Efficient Subgraph Matching by
Postponing Cartesian Products

Never Stand Still Faculty of Engineering Computer Science and Engineering

Lijun Chang

Lijun.Chang@unsw.edu.au
The University of New South Wales, Australia

Joint work with Fei Bi, Xuemin Lin, Lu Qin, Wenjie Zhang

Outline

» Introduction & Existing Works
» Challenges of Subgraph Matching

» Our Approach

s Core-First Decomposition based Framework
s Compact Path Index (CPIl) based Matching

» Experiments

> Conclusion

Introduction

» Subgraph Matching
Given a query q and a large data graph G, the problem is
to extract all subgraph isomorphic embeddings of g in G.

Introduction

» Subgraph Matching
Given a query q and a large data graph G, the problem is
to extract all subgraph isomorphic embeddings of g in G.

Introduction

» Subgraph Matching
Given a query q and a large data graph G, the problem is
to extract all subgraph isomorphic embeddings of q in G.

Introduction

» Subgraph Matching
Given a query q and a large data graph G, the problem is
to extract all subgraph isomorphic embeddings of g in G.

i, (A)

L12u3

u D) (Eus

(a) Query ¢

Introduction

» Applications

» Protein interaction network analysis

= Social network analysis
= Chemical compound search

- ,‘ X - 'Ki LT o
A Je L, S T i
. " . i 6‘ . ." 1‘.};:‘; e“: t‘l..“;*{: ;‘
b by A SRS M e
2 Sy AT v A ‘ ‘
T N e ‘r,v"i:?f}gf-;;.. 35
b AAye By, B T T
.!g-i‘!‘g; o A ‘ft
. A i-‘,‘. dudiad AR ut,
. & ~ ?&,’9& T
‘ ¢ -,
‘ — TR TR e
. A T - Sl ':“'4{“4;);
L - ' ‘ & e 3 - ‘,‘ . e
..... { , & Sy ““ i 4 ‘:
¥ iy = ¢ . % :
R ¥ & :
»
. .
s " &
.
é &
- ‘e
$ ®/ €

= THE UNIVERSITY OF NEW SOUTH WALES

Hardness

» Subgraph Isomorphism Testing is NP-complete
» Decide whether there is a subgraph of G that is isomophic to g

» Enumerating all subgraph isomorphic embeddings is
NP-hard

» Many techniques have been developed for efficient
enumeration in practice

Existing Work

» Ullmann’s algorithm [J.LACM’76]

= [teratively maps query vertices one by one to data vertices, following the
input order of query vertices.
s (A)

= Cartesian Products between vertices’ candidates. ‘
s (B—Ou,

» VF2 [IEEE Trans’04] and QuickSI [VLDB’08]

us(D) (BE)u,

> Turbo,g, [SIGMOD’13] u, (F)

> Boost, [VLDB15]

Existing Work

» Ullmann’s algorithm [J.ACM’76]

» VF2 [IEEE Trans’04] and QuickSI [VLDB’08]
» |Independently propose to enforce connectivity of the matching order to
reduce Cartesian products caused by disconnected query vertices.

» QuickSl further removes false-positive candidates by first
processing infrequent query vertices and edges.

> Turbo,, [SIGMOD’13] Uy

> Boostg, [VLDB15]

Existing Work

» Ullmann’s algorithm [J.ACM’76]

» VF2 [IEEE Trans’04] and QuickSI [VLDB’08]

» Turbo,g, [SIGMOD’13]
= Compress a query graph by merging together similar vertices (i.e.,
with the same neighborhoods)
» Reduce Cartesian product caused by similar query vertices

» Build a data structure online to facilitate the search process.

”o “0

> Boost, [VLDB15] :

B) B

u, U

11

Existing Work

» Ullmann’s algorithm [J.ACM’76]

> VF2 [IEEE Trans’04] and QuickSI [VLDB’08]
> Turbos, [SIGMOD’13]

» Boostg, [VLDB’15, Ren and Wang]
» Compress a data graph G by merging together similar vertices in G.
» Develop query-dependent relationship between vertices in G.
» dynamically reduces duplicate computations.
= Can be applied to accelerate all previous techniques as well as ours

It is still challenging for matching large query graphs.

Challenges of Subgraph Matching

Challenge I: Redundant Cartesian Products by Dissimilar Vertices.

(A Y B)v,
(3 \C) g% (© J 105-100 partial mappings
0 B —O)u L[|‘1001 V1002 are redundant.
? ’ ® ®-® @
Vg2 ‘1103 ‘1104 ‘7101 ‘2102
u;(D) (E)ug —
V. V
u, (E) @szoz Cartesian products: 100 X 1000 = 10°
___ 100/
(a) Query ¢ (b) Data graph G

No similar vertices in g or G. ' '

Matching order of QuickSIl and Turbo,gg : (uy, u,, wig, u6).

Match dense subgraph first: (uq, u,, us, Uz, Uy, Ug)

13

Challenges of Subgraph Matching

Our Solution: Postpone Cartesian products.

» Decompose q into a dense subgraph and a forest, and process the
dense subgraph first.

e -
3 () ® ©
/\ J 15 ll{g i
oy P! AN !
> 3 6
/ / | . |
e B—C) F)
u;(D) (E)ug TR TA \F‘/;u
Core Forest

N \ T R I
uy(F)

» The dense subgraph has more edge-connectivity information.

» We are the first to exploit this feature.

14

Challenges of Subgraph Matching

Challenge IlI: Exponential number of embeddings of query paths in a
data graph.

» Turbogy builds a data structure that materializes all embeddings of
query paths in a data graph

1. for generating matching order based on estimation of #candidates.
2. for enumerating subgraph isomorphic embeddings.

» Effective only when the number of embeddings is small

> Worst-case space complexity: O(|V(G)|V(@-1]).

Challenges of Subgraph Matching

Our Solution: We propose a polynomial-size data structure to avoid
enumerating all embeddings of a query path in the data graph.

Our Approach
» CFL-Match

A Core-First Decomposition based Framework

*» Compact Path-Index (CPI) based Matching

Core-First Decomposition

» Core-Forest Decomposition

Compute the minimal connected subgraph containing all non-
tree edges of q regarding any spanning tree.

u\B Clu, \E
B*—*C p (b) Core "‘ “4
(d)Fonest

4 e < 2 XU 5 6
Uy u4 u ub < ?
p /N
6 ©®H © 1 ,(%"“ 9 © B @
\ ~ 7 §

5 U, U u) (H
! 8 9 10 S G I.'lg \u/) iy (e) Leaf
(c) Forest

(a) Query q

» Forest-Leaf Decomposition

Compute the set of leaf vertices by rooting each tree at its
connection vertex.

18

Framework

» A Core-First Decomposition based Framework
1) Core-First (Core-Forest-Leaf) Decomposition

Il7 llS Il() uIO
(a) Query g

Framework

» A Core-First Decomposition based Framework
1) Core-First (Core-Forest-Leaf) Decomposition
2) Mapping Extraction
i. Core-Match
ii. Forest-Match
iii. Leaf-Match
» Categorize leaf nodes according to labels
» Perform combination instead of enumeration among different labels.

s ll4 ll() 115

o @ 666 8

- .)
Bow, ©® ® ® ® (© © © |
(b) Core (d) Forest (e) Leat

20

Compact Path-Index based Matching

» Auxiliary Data Structure: Compact Path-Index (CPI)
» Compactly stores candidate embeddings of query spanning trees.
= Prunes invalid candidates

» Serves for computing an effective matching order.
» Estimate #matches for each root-to-leaf query path based on CPI
= Add query paths to the matching order in increasing order w.r.t. #matches

» CPI Structure

uy (A)
/\ >

p
u(B Cu,

D\ /E\ /F\ '/D\
Uy Tuy Tus Tug

F\ @ © '/F\

i, Uy Uy Uy

(a) Query ¢

Compact Path-Index based Matching

» Auxiliary Data Structure: Compact Path-Index (CPI)
» Compactly stores candidate embeddings of query spanning trees.
= Prunes invalid candidates

» Serves for computing an effective matching order.
» Estimate #matches for each root-to-leaf query path based on CPI
= Add query paths to the matching order in increasing order w.r.t. #matches

> CPI Structu re ty | 20

/
F\ @
l HQ ”lO

(a) Query ¢

CPI-based Matching

> CPI Structure

» Candidate set: each query node u has a candidate set u.C.

= Edge set: there is an edge between v € u.C and v’ € u’.C for
adjacent query nodes u and u’in CPI if and only if (v, v’) exists in G.

» Traverse CPI to find mappings for query vertices

______________________________ "
U, | 0
u, 0
us(F) Du, u, Y =t vy % | V
Forest —

D :_-'))) ? y
: "4 u 10/ ¥1 12 iy 5 Us 131M14M15 UM
Core }

@ y y y y) y) y y y
R "9 o o Vis[i9'20] g [21[22) ug |M21]*22[*23]"24] 25| 11,026

------------------------------ (c) CPI
(Ug, Uy, Uy, Us, Uy, Us, Ug, Uy Ug, Ug, Uyp)

G is probed only for non-tree edge validation

23

Minimizing the CPI

» Benefits of minimizing the CPI
» Less memory consumption
» Fast embedding enumeration

» Soundness of CPI

For every query node u in CPI, if there is an embedding of g in G that

maps u to v, then v must be in u.C.

Theorem

Given a sound CPI, all embeddings of g in G can be computed by
traversing only the CPIl while G is only probed for non-tree edge
checkings.

> It is NP-hard to build a minimum sound CPI.

24

CPI Construction

' 214 %s Vi 217
Iy

Uy Ug Uy Uy Vis Vig Vo Vai Vo Vaz Vg Vos Vg Vg
Query q Data graph G
]
| ty| Y0

Vy is pruned from u;.C € edge (us, uy); /\
v, is pruned from u,.C < edge (u,, uj); nIEIEI w, | Vs |2
vg is pruned from u,.C < edge (uy, U,);
v, is pruned from us.C € edge (Uy, Ug); U s YoM [5 ug 1314 us M6
V,, is pruned from uy.C < edge (us, Ug). XX /\ XN

wur V18M9[Y20) ug [Y21V2] uy V21Y22%3V24)29) 1, Y26

Aux@iampBat P Sthuchles

25

Build a small CPI

» General Idea
» A heuristic approach:
1) u.C is initialized to contain all vertices in G with the same label as u
2) A data vertex v is pruned from u.C
if 3u’ € N,(u), such that iv’ € Ng(v) & v’ € u’.C.

» A two-phase CPI construction process:
» Top-down construction, bottom-up refinement

= Exploit the pruning power of both directions of every query edge.
= Construct CPI of O(|E(G)| X |[V(q)|) size in O(|E(G)| X |E(q)]) time

Experiment

» All algorithms are implemented in C++ and run on a machine with
3.2G CPU and 8G RAM.

» Datasets
= Real Graphs \ |E| 1>] Degree
HPRD 9460 37081 307 7.8
Yeast 3112 12519 71 8.1
Human | 4674 86282 44 36.9

= Synthetic Graphs
» Randomly generate graphs with 100k vertices with average degree 8 and 50
distinct labels.

> Query Graphs

» Randomly generate by random walk

= Two Categories:
S: sparse (average degree < 3). N: non-sparse (average degree > 3).

Comparing with Existing Techniques

28

CFL-Match: our proposed algorithm

pzza QuickSl

-]

=

o
/A
z0
O

T

1 CFL-Match

g Time (ms)
g Time (ms)
<_sl\)

-
o
o
T

i

ON 100N 200N

(2) HPRD (vary [V(g)) (b) Yeast (vary

Processin
Processin
T

—
e
N

25S 50S 100S200S 25N 50N 100N 200N

BINF . 7 2INF,

_—
o107 F 7 o i
3 }_ L I

o

g Tim
E;l\)
T

—
o
o

£

o
o
1

10" =30s 155 20S 25S 10N 15N 20N 25N

25S 50S 100S200S 25N 50N 100N 200

(¢) Synthetic (vary [V(q)]) (d) Human (vary |[V(g)])
Varying the size of query graph |V(q)|

I 5%
£ oo
5 %

Processin

—
S

V(@)D

= THE UNIVERSITY OF NEW SOUTH WALES

Effectiveness of Our New Framework

» Match: subgraph matching algorithm with CPI but no query
decomposition.

» CF-Match: only core-forest decomposition with CPI.

» CFL-Match: our best algorithm.
B i })) " N ‘
g0 —A— Sparse gINF —A— Sparse ~
o L X N On_Sparse i o)) 102 I NS — X N on_Sparse _;
€ 4n0 L] £
= 107 F &~ = -
................. 1
o | TV 1 piwor E
§10 § 100 . _;
510-2 \ ! ! 510-1 [! !
o o
Match CF-Match CFL-Match Match CF-Match CFL-Match
(a) HPRD (vary algorithms) (b) Yeast (vary algorithms)

Evaluating our framework

29

Scalability Testing

» . »

E 1 r—az Sparse’ @202 E 1Tr—az Sparse L]

QE, 0.8 | —¢— N on-sparse QE, 0.8 P e N on_Sparse]

o6 1 FH 061 _—]

® 0.2 - 1 go02+ .

E 0 | | | io’ O I | | | |

% Gyook Gisook Gioook & Gg-4Gg-g Gg-16 Gy-32
(a) Synthetic (vary |V(G)|) (b) Synthetic (vary d(G))

Té? 22 I | T 28 & 1 T |

= —A— Sparse D P —A— Sparse -

QEJ 5 Foa x N on_Sparse' é 2° F TeT—aA X N On_Sparse

S 2V AN § © 4L Ty i

[NG 4 N 20 i

.g o2 | ‘ 1 Q22T]

22" L 1) S S -

§ 2.4 | T o — £ 2-2 [1 L il

“ Glos Gisp Gro1o0 Gi-z00 G_os Giso Gro100 GrL-200

(c) Synthetic (vary |Z|) (d) Index Size (vary |X)|)

30

Conclusion

» A core-first framework for subgraph matching by postponing
Cartesian products

» A new polynomial-size path-based auxiliary data structure CPI, and
efficient and effective technique for constructing a small CPI

» Efficient algorithms for subgraph matching based on the core-first
framework and the CPI

» Extensive empirical studies on real and synthetic graphs

31

32

Thank youl

Questions?

?

Lijun.Chang@unsw.edu.au

E-n

