
Computer Science and Engineering

Lijun Chang

Efficient Subgraph Matching by
Postponing Cartesian Products

Lijun.Chang@unsw.edu.au
The University of New South Wales, Australia

Joint work with Fei Bi, Xuemin Lin, Lu Qin, Wenjie Zhang

2

Outline
Ø  Introduction & Existing Works

Ø Challenges of Subgraph Matching

Ø Our Approach

v Core-First Decomposition based Framework
v Compact Path Index (CPI) based Matching

Ø Experiments

Ø Conclusion

3

Introduction
Ø Subgraph Matching

Given a query q and a large data graph G, the problem is
 to extract all subgraph isomorphic embeddings of q in G.

4

Introduction
Ø Subgraph Matching

Given a query q and a large data graph G, the problem is
 to extract all subgraph isomorphic embeddings of q in G.

5

Introduction
Ø Subgraph Matching

Given a query q and a large data graph G, the problem is
 to extract all subgraph isomorphic embeddings of q in G.

6

Introduction
Ø Subgraph Matching

Given a query q and a large data graph G, the problem is
 to extract all subgraph isomorphic embeddings of q in G.

7

Introduction
Ø Applications

§  Protein interaction network analysis
§  Social network analysis
§  Chemical compound search

8

Hardness
Ø  Subgraph Isomorphism Testing is NP-complete

Ø  Decide whether there is a subgraph of G that is isomophic to q

Ø  Enumerating all subgraph isomorphic embeddings is
NP-hard

Ø  Many techniques have been developed for efficient
enumeration in practice

9

Existing Work
Ø  Ullmann’s algorithm [J.ACM’76]

§  Iteratively maps query vertices one by one to data vertices, following the
input order of query vertices.

§  Cartesian Products between vertices’ candidates.

Ø  VF2 [IEEE Trans’04] and QuickSI [VLDB’08]

Ø  TurboISO [SIGMOD’13]

Ø  BoostISO [VLDB’15]

10

Existing Work
Ø  Ullmann’s algorithm [J.ACM’76]
Ø  VF2 [IEEE Trans’04] and QuickSI [VLDB’08]

§  Independently propose to enforce connectivity of the matching order to
reduce Cartesian products caused by disconnected query vertices.

§  QuickSI further removes false-positive candidates by first
 processing infrequent query vertices and edges.

Ø  TurboISO [SIGMOD’13]

Ø  BoostISO [VLDB’15]

11

Existing Work
Ø  Ullmann’s algorithm [J.ACM’76]

Ø  VF2 [IEEE Trans’04] and QuickSI [VLDB’08]

Ø  TurboISO [SIGMOD’13]
§  Compress a query graph by merging together similar vertices (i.e.,

with the same neighborhoods)
§  Reduce Cartesian product caused by similar query vertices

§  Build a data structure online to facilitate the search process.

Ø  BoostISO [VLDB’15]

12

Existing Work
Ø  Ullmann’s algorithm [J.ACM’76]

Ø  VF2 [IEEE Trans’04] and QuickSI [VLDB’08]

Ø  TurboISO [SIGMOD’13]

Ø  BoostISO [VLDB’15, Ren and Wang]
§  Compress a data graph G by merging together similar vertices in G.
§  Develop query-dependent relationship between vertices in G.

§  dynamically reduces duplicate computations.
§  Can be applied to accelerate all previous techniques as well as ours

 It is still challenging for matching large query graphs.

13

Challenges of Subgraph Matching

Matching order of QuickSI and TurboISO : (u1�u2�u3�u4�u5�u6).

Challenge I: Redundant Cartesian Products by Dissimilar Vertices.

105-100 partial mappings
are redundant.

Match dense subgraph first: (u1�u2�u5�u3�u4�u6)

u1

No similar vertices in q or G.

Cartesian products: 100 X 1000 = 105

u2 u3 u4

14

Challenges of Subgraph Matching
Our Solution: Postpone Cartesian products.

Ø Decompose q into a dense subgraph and a forest, and process the
dense subgraph first.

Ø  The dense subgraph has more edge-connectivity information.

Ø We are the first to exploit this feature.

15

Challenges of Subgraph Matching
Challenge II: Exponential number of embeddings of query paths in a
data graph.

Ø  TurboISO builds a data structure that materializes all embeddings of
query paths in a data graph

1.  for generating matching order based on estimation of #candidates.
2.  for enumerating subgraph isomorphic embeddings.

Ø Effective only when the number of embeddings is small

Ø Worst-case space complexity: O(|V(G)||v(q)-1|).

16

Challenges of Subgraph Matching
Our Solution: We propose a polynomial-size data structure to avoid
enumerating all embeddings of a query path in the data graph.

17

Our Approach

Ø CFL-Match

v A Core-First Decomposition based Framework

v Compact Path-Index (CPI) based Matching

18

Core-First Decomposition
Ø Core-Forest Decomposition

Compute the minimal connected subgraph containing all non-
tree edges of q regarding any spanning tree.

Ø  Forest-Leaf Decomposition
Compute the set of leaf vertices by rooting each tree at its
connection vertex.

19

Framework
Ø  A Core-First Decomposition based Framework

1)  Core-First (Core-Forest-Leaf) Decomposition

20

Framework
Ø  A Core-First Decomposition based Framework

1)  Core-First (Core-Forest-Leaf) Decomposition
2)  Mapping Extraction

i.  Core-Match
ii.  Forest-Match
iii.  Leaf-Match

•  Categorize leaf nodes according to labels
•  Perform combination instead of enumeration among different labels.

21

Compact Path-Index based Matching
Ø  Auxiliary Data Structure: Compact Path-Index (CPI)

§  Compactly stores candidate embeddings of query spanning trees.
§  Prunes invalid candidates
§  Serves for computing an effective matching order.

§  Estimate #matches for each root-to-leaf query path based on CPI
§  Add query paths to the matching order in increasing order w.r.t. #matches

Ø  CPI Structure

22

Compact Path-Index based Matching
Ø  Auxiliary Data Structure: Compact Path-Index (CPI)

§  Compactly stores candidate embeddings of query spanning trees.
§  Prunes invalid candidates
§  Serves for computing an effective matching order.

§  Estimate #matches for each root-to-leaf query path based on CPI
§  Add query paths to the matching order in increasing order w.r.t. #matches

Ø  CPI Structure
§  Example

23

CPI-based Matching
Ø  CPI Structure

§  Candidate set: each query node u has a candidate set u.C.
§  Edge set: there is an edge between v ��u.C and v’ ��u’.C for

adjacent query nodes u and u’ in CPI if and only if (v, v’) exists in G.
Ø  Traverse CPI to find mappings for query vertices

(u0�u1�u4�u3�u2, u5, u6, u7, u8, u9, u10)
G is probed only for non-tree edge validation

24

Minimizing the CPI
Ø  Benefits of minimizing the CPI

Ø  Less memory consumption
Ø  Fast embedding enumeration

Ø  Soundness of CPI

 For every query node u in CPI, if there is an embedding of q in G that
maps u to v, then v must be in u.C.

 Given a sound CPI, all embeddings of q in G can be computed by
traversing only the CPI while G is only probed for non-tree edge
checkings.

Ø  It is NP-hard to build a minimum sound CPI.

Theorem

25

Auxiliary Data Structure Compact Path Index

 v9 is pruned from u3.C ß edge (u3, u4);
 v1 is pruned from u1.C ß edge (u1, u3);
 v8 is pruned from u2.C ß edge (u1, u2);
 v17 is pruned from u5.C ß edge (u2, u5);
 v27 is pruned from u9.C ß edge (u5, u9).

CPI Construction

Query q Data graph G

26

Build a small CPI
Ø  General Idea

§  A heuristic approach:
1) u.C is initialized to contain all vertices in G with the same label as u
2) A data vertex v is pruned from u.C ,
 if �u’ ��Nq(u), such that �v’ ��NG(v) & v’ ��u’.C.

Ø  A two-phase CPI construction process:
§  Top-down construction, bottom-up refinement
§  Exploit the pruning power of both directions of every query edge.
§  Construct CPI of O(|E(G)| X |V(q)|) size in O(|E(G)| X |E(q)|) time

27

Experiment
Ø  All algorithms are implemented in C++ and run on a machine with

3.2G CPU and 8G RAM.
Ø  Datasets

§  Real Graphs

§  Synthetic Graphs

§  Randomly generate graphs with 100k vertices with average degree 8 and 50
distinct labels.

Ø  Query Graphs
§  Randomly generate by random walk
§  Two Categories:

S: sparse (average degree ≤ 3). N: non-sparse (average degree > 3).

|V| |E| |∑| Degree
HPRD 9460 37081 307 7.8
Yeast 3112 12519 71 8.1

Human 4674 86282 44 36.9

28

Comparing with Existing Techniques

Varying the size of query graph |V(q)|

CFL-Match: our proposed algorithm

29

Effectiveness of Our New Framework

Evaluating our framework

Ø  Match: subgraph matching algorithm with CPI but no query
decomposition.

Ø  CF-Match: only core-forest decomposition with CPI.
Ø  CFL-Match: our best algorithm.

30

Scalability Testing

31

Conclusion
 Ø  A core-first framework for subgraph matching by postponing

Cartesian products

Ø  A new polynomial-size path-based auxiliary data structure CPI, and
efficient and effective technique for constructing a small CPI

Ø  Efficient algorithms for subgraph matching based on the core-first
framework and the CPI

Ø  Extensive empirical studies on real and synthetic graphs

32

Thank you!
Questions?

Lijun.Chang@unsw.edu.au

