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Problem Definition

Subgraph Enumeration: Given a query graph q and a data graph G (both
are undirected and unlabelled), the problem is to find all subgraph instances
(matches) g’in G, that are isomorphic to g.
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Existing Works

e Join-based Algorithms
o Use distributed joins to compute matches (with different join algorithms and
join orders)
o Push data (intermediate results) from the host to remote machines
o High tension on both communication and memory usage

e Pull-based Algorithms

o Pull (and cache) the data graph instead to reduce communication volume
and memory consumption
o May not reduce computation and communication time




Initial Experiment - Setup

We conduct an initial experiment of representative existing works.

e Dataset:
o Query Graph: Square I:I

o Data Graph: LiveJournal (4.8 million vertices, 43.4 million edges)
e Algorithms:

o Join-based
m SEED: Binary join algorithm with optimal bushy plan
m BiGJoin: Worst-case optimal join algorithm

o Pull-based
m BENU: Store the data graph in external distributed key-value database and run

backtracking (DFS) as in a single machine

m RADS: Expand-star*-and-verify in a pulling manner

*Star: a tree of depth 1




Initial Experiment - Results

Comm. Total Comp. Comm. Comm. Peak
Mode Time (s) Time (s) Time (s) Volume (GB) Mem (GB)

SEED  1536.6 343.2 1193.4 537.2 42.3 . .
Pushing High communication vol_ume and
BiGJoin  195.9 122.1 73.8 534.5 14.3 memory consumption
BENU  4091.7 3763.2 328.5 25.3 1.3 High external overhead and low
Pulling utilisation
RADS  2643.8 2478.7 165.1 452.7 19.2

Sub-optimal plans

e Efficiency and scalability are jointly determined by:
o Computation, Communication and Memory management

e None of the works achieves satisfactory performance for all three perspectives
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Challenges

e Execution Plan
o Previous works achieve “optimality” in a specific context
o None can guarantee the best performance by all means
e Communication Mode
o Non-trivial to make pull-based communication efficient
o An efficient plan may require both pushing and pulling
e Scheduling Strategy

o DFS strategy can lead to low hardware utilisation while BFS strategy has high memory demands

o Static heuristics all lack in a tight bound and can sometimes perform poorly in practice
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Contributions

HUGE is a pushing/pulling-Hybrid sUbGraph Enumeration system that features:

e Advanced execution plan
o Optimal execution plan in a more generic context
e Pushing/pulling-hybrid compute engine
o Efficiently support both push-based and pull-based communication

e DFS/BFS-adaptive scheduler

O Bounded-memory execution without sacrificing computing efficiency




Advanced Execution Plan

« Break down an execution plan into logical and physical aspects

o Aunified logical join-based framework: R(q) = R(q1) > R(g2) >< - - - > R(qy,)

m Join Unit: edges, stars, ehgues
m Join Order: left-deep, bushy

o Physical join processing:
m Join Algorithm: hash join, worst-case optimal (wco) join
m Communication Mode: pushing, pulling

« Dynamic programming based optimiser to minimise both
communication and computation in generic context




Example HUGE Plans
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All existing works can be readily plugged in to enjoy automatic
performance improvement




HUGE Compute Engine

« Adopt the popular dataflow model for distributed execution

o Execution plans are translated into dataflow graphs using different

HUGE operators
« Pushing/pulling-hybrid dual communication mode
o A new cache policy with two-stage execution strategy
« Dynamic work stealing for better load balancing

o Two-layer intra- and inter- machine mechanism

SSSSSS



System Architecture

RPC Server/Client: Serve pulling
requests

Router: Pushes data to other machine
Worker: Run de-facto computation
Cache: HUGE’s LRBU cache
Scheduler: HUGE’s DFS/BFS

adaptive scheduler
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LRBU Cache

« Two vital issues of traditional cache (e.g. LRU or LFU)
o Memory copies
o Locks

« Least recent-batch used (LRBU) cache
o Target at a zero-copy and lock-free cache access

o Two-stage execution strategy
m Fetch stage: aggregate remote vertices, send async pull requests in bulk, and
write remote vertices to the cache => Write-only (using single writer)
m |ntersect stage: read cache and compute intersections => Read-only

o Synchronisation cost <7.5% with performance improvement 4.4x on
average comparing with concurrent LRU




DFS/BFS-adaptive Scheduler

e Each dataflow operator is equipped with a fixed-size output queue

e Adopts BFS-style scheduling whenever possible to fully leverage
parallelism

e Adapts dynamically to DFS-style scheduling if the output queue is full
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Experimental Evaluation

e Hardware:
Local cluster: 10 machines with 4-core Intel Xeon E3-1220, 64G memory, 1TB Disk,
connected on a 10Gps network

AWS cluster: 16 AWS “r5.8xlarge instances” with 32 vCPUs, 256G memory, 1TB EBS
storage, 10Gps network (for the web-scale experiments only)

©)

e Datasets :
o 7 real-world data graphs, 8 queries selected from prior works

e Others:
o Cache size: 30% of the data graph
o Allow 3 hour maximum running time for each query




Datasets
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Speed Up Existing Algorithms (on LJ)
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Execution Time (s)

Execution Time (s)

All-Round Comparisons
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Scalability

« Vary Number of Machines (on FS)
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Conclusion

« HUGE is an efficient and scalable subgraph enumeration
system in the distributed context
« HUGE is designed to be flexible for extending more

functionalities such as:

o Cypher-based Distributed Graph Databases
o Graph Pattern Mining (GPM) Systems
o Shortest Path & Hop-constrained Path
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Thanks!
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