

HUGE: An Efficient and Scalable Subgraph Enumeration System

Zhengyi Yang¹, Longbin Lai², Xuemin Lin¹, Kongzhang Hao¹, Wenjie Zhang¹

¹ The University of New South Wales, ² Alibaba Group

SIGMOD 2021

Outline

- Introduction
- The HUGE system
 - Advanced Execution Plan
 - The HUGE Compute Engine
 - DFS/BFS-adaptive Scheduler
- Experimental Evaluation
- Conclusion

Subgraph Enumeration: Given a *query graph* q and a *data graph* G (both are undirected and unlabelled), the problem is to find <u>all</u> subgraph instances (matches) g' in G, that are <u>isomorphic</u> to q.

Subgraph Enumeration: Given a *query graph* q and a *data graph* G (both are undirected and unlabelled), the problem is to find <u>all</u> subgraph instances (matches) g' in G, that are <u>isomorphic</u> to q.

Subgraph Enumeration: Given a *query graph* q and a *data graph* G (both are undirected and unlabelled), the problem is to find <u>all</u> subgraph instances (matches) g' in G, that are <u>isomorphic</u> to q.

Matches:

3.

1. $(u_0, u_1, u_2, u_3) \rightarrow (v_0, v_1, v_2, v_5)$

2.
$$(u_0, u_1, u_2, u_3) \rightarrow (v_1, v_2, v_3, v_5)$$

UNSW

Subgraph Enumeration: Given a *query graph* q and a *data graph* G (both are undirected and unlabelled), the problem is to find <u>all</u> subgraph instances (matches) g' in G, that are <u>isomorphic</u> to q.

Matches:

- 1. $(u_0, u_1, u_2, u_3) \rightarrow (v_0, v_1, v_2, v_5)$
- 2. $(u_0, u_1, u_2, u_3) \rightarrow (v_1, v_2, v_3, v_5)$
- 3. $(u_0, u_1, u_2, u_3) \rightarrow (v_2, v_3, v_4, v_5)$

Existing Works

Join-based Algorithms

- Use distributed joins to compute matches (with different join algorithms and join orders)
- *Push* data (intermediate results) from the host to remote machines
- High tension on both communication and memory usage

• Pull-based Algorithms

- <u>Pull</u> (and cache) the data graph instead to reduce communication volume and memory consumption
- May not reduce computation and communication time

Initial Experiment - Setup

We conduct an initial experiment of representative existing works.

- Dataset:
 - Query Graph: Square
 - Data Graph: LiveJournal (4.8 million vertices, 43.4 million edges)
- Algorithms:
 - Join-based
 - SEED: Binary join algorithm with optimal bushy plan
 - BiGJoin: Worst-case optimal join algorithm
 - \circ Pull-based
 - BENU: Store the data graph in external distributed key-value database and run backtracking (DFS) as in a single machine
 - RADS: Expand-star*-and-verify in a pulling manner

Initial Experiment - Results

Comm. Mode	Work	Total Time (s)	Comp. Time (s)	Comm. Time (s)	Comm. Volume (GB)	Peak Mem (GB)
Pushing	SEED	1536.6	343.2	1193.4	537.2	42.3
	BiGJoin	195.9	122.1	73.8	534.5	14.3
Pulling	BENU	4091.7	3763.2	328.5	25.3	1.3
	RADS	2643.8	2478.7	165.1	452.7	19.2
Hybrid	HUGE	52.3	51.5	0.8	4.6	2.2

High communication volume and memory consumption High external overhead and low utilisation Sub-optimal plans

- Efficiency and scalability are jointly determined by:
 - Computation, Communication and Memory management
- None of the works achieves satisfactory performance for all three perspectives

Challenges

• Execution Plan

- Previous works achieve "optimality" in a *specific* context
- None can guarantee the best performance by all means

Communication Mode

- Non-trivial to make pull-based communication efficient
- An efficient plan may require *both* pushing and pulling

• Scheduling Strategy

- DFS strategy can lead to low hardware utilisation while BFS strategy has high memory demands
- Static heuristics all lack in a tight bound and can sometimes perform poorly in practice

Contributions

HUGE is a pushing/pulling-Hybrid sUbGraph Enumeration system that features:

- Advanced execution plan
 - **Optimal** execution plan in a more **generic** context
- Pushing/pulling-hybrid compute engine
 - Efficiently support **both** push-based and pull-based communication
- DFS/BFS-adaptive scheduler
 - Bounded-memory execution without sacrificing computing efficiency

Advanced Execution Plan

- Break down an execution plan into logical and physical aspects
 - A unified logical join-based framework: $R(q) = R(q_1) \bowtie R(q_2) \bowtie \cdots \bowtie R(q_k)$
 - Join Unit: edges, stars, cliques
 - Join Order: left-deep, bushy
 - Physical join processing:
 - Join Algorithm: hash join, worst-case optimal (wco) join
 - Communication Mode: pushing, pulling
- Dynamic programming based optimiser to minimise both communication and computation in generic context

Example HUGE Plans

All existing works can be readily plugged in to enjoy automatic performance improvement

HUGE Compute Engine

- Adopt the popular dataflow model for distributed execution
 - Execution plans are translated into dataflow graphs using different HUGE operators
- Pushing/pulling-hybrid dual communication mode
 - A new cache policy with two-stage execution strategy
- Dynamic work stealing for better load balancing
 - Two-layer intra- and inter- machine mechanism

System Architecture

- RPC Server/Client: Serve pulling requests
- **Router:** Pushes data to other machine
- Worker: Run de-facto computation
- Cache: HUGE's LRBU cache
- Scheduler: HUGE's DFS/BFS

adaptive scheduler

LRBU Cache

- Two vital issues of traditional cache (e.g. LRU or LFU)
 - Memory copies
 - \circ Locks
- Least recent-batch used (LRBU) cache
 - Target at a **zero-copy** and **lock-free** cache access
 - Two-stage execution strategy
 - Fetch stage: aggregate remote vertices, send async pull requests in bulk, and write remote vertices to the cache => Write-only (using single writer)
 - Intersect stage: read cache and compute intersections => Read-only
 - Synchronisation cost <7.5% with performance improvement 4.4x on average comparing with concurrent LRU

DFS/BFS-adaptive Scheduler

- Each dataflow operator is equipped with a **fixed-size output queue**
- Adopts BFS-style scheduling whenever possible to fully leverage parallelism
- Adapts dynamically to **DFS-style** scheduling if the output queue is full

Experimental Evaluation

• Hardware:

- Local cluster: 10 machines with 4-core Intel Xeon E3-1220, 64G memory, 1TB Disk, connected on a 10Gps network
- AWS cluster: 16 AWS "r5.8xlarge instances" with 32 vCPUs, 256G memory, 1TB EBS storage, 10Gps network (for the web-scale experiments only)

• Datasets :

- 7 real-world data graphs, 8 queries selected from prior works
- Others:
 - \circ Cache size: 30% of the data graph
 - Allow 3 hour maximum running time for each query

Datasets

	V	E
Google (GO)	875,713	4,322,051
LiveJounal (LJ)	4,847,571	43,369,619
Orkut (OR)	3,072,441	117,185,083
UK02 (UK)	18,520,486	298,113,762
EU-road (EU)	173,789,185	347,997,111
Friendstar (FS)	65,608,366	1,806,067,135
ClueWeb12 (CW)	978,409,098	42,574,107,469

a. Table of Data Graphs

b. Query Graphs

Speed Up Existing Algorithms (on LJ)

All-Round Comparisons

UNSW

Scalability

• Vary Number of Machines (on FS)

• Web-scale Graph (on CW)

	q ₁	q ₂	q ₃
Throughput	2,895,179,286/s	354,507,087,789/s	206,696,071/s

Conclusion

- HUGE is an efficient and scalable subgraph enumeration system in the distributed context
- HUGE is designed to be flexible for extending more

functionalities such as:

- Cypher-based Distributed Graph Databases
- Graph Pattern Mining (GPM) Systems
- Shortest Path & Hop-constrained Path

Thanks!

