
Computer Science and Engineering

When Engagement Meets Similarity:

Efficient (k, r)-Core Computation on Social Networks

Fan Zhang0,1, Ying Zhang1, Lu Qin1, Wenjie Zhang2, Xuemin Lin0,2

0 East China Normal University, 1 University of Technology Sydney, 2 University of New South Wales

2

Social Network - Attributed Graph

• Data becomes diverse and complex in real-life social

networks, which not only consist of users and friendship

but also have various attribute values on each user.

Attributes: location, keyword, age, interest, major,

3

k-Core

• Given a graph G, the k-core of G is a maximal subgraph

where each node has at least k neighbors (i.e., k

adjacent nodes, or a degree of k).

S. B. Seidman. Network structure and minimum degree. Social networks, 5(3):269–287, 1983.

3-core

h
d

a

b c

e

g

f

i

Applications: community detection, social contagion, user engagement, event detection, ……

4

k-Core on Attributed Graph

• Does not consider various kinds of attribute information

on users.

This network is a 3-core while contains dissimilar nodes.

5

k-Core on Attributed Graph

• When the similarity of two users is measured by their

distance.

The group 𝑮𝟏is a connected 3-core while contains

users who are far away from others (dissimilar).

6

Similarity Graph

• The nodes in similarity graph and friendship graph are same.

• In similarity graph, there is an edge between two nodes if and only if

they are similar.

User Similarity

User Engagement

7

(k,r)-Core on Attributed Graph

• (k,r)-Core: a subgraph where each node has at least k neighbors

and is similar to every other node in the subgraph.

Better Community

High Similarity

High Engagement

8

The (k,r)-Core Problems

Problem Statement.

Given an attributed graph G, an integer k and a similarity

threshold r, we aim to develop efficient algorithms for the

following two fundamental problems:

(i) enumerate all maximal (k,r)-cores in G;

(ii) find the maximum (k,r)-core in G.

Both problems are NP-hard.

Challenge.

9

The Clique-based Approach
1. Delete every edge in G if its two endpoints are dissimilar.

2. Compute k-core (S) on G.

3. Enumerate maximal cliques in the similarity graph of S.

4. Compute k-core on the induced subgraph in S for each maximal clique.

G

10

The Clique-based Approach
1. Delete every edge in G if its two endpoints are dissimilar.

2. Compute k-core (S) on G.

3. Enumerate maximal cliques in the similarity graph of S.

4. Compute k-core on the induced subgraph in S for each maximal clique.

G

11

The Clique-based Approach
1. Delete every edge in G if its two endpoints are dissimilar.

2. Compute k-core (S) on G.

3. Enumerate maximal cliques in the similarity graph of S.

4. Compute k-core on the induced subgraph in S for each maximal clique.

G S

12

The Clique-based Approach
1. Delete every edge in G if its two endpoints are dissimilar.

2. Compute k-core (S) on G.

3. Enumerate maximal cliques in the similarity graph of S.

4. Compute k-core on the induced subgraph in S for each maximal clique.

G S

13

The Clique-based Approach
1. Delete every edge in G if its two endpoints are dissimilar.

2. Compute k-core (S) on G.

3. Enumerate maximal cliques in the similarity graph of S.

4. Compute k-core on the induced subgraph in S for each maximal

clique.

S

14

The Clique-based Approach
1. Delete every edge in G if its two endpoints are dissimilar.

2. Compute k-core (S) on G.

3. Enumerate maximal cliques in the similarity graph of S.

4. Compute k-core on the induced subgraph in S for each maximal clique.

Time-consuming for two reasons:

1. Still too many maximal cliques.

2. Isolated processing of k-core and clique computations.

15

Enumerate Maximal (k,r)-Cores

𝒖𝟏 𝒖𝟑

𝒖𝟒
𝒖𝟐

𝒖𝟓 𝒖𝟔
𝒖𝟕

𝒖𝟖 𝒖𝟗
𝒖𝟏𝟎

𝑴:

𝑪:

𝑬:

Must in (k,r)-core

Candidate node

Excluded node

𝑁1

𝑁2 𝑁3

𝑁4 𝑁5 …… ……

…… …… …… ……

−𝒖𝟏 +𝒖𝟏

−𝒖𝟐 +𝒖𝟐 +𝒖𝟐 −𝒖𝟐

+𝒖𝟑
+𝒖𝟑

−𝒖𝟑 −𝒖𝟑

: 𝑴 = ∅, 𝑪 = 𝒖𝟏, 𝒖𝟐, … 𝒖𝟗, 𝒖𝟏𝟎 , 𝑬 = ∅

: 𝑴 = 𝒖𝟐 , 𝑪 = 𝒖𝟑, … 𝒖𝟗, 𝒖𝟏𝟎 , 𝑬 = {𝒖𝟏}

𝑁1

𝑁4

A graph

Search tree

16

Enumerate Maximal (k,r)-Cores

Pruning Rules.

(1) Eliminate Candidates

Structural based pruning.

We can discard a node u in C if deg(u, M ∪ C) < k.

Similarity based pruning.

We can discard a node u in C if sim(u, v) < r for any v in M.

𝒖𝟏 𝒖𝟑

𝒖𝟒
𝒖𝟐

𝒖𝟓 𝒖𝟔
𝒖𝟕

𝒖𝟖 𝒖𝟗
𝒖𝟏𝟎

distance (similarity)

constraint for 𝒖𝟕

k = 3

𝑴:

𝑪:

𝑬:

Must in (k,r)-core

Candidate node

Excluded node

17

Enumerate Maximal (k,r)-Cores

Pruning Rules.

(1) Eliminate Candidates

Structural based pruning.

We can discard a node u in C if deg(u, M ∪ C) < k.

Similarity based pruning.

We can discard a node u in C if sim(u, v) < r for any v in M.

𝒖𝟏 𝒖𝟑

𝒖𝟒
𝒖𝟐

𝒖𝟓 𝒖𝟔
𝒖𝟕

𝒖𝟖 𝒖𝟗
𝒖𝟏𝟎

distance (similarity)

constraint for 𝒖𝟕

k = 3

𝑴:

𝑪:

𝑬:

Must in (k,r)-core

Candidate node

Excluded node

18

Enumerate Maximal (k,r)-Cores

Pruning Rules.

(1) Eliminate Candidates

Structural based pruning.

We can discard a node u in C if deg(u, M ∪ C) < k.

Similarity based pruning.

We can discard a node u in C if sim(u, v) < r for any v in M.

𝒖𝟏 𝒖𝟑

𝒖𝟒
𝒖𝟐

𝒖𝟓 𝒖𝟔
𝒖𝟕

𝒖𝟖 𝒖𝟗
𝒖𝟏𝟎

distance (similarity)

constraint for 𝒖𝟕

k = 3

𝑴:

𝑪:

𝑬:

Must in (k,r)-core

Candidate node

Excluded node

19

Enumerate Maximal (k,r)-Cores

Pruning Rules.

(2) Candidate Retaining

A node u is similarity free w.r.t C if u is similar to all nodes in C.

M∪C is a (k,r)-core if we have every node in C is similarity free w.r.t. C.

𝒖𝟏 𝒖𝟑

𝒖𝟒
𝒖𝟐

𝒖𝟓 𝒖𝟔
𝒖𝟕

𝒖𝟖 𝒖𝟗
𝒖𝟏𝟎

distance (similarity)

constraint for 𝒖𝟕

Similarity Free (𝒌,𝒓)-core

𝑴:

𝑪:

𝑬:

Must in (k,r)-core

Candidate node

Excluded node

20

Enumerate Maximal (k,r)-Cores

Pruning Rules.

distance (similarity)

constraint for 𝒖𝟕

(3) Early Termination

Terminate the current search if there is a node u ∈ E with deg(u,M) ≥ k

and similarity free w.r.t. M∪C ;

𝒖𝟏 𝒖𝟑

𝒖𝟒
𝒖𝟐

𝒖𝟓 𝒖𝟔
𝒖𝟕

𝒖𝟖 𝒖𝟗
𝒖𝟏𝟎

𝒖𝟗 is similarity free and

deg(𝒖𝟗, 𝑴) ≥ 𝟑

𝑴:

𝑪:

𝑬:

Must in (k,r)-core

Candidate node

Excluded node

21

Enumerate Maximal (k,r)-Cores

Pruning Rules.

distance (similarity)

constraint for 𝒖𝟕

(4) Maximal Check

Given a (k,r)-core R, we claim that R is a maximal (k,r)-core if there doesn’t

exist a non-empty set U ⊆ E such that R∪U is a (k,r)-core.

𝒖𝟏 𝒖𝟑

𝒖𝟒
𝒖𝟐

𝒖𝟓 𝒖𝟔 𝒖𝟕

𝒖𝟖

𝒖𝟗

𝒖𝟏𝟎

(𝒌,𝒓)-core, not maximal

{𝒖𝟕, 𝒖𝟏𝟎} ∪ 𝑴 is a (𝒌,𝒓)-core

k = 3

𝑴:

𝑪:

𝑬:

Must in (k,r)-core

Candidate node

Excluded node

22

Finding the Maximum (k,r)-Core
Colour based Size Upper Bound of (k,r)-core

Let cmin denote the minimum number of colors to color the nodes in the similarity

graph J’ such that every two adjacent nodes in J’ have different colors.

Since a k-clique needs k number of colors to be colored, we have s ≤ cmin.

s: (k,r)-core size

k = 3

We need at least 5 colors to color J’, so the color based upper bound is 5.

23

Finding the Maximum (k,r)-Core
k-core based Size Upper Bound of (k,r)-core

Let kmax denote the maximum k value such that k-core of J’ is not empty.

Since a k-clique is also a (k-1)-core, this implies that we have s ≤ kmax + 1

s: (k,r)-core size

k = 3

By core decomposition on similarity graph J’, we get that the k-core based upper

bound is 5 since kmax = 4 with 4-core {u2, u3, u4, u5, u6}.

24

Finding the Maximum (k,r)-Core
(k,k’)-core based Size Upper Bound of (k,r)-core s: (k,r)-core size

k = 3

By core decomposition on similarity graph J’, we get that the k-core based upper

bound is 5 since kmax = 4 with 4-core {u2, u3, u4, u5, u6}.

However, the induced subgraph of {u2, u3, u4, u5, u6} on friendship graph J

is NOT a 3-core (degree of u4 < 3).

 delete u4

kmax = kmax – 1 = 3 with 3-core {u2, u3, u5, u6}. The nodes also form a 3-core on J.

(k,k’)-core based Size Upper Bound is 4

25

Search Orders
(1) Node visiting order: the order of which node is chosen from candidate set C.

(2) Branch visiting order: the order of which search branch (expand or shrink

branch) goes first.

 Measurements for a chosen node is extended to M or discarded:

M’ and C’ denote

the updated M and C

26

Search Orders
 (1) Find the maximum (k,r)-core

 a cautious greedy strategy: λ∆1−∆2. where λ is to make a trade-off.

 (2) Enumerate all maximal (k,r)-cores

 we adopt the ∆1-then-∆2 strategy; that is, we prefer the larger ∆1, and the

smaller ∆2 is considered if there is a tie.

 (3) Maximal Check

we adopt a short-sighted greedy heuristic. In particular, we choose the

vertex with the largest degree and the expand branch is always preferred.

In this way, each candidate has two scores (for expand or shrink). Then the

vertex with the highest score will be chosen and its branch with higher score

will be explored first.

27

Case Study on DBLP

DBLP is a computer science bibliography website.

1,566,919 nodes,

6,461,300 edges.

k=15, r=3‰

For r, we used the thousandth of the pairwise similarity distribution in

decreasing order which grows from top 1‰ to top 15‰ (i.e., the similarity

threshold value drops).

Each node is an author.

Each edge represents there

are at least 3 co-authored

papers for two authors.

28

Case Study on Gowalla

Gowalla is a location-based social network launched in 2007.

196,591 nodes,

456,830 edges.

Two maximal (k,r)-cores

When k=10, r=10 km Maximal (k,r)-cores when k=20 and r=3 km

29

(k,r)-Core Statistics

Efficiency of Baseline

30

Efficiency

THANK YOU
Q&A

