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Social Network - Attributed Graph 

• Data becomes diverse and complex in real-life social 

networks, which not only consist of users and friendship 

but also have various attribute values on each user. 

Attributes: location, keyword, age, interest, major, ...... 



3 

k-Core 

• Given a graph G, the k-core of G is a maximal subgraph 

where each node has at least k neighbors (i.e., k 

adjacent nodes, or a degree of k).  

S. B. Seidman. Network structure and minimum degree. Social networks, 5(3):269–287, 1983. 
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Applications: community detection, social contagion, user engagement, event detection, ……  
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k-Core on Attributed Graph 

• Does not consider various kinds of attribute information 

on users. 

This network is a 3-core while contains dissimilar nodes. 
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k-Core on Attributed Graph 

• When the similarity of two users is measured by their  

distance. 

The group 𝑮𝟏is a connected 3-core while contains  

users who are far away from others (dissimilar). 
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Similarity Graph 

• The nodes in similarity graph and friendship graph are same.  

• In similarity graph, there is an edge between two nodes if and only if 

they are similar. 

User Similarity 

User Engagement 
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(k,r)-Core on Attributed Graph 

• (k,r)-Core: a subgraph where each node has at least k neighbors 

and is similar to every other node in the subgraph. 

 

Better Community 

High Similarity 

High Engagement 
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The (k,r)-Core Problems 

Problem Statement.  

Given an attributed graph G, an integer k and a similarity 

threshold r, we aim to develop efficient algorithms for the 

following two fundamental problems:  

(i) enumerate all maximal (k,r)-cores in G;  

(ii) find the maximum (k,r)-core in G. 

 

Both problems are NP-hard.  

Challenge.  
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The Clique-based Approach 
1. Delete every edge in G if its two endpoints are dissimilar. 

2. Compute k-core (S) on G. 

3. Enumerate maximal cliques in the similarity graph of S. 

4. Compute k-core on the induced subgraph in S for each maximal clique. 

G 
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The Clique-based Approach 
1. Delete every edge in G if its two endpoints are dissimilar. 

2. Compute k-core (S) on G. 

3. Enumerate maximal cliques in the similarity graph of S. 

4. Compute k-core on the induced subgraph in S for each maximal clique. 

Time-consuming for two reasons:  

 

1. Still too many maximal cliques. 

2. Isolated processing of k-core and clique computations.  
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Enumerate Maximal (k,r)-Cores 

𝒖𝟏 𝒖𝟑 

𝒖𝟒 
𝒖𝟐 

𝒖𝟓 𝒖𝟔 
𝒖𝟕 

𝒖𝟖 𝒖𝟗 
𝒖𝟏𝟎 

𝑴: 

𝑪: 

𝑬: 

Must in (k,r)-core 

Candidate node 

Excluded node 

𝑁1 

𝑁2 𝑁3 

𝑁4 𝑁5 …… …… 

…… …… …… …… 

−𝒖𝟏 +𝒖𝟏 

−𝒖𝟐 +𝒖𝟐 +𝒖𝟐 −𝒖𝟐 

+𝒖𝟑 
+𝒖𝟑 

−𝒖𝟑 −𝒖𝟑 

:   𝑴 =  ∅, 𝑪 = 𝒖𝟏, 𝒖𝟐, … 𝒖𝟗, 𝒖𝟏𝟎 , 𝑬 =  ∅ 

:   𝑴 = 𝒖𝟐 , 𝑪 = 𝒖𝟑, … 𝒖𝟗, 𝒖𝟏𝟎 , 𝑬 = {𝒖𝟏} 

𝑁1 

𝑁4 

A graph 

Search tree 
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Enumerate Maximal (k,r)-Cores 

Pruning Rules.  

(1) Eliminate Candidates 

Structural based pruning.  

We can discard a node u in C if deg(u, M ∪ C) < k. 

Similarity based pruning.  

We can discard a node u in C if sim(u, v) < r for any v in M. 

𝒖𝟏 𝒖𝟑 

𝒖𝟒 
𝒖𝟐 

𝒖𝟓 𝒖𝟔 
𝒖𝟕 

𝒖𝟖 𝒖𝟗 
𝒖𝟏𝟎 

distance (similarity) 

constraint for 𝒖𝟕 

k = 3 

𝑴: 

𝑪: 

𝑬: 

Must in (k,r)-core 

Candidate node 

Excluded node 
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Enumerate Maximal (k,r)-Cores 

Pruning Rules.  

(2) Candidate Retaining 

A node u is similarity free w.r.t C if u is similar to all nodes in C. 

 

M∪C is a (k,r)-core if we have every node in C is similarity free w.r.t. C. 

𝒖𝟏 𝒖𝟑 

𝒖𝟒 
𝒖𝟐 

𝒖𝟓 𝒖𝟔 
𝒖𝟕 

𝒖𝟖 𝒖𝟗 
𝒖𝟏𝟎 

distance (similarity) 

constraint for 𝒖𝟕 

Similarity Free (𝒌,𝒓)-core 

𝑴: 

𝑪: 

𝑬: 

Must in (k,r)-core 

Candidate node 

Excluded node 
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Enumerate Maximal (k,r)-Cores 

Pruning Rules.  

distance (similarity) 

constraint for 𝒖𝟕 

(3) Early Termination 

Terminate the current search if there is a node u ∈ E with deg(u,M) ≥ k 

and similarity free w.r.t. M∪C ; 

𝒖𝟏 𝒖𝟑 

𝒖𝟒 
𝒖𝟐 

𝒖𝟓 𝒖𝟔 
𝒖𝟕 

𝒖𝟖 𝒖𝟗 
𝒖𝟏𝟎 

𝒖𝟗 is similarity free and 

deg(𝒖𝟗, 𝑴) ≥ 𝟑  

𝑴: 

𝑪: 

𝑬: 

Must in (k,r)-core 

Candidate node 

Excluded node 
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Enumerate Maximal (k,r)-Cores 

Pruning Rules.  

distance (similarity) 

constraint for 𝒖𝟕 

(4) Maximal Check 

Given a (k,r)-core R, we claim that R is a maximal (k,r)-core if there doesn’t 

exist a non-empty set U ⊆ E such that R∪U is a (k,r)-core. 

𝒖𝟏 𝒖𝟑 

𝒖𝟒 
𝒖𝟐 

𝒖𝟓 𝒖𝟔 𝒖𝟕 

𝒖𝟖 

𝒖𝟗 

𝒖𝟏𝟎 

(𝒌,𝒓)-core, not maximal 

{𝒖𝟕, 𝒖𝟏𝟎} ∪ 𝑴 is a (𝒌,𝒓)-core  

k = 3 

𝑴: 

𝑪: 

𝑬: 

Must in (k,r)-core 

Candidate node 

Excluded node 
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Finding the Maximum (k,r)-Core 
Colour based Size Upper Bound of (k,r)-core 

Let cmin denote the minimum number of colors to color the nodes in the similarity 

graph J’ such that every two adjacent nodes in J’ have different colors.  

Since a k-clique needs k number of colors to be colored, we have s ≤ cmin. 

s: (k,r)-core size 

k = 3 

 

We need at least 5 colors to color J’, so the color based upper bound is 5. 
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Finding the Maximum (k,r)-Core 
k-core based Size Upper Bound of (k,r)-core 

Let kmax denote the maximum k value such that k-core of J’ is not empty.  

Since a k-clique is also a (k-1)-core, this implies that we have s ≤ kmax + 1 

s: (k,r)-core size 

k = 3 

 

By core decomposition on similarity graph J’, we get that the k-core based upper 

bound is 5 since kmax = 4 with 4-core {u2, u3, u4, u5, u6}. 
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Finding the Maximum (k,r)-Core 
(k,k’)-core based Size Upper Bound of (k,r)-core s: (k,r)-core size 

k = 3 

 

By core decomposition on similarity graph J’, we get that the k-core based upper 

bound is 5 since kmax = 4 with 4-core {u2, u3, u4, u5, u6}. 

However, the induced subgraph of {u2, u3, u4, u5, u6} on friendship graph J  

is NOT a 3-core (degree of u4 < 3). 

   delete u4 

kmax = kmax – 1 = 3 with 3-core {u2, u3, u5, u6}. The nodes also form a 3-core on J. 

(k,k’)-core based Size Upper Bound is 4 
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Search Orders 
(1) Node visiting order: the order of which node is chosen from candidate set C.  

 

(2) Branch visiting order: the order of which search branch (expand or shrink 

branch) goes first. 

 Measurements for a chosen node is extended to M or discarded: 

M’ and C’ denote  

the updated M and C 
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Search Orders 
 (1) Find the maximum (k,r)-core  

 a cautious greedy strategy: λ∆1−∆2. where λ is to make a trade-off.  

 (2) Enumerate all maximal (k,r)-cores  

 we adopt the ∆1-then-∆2 strategy; that is, we prefer the larger ∆1, and the 

smaller ∆2 is considered if there is a tie. 

 (3) Maximal Check 

 
we adopt a short-sighted greedy heuristic. In particular, we choose the 

vertex with the largest degree and the expand branch is always preferred. 

 

In this way, each candidate has two scores (for expand or shrink).  Then the 

vertex with the highest score will be chosen and its branch with higher score 

will be explored first. 
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Case Study on DBLP 

 

 

DBLP is a computer science bibliography website.  

1,566,919 nodes, 

6,461,300 edges. 

k=15, r=3‰ 

For r, we used the thousandth of the pairwise similarity distribution in 

decreasing order which grows from top 1‰ to top 15‰ (i.e., the similarity 

threshold value drops). 

Each node is an author.  

 

Each edge represents there 

are at least 3 co-authored 

papers for two authors.  
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Case Study on Gowalla 

 

 

Gowalla is a location-based social network launched in 2007. 

196,591 nodes, 

456,830 edges. 

Two maximal (k,r)-cores  

When k=10, r=10 km Maximal (k,r)-cores when k=20 and r=3 km 
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(k,r)-Core Statistics 

Efficiency of Baseline 
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Efficiency 
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