HUGE: An Efficient and Scalable
Subgraph Enumeration System

Zhengyi Yang', Longbin Lai?, Xuemin Lin', Kongzhang Hao', Wenjie Zhang'
'The University of New South Wales, ? Alibaba Group

SIGMOD 2021

Outline

o Introduction

o The HUGE system

o Advanced Execution Plan
o The HUGE Compute Engine
o DFS/BFS-adaptive Scheduler

o EXxperimental Evaluation

o Conclusion

SSSSSS

Problem Definition

Subgraph Enumeration: Given a query graph q and a data graph G (both
are undirected and unlabelled), the problem is to find all subgraph instances
(matches) g’in G, that are isomorphic to g.

Matches:

Vs
. . v o v, 1.
2.
u, u, Vi & Vs 3.
v,

Query Graph g Data Graph G

VVVVVV

Problem Definition

Subgraph Enumeration: Given a query graph q and a data graph G (both
are undirected and unlabelled), the problem is to find all subgraph instances
(matches) g’in G, that are isomorphic to g.

Matches:

V5
2.
3.
ul uz V1 V3
VZ

Query Graph g Data Graph G

VVVVVV

Problem Definition

Subgraph Enumeration: Given a query graph q and a data graph G (both
are undirected and unlabelled), the problem is to find all subgraph instances
(matches) g’in G, that are isomorphic to g.

Matches:

\
5
u, u, v, () v, 1. (uo, u, u,, u3) -> (VO, vV, Vo, VS)
2. (uyu,u,u)->(v,V,V,V,)
ul uz V1 V3 3.
\f

Query Graph g Data Graph G

Problem Definition

Subgraph Enumeration: Given a query graph q and a data graph G (both
are undirected and unlabelled), the problem is to find all subgraph instances
(matches) g’in G, that are isomorphic to g.

Matches:

u, u, v, v, 1. (U, u,u,, u,) -> (v, v, v, Vo)
2. (u,u,u,uy)->(v,v, Vv, V)
u, u, v, v, 3. (uyu,u,uy)->(v,v, Vv, V)

Query Graph g Data Graph G

Existing Works

e Join-based Algorithms
o Use distributed joins to compute matches (with different join algorithms and
join orders)
o Push data (intermediate results) from the host to remote machines
o High tension on both communication and memory usage

e Pull-based Algorithms

o Pull (and cache) the data graph instead to reduce communication volume
and memory consumption
o May not reduce computation and communication time

Initial Experiment - Setup

We conduct an initial experiment of representative existing works.

e Dataset:
o Query Graph: Square I:I

o Data Graph: LiveJournal (4.8 million vertices, 43.4 million edges)
e Algorithms:

o Join-based
m SEED: Binary join algorithm with optimal bushy plan
m BiGJoin: Worst-case optimal join algorithm

o Pull-based
m BENU: Store the data graph in external distributed key-value database and run

backtracking (DFS) as in a single machine

m RADS: Expand-star*-and-verify in a pulling manner

*Star: a tree of depth 1

Initial Experiment - Results

Comm. Total Comp. Comm. Comm. Peak
Mode Time (s) Time (s) Time (s) Volume (GB) Mem (GB)

SEED 1536.6 343.2 1193.4 537.2 42.3 . .
Pushing High communication vol_ume and
BiGJoin 195.9 122.1 73.8 534.5 14.3 memory consumption
BENU 4091.7 3763.2 328.5 25.3 1.3 High external overhead and low
Pulling utilisation
RADS 2643.8 2478.7 165.1 452.7 19.2

Sub-optimal plans

e Efficiency and scalability are jointly determined by:
o Computation, Communication and Memory management

e None of the works achieves satisfactory performance for all three perspectives

SSSSSS

Challenges

e Execution Plan
o Previous works achieve “optimality” in a specific context
o None can guarantee the best performance by all means
e Communication Mode
o Non-trivial to make pull-based communication efficient
o An efficient plan may require both pushing and pulling
e Scheduling Strategy

o DFS strategy can lead to low hardware utilisation while BFS strategy has high memory demands

o Static heuristics all lack in a tight bound and can sometimes perform poorly in practice

SSSSSS

Contributions

HUGE is a pushing/pulling-Hybrid sUbGraph Enumeration system that features:

e Advanced execution plan
o Optimal execution plan in a more generic context
e Pushing/pulling-hybrid compute engine
o Efficiently support both push-based and pull-based communication

e DFS/BFS-adaptive scheduler

O Bounded-memory execution without sacrificing computing efficiency

Advanced Execution Plan

« Break down an execution plan into logical and physical aspects

o Aunified logical join-based framework: R(q) = R(q1) > R(g2) >< - - - > R(qy,)

m Join Unit: edges, stars, ehgues
m Join Order: left-deep, bushy

o Physical join processing:
m Join Algorithm: hash join, worst-case optimal (wco) join
m Communication Mode: pushing, pulling

« Dynamic programming based optimiser to minimise both
communication and computation in generic context

Example HUGE Plans

Ug v
Y S 1% v /

: Vg q,ZE M Vo U3 \ v 4
! \ wco, M

' ! ; hash, |

1 1 pullmg

V2 Y3 V2 v3 pushing
/ K_ ________ U1 V4 V6 Us
'-q- ______ X R 9z, U ﬁ M X
: wco, : : wco, O_O _
O O ' i \O - Hybrid
\ V2 __ Uz pulling 1op U3, up U3 puline 34
a. Plan for 4-clique b. Plan for 5-path

All existing works can be readily plugged in to enjoy automatic
performance improvement

HUGE Compute Engine

« Adopt the popular dataflow model for distributed execution

o Execution plans are translated into dataflow graphs using different

HUGE operators
« Pushing/pulling-hybrid dual communication mode
o A new cache policy with two-stage execution strategy
« Dynamic work stealing for better load balancing

o Two-layer intra- and inter- machine mechanism

SSSSSS

System Architecture

RPC Server/Client: Serve pulling
requests

Router: Pushes data to other machine
Worker: Run de-facto computation
Cache: HUGE’s LRBU cache
Scheduler: HUGE’s DFS/BFS

adaptive scheduler

Network

——

/

HUGE Runtime

~

RPC
Server

GetNbrs

RPC Client [|Cache

Router

Scheduler

StealWork

Worker

Worker

=

—/

Machine 1

/~ HUGE Runtime \

| LU

-],

N

Machine k

LRBU Cache

« Two vital issues of traditional cache (e.g. LRU or LFU)
o Memory copies
o Locks

« Least recent-batch used (LRBU) cache
o Target at a zero-copy and lock-free cache access

o Two-stage execution strategy
m Fetch stage: aggregate remote vertices, send async pull requests in bulk, and
write remote vertices to the cache => Write-only (using single writer)
m |ntersect stage: read cache and compute intersections => Read-only

o Synchronisation cost <7.5% with performance improvement 4.4x on
average comparing with concurrent LRU

DFS/BFS-adaptive Scheduler

e Each dataflow operator is equipped with a fixed-size output queue

e Adopts BFS-style scheduling whenever possible to fully leverage
parallelism

e Adapts dynamically to DFS-style scheduling if the output queue is full

1 To 1 T1 1 T2 1 T3 1 T4 1 T5 1 T6 1 T7 1 T8 1 T9 1
Elz|I;|_|_|_|;IIIIEII|IEIIIIEIIIIEIIIIEIIIIEIIIIEIIIIE
 outt : ' : : ' ' : : :
I T T W W T T W T T W T T W T
1 out2 1 1 1 1 1 1 1 1 1 1
T 1 (I
1 Yout3 1 1 [[1 [1 1 1
CT T T T T T T W OT T W eT T T T
1 out4 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 .5\.

Consumed Data Input Backtrack S.2

UNSW

SSSSSS

Experimental Evaluation

e Hardware:
Local cluster: 10 machines with 4-core Intel Xeon E3-1220, 64G memory, 1TB Disk,
connected on a 10Gps network

AWS cluster: 16 AWS “r5.8xlarge instances” with 32 vCPUs, 256G memory, 1TB EBS
storage, 10Gps network (for the web-scale experiments only)

©)

e Datasets :
o 7 real-world data graphs, 8 queries selected from prior works

e Others:
o Cache size: 30% of the data graph
o Allow 3 hour maximum running time for each query

Datasets

VI |E|
Google (GO) 875,713 4,322,051 v, Ve Vi Ve v v, v,
LiveJounal (L) 4,847,571 43,369,619 v VoV v v v, 2 &
U1<V2,Uy<V3, V1<V3,U2<Vy U1 <V2,U2<V3, V3 = ¥
Orkut (OR) 3,072,441 117,185,083 V1<v4v2<v4 v3<4 i
q, qa q3 v 44
UKO02 (UK) 18,520,486 298,113,762 Vi 1 V3 ¥ sl
Vo Vs Vo Vs Vo Vs vy Ve
EU-road (EV) 173,789,185 347,997,111 v, v, v Vi v Ve :
V1<vy V2<U5,U3<Vy v1<vV6 V2<V3g,V2<V5,V2<V6
Friendstar (FS) 65,608,366 1,806,067,135 95 46 97 s

4
ClueWeb12 (CW) 978,409,098 42,574,107,469 b. Query Graphs

a. Table of Data Graphs

Speed Up Existing Algorithms (on LJ)

v/4 BENU [---1 RADS AN\N SEED FrN\A4 BiGJoin
(sec) - (sec)
20114'% 3000
/>18x
a. HUGE-BENU 27-% 49X b. HUGE-RADS
0 |
Memory
(sec)
(sec) 514
oT
214_
INFx 271
3.:5%

c. HUGE-SEED 2’1

20_

NG/ e

[—

fo! 7//

d.

HUGE-WCO

1500 [~

1 HUGE
T 11.2x
]2.5x :::::::
gl q2
8.5x
4.8X

VVVVVV

Execution Time (s)

Execution Time (s)

All-Round Comparisons

vz4 BENU [---] RADS KXY SEED EXA4 BiGjoin

oT X X . - X X X . X
g N W 75 /.:§> _ or : - - _ or 5 :
1041 1 i 1. N B @104 W 104 .
. i AN)) £
1034 (] BN N AR O £ 1031 [] £ 103 -
, ‘1N y g A §> = = §
e UL AN OGN | ARl 81 § 1 i
g J & V1IN 5101 S 101 5
10% - (. 28 i 1D o 10 o L0 K\
100 AN N N | AR % 1004 % 1004 N
§ gy 1. N :
U OR UK FS EU OR UK FS UK FS
a. q, a. q,
X X X X X X X X X X XX XX
TN BN N NN TR N N 3 oT T N T
1044 ¥ N 1N ' NG | N Y1041 N ' NG | TENCH ¥ 104+ : Bt NG
N : L o -ND o i 5 -ND v A 5 5 :
1034 0D : A AN € 1031 I i A AN € 103 ’ : AW W
N Za 5 N = N Z8) N = - N i
102 i & K < .. c 102 | \ .- /.. < ..\ c 102 i /..)< ..\
\ . N I 5 N gy N i N = gy N| b
10! - AN 7o B S 10! N W R S 10! i ¢ R
ot I | NG| AR S o VRN . N O
1 : 1 : w =Y 2 : w =Y 2
AN NS N] NN . \ ".< A
EU LJ OR UK FS EU L OR UK FS L OR UK FS

Scalability

« Vary Number of Machines (on FS)

Execution Time

(sec)
4000 10
2000 - -5

. : . : —~ 0
O 2 4 6 8 10
a. q,

« Web-scale Graph (on CW)

9
Throughput 2,895,179,286/s

—=— Speed Up

(sec)
2000 10

1000‘21?221’22’?2’?8_5
. — 1o

354,507,087,789/s 206,696,071/s

Conclusion

« HUGE is an efficient and scalable subgraph enumeration
system in the distributed context
« HUGE is designed to be flexible for extending more

functionalities such as:

o Cypher-based Distributed Graph Databases
o Graph Pattern Mining (GPM) Systems
o Shortest Path & Hop-constrained Path

SSSSSS

Thanks!

(Qa

