex Lout -Cin

8 7-9 4-8 Uy (u1,1,2), (u1,5,9) (u1,1,3)

‘ / U3 (:U-], 6) 8) (ll], 63 7)
8 %.} m (u1,3,4), (uz,3,6) (u1,3,5), (u2,5,8), (uz,4,5)
N us | (u,7,9), (u,4,7), (uyg,7,8) | (u1,8,9), (uy,1,6), (us,5,6), (uy,6,9)

@ A TBP-index of G

7
17 A 2-hop Labeling Index-based Solution (Index Structure)
7

e Minimal TBP-index: a TBP-index L is a minimal TBP-index if it is complete, and each of its index
entries is necessary.

- By complete, it means we can correctly answer all the single-pair reachability queries based on L;

- By necessary, it means L will become incomplete if we remove any index entry in it.

Vertex Lout Lin
Ui
U (u1,1,2), (u1,5,9) (11, 1,3)
us (11,6, 8) (11,6,7)
Uy (u1,3,4), (us,3,6) (u1,3,5), (u2,5,8), (us,4,5)
Us (11,7,9), (up,4,7), (ug,7,8) | (141,8,9), (u1,1,6), (uy,5,6), (ug,6,9)

A minimal TBP-index of G

7
18 A 2-hop Labeling Index-based Solution (Query Process)
7

Query processing with the index: given a TBP-index L, two vertices u € U(G) and w € U(G),

and a time interval [/, 1,], u reaches w within [/, /] if one of the following conditions holds:

(w,t,t,)€ L, (u):lt,t] CI[I,L];

@ I(u,t,t)e L (w):[t,t]C[,1]
@ dw,t,t,) e L, (u),w,t,t)e L (w):(i,t] CL,L])A{t] ClU,L])AGE Zt)

The time complexity for answering whether u reaches wis O(|L (u)| + | L, (w)]).

e i — —— —

Vertex Lout Lin ‘We have u; reaches us within [1,9] since
U - - | . ‘
” (u1,1.2), (11, 5,9) (1. 1.3) there exists an entry (#,,8,9) € L. (us)

s (#1,6,8) _(u1,67) such that the above condition (2) is
Uy (u1,3,4), (uz,3,6) A, 3,5), (u2,5,8), (u2,4,5)

Us (11,7,9), (us,4,7), (uy,7,8) -l uy, 8, _, (uy,1,6), (us,5,6), (1y,6,9) Lsatisfied.

T

Efficient Index Construction Algorithms

7
20 Important Concepts
7

Dominance: given a vertex u € U(G), and two index entries (w, f,, ¢,) and (W', f,, 1)) in L_,(u) (or
L. (w), W', t,,t) dominates (w,7,t,) ifw=w'and [7,1,] C [£,1,].

Minimal Index Entry: an index entry is a minimal index entry if it cannot be dominated by other index

entries.

Canonical Index Entry: given a vertex u € U(G), an index entry (w, 1, t,) € L, (u) (resp. L, (1)) is a

canonical index entry, if it satisfies the following two conditions:

(1) it is a minimal index entry;

@) Aw’ € U(G) s.t. u w W, whw w, I C i, 1,], 1, C (1, 1,] and end(1)) < stari(l).

Each index entry in a minimal TBP-index L is a canonical index entry.

7

21

7
Basic Index Construction

Algorithm 3: TBP-build

10

11

12
13

14
15

16

17

Input :atemporal bipartite graph G, and a vertex order O;
OUtPUt : Lin and Loyt
.Lm(u) .Eout(u) » for allue U(G) o

ﬁnd the canomcal index entries in .C

~the process to upate‘oulSs'lar tﬂo‘me' 3-6;

: U the k th vertex in 0 .C'

. MOReach(G U, ts, L’ ‘ |

return.[,-n andl:out; o o

' runAlgorlthm Llnes- '. 3 | mark alle E E('U (G)) as unv131ted
mark all e = (u, v, 7, t,) adjacent to u with t; # I as visited;

while O # 0 do

(U, te) — Q.pop();

if 4" # uA noentries in £’ (u’) can dominate (u, I, t.) then
remove all entries in £ (u) that (u, Is, te) can dominate;
insert (u, Is, tp) into L (u');

run Algorithm 1 Lines 11-19, replace Line 14 by foreach w' e
V(NG (v)):0(w') > O(u), remove t;, < I, and Line 17;

To Build a Minimal TBP-index:

(1) Performing BFS procedure starting from
each vertex in the vertex order O.
(2) For each starting vertex u,, compute its

related minimal index entries through
MOReach.

(3) Compute canonical index entries and
add them into the index.

7
22 Basic Index Construction - An Example

Vi
@‘ @ @ g; 1. O(uy) < O(u,) <+ < O(us)

1-2 35 2. At Line 4 of Algorithm 3, When indexing

_' -

from uy, ¢, is processed in the order of 1, 3,

o

Vertex A
U
U {u,,1,3}
Us {u,6,7}
Uy =t {u,3,5)
s (1,1,6] o394 (1,8.9)

7

23

7

Advanced Index Construction

Observation 1: TBP-build incurs high computational cost in maintaining computing minimal index

entries (or maintaining L,).

ts =

new coming entry entries in L', (us) after ¢ 0.| 0| 0;
N T
1 \‘ [| | O O 1
21011
0(010
‘ [1 ‘ (uy,8,9) 4 111
| | | | | | | | J
1 2 3 4 S 6 7 8 9

The computation of the minimal index entries starting from u, and
ending at us, where O., O, and O; denote the number of comparison

operations, removal operations and insertion operations, respectively

|For example, to compute the minimal
lindex entries between u; and us,]
i TBP-build needs 10 comparisons in}
itotal. When the candidate index entryj
16, = (14,3,9) comes, TBP-build will]
icheck if it can dominate or bej
i dominated by the existing entry in}
L (us), i.e., 6, = (u,1,6) (two
comparison operations). |

7
24 Advanced Index Construction
VA

Our Solution - we propose the time-priority-based traversal strategy: processing the starting times

from u, in decreasing order when indexing from u,, and for each starting time, exploring the index
entries with the minimum ending time first.

By doing this, each found candidate index entry cannot be dominated by the
entries that are explored afterward, and thus the computation in Line 15 of
TBP-build can be completely pruned.

9 Procedure MOReach(G, u, Is, L')

10 run Algorithm 1 Lines 1-3; marlér;ll e € E(U(G)) as unvisited:;
11 mark all e = (u, v, £, t,) adjacent to u with t; # Is as visited;
12 while O # (0 do

13 (U, te) «— Q.pop();

14 if u’ # uA noentries in L) (u') can dominate (u, I, t.) then

ah aalWa - -5k i '. . l , - > ‘----- -
15 ol - 1N "y *D) - - e ’
16 insert (u, I, te) into L (u');

17 run Algorithm 1 Lines 11-19, replace Line 14 by foreach w' ¢
V(Ng(v)):0(w') > O(u), remove t, < I and Line 17;

7
o5 Advanced Index Construction
7

Observation 2: TBP-build incurs high computational cost in computing time-overlapping wedges.

(uy

Given v, and e; = (u,, v{,1,3), TBP-build needs /
to compare ¢; with all the other edges adjacent

'to v;. However, only 1 out of 3 comparisons |
leads to a valid time-overlapping wedge. |

7
o6 Advanced Index Construction

/ Reachability-equivalent Partition: Given a temporal bipartite graph G, and a lower-layer vertex
v € L(G), the reachability-equivalent partition of v, denoted by S, is a partition {E,, E,---Er} of
E(v) (i.e., the set of edges adjacent to v), such that V1 <1 #j < T:

(1) El N E — @ andE(V) — El U - U ET’
(2) Ve, € E;, e, € E, €] and e, cannot form a time-overlapping wedge,

@) |S,| is maximized.

Our Solution: we propose the temporal-based edge partition technique. For each lower-layer vertex,

we compute its reachability-equivalent partition. By doing this, only edges in the same subset of a
partition can form time-overlapping wedges.

@ @ @ The reachability-equivalent partition of v, is /
. A‘ N 1 ~ {{(ul’vl’l’z)’ (MZ’ V19133)}9 {(ulavla698)9 (l/t3, V1,6,7)}}'
2 34 5-7 . 7-9° 4-6 |

%Q' Given v and e; = (u,,V;,1,3), €; only needs to be

compared with the edges in the same partition (i.e., |
@ (1, v(,1,2)), which involves only 1 comparison. |

7

7

27 _Advanced Index Construction Algorithm

Algorithm 4: TBP-build”

—_— =
S

P
b

—
w

—
—

15
16

17

18
19

20

21

22

23

24

@ e ~1 =] (& — W b -

Input :atemporal bipartite graph G and a vertex order O;

minT [u] « 0; minT [u"] « oo for Vu' € U(G)\{u};

while O # 0 do
(w, 15, 1) — Q.pop();
if w# uy then
if Query(ug, w, t;, t,, L) then continue;
L else Lin(w) « Lin(w) U{(uk, tg, 1) };

foreach unvisited e = (w, 0,1y,) of w: t; > t, do
mark e as visited; ¢ « 0;

if) > minT[x] then continue;

if e and e’ are time-overlapping then
| Q.push((x,t},1})); minT[x] « t};

if minT [x]| > t then t « minT|[x];

maxMinT [v] « t;

25 return L;, and Ly,;.

(1) The time-priority-based traversal strategy.

(2) Compute the reachability-equivalent partition (Line 1),
and when computing the time-overlapping wedges,

only compare the edges within the same partition
(Line 18).

28

7
Extensions

Extension 1: a lock- and atomic-free parallel
algorithm, namely TBP-build*-PL, to compute a
minimal TBP-index.

TBP-build*-PL contains two phases. In phase |,
it generates local indexes for each thread and
computes the index entries. In phase Il, it
cleans the none canonical index entries in each
sub-index.

Algorithm 5: TBP-build™-PL

Input :G, O, and the number of threads ¢;

Output : L', .-, Lf

/* Phase I: compute a labeling that respects O. */

1 compute S, (Definition 10) for Yo € L

2 initialize L s

3 for k=1,2,---,|U(G)| do

(G);

.C(iw, «— () for each thread i <« 1-- - ¢;

4 Uy < the k-th vertex in O, and allocate it to an idle thread i;

5 run Lines 5-24 in Algorithm 4; replace £ in Line 13 and L;, in

Line 14 with £* and .C;fn, respec

tively.

/* Phase II: clean non-canonical index entries. */

6 for k=1,2,---,|U(G)| do

7 u;. < the k-th vertex in O, and allocate it to an idle thread;
8 foreach index entry (w, ts,te) € szl Lfn(uk) do

9 find the common vertex x with the highest rank in

< .L(”mt(’ w) and |J!_, Lfn(uk) s.t.w~or X,
X~ U, Iy, I C |ts,te], and ET (1) < ST(1z);

10 if O(x) < O(w) then remove (w, tg, t.);

11 the process to clean Ule .E(’;ut (uy) is similar to Lines 8-10;

12 return £, .-, L1

7
20 Extensions
VA

Extension 2: We propose the inverted in-label set by extending the TBP-index to efficiently

answer single-source reachability query (SSRQ).

Inverted in-label set: the inverted in-label set of a minimal TBP-index, denoted as
L ., IS @ data structure recording each index entry in L., reversely, that is, for each
(u,t,t,) € L, (w), Yw e U(G), iin records (w,1,1t,) in zm(u). Accordingly, the
entry (W, t, 1,)in zm(u) indicates that u reaches w within [z, t,].

Answer SSRQ: With the above inverted in-label set im and the TBP-index L, SSRQ can be

efficiently answered by linearly scanning im and L.

7
30 EXxtensions
VA

Extension 3: To support fast earliest-arrival path queries (EAPQ), we propose the path-aware
TBP-index by additionally recording the information of passing vertices.

Path-aware TBP-index: The path-aware TBP-index, denoted by L*, extends a
minimal TBP-index L by recording the information of passing vertices in the paths.
- For Yu € U(G), each index entry in LY (u) is a tuple (W.t.t.(x.y.t,))

0,

meaning that u reaches w within [t t,], and the first time-overlapping wedge in
the path is a wedge from u to x via y starting at t; and ending at l, -

- Y, t,t, (x,y, t]’?)) € L¥(u), it indicates that w' reaches u within [t,t,], and
the last time-overlapping wedge in the path is from x' to u via y' starting at t[; and
ending at t,,

Answer EAPQ: Using the path-aware TBP-index L*, an earliest-arrival path P from u to w (two
query vertices) can be efficiently retrieved in a recursive manner.

T

Performance Study

7
32 Case Studies
7

Case 1: we simulate the process of disease propagation using the temporal bipartite reachability.
We can see that the number of potentially infected users continues to rise quickly day after day.
For example, on Gowalla, 15 users are at risk of infection after 1 day, while this figure surges up to
1072 after 14 days.

10%1 .&. Brightki
©- Brightkite —¢ Gowalla

5 6 7 8 9 10 11 12 13 14
days
The number of potentially infected users

Our proposed TBP-index-based algorithm can efficiently identify the potential infected population. On
Gowalla, our proposed algorithm spends merely 60s identifying the infected population for 10,000 infected
sources, while the brute-force online algorithm needs more than 1.4 hours to do the same job.

7

33

7
Case Studies

Case 2: we show the potential of our proposed method on revealing the transmission chains.

.................

Lat: 39.739 ® é
Lon:-104.980 YTy 17 ‘A t,
J

--------- y M :l

Denver, United States Coffee House

(a) Brightkite

Austin Zoo

.................

»JCPe.nney

H : > o |
| o I ~ T A ¢t
o 2 10 & LR
P S 1o M S |
Lo 5 1o G , Grill and Bar
;m S IS € v o
1 ® § ¢ - 3 /c(\?
1 9 ',Q.,:C_J ' ® o !
1 : : |
0. ol 8l o
...... U RS u | BVARPAY
. ~ -
50 269 Bar
.oT.
Lon:

Lat: 30.255
Lon: -97.762

Austin, United States
(b) Gowalla

Medspa

The transmission chains

7

34

7

Datasets and Algorithms

Index Construction Algorithms:

Name Dataset IE(G)| | [UG)| | |[L(G)|

WO Wikiquote 549210 | 21.607 | 92.924 (1) TC-build: the TopChain algorithm, which is the state-of-the-art indexing-
WN Wikinews 901,416 10.764 | 159.910 based algorithm to answer reachability queries on temporal unipartite graphs.
WB Wikibooks 1,164,576 | 32,583 | 133,092 The related index is called TC-index.

SO ||Stackoverflow| 1,301,942 | 545,195 | 96,678 (2) TC-build-PL: the TopChain algorithm in parallel;

LK || Linux-kernel | 1,565,683 | 42,045 | 337,509 (3) TBP-build: the baseline algorithm to compute TBP-index;

CU Citeulike 2,411,820 | 153,277 | 731,769 (4) TBP-build*: the advanced algorithm to compute TBP-index;

BS Bibsonomy | 2,555,080 | 204,673 | 767,447 (5) TBP-build*-PL: the algorithm that constructs a minimal TBP-index in parallel.
T™W Twitter 4,664,605 | 530,418 | 175,214

AM Amazon 5,838,041 |2,146,057|1,230,915

WT || Wiktionary | 8,998,641 | 29,348 |2,094520| Query Algorithms:

EP Epinions | 13,668,320 | 120,492 | 755,760 | (1) OReach: the online query algorithm;

IF Lastfm 19,150,868 992 [1.084.620 (2) OReach+: an optimized online query algorithm that bases on the direction-
W Ttwiki 26,241,217 | 137,693 [2,225,180 optimizing breadth-first search;

EF Edit-frwiki | 46,168,355 | 288,275 [3,992.426| (3) TC-query: the query algorithm using the TC-index;

WP Wikipedia |129,885,939(1,025,084(5,812,980| (4) TBP-query: the TBP-index-based algorithms that answers the single-pair
PM PubMed |737,869,083| 141,043 |8,200,000 reachability query, single-source reachability query and earliest-arrival path

query.

/ Name SPRQ - Answering Positive Queries | SPRQ - Answering Negative Queries SSRO EAPQ
OReach OReach™ TC-query TBP-query|OReach OReach®™ TC-query TBP-query|TC-query TBP-query|TBP-query
(ms) (ms) (us) (us) | (ms) (ms) (us) (us) | (ms) (ms) (is)
WO 5.56 4.85 0.84 0.18 6.02 3.23 1.15 0.20 1.88 0.03 0.72
WN 9.60 4.05 3.41 0.41 9.34 6.52 2.53 0.72 1.07 0.06 1.08
WB 8.58 4.08 4.40 0.30 5.44 2.08 3.11 0.31 3.12 0.02 0.73
SO 11.68 0.91 9.12 0.97 8.57 1.75 1.57 0.81 45.32 0.43 2.69
LK 6.54 1.67 4.61 0.85 4.62 2.40 2.13 1.91 3.57 0.25 2.36
CU 20.24 2.92 24.62 2.10 35.40 21.20 8.77 4.64 28.78 5.38 5.76
BS 10.65 2.16 52.49 1.93 7.71 6.52 6.57 3.82 141.30 4.08 6.00
T™W 79.48 9.32 83.59 1.79 53.19 32.34 3.88 2.98 118.71 4.71 5.76
AM 74.77 4.78 65.83 2.24 62.87 11.90 4.09 2.45 345.04 19.52 6.89
WT || 249.00 90.84 8.49 0.58 38.63 61.43 3.71 1.68 2.44 0.12 1.73
EP 35.84 7.50 1269.41 4.96 165.42 37.66 90.74 3.19 976.89 7.56 3.19
LF 312.90 101.86 29.45 7.87 91.57 60.37 12.90 8.68 0.35 0.34 20.83
IW 510.00 119.34 51.00 2.99 234.76 152.12 6.26 3.64 12.93 2.04 10.76
EF 903.24 228.80 36.30 2.43 671.80 226.11 5.34 2.60 24.24 4.00 9.73
WP || 25.60s 1.20s 19.32 4.17 65.30s 41.40s 5.96 4.09 276.62 26.02 17.40
PM 58.59s 1.48s 2827.75 16.96 172.0s 90.37s 1032.30 140.25 12360.0 180.22 207.09

35

7

Query Performance

11, OReaCh+ performs better than OReaCh but |t s st|II at Ieast an order of magnltude slower than
. TBP-query and TC-query (index-based algorithms). ;
12. Our TBP-query is faster than TC-query with up to two orders (on positive cases) or one order]

(negative cases) of magnitude. |
When answering SSRQ, TBP-query is faster than TC-query with up to two orders of magnitude.
. TC-query does not support EAPQ, while our TBP-query can answer EAPQ with reasonable time }

.\--h .CD SIS

7
36 Index Construction
4

[1Graph Size E3Projected Size M TC-Index EJTBP-Index

Index Size (MB)
—
=

]
]
]
' N
:]
]
» 1
]
]
]
1

LK CU BS TW AM

WO WN WB SO

-
o
—

WT EP LF IW EF WP PM
Index Size

1. The the projected graph is su larger than the original graph size. |

- BP-index Is smaller than TG-index (a partial index) on 9 out of 16 aatasets. f'

7
37 Index Construction

/ Name Partial Index Complete and Minim.al Index (.TBP-)
TC-build TC-build-PL | build build® build® build*-PL
WO 1.16 1.11 5.89h 2.61 0.41 0.13
WN 6.26 4.12 26.48h 9.84 4.21 0.38
WB 3.81 2.98 20.15h 7.38 1.36 0.21
SO 2.66 1.55 25.41h 184.58 51.88 6.94
LK 6.94 2.43 - 47.33 29.66 2.39
CU 14.03 4.67 - 1158.59 710.16 70.27
BS 10.09 4.76 - 534.20 447.13 49.02
W 46.43 15.02 - 1207.835 869.89 112.00
AM 16.75 9.17 - 3160.54 2016.39 320.63
WT 27.65 23.76 - 202.84 88.5 5.00
EP 215.17 45.88 - 7451.13 5007.3 339.92
LF 36.19 10.55 - 5463.48 1226.39 70.59
IW 78.58 28.16 . 7031.39 2453.3 131.62
EF 110.54 38.11 - 4.48h 3875 221.00
WP 568.35 292.78 - = 6.36h 1256.88
PM 1021.98 523.90 - - - 4.22h
Index Time

11. TBP-build and TBP-build* are slower than TC-index, which is expected as they both compute a|
complete and minimal index, and need additional time to check if an index entry is redundant. |
12. TBP-build* can be accelerated by parallelization, making TBP-build*-PL finish the Computatlon
| on graphs with hundreds of millions of edges within reasonable time. *

7
38 Scalability
7

We randomly add edges into the two largest datasets to test the scalability of TBP-build*-PL.
Accordingly, we can see that TBP-build*-PL can handle graphs at billion scale.

5 3 3

. 10 M Indexing Time CdIndex Size 10 __10° {Mindexing Time Cdindex Size A8
- 5 3 5
£ 10° 1022 £, 4 102 2
S N E &
= n @ n
% 10° 109 X 103 10! 3
= Z T -
£ 2 = £ £

102 ol @ 100 102 : Sl Kl NE SEPP

0 1 2 3 0 1 2 3 4
add x100M edges add x100M edges
(a) WP (b) PM

Scalability of TBP-build*-PL on large-scale graphs

T

Conclusion

7
420 Conclusion

7
e A Temporal Bipartite Reachability Model

e A 2-Hop Labeling Index-based Solution
e Efficient Index Construction Algorithms

e Extensive Experiments and Case Studies

V//1/111111111111///4
Thanks

