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Introduction

» Subgraph Matching
Given a query q and a large data graph G, the problem is
to extract all subgraph isomorphic embeddings of g in G.
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» Subgraph Matching
Given a query q and a large data graph G, the problem is
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Introduction

» Applications

» Protein interaction network analysis

= Social network analysis
= Chemical compound search
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Hardness

» Subgraph Isomorphism Testing is NP-complete
» Decide whether there is a subgraph of G that is isomophic to g

» Enumerating all subgraph isomorphic embeddings is
NP-hard

» Many techniques have been developed for efficient
enumeration in practice




Existing Work

» Ullmann’s algorithm [J.LACM’76]

= [teratively maps query vertices one by one to data vertices, following the
input order of query vertices.
s (A)

= Cartesian Products between vertices’ candidates. ‘
s (B—Ou,

» VF2 [IEEE Trans’04] and QuickSI [VLDB’08]

us(D)  (BE)u,

> Turbo,g, [SIGMOD’13] u, (F)

> Boost, [VLDB15]




Existing Work

» Ullmann’s algorithm [J.ACM’76]

» VF2 [IEEE Trans’04] and QuickSI [VLDB’08]
» |Independently propose to enforce connectivity of the matching order to
reduce Cartesian products caused by disconnected query vertices.

» QuickSl further removes false-positive candidates by first
processing infrequent query vertices and edges.

> Turbo,, [SIGMOD’13] Uy

> Boostg, [VLDB15]




Existing Work

» Ullmann’s algorithm [J.ACM’76]

» VF2 [IEEE Trans’04] and QuickSI [VLDB’08]

» Turbo,g, [SIGMOD’13]
= Compress a query graph by merging together similar vertices (i.e.,
with the same neighborhoods)
» Reduce Cartesian product caused by similar query vertices

» Build a data structure online to facilitate the search process.
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Existing Work

» Ullmann’s algorithm [J.ACM’76]

> VF2 [IEEE Trans’04] and QuickSI [VLDB’08]
> Turbos, [SIGMOD’13]

» Boostg, [VLDB’15, Ren and Wang]
» Compress a data graph G by merging together similar vertices in G.
» Develop query-dependent relationship between vertices in G.
» dynamically reduces duplicate computations.
= Can be applied to accelerate all previous techniques as well as ours

It is still challenging for matching large query graphs.




Challenges of Subgraph Matching

Challenge I: Redundant Cartesian Products by Dissimilar Vertices.

(A Y B)v,
(3 \C) g% (© J 105-100 partial mappings
0 B —O)u L[ |‘1001 V1002 are redundant.
? ’ ® ®-® @
Vg2 ‘1103 ‘1104 ‘7101 ‘2102
u;(D)  (E)ug —
V. V
u, (E) @szoz Cartesian products: 100 X 1000 = 10°
\___ 100/
(a) Query ¢ (b) Data graph G

No similar vertices in g or G. ' '

Matching order of QuickSIl and Turbo,gg : (uy, u,, wig, u6).

Match dense subgraph first: (uq, u,, us, Uz, Uy, Ug)
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Challenges of Subgraph Matching

Our Solution: Postpone Cartesian products.

» Decompose q into a dense subgraph and a forest, and process the
dense subgraph first.
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» The dense subgraph has more edge-connectivity information.

» We are the first to exploit this feature.
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Challenges of Subgraph Matching

Challenge IlI: Exponential number of embeddings of query paths in a
data graph.

» Turbogy builds a data structure that materializes all embeddings of
query paths in a data graph

1. for generating matching order based on estimation of #candidates.
2. for enumerating subgraph isomorphic embeddings.

» Effective only when the number of embeddings is small

> Worst-case space complexity: O(|V(G)|V(@-1]).




Challenges of Subgraph Matching

Our Solution: We propose a polynomial-size data structure to avoid
enumerating all embeddings of a query path in the data graph.




Our Approach
» CFL-Match

A Core-First Decomposition based Framework

*» Compact Path-Index (CPI) based Matching




Core-First Decomposition

» Core-Forest Decomposition

Compute the minimal connected subgraph containing all non-
tree edges of q regarding any spanning tree.
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(a) Query q

» Forest-Leaf Decomposition

Compute the set of leaf vertices by rooting each tree at its
connection vertex.
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Framework

» A Core-First Decomposition based Framework
1) Core-First (Core-Forest-Leaf) Decomposition

Il7 llS Il() uIO
(a) Query g




Framework

» A Core-First Decomposition based Framework
1) Core-First (Core-Forest-Leaf) Decomposition
2) Mapping Extraction
i. Core-Match
ii. Forest-Match
iii. Leaf-Match
» Categorize leaf nodes according to labels
» Perform combination instead of enumeration among different labels.
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Compact Path-Index based Matching

» Auxiliary Data Structure: Compact Path-Index (CPI)
» Compactly stores candidate embeddings of query spanning trees.
= Prunes invalid candidates

» Serves for computing an effective matching order.
» Estimate #matches for each root-to-leaf query path based on CPI
= Add query paths to the matching order in increasing order w.r.t. #matches

» CPI Structure
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Compact Path-Index based Matching

» Auxiliary Data Structure: Compact Path-Index (CPI)
» Compactly stores candidate embeddings of query spanning trees.
= Prunes invalid candidates

» Serves for computing an effective matching order.
» Estimate #matches for each root-to-leaf query path based on CPI
= Add query paths to the matching order in increasing order w.r.t. #matches

> CPI Structu re ty | 20
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CPI-based Matching

> CPI Structure

» Candidate set: each query node u has a candidate set u.C.

= Edge set: there is an edge between v € u.C and v’ € u’.C for
adjacent query nodes u and u’in CPI if and only if (v, v’) exists in G.

» Traverse CPI to find mappings for query vertices

______________________________ "
U, | 0
u, 0
us(F) Du, u, Y =t vy % | V
Forest —

D :_-' ) ) ) ? y
: "4 u 10/ ¥1 12 iy 5 Us 131M14M15 UM
Core }

@ y y y y ) y ) y y y
R "9 o o Vis[i9'20] g [21[22)  ug |M21]*22[*23]"24] 25| 11,026

------------------------------ (c) CPI
(Ug, Uy, Uy, Us, Uy, Us, Ug, Uy Ug, Ug, Uyp)

G is probed only for non-tree edge validation
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Minimizing the CPI

» Benefits of minimizing the CPI
» Less memory consumption
» Fast embedding enumeration

» Soundness of CPI

For every query node u in CPI, if there is an embedding of g in G that

maps u to v, then v must be in u.C.

Theorem

Given a sound CPI, all embeddings of g in G can be computed by
traversing only the CPIl while G is only probed for non-tree edge
checkings.

> It is NP-hard to build a minimum sound CPI.
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CPI Construction
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Vy is pruned from u;.C € edge (us, uy); /\
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Build a small CPI

» General Idea
» A heuristic approach:
1) u.C is initialized to contain all vertices in G with the same label as u
2) A data vertex v is pruned from u.C
if 3u’ € N,(u), such that iv’ € Ng(v) & v’ € u’.C.

» A two-phase CPI construction process:
» Top-down construction, bottom-up refinement

= Exploit the pruning power of both directions of every query edge.
= Construct CPI of O(|E(G)| X |[V(q)|) size in O(|E(G)| X |E(q)]) time




Experiment

» All algorithms are implemented in C++ and run on a machine with
3.2G CPU and 8G RAM.

» Datasets
= Real Graphs \ |E| 1> ] Degree
HPRD 9460 37081 307 7.8
Yeast 3112 12519 71 8.1
Human | 4674 86282 44 36.9

= Synthetic Graphs
» Randomly generate graphs with 100k vertices with average degree 8 and 50
distinct labels.

> Query Graphs

» Randomly generate by random walk

= Two Categories:
S: sparse (average degree < 3). N: non-sparse (average degree > 3).




Comparing with Existing Techniques
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CFL-Match: our proposed algorithm
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Effectiveness of Our New Framework

» Match: subgraph matching algorithm with CPI but no query
decomposition.

» CF-Match: only core-forest decomposition with CPI.

» CFL-Match: our best algorithm.
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Evaluating our framework
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Scalability Testing
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Conclusion

» A core-first framework for subgraph matching by postponing
Cartesian products

» A new polynomial-size path-based auxiliary data structure CPI, and
efficient and effective technique for constructing a small CPI

» Efficient algorithms for subgraph matching based on the core-first
framework and the CPI

» Extensive empirical studies on real and synthetic graphs
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Thank youl

Questions?

?

Lijun.Chang@unsw.edu.au
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