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Introduction 
Ø Subgraph Matching 

Given a query q and a large data graph G, the problem is  
 to extract all subgraph isomorphic embeddings of q in G. 
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Introduction 
Ø Applications 

§  Protein interaction network analysis 
§  Social network analysis 
§  Chemical compound search 
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Hardness 
Ø  Subgraph Isomorphism Testing is NP-complete 

Ø  Decide whether there is a subgraph of G that is isomophic to q 

Ø  Enumerating all subgraph isomorphic embeddings is 
NP-hard 

Ø  Many techniques have been developed for efficient 
enumeration in practice 
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Existing Work 
Ø  Ullmann’s algorithm [J.ACM’76]  

§  Iteratively maps query vertices one by one to data vertices, following the 
input order of query vertices. 

 
§  Cartesian Products between vertices’ candidates. 

Ø  VF2 [IEEE Trans’04] and QuickSI [VLDB’08] 

Ø  TurboISO [SIGMOD’13]  

Ø  BoostISO [VLDB’15] 
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Existing Work 
Ø  Ullmann’s algorithm [J.ACM’76]  
Ø  VF2 [IEEE Trans’04] and QuickSI [VLDB’08] 

§  Independently propose to enforce connectivity of the matching order to 
reduce Cartesian products caused by disconnected query vertices. 

§  QuickSI further removes false-positive candidates by first  
     processing infrequent query vertices and edges. 
 

 
Ø  TurboISO [SIGMOD’13]  

Ø  BoostISO [VLDB’15] 
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Existing Work 
Ø  Ullmann’s algorithm [J.ACM’76]  

Ø  VF2 [IEEE Trans’04] and QuickSI [VLDB’08] 

Ø  TurboISO [SIGMOD’13]  
§  Compress a query graph by merging together similar vertices (i.e., 

with the same neighborhoods) 
§  Reduce Cartesian product caused by similar query vertices 

§  Build a data structure online to facilitate the search process. 
 
Ø  BoostISO [VLDB’15] 
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Existing Work 
Ø  Ullmann’s algorithm [J.ACM’76]  

Ø  VF2 [IEEE Trans’04] and QuickSI [VLDB’08] 

Ø  TurboISO [SIGMOD’13]  

Ø  BoostISO [VLDB’15, Ren and Wang] 
§  Compress a data graph G by merging together similar vertices in G. 
§  Develop query-dependent relationship between vertices in G. 

§  dynamically reduces duplicate computations. 
§  Can be applied to accelerate all previous techniques as well as ours 

 
  It is still challenging for matching large query graphs. 
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Challenges of Subgraph Matching 

Matching order of QuickSI and TurboISO : (u1�u2�u3�u4�u5�u6). 

Challenge I: Redundant Cartesian Products by Dissimilar Vertices. 

105-100 partial mappings 
are redundant. 

Match dense subgraph first: (u1�u2�u5�u3�u4�u6) 

u1 

No similar vertices in q or G. 

Cartesian products: 100 X 1000 = 105     
 

u2 u3 u4 
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Challenges of Subgraph Matching  
Our Solution: Postpone Cartesian products. 

Ø Decompose q into a dense subgraph and a forest, and process the 
dense subgraph first. 

Ø  The dense subgraph has more edge-connectivity information. 

Ø We are the first to exploit this feature.  
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Challenges of Subgraph Matching 
Challenge II: Exponential number of embeddings of query paths in a 
data graph. 

Ø  TurboISO  builds a data structure that materializes all embeddings of 
query paths in a data graph 

1.  for generating matching order based on estimation of #candidates. 
2.  for enumerating subgraph isomorphic embeddings. 

Ø Effective only when the number of embeddings is small 

Ø Worst-case space complexity: O(|V(G)||v(q)-1|). 
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Challenges of Subgraph Matching 
Our Solution: We propose a polynomial-size data structure to avoid 
enumerating all embeddings of a query path in the data graph.   
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Our Approach 
 
Ø CFL-Match 

v A Core-First Decomposition based Framework 

v Compact Path-Index (CPI) based Matching 
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Core-First Decomposition 
Ø Core-Forest Decomposition 

Compute the minimal connected subgraph containing all non-
tree edges of q regarding any spanning tree. 

Ø  Forest-Leaf Decomposition 
Compute the set of leaf vertices by rooting each tree at its 
connection vertex. 
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Framework 
Ø  A Core-First Decomposition based Framework 

1)  Core-First (Core-Forest-Leaf) Decomposition 
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Framework 
Ø  A Core-First Decomposition based Framework 

1)  Core-First (Core-Forest-Leaf) Decomposition 
2)  Mapping Extraction 

i.  Core-Match 
ii.  Forest-Match 
iii.  Leaf-Match 

•  Categorize leaf nodes according to labels 
•  Perform combination instead of enumeration among different labels. 
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Compact Path-Index based Matching 
Ø  Auxiliary Data Structure: Compact Path-Index (CPI) 

§  Compactly stores candidate embeddings of query spanning trees. 
§  Prunes invalid candidates 
§  Serves for computing an effective matching order. 

§  Estimate #matches for each root-to-leaf query path based on CPI 
§  Add query paths to the matching order in increasing order w.r.t. #matches 

Ø  CPI Structure  
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Compact Path-Index based Matching 
Ø  Auxiliary Data Structure: Compact Path-Index (CPI) 

§  Compactly stores candidate embeddings of query spanning trees. 
§  Prunes invalid candidates 
§  Serves for computing an effective matching order. 

§  Estimate #matches for each root-to-leaf query path based on CPI 
§  Add query paths to the matching order in increasing order w.r.t. #matches 

Ø  CPI Structure 
§  Example  
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CPI-based Matching 
Ø  CPI Structure 

§  Candidate set: each query node u has a candidate set u.C. 
§  Edge set: there is an edge between v ��u.C and v’ ��u’.C for 

adjacent query nodes u and u’ in CPI if and only if (v, v’) exists in G. 
Ø  Traverse CPI to find mappings for query vertices 

 

(u0�u1�u4�u3�u2, u5, u6, u7, u8, u9, u10) 
G is probed only for non-tree edge validation 
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Minimizing the CPI 
Ø  Benefits of minimizing the CPI 

Ø  Less memory consumption 
Ø  Fast embedding enumeration 

 
Ø  Soundness of CPI 

 For every query node u in CPI, if there is an embedding of q in G that 
maps u to v, then v must be in u.C. 

 
      Given a sound CPI, all embeddings of q in G can be computed by 
traversing only the CPI while G is only probed for non-tree edge 
checkings. 
 
Ø  It is NP-hard to build a minimum sound CPI. 
 
 

Theorem 
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Auxiliary Data Structure  Compact Path Index 

      v9   is pruned from u3.C ß edge (u3, u4); 
      v1   is pruned from u1.C ß edge (u1, u3); 
      v8   is pruned from u2.C ß edge (u1, u2); 
      v17 is pruned from u5.C ß edge (u2, u5); 
      v27 is pruned from u9.C ß edge (u5, u9). 

CPI Construction 

Query q Data graph G 
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Build a small CPI 
Ø  General Idea 

§  A heuristic approach: 
1) u.C is initialized to contain all vertices in G with the same label as u 
2) A data vertex v is pruned from u.C ,  
               if �u’ ��Nq(u), such that �v’ ��NG(v) & v’ ��u’.C. 

 
 

Ø  A two-phase CPI construction process: 
§  Top-down construction, bottom-up refinement 
§  Exploit the pruning power of both directions of every query edge. 
§  Construct CPI of O(|E(G)| X |V(q)|) size in O(|E(G)| X |E(q)|) time 
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Experiment 
Ø  All algorithms are implemented in C++ and run on a machine with 

3.2G CPU and 8G RAM. 
Ø  Datasets 

§  Real Graphs 

 
§  Synthetic Graphs 

§  Randomly generate graphs with 100k vertices with average degree 8 and 50 
distinct labels. 

Ø  Query Graphs 
§  Randomly generate by random walk 
§  Two Categories:  

S: sparse (average degree ≤ 3).  N: non-sparse (average degree > 3). 

|V| |E| |∑| Degree 
HPRD 9460 37081 307 7.8 
Yeast 3112 12519 71 8.1 

Human 4674 86282 44 36.9 
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Comparing with Existing Techniques 

Varying the size of query graph  |V(q)| 

 

CFL-Match: our proposed algorithm 
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Effectiveness of Our New Framework 

Evaluating our framework 

Ø  Match: subgraph matching algorithm with CPI but no query 
decomposition. 

Ø  CF-Match: only core-forest decomposition with CPI. 
Ø  CFL-Match: our best algorithm. 
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Scalability Testing 
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Conclusion 
 Ø  A core-first framework for subgraph matching by postponing 

Cartesian products 

Ø  A new polynomial-size path-based auxiliary data structure CPI, and 
efficient and effective technique for constructing a small CPI 

Ø  Efficient algorithms for subgraph matching based on the core-first 
framework and the CPI 

Ø  Extensive empirical studies on real and synthetic graphs 
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Thank you! 
Questions? 

Lijun.Chang@unsw.edu.au 


