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Problem Definition

Subgraph Enumeration: Given a query graph q and a data graph G (both 
are undirected and unlabelled), the problem is to find all subgraph instances 
(matches) g’ in G, that are isomorphic to q.
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Existing Works

● Join-based Algorithms
○ Use distributed joins to compute matches (with different join algorithms and 

join orders)
○ Push data (intermediate results) from the host to remote machines
○ High tension on both communication and memory usage

● Pull-based Algorithms
○ Pull (and cache) the data graph instead to reduce communication volume 

and memory consumption
○ May not reduce computation and communication time



Initial Experiment - Setup
We conduct an initial experiment of representative existing works.

● Dataset:
○ Query Graph: Square
○ Data Graph: LiveJournal (4.8 million vertices, 43.4 million edges)

● Algorithms:
○ Join-based

■ SEED: Binary join algorithm with optimal bushy plan 
■ BiGJoin: Worst-case optimal join algorithm 

○ Pull-based
■ BENU: Store the data graph in external distributed key-value database and run 

backtracking (DFS) as in a single machine
■ RADS: Expand-star*-and-verify in a pulling manner

*Star: a tree of depth 1



Initial Experiment - Results
Comm.
Mode

Work
Total

Time (s)
Comp.

Time (s)
Comm.
Time (s)

Comm.
Volume (GB)

Peak
Mem (GB)

Pushing
SEED 1536.6 343.2 1193.4 537.2 42.3

BiGJoin 195.9 122.1 73.8 534.5 14.3

Pulling
BENU 4091.7 3763.2 328.5 25.3 1.3

RADS 2643.8 2478.7 165.1 452.7 19.2

Hybrid HUGE 52.3 51.5 0.8 4.6 2.2

High communication volume and 
memory consumption

High external overhead and low 
utilisation

Sub-optimal plans

● Efficiency and scalability are jointly determined by: 

○ Computation, Communication and Memory management

● None of the works achieves satisfactory performance for all three perspectives



Challenges
● Execution Plan

○ Previous works achieve “optimality” in a specific context 

○ None can guarantee the best performance by all means

● Communication Mode
○ Non-trivial to make pull-based communication efficient 

○ An efficient plan may require both pushing and pulling 

● Scheduling Strategy
○ DFS strategy can lead to low hardware utilisation while BFS strategy has high memory demands

○ Static heuristics all lack in a tight bound and can sometimes perform poorly in practice



HUGE is a pushing/pulling-Hybrid sUbGraph Enumeration system that features:

● Advanced execution plan

○ Optimal execution plan in a more generic context

● Pushing/pulling-hybrid compute engine

○ Efficiently support both push-based and pull-based communication

● DFS/BFS-adaptive scheduler

○ Bounded-memory execution without sacrificing computing efficiency

Contributions



Advanced Execution Plan

● Break down an execution plan into logical and physical aspects
○ A unified logical join-based framework: 

■ Join Unit: edges, stars, cliques
■ Join Order: left-deep, bushy

○ Physical join processing:
■ Join Algorithm: hash join, worst-case optimal (wco) join
■ Communication Mode: pushing, pulling

● Dynamic programming based optimiser to minimise both 
communication and computation in generic context



Example HUGE Plans

All existing works can be readily plugged in to enjoy automatic 
performance improvement

a. Plan for 4-clique b. Plan for 5-path

Hybrid 
Plan



HUGE Compute Engine

● Adopt the popular dataflow model for distributed execution

○ Execution plans are translated into dataflow graphs using different 

HUGE operators

● Pushing/pulling-hybrid dual communication mode

○ A new cache policy with two-stage execution strategy

● Dynamic work stealing for better load balancing

○ Two-layer intra- and inter- machine mechanism



System Architecture

● RPC Server/Client: Serve pulling 

requests

● Router: Pushes data to other machine

● Worker: Run de-facto computation

● Cache: HUGE’s LRBU cache

● Scheduler:  HUGE’s DFS/BFS 

adaptive scheduler



LRBU Cache

● Two vital issues of traditional cache (e.g. LRU or LFU)
○ Memory copies
○ Locks

● Least recent-batch used (LRBU) cache
○ Target at a zero-copy and lock-free cache access
○ Two-stage execution strategy

■ Fetch stage: aggregate remote vertices, send async pull requests in bulk, and 
write remote vertices to the cache => Write-only (using single writer)

■ Intersect stage: read cache and compute intersections => Read-only
○ Synchronisation cost <7.5% with performance improvement 4.4x on 

average comparing with concurrent LRU



DFS/BFS-adaptive Scheduler

● Each dataflow operator is equipped with a fixed-size output queue
● Adopts BFS-style scheduling whenever possible to fully leverage 

parallelism 
● Adapts dynamically to DFS-style scheduling if the output queue is full



Experimental Evaluation

● Hardware: 
○ Local cluster: 10 machines with 4-core Intel Xeon E3-1220, 64G memory, 1TB Disk, 

connected on a 10Gps network

○ AWS cluster: 16 AWS “r5.8xlarge instances” with 32 vCPUs, 256G memory, 1TB EBS 
storage, 10Gps network (for the web-scale experiments only)

● Datasets :
○ 7 real-world data graphs, 8 queries selected from prior works

● Others:
○ Cache size: 30% of the data graph

○ Allow 3 hour maximum running time for each query



Datasets

|V| |E|

Google (GO) 875,713 4,322,051

LiveJounal (LJ) 4,847,571 43,369,619

Orkut (OR) 3,072,441 117,185,083

UK02 (UK) 18,520,486 298,113,762

EU-road (EU) 173,789,185 347,997,111

Friendstar (FS) 65,608,366 1,806,067,135

ClueWeb12 (CW) 978,409,098 42,574,107,469

a. Table of Data Graphs

b. Query Graphs



Speed Up Existing Algorithms (on LJ)

a. HUGE-BENU b. HUGE-RADS

c. HUGE-SEED d. HUGE-WCO

Out of 
Memory



All-Round Comparisons

a. q1 a. q2 a. q3

a. q4 a. q5 a. q6



Scalability

● Vary Number of Machines (on FS)

● Web-scale Graph (on CW)
a. q2 b. q3

q1 q2 q3

Throughput 2,895,179,286/s 354,507,087,789/s 206,696,071/s



Conclusion

● HUGE is an efficient and scalable subgraph enumeration 

system in the distributed context

● HUGE is designed to be flexible for extending more 

functionalities such as:

○ Cypher-based Distributed Graph Databases

○ Graph Pattern Mining (GPM) Systems

○ Shortest Path & Hop-constrained Path



Thanks!


