

Graph Clustering pSCAN: Fast and Exact Structural

Never Stand Still **Faculty of Engineering Computer Science and Engineering** Never Stand Still **Faculty of Engineering**

Lijun Chang1 , Wei Li1 , Xuemin Lin1 , Lu Qin2 , Wenjie Zhang1

1The University of New South Wales, Australia 2University of Technology Sydney, Australia

Outline

- **Structural Graph Clustering**
- A Two-Step Framework
- Our pSCAN Approach and Optimizations
- Experimental Studies
- Conclusion

Graphs

• Graphs are ubiquitous and can model complex relationships

- Graph clustering
	- Group vertices into clusters: dense intra connection and sparse inter connection

Structural Graph Clustering

- SCAN [Xu+, KDD'07]
	- Identifies clusters, hubs, and outliers at the same time
	- Mimics DBSCAN [Ester+, KDD'96] for clustering spatial data

Example structural graph clustering

A Cluster = Cores + Borders

Core: vertices that are *structure-similar* to *many* other vertices *many* Border: vertices that are not core but are *structure-similar* to a core

• Structural Similarity:
$$
\sigma(u, v) = \frac{|N[u] \cap N[v]|}{\sqrt{d[u] \cdot d[v]}}.
$$

- Two vertices *u* and *v* are *structure-similar* if
	- Connected
	- Structural similarity *≥ ε* (a given similarity threshold)
- Many: *≥ µ* (a given size threshold)

Example (ε=0.0001, μ=3)

Existing Approaches & Challenges

- If the structural similarity between every pair of adjacent vertices has been computed, clusters can be obtained in linear time.
- Existing Approaches:
	- SCAN [Xu+, KDD'07]
	- SCAN++ [Shiokawa+, VLDB'15]
- Challenge-I: a systematic way to reduce the number of structural similarity computations
- Challenge-II: efficiently checking whether two vertices are structuresimilar to each other
	- Existing approaches compute the exact structural similarity score

Outline

- Structural Graph Clustering
- **A Two-Step Framework**
- Our pSCAN Approach and Optimizations
- Experimental Studies
- Conclusion

Three Observations Utilized in Our Framework

• Observation-I: The Clusters May Overlap

- Observation-II: The Clusters of Core Vertices Are Disjoint
	- Each core vertex belongs to a unique cluster
- Observation-III: The Clusters of Non-core Vertices Are Uniquely Determined By Core Vertices

Two-Step Framework

- **Step-I**: Cluster core vertices
	- Conceptually generate the connectivity graph for core vertices
	- Clusters of core vertices are CCs of the connectivity graph

– This presents optimization opportunity, since not all edges are needed for computing CCs

Two-Step Framework

- **Step-II**: Cluster non-core vertices
	- A non-core vertex belongs to the same cluster of a set of core vertices if it is structure-similar to one of the core vertices

Example (ε=0.0001, $\mu=3$ **)**

Outline

- Structural Graph Clustering
- A Two-Step Framework
- **Our pSCAN Approach and Optimizations**
- Experimental Studies
- Conclusion

Our pSCAN Approach

- Determine core vertices
	- Maintain *sd(u)*, *ed(u)* for each vertex *u*
	- *sd(u)*: similarity degree of *u*, the number of neighbors that have been confirmed to be structure-similar to *u*
		- *u* is a core vertex if *sd(u) ≥ µ*
	- *ed(u)*: effective degree of *u*, *sd(u)* + the number of neighbors whose structural similarities to *u* have not been computed
		- *u* is non-core vertex if *ed(u) < µ*
- We check core vertices in *non-increasing effective degree* order
	- After computing the structural similarity between *u* and *v*, we also update *sd(v)* or *ed(v)*

Our pSCAN Approach

- Maintaining clusters of core vertices
	- Use the *disjoint-set data structure* to maintain the CCs of the connectivity graph
- For a core vertex *u*
	- First exam every neighbor *v* such that, *(i) v* is a core vertex, and *(ii) u* is structure-similar to *v*
		- *union(u,v)*
	- Then exam every neighbor *v* such that *(i) v* is a core vertex, and *(ii)* the structural similarity between *u* and *v* have not been computed
		- If *u* and *v* are in different CCs, check whether *u* is structure-similar to *v*, and *union(u,v)* if it is.
		- That is, if they are already in the same CC, we do not compute the structural similarity

Analysis of pSCAN

- Time complexity is *O(α(G)×m)*
	- *α(G)* is the arboricity of *G*.
- Space complexity is *O(m)*

Theorem: pSCAN is worst-case optimal

union(1,3)

union(1,3) union(3,4)

union(1,3) union(3,4) union(2,1)

union(1,3) union(3,4) union(2,1) union(5,1)

Optimizations

- Adaptive structure-similar checking
	- Compute the minimum number of common neighbors, *cn(u,v)*, required for the two vertices to be similar
	- Terminate early if *(i)* the number of computed common neighbors is *≥cn(u,v)*, or *(ii)* the upper bound number of common neighbors is smaller than *cn(u,v)*
- Pruning rule
	- For two vertices to be structure-similar, their degrees must satisfy a certain condition
- Cross link
	- *σ(u,v)=σ(v,u)*

Outline

- Structural Graph Clustering
- A Two-Step Framework
- Our pSCAN Approach and Optimizations
- **Experimental Studies**
- Conclusion

Experimental Results

• Datasets

• Environments

- Ø Intel Xeon Processor 2.9GHz CPU and 32GB memory
- \triangleright All algorithms are implemented in C++

Scalability Testing

Comparing pSCAN^{*} with SCAN-HS, SCAN++

Evaluating Our New Paradigm

Evaluating Optimization Techniques

Outline

- Structural Graph Clustering
- A Two-Step Framework
- Our pSCAN Approach and Optimizations
- Experimental Studies
- **Conclusion**

Conclusion

- A new paradigm for exact structural graph clustering
- A new approach aiming to reduce the number of structural similarity computations
- Prove that pSCAN is worst-case optimal
- three optimization techniques to speed up the checking of structuresimilar between two vertices

Thanks!

Q&A

Never Stand Still