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Introduction

— Independent Set ~N

Given a graph ¢ = (V, E), a vertex subset I € V is an independent
set if for any two vertices v and v in I, there is no edge between u

and v in G.
\_ Y,

Maximum Independent Set
An independent set I of ¢ is a maximum independent set if its size ]

is the largest among all independent sets of .
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Introduction

Applications

¢ Build index for shortest path/distance queries [Cheng et al.
SIGMOD’12, Fu et al. VLDB’13]

% Refine the result of matching two graphs [Zhu et al. VLDB J’13]

% Social network coverage [Puthal et al. BigData’158]; vertex
cover

Hardness

* NP-hard to compute a maximum independent set [Garey et al.
Book’79]

*» Hard to approximate

= NP-hard to approximate within a factor of n'=¢ for any 0 <
¢ < 1[J. Hastad. FOCS’96]
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Existing Works

Exact algorithms -- branch-and-reduce paradigm
s [F. V. Fomin et al .J.ACM’09]
= Theoretically runs in 0*(1.2201") time
s [T. Akiba et al. Theor. Comput. Sci.’16]

* Practically computes the exact solution for many small and
medium-sized graphs

Approximation algorithms

* [U. Feige J. Discrete Math’04, M. M. Halldorsson et al.
Algorithmica’97, P. Berman. Theor.Comput. Sys.’99]

= Approximation ratio largely depends on n or A
* Not practically useful




Existing Works

Heuristic algorithms for large graphs
¢ Linear-time algorithms
» Greedy, dynamic update

= Efficient, but can only find small independent sets in
practice

¢ lterative randomized searching

» Local search algorithm: ARW [D. V. Andrade.
J.Heuristics’12]

= Evolutionary algorithm: ReduMIS [S. Lamm. ALENEX’16]

» Local search + simple reduction rules: OnlineMIS [J.
Dahlum. SEA’16]

= Can find large independent sets, but take long time

Our goal find large independent sets in a time-efficient
and space-effective manner
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Three Observations Utilized in Our Framework

% Observation—I: Real networks are usually power-law graphs with

many low-degree vertices
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% Observation-ll: Reduction rules have been effectively used for low-

degree vertices

* Observation-Ill: High-degree vertices are less likely to be in a

maximum independent set




Three Observations Utilized in Our Framework

% Observation—I: Real networks are usually power-law graphs with
many low-degree vertices

*» Observation-ll: Reduction rules have been effectively used for
low-degree vertices grasnanasasass L :

: - dw v 4w v
[ Degree-one Reduction ] oo v o
() a(6) = a(G\{v}) Ll |
a(G): independence number of G w b - dw v
| Degree-two Reductions | ®--o-- v \u:u/
(b) Isolation a(G) = a(G\{v,w}) De (:ze_one (b) (c) :
(c) Folding a(G) = a(G/{u,v,w}) +1 = reduction ;. Degree-two reductions

* Observation-lll: High-degree vertices are less likely to be in a
maximum independent set




Three Observations Utilized in Our Framework

% Observation—I: Real networks are usually power-law graphs with
many low-degree vertices

*» Observation-II: Reduction rules have been effectively used for low-
degree vertices

* Observation-lll: High-degree vertices are less likely to be in a
maximum independent set

» If a high-degree vertex is added into the independent set, then
all its neighbors, which are of a large quantity, are ruled out
from the independent set [J. Dahlum et al SEA’16]

» Removing/peeling high-degree vertices can further sparsify the
graph [Y. Lim et al TKDE’14]




The Reducing-Peeling Framework

Definition 3.1: (Inexact Reduction) Given a graph G, we
remove/peel the vertex with the highest degree from G.

‘0

*» Phase 1: Reducing
» While a reduction rule can be applied on a vertex u then
Apply the exact reduction rule on u

)

*

Phase 2: Peeling

» Apply the inexact reduction rule to temporarily remove a high-
degree vertex

)

>

Repeat the above two phases until there is no edge in the graph

L)

)

L)

» Post-process: lteratively add a temporarily removed vertex to the
solution if the independence requirement is not violated
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Overview of Our Approaches

“ Compute large independent set for large graphs in a
fime-efficient and space-effective manner
» Subquadratic (or even linear) time.
= 2m + O(n) space: m is the number of undirected edges.

= Agraphis stored in 2m + n + O(1) space by the adjacency
array (aka, Compressed Sparse Row) graph representation

= A graph with one billion edges takes slightly more than 8GB

memory
Algorithm | Time Complexity = Space Complexity Exact Reduction Rules Used
BDOne O(m) 2m + O(n) Degree-one reduction [21]
BDTwo O(n xX m) 6m + O(n) Degree-one reduction [21] & Degree-two vertex reductions [21]
LinearTime O(m) 2m + O(n) Degree-one reduction [21] & Degree-two path reduction (this paper)
NearLinear O(mx A) 4m + O(n) Dominance reduction [21] & Degree-two path reduction (this paper)

Table 1: Overview of our approaches (n: number of vertices, m: number of edges, A: maximum vertex degree)




An Efficient Baseline Algorithm

«» BDOne

Step 1:
While V_;, # @ or V., # @
If V_; # @ then
DegreeOne-Reduction
Else
Inexact-Reduction

Step 2:
Recover temporarily
removed vertices

deg(vl) =1 ’U3

/




An Efficient Baseline Algorithm

< BDOne deg(vy) = 1@3
Step 1:
WhileV_; #Qor V., #0 V1 s Ve
If V_, # @ then V4
DegreeOne-Reduction
Else

Inexact-Reduction

Step 2:
Recover temporarily
removed vertices

(%) Vg

Uy

Vg is with the highest degree
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An Efficient Baseline Algorithm

< BDOne deg(vy) =1

Step 1:
WhileV_; #Qor V., #0
If V-, # @ then Vs
DegreeOne-Reduction
Else

Inexact-Reduction (] Vg
Uy
Step 2:

Recover temporarily Ve is with highest degree

removed vertices

_—
Complexity Analysis
Time: 0(m)
Space: 2m + 0(n)




An Effective Baseline Algorithm

s BDTwo
Step 1:
While V_, # 0 orV_, # @ or V.3 = @ deg(vy)) =1 g
If V_; = 0 then
DegreeOne-Reduction ,/
Else if V_, # 0 then
Degree Two-Reduction U1 (%)) Vg
Else Vy

Inexact-Reduction

Step 2:
Recover temporarily removed
vertices




An Effective Baseline Algorithm

< BDTwo

Step 1:
WhileV_, #QorV_, #@orV.; #0
If V_; = 0 then
DegreeOne-Reduction
Else if V_, # 0 then
Degree Two-Reduction

Else
Inexact-Reduction
Step 2:
Recover temporarily removed
vertices

deg(v{) =1
g(y) 2




An Effective Baseline Algorithm

< BDTwo

Step 1:
WhileV_; #QorV_, #@orV.; # 0
If V_; = 0 then
DegreeOne-Reduction

Else if V_, + @ then
Degree Two-Reduction

Else
Inexact-Reduction
Step 2:
Recover temporarily removed

vertices

Complexity Analysis
Time: O(nxm) and 2(m + nlogn)
Space: 6m + 0(n)

deg(vy) =1




An Effective Linear-Time Algorithm

s LinearTime

N

Lemma 4.1: (Degree-two Path Reductions) Consider a graph

G = (V, E) with minimum degree two. For a maximal degree-two path
P ={vy,v,, ..,v},letv & Pand w ¢ P be the unique vertices connected
to v, and v,;, respectively.

\

Casel:v=w @

= a(G) = a(G\{v}) KX




An Effective Linear-Time Algorithm

s LinearTime

Lemma 4.1: (Degree-two Path Reductions) Consider a graph

G = (V, E) with minimum degree two. For a maximal degree-two path
P ={vy,v,, ..,v},letv & Pand w ¢ P be the unique vertices connected
to v, and v,;, respectively.

N

Case 2: |P|isodd and (v,w) € E

= a(G) = a(G\{v,w})




An Effective Linear-Time Algorithm

s LinearTime

N

Lemma 4.1: (Degree-two Path Reductions) Consider a graph

G = (V, E) with minimum degree two. For a maximal degree-two path
P ={vy,v,, ...,v},letv & Pand w & P be the unique vertices connected
to v, and v,;, respectively.

Case 3: |P|isodd and (v,w) € E

| . , I,,g = a(G
Pv 5®7—‘"———€.{>"5 (6) Pl —1

RO v = a(G\{v,, ..., v }U{(vy,w)}) + 5




An Effective Linear-Time Algorithm

s LinearTime

Lemma 4.1: (Degree-two Path Reductions) Consider a graph
G = (V, E) with minimum degree two. For a maximal degree-two path

P ={vy,v,, ...,v},letv & Pand w & P be the unique vertices connected
to v, and v,;, respectively.

N

Case 4: |P| is even and
(v,w) €EE
= a(G)
Id

= a(G\{vy, ..., 1;}) + -




An Effective Linear-Time Algorithm

s LinearTime

Lemma 4.1: (Degree-two Path Reductions) Consider a graph

G = (V, E) with minimum degree two. For a maximal degree-two path
P ={vy,v,, ..,v},letv & Pand w ¢ P be the unique vertices connected
to v, and v,;, respectively.

N

Case 5: |P| is even and
(v,w) ¢ E

= a(G)

= a(G\{v,, .l.l.J,lvl}U{(v, w)})

2




An Effective Linear-Time Algorithm

s LinearTime

Step 1:
While V_, #@orV_, #0orV.; # 0 V1 U4 Vs Vg V9
If V_, # @ then
DegreeOne-Reduction
Else if V_, = ¢ then
Degree TwoPath-Reduction

Else

Inexact-Reduction
Step 2: Recover temporarily
removed vertices




An Effective Linear-Time Algorithm

s LinearTime

Step 1:
WhileV_, #QorV_, #QorV.; # 0@
If V_, = @ then
DegreeOne-Reduction
Else if V_, + ¢ then
Degree TwoPath-Reduction

Else

Inexact-Reduction
Step 2: Recover temporarily
removed vertices
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An Effective Linear-Time Algorlthm

s LinearTime

Step 1:
While V_, #QorV_, #0orV.; #0
If V_, # @ then
DegreeOne-Reduction
Else if V_, = ¢ then
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Else

Inexact-Reduction
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An Effective Linear-Time Algorithm

s LinearTime

Step 1:
While V_, #0orV_, #QorV.; #0
If V_, +# @ then
DegreeOne-Reduction

Else if V_, + ¢ then
Degree TwoPath-Reduction

Else

Inexact-Reduction
Step 2: Recover temporarily
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U U4 Vs Ui U9

i1 X

(%) U3 Vg U7 Ug




An Effective Linear-Time Algorithm

s LinearTime

Step 1:
While V_; # @orV_, # QorV.; # 0
If V_, # @ then
DegreeOne-Reduction
Else if V_, = ¢ then
Degree TwoPath-Reduction

Else

Inexact-Reduction
Step 2: Recover temporarily
removed vertices
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An Effective Linear-Time Algorithm

v U4 Vs Uy 'UI9
U2 U3 Vg U7 Ug

s LinearTime

Step 1:
While V_; # @orV_, # QorV.; # 0
If V_, # @ then
DegreeOne-Reduction
Else if V_, = ¢ then
Degree TwoPath-Reduction

Else
Inexact-Reduction
Step 2: Recover temporarily
removed vertices

Complexity Analysis
Time: 0(m)
Space: 2m + 0(n)




A Near-Linear-Time Algorithm

+* NearLinear

/Lemma 5.1: (Dominance Reduction) [F. V. Fomin et al. JACM’09] N
Vertex v dominates vertex u if (v,u) € E and all neighbors of v other
than u are also connected to u (i.e., N(v)\{u} € N(u)). If v dominates
u, then there exists a maximum independent set of G the excludes u;
\thus, we can remove u from G, and a(G) = a(G\{u}). v

Lemma 5.2: Vertex v dominates its neighbor v iff A(v,u) = d(v) — 1,
where A(v,u) is the number of triangles containing u and v




A Near-Linear-Time Algorithm

+* NearLinear

Step1: Maintain the set D of candidate
dominated vertices, and also maintain A(v, u)
for every edge (v, u)

Step 2:
While V_, = ® orD # @ or Voy = 0
If V_, = 0 then

Degree TwoPath-Reduction
Else if D + @ then

dominance reduction
Else
Inexact-Reduction
Step 2: Recover temporarily removed vertices

Complexity Analysis
Time: O0(mxA)
(A is the maximum degree
in G)

Space: 4m + 0(n) in worst
case and 2m + O0(n) in
practice




Extensions of Our Algorithms

+» Accelerate ARW

s Compute Upper Bound of a(G)
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Experimental Settings

+» Datasets

s Environments

» All algorithms are
implemented in C++

All experiments are

>

conducted on a

machine with an Intel(R)
Xeon(R) 3.4GHz CPU
16GB |main

and

memory running Linux

Graph #Vertices #Edges d
GrQc 5,242 14,484 5.53
CondMat 23,133 93,439 8.08
AstroPh 18,772 198,050 | 21.10
Email 265,214 364,481 275
Epinions 75,879 405,740 | 10.69
cnr-2000 325,557 2,738,969 | 16.83
dblp 933,258 3,353,618 7.19
wiki-Talk 2,394,385 4,659,565 3.89
BerkStan 685,230 6,649,470 | 19.41
as-Skitter 1,696,415 11,095,398 | 13.08
in-2004 1,382,870 13,591,473 19.66
eu-2005 862,664 16,138,468 | 37.42
soc-pokec 1,632,803 22,301,964 | 27.32
LiveJ 4,847,571 42851237 | 17.68
hollywood 1,985,306 114,492,816 | 115.34
indochina 7,414,768 150,984,819 | 40.73
uk-2002 18,484,117 261,787,258 | 28.33
uk-2005 39,454,746 783,027,125 | 39.70
webbase | 115,657,290 854,809,761 14.78
it-2004 41,290,682 1,027,474,947 49.77_|




Accuracy

*» Gap to the maximum independent set size

Graphs Independence Gap to the Independence Number Accuracy Kernel Graph Size
Number Greedy DU SemikE || BDOne | BDTwo | LinearTime | NearLinear | of NearLinear by NearLinear
GrQc 2,459 5 1 1 0 0 0 0" 100% 0
CondMat 9,612 17 5 1 4 2 1 0" 100% 0
AstroPh 6,760 24 10 1 2 0 1 0* 100% 0
Email 246,898 76 0 1 0 0* 0 0* 100% 0
Epinions 53,599 170 3 14 0 0 0 0 100% 6
dblp 434,289 484 63 53 45 5 4 0* 100% 0
wiki-Talk 2,338,222 536 0 14 0 0 0 0* 100% 0
BerkStan 408,482 11,092 | 3,000 | 4,458 1,088 385 766 428 99.895% 55,990
as-Skitter 1,170,580 34,591 | 2,336 | 5,886 319 55 170 39 99.997% 9,733
in-2004 896,724 14,832 | 3,553 | 5,918 656 351 412 57 99.993% 19,575
Livel 2,631,903 32,997 | 6,138 | 7,364 1,494 343 378 33 99.998% 10,173
hollywood 327,949 98 45 8 16 4 4 0" 100% 0

Table 3: The gap of the reported independent set size to the independence number computed by VCSolver [1] (* denotes that the independent
set is reported as a maximum independent set by our algorithms)
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Processing Time
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Algorithm | Time Complexity = Space Complexity Exact Reduction Rules Used
BDOne O(m) 2m + O(n) Degree-one reduction [21]
BDTwo O(n X m) 6m + O(n) Degree-one reduction [21] & Degree-two vertex reductions [21]
LinearTime O(m) 2m + O(n) Degree-one reduction [21] & Degree-two path reduction (this paper)
NearLinear O(m x A) 4m + O(n) Dominance reduction [21] & Degree-two path reduction (this paper)

Table 1: Overview of our approaches (n: number of vertices, m: number of edges, A: maximum vertex degree)
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Memory Usage
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Algorithm | Time Complexity = Space Complexity Exact Reduction Rules Used
BDOne O(m) 2m + O(n) Degree-one reduction [21]
BDTwo O(n X m) 6m + O(n) Degree-one reduction [21] & Degree-two vertex reductions [21]
LinearTime O(m) 2m + O(n) Degree-one reduction [21] & Degree-two path reduction (this paper)
NearLinear O(m x A) 4m + O(n) Dominance reduction [21] & Degree-two path reduction (this paper)

Table 1: Overview of our approaches (n: number of vertices, m: number of edges, A: maximum vertex degree) 'W
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Boost ARW

ARW-NL, ARW-LT: ARW boosted by NearLinear and LinearTime, respectively.
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Conclusion

O A new Reducing-Peeling framework

O Time-efficient and space-effective techniques to implement the
reducing-peeling framework

O Find large independent sets efficiently for large real-world
graphs with billions of edges
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