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Network Unraveling

Kshipra Bhawalkar, Jon Kleinberg, Kevin Lewi, Tim Roughgarden, and Aneesh Sharma.
"Preventing unraveling in social networks: the anchored k-core problem." SIAM Journal
on Discrete Mathematics 29, no. 3 (2015): 1452-1475.

The engagement of a user is influenced by the number of her friends.



Presenter
Presentation Notes
When k = 3, students  𝑢 1 , 𝑢 10  and  𝑢 12  will start to leave for less than 3 friends existing, which lead to the collapse of the whole network.

The final study group only has 4 students ( 𝑢 4 , 𝑢 5 , 𝑢 8 ,  𝑢 9 ) according to the model of k-core. 

 Use the game-theory to show the network unraveling process stops when the remaining engaged individuals correspond to the k-core of the network.




Network Unraveling

An equilibrium: a group has the minimum degree of k
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Network Unraveling

A social group tends to be a k-core in the network.

Kshipra Bhawalkar, Jon Kleinberg, Kevin Lewi, Tim Roughgarden, and Aneesh Sharma. "Preventing unraveling in
social networks: the anchored k-core problem." SIAM Journal on Discrete Mathematics 29, no. 3 (2015): 1452-1475.
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k-Core

e Given a graph G, the k-core of G Iis a maximal subgraph
where each node has at least k neighbors (i.e., k
adjacent nodes, or a degree of k).

Applications: community detection, social contagion, user engagement, event detection, ......

S. B. Seidman. Network structure and minimum degree. Social networks, 5(3):269-287, 1983.



k-Core Decomposition

« Core number of a node v: the largest value of k such that there is a
k-core containing v.

 Core decomposition: compute the core number of each node in G.

S. B. Seidman. Network structure and minimum degree. Social networks, 5(3):269-287, 1983.



The Collapse of Friendster

 Founded in 2002.
* Popular at early 21st century, over 115 million users in 2011.
e Suspended in 2015 for lack of engagement by the online community.

D. Garcia, P. Mavrodiev, and F. Schweitzer. Social resilience in online
communities: the autopsy of friendster. In COSN, pages 39-50, 2013.

The core number threshold steadily increased.


Presenter
Presentation Notes
They assert that the network collapse of Friendster is due to the core number threshold, which determines the engagement of a user, steadily increased.
Under this assumption, their model reasonably explain the time evolution of the active user number in Friendster



The Collapse of Friendster

 Founded in 2002.
* Popular at early 21st century, over 115 million users in 2011.
e Suspended in 2015 for lack of engagement by the online community.

K. Seki and M. Nakamura. The collapse of the friendster network started
from the center of the core. In ASONAM, pages 477-484, 2016.

The collapse started from the center of the core.


Presenter
Presentation Notes
Seki and Nakamura [77] explain that the mechanism in the collapse of Friendster by use of
an individual-level model from Cannarella et al. [17], and show the collapse starts
from the center of the core structure.


User Engagement

10

Founded in 2002.
Popular at early 21st century, over 115 million users in 2011.
Suspended in 2015 for lack of engagement by the online community.

J. Ugander, L. Backstrom, C. Marlow, and J. Kleinberg. Structural diversity
In social contagion. PNAS, 109(16):5962-5966, 2012.

Social influence is tightly controlled by the number of
friends In current subgraph, like k-core.


Presenter
Presentation Notes
emphasize that the neighborhood structure hypothesis has formed the underpinning of essentially allcurrent models for social contagion. They find that the probability of contagion is tightly controlled by the number of friends in current subgraph, like k-core or
k-truss, rather than by the actual number of the friends in the graph


User Engagement
 Founded in 2002.

* Popular at early 21st century, over 115 million users in 2011.
e Suspended in 2015 for lack of engagement by the online community.

F. D. Malliaros and M. Vazirgiannis. To stay or not to stay: modeling
engagement dynamics in social graphs. In CIKM, pages 469-478, 2013.

The degeneration property of k-core can be used to
guantify engagement dynamics.
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Presentation Notes
Malliaros and Vazirgiannis [64] verify that the degeneration property of k-core can be used to quantify engagement dynamics in real social networks.


Prevent Network Unraveling

Kshipra Bhawalkar, Jon Kleinberg, Kevin Lewi, Tim Roughgarden, and Aneesh Sharma. "Preventing unraveling in
social networks: the anchored k-core problem." SIAM Journal on Discrete Mathematics 29, no. 3 (2015): 1452-1475.
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Presenter
Presentation Notes
We may give some incentives to encourage a student to keep his/her participation in the study group.



Prevent Network Unraveling

Anchor: if a node u is an anchor, u will never leave the
k-core community (i.e., the degree of u is always +).

Anchored k-Core: the k-core with some anchors.

anchored 3-core

13
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Presentation Notes
When k = 3 and  𝑢 1  is an anchor, students  𝑢 2 , 𝑢 3  and  𝑢 6  have sufficient number of friends keep engaged and will not leave the study group.

The final study group has 8 students according to the model of anchored k-core. 



Prevent Network Unraveling

Follower: a node v is a follower of an anchor u, if v is not
In k-core but belongs to anchored k-core by anchoring u.

Anchored k-Core Problem: Given two integers k and b,
find b anchors to maximize the number of followers (i.e.,
maximize the number of nodes in anchored k-core ).

anchored 3-core

‘i/ ’i\ \‘im o
When k=3 and b =1, u, is a best ;’_/\u \/\

anchor with 3 followers for the B
anchored k-core problem. \ u/ \‘i‘ >‘iu/

"ulz

K. Bhawalkar, J. M. Kleinberg, K. Lewi, T. Roughgarden, and A. Sharma. Preventing unraveling in social networks:
the anchored k-core problem. SIAM J. Discrete Math., 29(3):1452-1475, 2015.
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Theorems for Anchoring One Node

k-Shell: the nodes in k-core but not in (k+1)-core.
Theorem 1: if vis a follower of u, v belongs to (k-1)-shell.

Theorem 2: if u has at least 1 follower, u belongs to (k-1)-
shell or u is a neighbor of a node in (k-1)-shell.

15



OLAK Algorithm for Anchored k-Core Problem

A greedy algorithm: Computing anchored k-core for
every candidate anchor node to find a best anchor (the
one with most followers) in each iteration.

Onion Layers: a structure based on (k-1)-shell and the
neighbors of (k-1)-shell nodes according to deletion
order of these nodes in k-core computation.

Onion Layers

"

Other Vertices

We only need to explore a small B — O

portion of the Onion Layers to G < (k-1)-shell
find all followers for an anchor.
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Onion Layers in OLAK Algorithm

k = 3 in the following example

Ly: @

Ly: @‘®
1@ L,:

3-core: @ @

Onion Layer Structure ( 7 )
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Ci(G) is the k-core of G,
deg(u,N) is the degree of uz in N,
NB(L,G) is the neighbor set of L in €

Algorithm : OnionPeeling(G, k)

Input : G : a social network, k : degree constraint
Output : onion layers L (i.e., L))

N :=Cr_1(G); i:=0;

P:={u|deg(u,N) < k & ue N},

while P # () do

i:=1+1; L, .= P;
N := N\ P;
P :={u|deg(u,N) < k & u € N},

L“ = {'U- ‘ u € «\IB(L% ’ G) \ {‘IV U Lpl}}
return L},
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Onion Layers in OLAK Algorithm

k = 3 in the following example

Ly: @

Ly: @‘®
L,:

3-core: @ @

Onion Layer Structure ( 7 )

D

N

Ci(G) is the k-core of G,
deg(u,N) is the degree of uz in N,
NB(L,G) is the neighbor set of L in €

Algorithm : OnionPeeling(G, k)

Input : G : a social network, k : degree constraint
Output : onion layers L (i.e., L))
AN =C(Glia=0

2
3 while P # () do

4 t:=1+1; L; := P;

5 N := N\ P;

6 P :={u|deg(u,N) < k & ue& N};
-

8

Lo:={u|uwe NB(L|,G)\{NUL}}}
return L}




Onion Layers in OLAK Algorithm

k = 3 in the following example

degree < 3

6

o ®
13"1- @‘@

L,: @

L;: @
3-core: @ @

Onion Layer Structure ( 7 )

D
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N

Ci(G) is the k-core of G,
deg(u,N) is the degree of uz in N,
NB(L,G) is the neighbor set of L in €

Algorithm : OnionPeeling(G, k)

Input : G : a social network, k : degree constraint
Output : onion layers L (i.e., L))
N = Cr_1(G); i := 0

3 while P # () do

4 t:=1+1; L; := P;

5 N := N\ P;

6 P :={u|deg(u,N) < k & ue& N};
-

8

Lo:={u|uwe NB(L|,G)\{NUL}}}
return L}




Onion Layers in OLAK Algorithm

k = 3 in the following example

- ¢
Ly
I
b @

3-core: @ @

Onion Layer Structure ( 7 )
2D [»
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Ci(G) is the k-core of G,
deg(u,N) is the degree of uz in N,
NB(L,G) is the neighbor set of L in €

Algorithm : OnionPeeling(G, k)

Input : G : a social network, k : degree constraint
Output : onion layers L (i.e., L))
1 N :=Clr_1(G); i:=0;
2 P:={u|deg(u,N) <k & ue N},
3 while P # () do
A4 | ic=a4 i L=k
N := N\ P;
P :={u|deg(u,N) < k & ue& N};

7 Lo:={u|uwe NB(L|,G)\{NUL{}}
8 return L}




Onion Layers in OLAK Algorithm

k = 3 in the following example

X
%
@

3-core: @ @

Onion Layer Structure ( 7 )
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Ci(G) is the k-core of G,
deg(u,N) is the degree of uz in N,
NB(L,G) is the neighbor set of L in €

Algorithm : OnionPeeling(G, k)

Input : G : a social network, k : degree constraint
Output : onion layers L (i.e., L))

1 N :=Clr_1(G); i:=0;

2 P:={u|deg(u,N) <k & ue N},

3 while P # () do

4 t:=1+1; L; := P;

5 { N:=N \ P;

P :={u|deg(u,N) < k & ue& N};

7 Lo:={u|uwe NB(L|,G)\{NUL{}}
8 return L}




Onion Layers in OLAK Algorithm

k = 3 in the following example

Ly: e

Ly: @‘@
L,:

3-core: @ @

Onion Layer Structure ( 7 )
(o) [
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Ci(G) is the k-core of G,
deg(u,N) is the degree of uz in N,
NB(L,G) is the neighbor set of L in €

Algorithm : OnionPeeling(G, k)

Input : G : a social network, k : degree constraint
Output : onion layers L (i.e., L))

N = Cr_1(G); i := 0

P :={u|deg(u,N) < k & u € N};

while P # () do

t:=1+1; L; := P;
N := N\ P;
| P=A{u|deg(u,N) <k & ue N}

7 Lo:={u|uwe NB(L|,G)\{NUL{}}
8 return L}
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Onion Layers in OLAK Algorithm

Ci(G) is the k-core of G,
deg(u,N) is the degree of uz in N,
NB(L,G) is the neighbor set of L in €

k = 3 in the following example

Algorithm : OnionPeeling(G, k)

~ | B~

e e
Eﬁ@@
r

Input : G : a social network, k : degree constraint
Output : onion layers L (i.e., L))

N = Cr_1(G); i := 0

P:={u|deg(u,N) < k & uwe N},

4 | ac=a4 1l L =Py
N := N\ P;

5 ;
6 P :={u|deg(u,N) < k & ue& N};
7 Lo:={u|uwe NB(L|,G)\{NUL{}}
8 return L}

L;: @
3-core: @ @

Onion Layer Structure ( 7 )

Cv) [»
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Onion Layers in OLAK Algorithm

k = 3 in the following example

y,
3-core: @ @

Onion Layer Structure ( 7 )
2D [»
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Ci(G) is the k-core of G,
deg(u,N) is the degree of uz in N,
NB(L,G) is the neighbor set of L in €

Algorithm : OnionPeeling(G, k)

Input : G : a social network, k : degree constraint
Output : onion layers L (i.e., L))
1 N :=Clr_1(G); i:=0;
2 P:={u|deg(u,N) <k & ue N};
3 while P # () do
4
5

t:=1+1; L; := P;
N := N\ P;

P :={u|deg(u,N) < k & ue& N};

7 Lo:={u|uwe NB(L|,G)\{NUL{}}
8 return L}




Onion Layers in OLAK Algorithm

k = 3 in the following example
LQ: e

Ly: @‘®
L,:

3-core: @ @

Onion Layer Structure ( 7 )
2D [»
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Ci(G) is the k-core of G,
deg(u,N) is the degree of uz in N,
NB(L,G) is the neighbor set of L in €

Algorithm : OnionPeeling(G, k)

Input : G : a social network, k : degree constraint
Output : onion layers L (i.e., L))
1 N :=Clr_1(G); i:=0;
2 P:={u|deg(u,N) <k & ue N},
3 while P # () do
4 S

Al dmaa i Lo=Ps
N := N\ P;
P :={u|deg(u,N) < k & ue& N};

7 Lo:={u|uwe NB(L|,G)\{NUL{}}
8 return L}




Onion Layers in OLAK Algorithm

k = 3 in the following example
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Onion Layer Structure ( 7 )
2D [»
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Ci(G) is the k-core of G,
deg(u,N) is the degree of uz in N,
NB(L,G) is the neighbor set of L in €

Algorithm : OnionPeeling(G, k)

Input : G : a social network, k : degree constraint
Output : onion layers L (i.e., L))

N = Cr_1(G); i := 0

P :={u|deg(u,N) < k & u € N};

while P # () do

t:=1+1; L; := P;
N := N\ P;
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Onion Layers in OLAK Algorithm

k = 3 in the following example

Ly: @

Ci(G) is the k-core of G,
deg(u,N) is the degree of uz in N,
NB(L,G) is the neighbor set of L in €

Z\@ )@ Ly: @
Vs

Z 4
v; L,:

5 %

Onion Layer Structure ( Lo
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Algorithm : OnionPeeling(G, k)

Input : G : a social network, k : degree constraint
Output : onion layers L (i.e., L))
N = Cr_1(G); 1 := 0;
P :={u|deg(u,N) < k & u € N};
while P # () do

1

2

3

4 t:=1+1; L; := P;

5 N := N\ P;

6 P :={u|deg(u,N) < k & ue& N};
-

T Loi={uluwe NB(L. G)\{NUL}}: _____
8 return L}

After OnionPeeling algorithm, N is the k-core of G.



Theorems for Anchored k-Core

Support Path: there is a support path from u to v if u can downward spread
to v in Onion Layers through neighboring edges. Horizontal or upward
spreads are NOT allowed.

Theorem 3: if v is a follower of u, there is a support path from u to v.

Onion Layer Structure ( L )

28



Onion Layer Search to Find Followers

If we anchor the node v, only v, and v; become candidate followers,
v, and v, cannot be followers of v;.

Reason: v, and v, will still be deleted in the deletion order of producing
onion layers (i.e., producing k-core), i.e., v, and v, cannot have larger
degrees after anchoring v;.

Onion Layer Structure ( E3 )
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Theorems for Anchored k-Core

Theorem 4: if the degree upperbound of u is less than k in the Onion Layer
Search, we can early terminate the spread on u.

Theorem 5: if vis a follower of u, v cannot have more followers than u.

v, Or v cannot have more
followers than v;.
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Follower Number Upper Bound

Let W(x) denote the neighbors of a vertex x in lower
layers, i.e., W(z) = {u | v € NB(x)N L and l(u) > (x)}.
We use UB(x) to denote the upper bound of |F(x)|, where

N 2wew o (UB(u) +1) af [Wi(x)| > 0;
UB(z) = { 0 otherwise. (1)

L is the Onion Layers,

[(u) is the layer number of u,
NB(u) is the neighbor set of u,
F (x) is the follower set of X, @4

3-core: @ @

k=3 Onion Layer Structure ( L§ )

Theorem 6: An anchor x cannot have more followers than UB(x).
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Follower Number Upper Bound

Let W(x) denote the neighbors of a vertex x in lower
layers, i.e., W(z) = {u | v € NB(x)N L and l(u) > (x)}.
We use UB(x) to denote the upper bound of |F(x)|, where

N 2wew o (UB(u) +1) af [Wi(x)| > 0;
UB(z) = { 0 otherwise. (1)

L is the Onion Layers,

[(u) is the layer number of u,
NB(u) is the neighbor set of u,
F (x) is the follower set of X, @4

@
k — 3 3-core: @ @

Onion Layer Structure ( Lj )

Theorem 6: An anchor x cannot have more followers than UB(x).
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Follower Number Upper Bound

Let W(x) denote the neighbors of a vertex x in lower
layers, i.e., W(z) = {u | v € NB(x)N L and l(u) > (x)}.
We use UB(x) to denote the upper bound of |F(x)|, where

N 2wew o (UB(u) +1) af [Wi(x)| > 0;
UB(z) = { 0 otherwise. (1)

L is the Onion Layers,

[(u) is the layer number of u,
NB(u) is the neighbor set of u,
F (x) is the follower set of X, @4

@
k — 3 3-core: @ @

Onion Layer Structure ( Lj )

Theorem 6: An anchor x cannot have more followers than UB(x).
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Follower Number Upper Bound

Let W(x) denote the neighbors of a vertex x in lower
layers, i.e., W(z) = {u | v € NB(x)N L and l(u) > (x)}.
We use UB(x) to denote the upper bound of |F(x)|, where

UB(z) = { ZuEW(m)(UB(u) +1) i [W(z)] > 0; (1)

10 otherwise.

L is the Onion Layers,

. ¥y
[(u) is the layer number of u, <
NB(u) is the neighbor set of u,
F (x) is the follower set of X, @4
®
k=3

Onion Layer Structure ( Lj )

Theorem 6: An anchor x cannot have more followers than UB(x).
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Follower Number Upper Bound

Let W(x) denote the neighbors of a vertex x in lower
layers, i.e., W(z) = {u | v € NB(x)N L and l(u) > (x)}.
We use UB(x) to denote the upper bound of |F(x)|, where

UB(z) = { ZuEW(m)(UB(u) +1) i [W(z)] > 0; (1)

10 otherwise.

L is the Onion Layers,

. ¥y
[(u) is the layer number of u, <
NB(u) is the neighbor set of u,
F (x) is the follower set of X, @4
®
k=3

Onion Layer Structure ( Lj )

Theorem 6: An anchor x cannot have more followers than UB(x).
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Experimental Setting

Datasets:

Dataset Nodes Edges dovg | Amax
Facebook 4,039 88,234 43.7 | 1045
Brightkite 58,228 194,090 6.7 1098
Gowalla 196,591 456,830 4.7 9967
Yelp 552,339 1,781,908 6.5 3812
Flickr 105,938 2,316,948 43.7 | 5465
YouTube 1,134,890 | 2,987,624 5.3 28754
DBLP 1,566,919 | 6,461,300 8.3 2023
Pokec 1,632,803 | 8,320,605 10.2 7266
LiveJournal | 3,997,962 | 34,681,189 17.4 14815
Orkut 3,072,441 | 117,185,083 | 76.3 | 33313

e Environments:
* Intel Xeon 2.3GHz CPU and Redhat Linux System.

36

« All algorithms are implemented in C++.




Case Studies

Yelp is a crowd-sourced local
business review and social
networking site.

\
yelp%s

DBLP is a computer science
bibliography website.

dblp

computer science bibliography
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Presenter
Presentation Notes
This figure shows the anchored 30-core in Yelp data where each node is a user and each edge represents an edge.

When the user "Caley" alone is anchored, there are 31 followers in Yelp with k = 30. 
It is interesting that only 10 of them are neighbors of "Caley", and the others are supported indirectly.



Yelp, https://www.yelp.com/; Yelp Dataset Challenge, https://www.yelp.com.au/dataset_challenge.


Two authors are identified by OLAK as the best anchors and there are 26 followers. 

We find that although the two anchored authors have not co-authored any papers, they belong to the same community. 

Not surprisingly, all their followers are also from the same community, and there are already considerably large number of co-authored papers among them


In this case study, each node is a author and each edge represents there are at least 3 co-authored papers. 
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Efficiency
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