
Effectively Indexing the Multi-Dimensional Uncertain
Objects for Range Searching

Ying Zhang, Wenjie Zhang, Qianlu Lin, Xuemin Lin∗

The University Of New South Wales
{yingz, zhangw, qlin, lxue }@cse.unsw.edu.au

ABSTRACT
The range searching problem is fundamental in a wide spec-
trum of applications such as radio frequency identification
(RFID) networks, location based services (LBS), and global
position system (GPS). As the uncertainty is inherent in
those applications, it is highly demanded to address the un-
certainty in the range search since the traditional techniques
cannot be applied due to the inherence difference between
the uncertain data and traditional data. In the paper, we
propose a novel indexing structure, named U -Quadtree, to
organize the uncertain objects in a multi-dimensional space
such that the range searching can be answered efficiently by
applying filtering techniques. Particularly, based on some
insights of the range search on uncertain data, we propose
a cost model which carefully considers various factors that
may impact the performance of the range searching. Then
an effective and efficient index construction algorithm is pro-
posed to build the optimal U -Quadtree regarding the cost
model. Comprehensive experiments demonstrate that our
technique outperforms the existing works for range search-
ing on multi-dimensional uncertain objects.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Spatial databases and
GIS

General Terms
Algorithm, Performance

Keywords
Indexing, mutidimensional uncertain objects, range query

1. INTRODUCTION
In recent years, the database community has witnessed the

increasing amount of research on uncertain data modeling

* Corresponding Author

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2012, March 26–30, 2012, Berlin, Germany.
Copyright 2012 ACM 978-1-4503-0790-1/12/03 ...$10.00

and processing, due to its importance in many important ap-
plications such as data cleaning, radio frequency identifica-
tion (RFID) networks, location based services (LBS), global
position system (GPS), sensor data analysis, economic de-
cision making and market surveillance. Common causes of
uncertainty in these applications include data randomness
and incompleteness, limitation of measuring equipment, de-
lay or loss of data updates and privacy preservation.

The range searching problem is fundamental in the above
applications. Below are two examples.

In some warehouse management systems, the RFID tags
are attached to the items and their current locations can be
obtained by RFID readers. Since the RFID reading may be
noisy due to the sensitivity of the low cost readers to various
environmental factors such as interference from nearby men-
tal objects and contention among tags [23], the location of
an object is modeled as a multi-dimensional uncertain object
as shown in Fig 1, where an object A is represented by an
uncertain region Ar and the probabilistic density function
(PDF) A.pdf . This implies that an object may appear at
the locations within its uncertain region with probabilities
described by its PDF . In some scenerios, a manager of the
warehouse may want to identify the objects within a search
region e.g., the objects covered by a fire sprinkler (the cir-
cular region rq in Fig. 1) or the objects within a particular
stock keeping area. As shown in Fig. 1, it is meaningless to
tell if the object A appears within search region rq or not.
Instead, the notation of appearance probability is proposed
in [21] to capture the likelihood of A falling in rq. As the
manager may only be interested in the objects with a suffi-
ciently large chance to fall in the search region, the system
will report the objects with probability at least θ appearing
in rq where the probabilistic threshold θ is determined by
the manager.

Another example application of range search on uncertain
data is the location based services (LBS). The location of a
mobile user can be described as an uncertain object, because
the location may be derived based on the nearest contour
lines of user’s possible location regarding the nearby tow-
ers [4]. Based on the user’s location information, the range
search can help a supermarket to send advertising coupons
via SMS to potential customers who are likely to be in the
vicinity of the supermarket [19].

Motivated by the above applications, in the paper we
study the problem of probabilistic threshold range query on
multi-dimensional uncertain data; that is, given a set U of
multi-dimensional uncertain objects and a search region rq,
report the objects with appearance probability at least θ.
This is formally defined in Section 2.

Challenges. A straightforward approach for this problem

r
q

A

B

C

A
r

A
.
p
d
f

Figure 1: Example of range search on uncertain objects

is to calculate the appearance probability of each individ-
ual object and then report the ones whose appearance prob-
abilities exceed the given probabilistic threshold. This is
cost-inhibitive because the computation of the appearance
probability may be very expensive because of the integral
calculation or I/O costs involved. Therefore, all of the ex-
isting works [16, 20, 21, 25] on range search against multi-
dimensional uncertain data with arbitrary PDF follow the
filtering-and-verification paradigm such that, with the help
of the indexing structures, many objects are filtered at a
reasonable filtering cost without explicit calculation of their
appearance probabilities. The key idea of the existing tech-
niques is as follows: a summary (See details in Section 2.2
and Section 3.1) of the PDF is pre-computed for each un-
certain object to approximately capture the distribution of
its PDF , and the summaries are organized by augmenting
existing index techniques (e.g., R-Tree). For a given search
region rq, the lower and upper bounds of the appearance
probability can be derived at a cheap cost for each uncertain
object. Then an uncertain object U may be filtered in two
ways: (i) U is pruned if the upper bound of the appearance
probability is smaller than the given probabilistic threshold
θ, or (ii) U is validated (qualified) if the lower bound of the
appearance probability is not less than θ. Only the objects
survived the filtering phase need to be verified , i.e., explictly
computing their appearance probabilities.

r
q

A

B

Figure 2: Region size

A

p
o
s
s
i
b
l
e

l
o
c
a
t
i
o
n

o
f

A

Figure 3: Diff. Densities

Motivation. Intuitively, the more resources (i.e., larger
summary size in terms of space usage) assigned to the sum-
mary of an uncertain object U , the tighter the lower and
upper appearance probability bounds of U and hence the
lower expected verification cost of U . On the other hand,
the filtering cost, which is usually dominated by the index
I/O delay, increases with the storage overhead of the sum-
maries. Therefore, the key of the index construction is to
find a good trade-off between filtering cost and verifica-
tion cost such that the overall cost is minimized. Based on
the above observations, following are three important fac-
tors which may affect the resource allocation policies of the
summaries during the index construction.

(i) Uncertain region size. Suppose there are two uncertain
objects A and B as shown in Fig. 2 where the uncertain
region size of A is much larger than that of B, intuitively

we should allocate more resources to the PDF summary
of A because, with much higher chance, A will survive the
filtering phase and hence invoke verification cost. In an
extreme case when the uncertain region of B is a point, it
is meaningless to assign extra resources to B besides the
location of the point.

(ii) Verification cost. The verification costs of the uncer-
tain objects may vary due to different PDFs and I/O costs
involved. Intuitively, more resources should be allocated to
the objects with higher verification costs. Moveover, even if
all objects have the same verification cost, the ratio of the
index I/O delay and the verification cost per object should
be considered. This is because the higher the verification
cost per object, the more expensive filtering cost (i.e., larger
index size) we can afford since the gain of a successful vali-
dation/pruning is more significant.

(iii) Density of the PDF . As depicted in Fig. 3, the distri-
bution of the possible locations of an uncertain object A may
be uneven. Regarding the resource allocation for a particu-
lar uncertain object, intuitively the dense part of the object
should have the priority because it contributes more to the
appearance probability than the sparse part. This implies
that we should carefully consider the density when building
the summary of an uncertain object.

As discussed in Section 2, some of the existing works [21,
25] do consider the density factor during the index construc-
tion. However, the factors of uncertain region size and verifi-
cation cost are neglected. This is because the same amount
of resources in terms of the space usage are allocated to
the summary of each uncertain object in the existing works.
Consequently, this “equality strategy” may inherently limit
the performance of the indexing techniques.

Motivated by these facts, in the paper we propose an ef-
fective and efficient indexing technique for the range search
against the uncertain objects, in which above factors are
carefully considered according to our quantitative analysis
of the cost model for the range search. Our contributions
can be summarized as follows.

• To facilitate the range search, we propose a novel tech-
nique called U -Quadtree to effectively index the multi-
dimensional uncertain objects with arbitrary PDFs.

• Assume that the query distribution is known, we pro-
pose a cost model to quantitatively analyze the per-
formance of the range search. Then we develop an
efficient optimal U -Quadtree construction algorithm
guided by the cost model. We also discuss how to
construct the U -Quadtree when the query distribution
is unknown.

• Comprehensive experiments demonstrate the efficiency
of the U -Quadtree technique.

The remainder of the paper is organized as follows. We
formally define the problem of range search and introduce
the related work in Section 2. Section 3 presents the U -
Quadtree structure and range search algorithm, followed by
a cost model. Section 4 develops an optimal U -Quadtree
construction algorithm based on the cost model. Results
of comprehensive performance studies are presented in Sec-
tion 5. Finally, Section 6 concludes the paper.

2. PRELIMINARY
In this section, we first formally define the problem of

range search on multi-dimensional uncertain objects. Then

we introduce the related works. Table 1 summaries nota-
tions frequently used throughout the paper.

Notation Definition

U (U) uncertain object (a set of uncertain objects)
n the number of uncertain objects
rq range search region

Papp(U, rq) the appearance probability of U regarding rq

θ probabilistic threshold
c, l(c) a cell of the U -Quadtree, the level of c

h the height of the U -Quadtree
f entry page capacity

ϕ(c) cell c and its descendent cells
χ(c) child cells of the cell c

x ∈ c instance x is contained by cell c

tU the verification cost of U

Pc(c)(Po(c)) containing (overlapping) probability of c

Fc(Vc) the filtering (verification) factor of c

SU , S∗
U summary of U , optimal summary of U

ω(SU) the cost of the summary SU

ω(e) the cost of the entry e

x # SU (c) instance x is assigned to cell c in SU

Table 1: The summary of notations.

2.1 Problem Definition
A point (instance) x referred in the paper, by default, is in

a d-dimensional numerical space. In the paper, an uncertain
object is represented by its possible locations (points) and
the probability it may appear at each location. Particularly,
an uncertain object can be described either continuously or
discretely. In the continuous case, an uncertain object U
is described by its probability density function(PDF), de-
noted by U.pdf , and its uncertain region Ur. The probabil-
ity of U appearing at location x is U.pdf(x) and we have
R

x∈Ur
U.pdf(x)dx = 1. Note that we assume PDFs of the

uncertain objects are mutually independent and various ob-
jects may have different PDFs and uncertain regions. In
some applications, the PDF of the uncertain object may not
be available and hence an uncertain object is represented by
a set of sampled points (discrete case); that is, an uncer-
tain object consists of a set of instances (points) u1, u2,
. . ., um , where U occurs at location ui with probability uip

and
P

u∈U
up = 1. For presentation simplicity, the “object”

referred in the rest of the paper is the “multi-dimensional
uncertain object” unless otherwise specified.

In the paper, Umbb denotes the minimal bounding box
(MBB) of the instances of an object U . For a point p and a
region r, p ∈ r means that p is contained by r. For any two
regions r1 and r2, r1 contains r2 (r2 is contained by r1),
denoted by r2 ⊆ r1, if r1 ∪ r2 = r1. We say r1 overlaps r2

(r2 is overlapped by r1) if r2 6⊆ r1 and r1 ∩ r2 6= ∅.
For a given search region rq, we use Papp(U, rq) to rep-

resent the likelihood of U falling in rq, called appearance
probability of U regarding rq , which is formally defined be-
low.
For continuous cases,

Papp(U, rq) =

Z

x∈Ur∩rq

U.pdf(x)dx (1)

For discrete cases,

Papp(U, rq) =
X

u∈U ∧ u∈rq

up (2)

For presentation simplicity, we concentrate on the discrete
case in the paper. Nevertheless, all techniques developed in
the paper can be immediately applied to continuous case.

Below is the definition of “probabilistic threshold range
query”, which is abbreviated to “range query” in the rest of
the paper.

Definition 1. Probabilistic Threshold Range Query.
Given a set U of uncertain objects and a search region rq,
the probabilistic threshold range query retrieves all objects
U ∈ U with Papp(U, rq) ≥ θ where θ (0 < θ ≤ 1) is the user
specified probabilistic threshold.

Example 1. In Fig 4, suppose objects have four instances
each and all instances have the same occurrence probability
(0.25). According to Equation 2, we have Papp(A, rq) = 0.5,
Papp(B, rq) = 0.75 and Papp(C, rq) = 0.25. For the given
range query q with search region rq and the probabilistic
threshold 0.5, objects A and B will be reported.

Problem Statement.
In this paper we investigate the problem of probabilistic
threshold range query over multi-dimensional uncertain ob-
jects with arbitrary PDFs. Particularly, we aim to develop
effective indexing mechanism to facilitate the range query
processing.

A

B

C

r
q

A

B

C

Figure 4: Appearance Probability

2.2 Related Work
In this subsection, we first present four indexing tech-

niques supporting range search on multi-dimensional un-
certain objects with arbitrary PDFs, including R-Tree, U-
Tree, UI-Tree and UP -Index. Then we briefly introduce
other related indexing techniques for uncertain data.

R-Tree. In R-Tree approach [16, 20, 17], the MBB of an
object serves as the summary of its PDF , and MBBs are
organized by R-Tree. An uncertain object U can be validated
if its MBB is contained by rq, i.e., Umbb ⊆ rq, regardless
of the value of the probabilistic threshold θ. Similarly, U is
pruned if Umbb does not intersect rq, i.e., Umbb∩rq = ∅. This
approach is simple and performs well if the uncertain region
sizes are much smaller than rq. However, as the MBB cannot
further explore the PDF of an uncertain object, the filtering
capacity of the index is poor when the size of the uncertain
region is not small. As shown in Fig. 5, for a given search
region rq, we cannot prune A regarding any probabilistic
threshold θ although intuitively Papp(A, rq) should be small.
Similarly, B cannot be validated either.

U-Tree. The PDF summary of an object in U -Tree is a
finite set of probabilistically constrained regions (PCRs),
which is introduced by Tao et al. in [21]. PCR is a general
version of x-bounds which aims to index one dimensional un-
certain data [9]. For a given θ (0 ≤ θ ≤ 0.5), the PCR of an
object U regarding θ, denoted by U.pcr(θ), is constructed as

follows. As shown in Fig. 6, in each dimension, two lines are
calculated. In the horizontal dimension, U has the probabil-
ity θ to occur on the left side of line l1−, also probability θ
to occur on the right side of line l1+. Similarly, l2− and l2+
are calculated in the vertical dimension. The shaded region
in Fig. 6 is the geometric representation of U.pcr(θ). Then
we can take advantage of U.pcr(θ) to prune or validate U
regarding θ and rq. For instance, as shown in Fig. 6, sup-
pose θ is the probabilistic threshold for two search regions
r1

q and r2
q . U can be pruned regarding r1

q because r1
q does

not intersect U.pcr(θ). On the other hand, U can be val-
idated with respect to r2

q since all instances below l2− are

contained by r2
q . As it is infeasible to keep all U.pcr(θ) for

any θ ∈ [0, 0.5], a finite number of PCRs are pre-computed
for each object and the lower and upper appearance prob-
ability bounds can be derived. Based on the PCRs of the
uncertain objects, U -Tree is built up in a similar way with
R-Tree where each entry in a leaf node corresponds to the
PCRs of an uncertain object.

q
r

B
m
b
b

B
A

A
m
b
b

Figure 5: MBB

U
r
l
1
-
 l
1
+

l
2
-

l
2
+

1

q
r

2

q
r

Figure 6: PCR

UI-Tree. The PDF summary of an object U in [25] is a set
of groups which are disjointed partitions of its PDF based
on a KD-Tree. Given a search region rq, we can derive the
lower and upper bounds of Papp(U, rq) based on the topo-
logical relationships between the groups and rq. Specifically,
groups contained by rq contribute to both lower and upper
bounds of the appearance probability since all instances in
these groups are contained by rq. With similar rationale,
groups overlapped by rq only contribute to upper bound.
Then an object U may be validated (pruned) based on the
lower (upper) bound of Papp(U, rq). For the space efficiency,
the groups of the uncertain objects may be merged such
that a set of groups from different objects can share the
same boundary, namely “word” in [25]. The identifications
of the related objects and their corresponding probability
mass are kept in each “word”. Then UI-Tree is constructed
in a similarly way with R-Tree where each entry of a leaf
node is a “word”.

UP -Index. Recently, Angiulli et al. [3] develop a pivot
based indexing mechanism for uncertain data in general met-
ric space. For a given pivot point p and an object U , the
PDF summary of U is the histogram of the distance distri-
bution regarding p and U . The upper bound of Papp(U, rq)
can be derived based on the reverse triangle inequality ac-
cording to the histogram and the distance between the centre
of rq and the pivot point p. Then an object can be pruned
based on the upper bound derived. To enhance the pruning
power, a set of pivot points are employed in [3]. The ad-
vantage of UP -Index is that it can support distance based
range query in general metric space. Nevertheless, as shown
in our empirical study, its performance is not competitive
under our problem setting because : (i) an object cannot be
validated in [3] because UP -Index cannot derive the lower

bound of Papp(U, rq), and (ii) for any range search the whole
index is scanned to prune objects, and the index size is usu-
ally large for a decent pruning capacity.

R
-T

re
e

[1
6]

U
-T

re
e

[2
1]

U
I
-T

re
e

[2
5]

U
P

-I
n
d
ex

[3
]

U
-Q

u
ad

tr
ee

Region size × × × × X

Verification × × × × X

Density × X X X X

Table 2: Summary of the indexing techniques

Table 2 illustrates the properties of the indexing tech-
niques regarding three factors mentioned in Section 1. Clearly,
R-Tree based approach considers none of the factors since
only one MBB is allocated for the PDF summary of each
object. U -Tree, UI-Tree and UP -Index techniques consider
the density factor because they attempt to evenly distribute
the accumulated probabilities in the summary of an object
U , which implies that more resources are allocated for the
dense parts of U . However, the same amount of resources
in terms of the space usage are allocated to the summary of
each object in these techniques. Consequently, they cannot
effectively address different uncertain region sizes and ver-
ification costs during the index construction. In Section 4,
we show that U -Quadtree technique proposed in the paper
carefully considers all three factors.

Others. There are also some studies on indexing multi-
dimensional uncertain objects which focus on specific cases
of objects’ PDFs and queries. For instances, in [5, 6, 8,
13], Böhm et al. study range queries with the constraint
that PDFs of uncertain objects follow Gaussian or uniform
distributions. Assuming PDFs of the objects are either his-
tograms or more complex ones such as Gaussian or piecewise
algebraic, in [1] Agarwal et al. provide thorough theoretical
analysis on range search on uncertain data. Managing uncer-
tain moving objects [24] and uncertain categorical data [20]
have been separately studied. Aggarwal et al. [2] study the
problem of indexing high dimensional uncertain data with
the assumption that the PDFs of the uncertain object on
each dimension are independent to others. Assuming the
space is partitioned by a virtual grid with limited number of
cells, Ma et al. [18] propose solutions for efficient retrieval of
uncertain spatial point data where the location information
is derived from the free text by spatial expressions. Re-
cently, Kinura et al. [15] propose a primary indexing tech-
nique named UPI to speed up the query processing on uncer-
tain data by clustering the heap files, in which U -Tree [21]
technique is used as a building block to index uncertain ob-
jects with arbitrary PDFs. In [17], Lian et al. propose a
generic framework to index uncertain data. Their main fo-
cus is how to tackle the local correlations among uncertain
objects, and their indexing technique falls in the R-Tree cat-
egory.

3. U-QUADTREE
In the paper, our index structure is based on the quadtree

because it is a flexible data structure in the sense that we
can adaptively build summaries of the objects so that the
overall cost of range searching can be minimized regarding
the cost model proposed in the paper. Section 3.1 formally
introduces U -Quadtree structure, and Section 3.2 presents

r
q

A

B

1

3

2

4

7

5

6

8

9
 1
0

1
1

1
2
 1
3

1
5
1
6

1
7
 1
8

1
9

2
0
2
1

1
1

c
e
l
l

i
d

3
 8
 1
4
 1
9

)}
4
.
0
,
,
8
(

),
4
.
0
,
,
6
(

),
2
.
0
,
,
1
{(
 A
A
A
S
A
 =

)}
4
.
0
,
,
15
(
B,0.2),
(6,

),
4
.
0
,
,
2
{(
 B
B
S
B
 =

c
e
l
l

i
d

1
4
 2
 4
 5
 1
 6

1
6
 1
2
 1
5
1
3

7

(
a
)
 (
b
)

)
2
.
0
,
,
1
(
 A
)
4
.
0
,
,
2
(
 B
)
4
.
0
,
,
6
(
 A
)
2
.
0
,
,
6
(
 B
)
4
.
0
,
,
8
(
 A
)
4
.
0
,
,
15
(
 B

1
0
9

P
2
 P
3

Q
u
a
d
t
r
e
e

E
n
t
r
y

I
n
d
e
x

L
e
v
e
l

1

2

3

P
1

Figure 7: U-Quadtree

the U -Quadtree based range search algorithm. Section 3.3
proposes the cost model for the range search on U -Quadtree.

3.1 U-Quadtree Structure
A quadtree [12] is a space partitioning tree data structure

in which a d-dimensional space is recursively subdivided into
2d regions (cells). Due to its simplicity and regularity, the
quadtree technique has been widely applied in many applica-
tions. In the paper, we focus on 2-dimensional space and all
techniques developed can be immediately applied to higher
dimensional spaces.

Given a quadtree, a summary of an object U is defined
as follows.

Definition 2 (SU). A summary SU of an object U
regarding a quadtree consists of a set of entries {e} where
each entry e is a triplet (e.c, e.o, e.p) where e.c and e.o
represent the identification (id) of the cell and the object
associated with the entry, and e.p (0 < e.p ≤ 1) is the prob-
ability mass of the instances assigned to this entry (i.e., the
cell e.c). For any instance x ∈ U , x must be assigned to
exactly one cell c (entry e) where x ∈ c (e.c) and hence
P

e∈SU
e.p = 1.

In Fig. 7(a), objects A and B have 5 instances each and all
instances have the same occurrence probability (0.2). The
height of the quadtree (h) is 3 and the ids of the cells are la-
beled. We may have SA = {(1, A, 0.2), (6, A, 0.4), (8, A, 0.4)}
and SB = {(2, B, 0.4), (6, B, 0.2), (15, B, 0.4)}. Note that
the summary of an object is not unique as an instance
x can be assigned to any cell which contains x. For in-
stance, an alternative of SA could be {(1, A, 0.2), (8, A, 0.8)}
in which 4 instances of A are assigned to cell 8 on level 2.
Section 4 will investigate how to efficiently build optimal
summaries.

As shown in Fig. 7(b), entries of the objects are organized
based on a quadtree, named U -Quadtree, which consists of
two parts:

• Entry Index (UQE): a B+ tree used to keep entries
of the objects in the secondary memory, where the key
of each entry is its cell id . Similar to [14], we assume
the id of a cell is its Hilbert code [11] generated in
a recursive way such that the cells with close spatial
proximity are likely to be allocated to the same or
adjacent pages in UQE . Particularly, a leaf node of
UQE is called the entry page (e.g., P1, P2 and P3 in
Fig. 7(b)) and f denotes its capacity (i.e., the maximal
number of entries in an entry page).

• Quadtree (UQT): a pointer-based quadtree with height
h. For each cell (node) c, let P be the first entry page

in which there is an entry e with e.c = c. We keep
the address of P as the pointer of cell c. As shown in
Fig. 7(b), a gray cell (node) of UQT implies the pointer
of the cell is not empty, i.e., there is at least one entry
on it. Note that we do not need to keep a cell in UQT

if none of its descendent cells including itself contains
any entry.

3.2 U-Quadtree Based Range Search
The following theorem indicates that we can derive the

lower and upper bounds of Papp(U, rq), denoted by LPapp(U, rq)
and UPapp(U, rq) respectively, based on the topological re-
lations between rq and cells associated with SU .

Theorem 1. Given an object summary SU and a search
region rq, let C1 (C2) denote the cells in SU which are con-
tained (overlapped) by rq, we have

LPapp(U, rq) =
X

e.p, where e ∈ SU and e.c ∈ C1

UPapp(U, rq) =
X

e.p, where e ∈ SU and e.c ∈ C1 ∪C2

Proof. For any point x ∈ c, we have x ∈ rq if c is con-
tained by rq. It is immediate that Papp(U, rq) ≥

P

e.p where
e ∈ SU and e.c ∈ C1. Given a point x ∈ c, if c is not con-
tained or overlapped by rq, then we have x 6∈ rq. This implies
Papp(U, rq) ≤ 1 −

P

e.p where e ∈ SU and e.c 6∈ C1 ∪ C2.
Because

P

e∈SU
e.p = 1, we have Papp(U, rq) ≤

P

e.p where

e.c ∈ C1 ∪ C2. Therefore, the theorem holds.

Example 2. In Fig. 7(a), given a search region rq (shaded
region), according to Theorem 1 we have LPapp(A, rq) = 0.4
and UPapp(A, rq) = 0.8 because the cell 6 is contained by rq

and the cell 8 is overlapped by rq. Consequently, A is pruned
if the probabilistic threshold θ equals 0.9, and A is validated
if θ = 0.3. We need to verify A if θ = 0.5 since we cannot
prune or validate the object A.

Algorithm 1 illustrates the details of the range search fol-
lowing the filtering-and-verification paradigm. Line 2 re-
trieves a set J of non-empty cells which are contained or
overlapped by rq. Let D denote the entry pages {P} asso-
ciated with those cells, i.e., D = {P |∃e ∈ P s.t. e.c ∈ J }.
Regarding the example in Fig. 7, D = {P2, P3}. As we access
entry pages in sequence, the total number of I/O incurred in
Line 4 is |D|. According to Theorem 1, we can come up with
the lower and upper bounds of the appearance probabilities
of the objects. Note that any unvisited object has appear-
ance probability zero. It is immediate that we can validate
an object U if LPapp(U, rq) ≥ θ (Line 12). Similarly an ob-
ject U is pruned if UPapp(U, rq) < θ (Line 14). In Line 17,
we only need to verify the remaining objects which are not
pruned or validated during the filtering phase.

Algorithm 1: Range Query(UQ, rq, θ)

Input : UQ : the U -Quadtree of a set U of objects,
rq : search region,
θ : probabilistic threshold

Output : R : objects U ∈ U with Papp(U, rq) ≥ θ
R := ∅; C := ∅ ;1

J := all non-empty cells contained or overlapped by rq ;2

D := entry pages associated with c ∈ J ;3

for each entry e ∈ D do4

U ← e.o ;5

if e.c ∈ J then6

UPapp(U, rq) := UPapp(U, rq) + e.p ;7

if cell e.c is contained by rq then8

LPapp(U, rq) := LPapp(U, rq) + e.p ;9

for each visited object U do10

if LPapp(U, rq) ≥ θ then /* validation */11

R := R∪ U ;12

else13

if UPapp(U, rq) ≥ θ then /* pruning */14

C := C ∪ U ;15

for each U ∈ C do16

if Papp(U, rq) ≥ θ then /* verification */17

R := R∪ U ;18

return R19

3.3 Cost Model
The cost of Algorithm 1 consists of four parts:

1. Cs(Line 2), the cost to retrieve the cells contained or

overlapped by rq , which is O(4h
−1
3

) in the worst case.

2. Cindex (Line 4), the cost to load entry pages in D,
which equals |D| × tio where tio is the delay of an I/O
access.

3. Cprob (Lines 5-9), the cost to compute lower and upper
bounds of the appearance probabilities. As a hash table
is employed to maintain the objects visited, Cprob =
P

U∈J
|SU | where J represents the visited objects and

|SU | is the number of entries in SU .

4. Cverify (Line 17), the cost to verify the remaining ob-
jects in C where Cverify =

P

U∈C
tU , where tU denotes

the verification cost of U .

The dominant costs of the range search are the index I/O
cost (Cindex) and the verification cost (Cverify). In our em-
pirical study, they contribute more than 98% of the cost for
the range search. Therefore, we only consider Cindex and
Cverify in our cost model, which represent the filtering cost
and verification cost of the Algorithm 1 respectively.

Suppose the query distribution DQ is known (e.g., query
log is available), below we define the containing probability
and overlapping probability of a cell c regarding DQ.

Definition 3. Containing probability Pc(c) and Over-
lapping probability Po(c). Suppose rq in Algorithm 1 is
randomly chosen from a query distribution DQ, the contain-
ing (overlapping) probability, namely Pc(c) (Po(c)), of a cell
c is the likelihood of c being contained (overlapped) by rq.

Learn Pc(c) and Po(c). Given a query distribution DQ,
we can randomly retrieve nq search regions from DQ and
record the number of times in which the cell c is contained
or overlapped , denoted by nc(c) and no(c) respectively. Then

we have Pc(c) = nc(c)
nq

and Po(c) = no(c)
nq

.

Now, we estimate the expected filtering cost and verifica-
tion cost assuming the query distribution is known.

Index I/O cost. For an entry page P loaded in Algo-
rithm 1, we say an entry e in P is non-redundant regarding
rq if e.c is contained or overlapped by rq, and e is redundant
otherwise. For instance, in Fig. 7(b) the entry e(8, A, 0.4)
(e(15, B, 0.4)) in P3 is a non-redundant (redundant) entry
regarding rq. In the paper, fn denotes the average num-
ber of non-redundant entries for the entry pages loaded. An
entry page will be loaded in the main memory if any of
its associated cell is contained or overlapped by rq. The
expected number of index I/Os incurred by an entry e is
(Po(e.c) + Pc(e.c)) ×

1
fn

since all non-redundant entries in

the same entry page share the I/O latency. We can estimate
the expected index I/O cost, namely E(Cindex), as follows
because PDFs of the objects are mutually independent.

E(Cindex) = |D|tio =
X

U∈U

X

e∈SU

(Po(e.c) + Pc(e.c))×
tio

fn

(3)

It is immediate that there is no redundant entry regarding
rq in an entry page P if all entries in P are from the same
cell, which is likely when the number of uncertain objects
is large. Moreover, since entries are ordered by the Hilbert
codes (ids) of their corresponding cells, an entry page is
likely to be shared by the cells with close spatial proximity.
Consequently, the number of redundant entries is small be-
cause the cells in the same page are likely to be contained or
overlapped by rq at the same time. Therefore, we set fn to
f in the paper and Equation 3 can be rewritten as follows.
Recall that f is the capacity of an entry page.

E(Cindex) =
X

U∈U

X

e∈SU

(Po(e.c) + Pc(e.c))×
tio

f
(4)

Verification Cost. In Algorithm 1, an object U will be
verified if U is not pruned or validated , i.e., LPapp(U, rq) <
θ ≤ UPapp(U, rq). Suppose the probabilistic threshold θ is
randomly chosen from (0, 1], U will be verified with proba-
bility ∆, where ∆ = UPapp(U, rq) − LPapp(U, rq). Accord-
ing to Theorem 1, this implies that only the entries whose
associated cells overlapped by rq contribute to the verifica-
tion cost, and hence ∆ =

P

e∈SU
Po(e.c)× e.p. Then based

on the PDF independence assumption we have the follow-
ing estimation for the expected verification cost, denoted by
E(Cverify).

E(Cverify) =
X

U∈U

X

e∈SU

Po(e.c)× e.p× tU (5)

Based on Equation 4 and Equation 5 we come up with the
expected cost, denoted by E(C), of the range query.

E(C) =
X

U∈U

X

e∈SU

((Po(e.c) + Pc(e.c))×
tio

f

+ Po(e.c)× e.p× tU) (6)

Remark 1. About tU . As shown in [21, 25], the domi-
nant cost of the verification comes from the sampling of the
PDF for the continuous case or the I/O cost incurred for
the discrete case. The sampling cost can be estimated based
on the required accuracy [21] (i.e., the number of samples),
while the I/O cost can be estimated by the number of pages
occupied by the object.

In the paper, we say a U -Quadtree is optimal regarding
the cost model if E(C) is minimized. In Section 4, we inves-
tigate how to efficiently construct the optimal U -Quadtree
regarding the cost model so that the overall cost of the range
search can be minimized.

4. BUILD U-QUADTREE
A nice property of the cost model is that we can build the

optimal U -Quadtree by optimizing the cost of the summary
for each individual object. In Section 4.1, we first propose
an algorithm to compute the optimal summary of an object
U based on the dynamic programming technique. Then Sec-
tion 4.2 introduces the U -Quadtree maintenance algorithms.
Section 4.3 discusses how to construct the U -Quadtree when
the query distribution is unknown.

4.1 Optimization of SU

For presentation simplicity, we use Fc and Vc to denote the
filtering factor and verification factor of cell c regarding
U where Fc = (Po(c) + Pc(c)) ×

tio

f
and Vc = Po(c) × tU .

Note that in the subsection we assume the query distribution
is known and hence Pc(c) and Po(c) are computed. In the
paper, ω(e) denotes the cost of an entry e where ω(e) =
Fe.c + Ve.c × e.p if e.p > 0, and otherwise ω(e) = 0. Note
that e is a dummy entry if e.p = 0. The cost of a summary
SU , denoted by ω(SU), is

P

e∈SU
ω(e). We say a summary

of U is optimal, denoted by S∗
U , if it has the minimal cost

among all possible summaries of U regarding the quadtree.
In this subsection, we develop an efficient algorithm to

construct the optimal summary of an object.
We first introduce some important properties. The fol-

lowing property is immediate based on the definition of the
quadtree.

Property 1. For any two cells c1 and c2 in a U-Quadtree,
c1 is a descendant cell of c2 if and only if c1 ⊂ c2, where
c1 ⊂ c2 implies c1 ⊆ c2 and c1 6= c2.

Given two cells c1 and c2 with c1 ⊂ c2, if c1 is overlapped
by rq then c2 is overlapped as well. This implies Vc1 ≤ Vc2 .
With similar rationale, we have Fc1 ≤ Fc2 . Without loss of
generality, we assume the following property holds.

Property 2. Given two cells c1 and c2, Vc1 < Vc2 and
Fc1 < Fc2 if c1 ⊂ c2.

Given a summary SU and a cell c, SU (c) denotes the in-
stances of U assigned to cell c in SU . We say a cell c is
empty regarding SU if SU (c) = ∅, otherwise c is occupied.
For an instance x ∈ U , x # SU (c) denotes the fact that x is
assigned to c in SU . Clearly, x # SU (c) implies x ∈ c, but
not vice versa. The following theorem implies that once
an instance x is assigned to a cell c in S∗

U , all descendant
cells of c which contain x must be empty.

Theorem 2. Given the optimal summary S∗
U and two

cells c1 and c2 where c1 ⊂ c2, for any two instances x and y
where x ∈ c1 and y ∈ c1, we have y 6# S∗

U (c2) if x # S∗
U (c1).

Proof. The proof is by contradiction. Let e1 and e2

denote two entries of S∗
U on c1 and c2 respectively. Suppose

we have x # S∗
U (c1) and y # S∗

U (c2). This implies both cells
are not empty. Let X = ω(e1) + ω(e2) = Fc1 +Vc1 × e1.p
+Fc2 + Vc2 × e2.p. Since y ∈ c1, we can move y from c2

to c1, which leads to anther summary of U denoted by S′
U .

Let e′1 and e′2 be two entries of S′
U on c1 and c2 respectively.

The costs of e′1 and e′2, denoted by Y , is less than or equal
to Fc1 + Vc1 × (e1.p + yp) +Fc2 + Vc2 × (e2.p − yp). Since
c1 ⊂ c2, we have Vc1 < Vc2 according to the Property 2 and
hence Y < X. As the costs of other entries in S′

U remain
unchanged, we have ω(S′

U) < ω(S∗
U), which is against the

assumption.

Following Property is immediate based on Theorem 2.

Property 3. Let c1,i be a cell on level 1, for any two
instances x and y where x ∈ c1,i and y ∈ c1,i, x and y will
always be assigned to the same cell in S∗

U ; that is, x # S∗
U (c)

implies y # S∗
U (c) and vice versa.

Property 3 indicates that for the optimal summary con-
struction, an object can be regarded as l virtual instances
{ui} where ui corresponds to the instances contained by
c1,i; that is, ui = {x|x ∈ U and x ∈ c1,i}. In Fig. 8, 10
instances of U have the same occurrence probability (0.1)
and they correspond to 4 virtual instances. In S∗

U , each vir-
tual instance u must be assigned to exactly one cell which
contains u, and there are at most h target cells for u. Conse-
quently, a straightforward solution for the optimal summary
construction is to enumerate all possible choices of each vir-
tual instance, which takes O(lh) time where l is the number
of virtual instances.

To further improve the efficiency of the optimal summary
construction, we develop an efficient algorithm based on the
dynamic programming technique. Below, we start with a
motivating example.

01
.
0
=

002
.
0
=

1

2

2
c

1
u

1
,
1
c
 2
,
1
c

3
,
1
c
 4
,
1
c

L
e
v
e
l

2
c

i
c
,
1

2
u

2
c
F

3
u
 4
u

(
0
.
2
)
 (
0
.
6
)
 (
0
.
1
)
(
0
.
1
)

02
.
0
=

2
c
V
 02
.
0
=

i
c
F

,
1

i
c
V

,
1

a

U
S
 b

U
S
 c

U
S

Figure 8: Motivating Example

Motivating Example. In Fig. 8, we assume that Fc2 =
0.02, Vc2 = 0.02, Fc1,i

= 0.01, and Vc1,i
= 0.002 for any

i ∈ [1, 4]. We show three possible forms of SU where Sa
U =

{(c1,1, 0.2), (c1,2, 0.6), (c1,3, 0.1), (c1,4, 0.1)}, Sb
U = {(c2, 0.4),

(c1,2, 0.6)} and Sc
U = {(c2, 1.0)}. Note that we ignore object

ids in the entries since all instances are from U in this subsec-
tion. Let e1 = (c2, 0.4) and e2 = (c1,2, 0.6), we have ω(Sb

U)
= ω(e1)+ω(e2) = Fc2+Vc2×0.4+ Fc1,2+Vc1,2×0.6 = 0.0392.
Similarly, we have ω(Sa

U) = 0.042 and ω(Sc
U) = 0.04, and

hence Sb
U wins out. This implies that some virtual instances

can be pushed to cells at higher levels so that the cost of the
summary is reduced. we use X (X 6= ∅) to denote the set
of virtual instances which are pushed to c2, and SX

U is the
corresponding summary. Compared with Sa

U in which none
of the virtual instance is pushed to c2, the cost reduced by
SX

U , denoted by ∆X , is as follows.

The cost of e′2 is zero if y is the only instance assigned to
c2 in S∗

U .

∆X = ω(Sa
U)− ω(SX

U)

= (
X

ui∈X

(Fc1,i
− (Vc2 − Vc1,i

)× uip))− Fc2 (7)

According to Equation 7, we can see the advantage of push-
ing instances in X to c2 is that these instances can share the
filtering cost (Fc2), and hence reduce their filtering costs
if Fc2 <

P

ui∈X
Fc1,i

. On the other hand, the disadvan-

tage is that the verification cost involved is increased since
Vc2 > Vc1,i

. We use ∆(ui) to denote the gain of pushing
the virtual instance ui to c2 without considering the filter-
ing cost on c2, where ∆(ui) = Fc1,i

− (Vc2 − Vc1,i
) × uip.

Recall that uip is the occurrence probability of ui. Particu-
larly, we have ∆(u1) = 0.0064, ∆(u2) = −0.0008, ∆(u3) =
∆(u4) = 0.0082. Let g(X) =

P

u∈X
∆(u) denote the total

gains of X, we have ∆X = g(X) − Fc2 . It is worthwhile
to push all virtual instances in X to c2 if g(X) > Fc2 be-
cause the gain can pay off the filtering cost on c2 (Fc2),
and hence ω(SX

U) < ω(Sa
U). To minimize the cost of SX

U

(i.e., maximize the g(X)), we should push all virtual in-
stances {u} with ∆(u) > 0; that is, X = {u1, u3, u4} and
g(X) = 0.0228 > Fc2 , which corresponds to the summary
Sb

U . If we have g(X) < Fc2 for any X 6= ∅, none of the virtual
instances should be pushed to c2 because ω(SX

U) > ω(Sa
U),

which is the case if we set Fc2 = 0.03 in Fig. 8.
Before presenting the optimal summary construction al-

gorithm, we first introduce some important notations.

Definition 4 (Sc : summary of cell c). Let ϕ(c) rep-
resent the cell c and its descendant cells, the summary of a
cell c, denoted by Sc, is a set of entries associated with cells
in ϕ(c) such that any instance contained by c must be as-
signed to exactly one cell in ϕ(c).

In the paper, ω(Sc) corresponds to the sum of the costs
of the entries in Sc, i.e., ω(Sc) =

P

e∈Sc
ω(e). Specifically,

we use S∗
c to represent the optimal summary of c which has

the smallest ω(Sc) value. Let l(c) denote the level of a cell
c in UQT , S∗

c corresponds to S∗
U if l(c) = h.

We say an instance x is pushed up above c if x ∈ c and
x is assigned to a cell at higher level than c. For instance, in
Fig. 8 u1 is pushed up above c1,1 in Sb

U and Sc
U . The follow-

ing property indicates that all instances pushed up above c
in S∗

U must be assigned to the same cell. The correctness of
the Property is immediate based on Theorem 2.

Property 4. If an instance x is pushed up above c in S∗
U ,

i.e., x ∈ c and x # S∗
U (cj) where c ⊂ cj , then y # S∗

U (cj)
for any instance y pushed up above c in S∗

U .

Property 4 is essential to our optimal summary construc-
tion algorithm, because it suggests that for each c we can
evaluate the possible gain of pushing up above c against its
individual ancestor cell, i.e., cells {cj} with c ⊂ cj accord-
ing to Property 1. Consequently, for each ancestor cell cj of
c (c ⊂ cj), we use Sc,cj

to denote the summary of c regarding
cj which is defined as follows.

Definition 5 (Sc,cj
: summary of c regarding cj).

The summary of a cell c regarding cj where c ⊆ cj , denoted
by Sc,cj

, is a set of entries associated with the cells in ϕ(c)
and cj such that any instance contained by c must be as-
signed to exactly one cell in ϕ(c) or cj .

In the paper, ω(Sc,cj
) corresponds to the total costs of the

entries in Sc,cj
without considering the filtering cost of the

entry on cj (denoted by ecj
), i.e., ω(Sc,cj

) = (
P

e∈(Sc,cj
−ecj

)

ω(e))+ Vcj
×ecj

.p . Moreover, we use ∆(Sc,cj
) to denote the

gain of c regarding cj , where ∆(Sc,cj
) = ω(S∗

c)−ω(Sc,cj
).

In the paper, S∗
c,cj

denotes a set of entries with the small-

est ω(Sc,cj
) value (i.e., the largest ∆(Sc,cj

) value), which
is named the optimal summary of c regarding cj . Recall
that the main difference between Sc,cj

and Sc is that the
instances contained by c can be pushed to cj in Sc,cj

and
the cost of Sc,cj

(ω(Sc,cj
)) does not include the filtering

cost on cj . Note that we have ∆(S∗
c,cj

) ≥ 0 because Sc is a
special case of Sc,cj

where none of the instances contained
by c is assigned to cj .

Algorithm 2: BuildOptSummary(UQT , U)

Input : UQT : the quadtree of the U -Quadtree,
U : the object for summary construction

Output: S∗
U : the optimal summary of U

Find the minimal cell c′ in UQT which contains Umbb;1

H := l(c′) ;2

for each cell c ⊆ c′ on level one do3

create a virtual instance u regarding c ;4

S∗
c := {(c, up)} ;5

for each cell cj where c ⊂ cj ⊆ c′ do6

if up × Vcj
< ω(S∗

c) then7

S∗
c,cj

:= {(cj , up)} ;8

else9

S∗
c,cj

:= S∗
c ;10

for current level := 2 to H do11

for each cell c on current level with c ⊆ c′ do12

χ(c) := child cells of c ;13

g :=
P

ci∈χ(c) ∆(S∗
ci,c);14

if g > Fc then15

S∗
c :=

S

ci∈χ(c) S∗
ci,c;16

else17

S∗
c :=

S

ci∈χ(c) S∗
ci

;18

for each cell cj where c ⊂ cj ⊆ c′ do19

Sc,cj
:=

S

ci∈χ(c) S∗
ci,cj

;20

if ω(Sc,cj
) < ω(S∗

c) then21

S∗
c,cj

:= Sc,cj
;22

else23

S∗
c,cj

:= S∗
c ;24

return S∗
c′25

Build Optimal Summary. Algorithm 2 illustrates the
construction of S∗

U based on the dynamic programming tech-
nique. Line 1 identifies the minimal cell c′ which contains
the MBB of the object. In Lines 3-10, we create virtual
instances for all descendant cells of c′ on the first level, as
well as their corresponding optimal summaries. Lines 11-24
show how to build related optimal summaries of a cells c
with l(c) > 1. Let χ(c) denote the child cells of c (Line 13).
In Line 14, we first compute the total gains, denoted by g,
of the child cells (i.e., χ(c)) regarding c. If the gains can

We have ecj
.p = 0 (i.e., ecj

is a dummy entry) if none of
the instances is assigned to cj in Sc,cj

.

pay off the filtering cost on cell c (i.e., g > Fc), we come up
with S∗

c by merging its child optimal summaries regarding
c (Line 16), otherwise S∗

c consists of the optimal summaries
of its child cells (Line 18). Lines 19-24 compute the optimal
summaries of c regarding its ancestor cells. Specifically, for
each ancestor cell cj of c with cj ⊆ c′, Sc,cj

is the merged
result of the optimal summaries of its child cells regarding
cj (Line 20). If there is no gain compared with S∗

c (i.e.,
ω(Sc,cj

) ≥ ω(S∗
c)), S∗

c,cj
is set to S∗

c (Line 24). Otherwise,

Sc,cj
is the optimal summary of c regarding cj (Line 22).

Example 3. In Fig. 8, we have ω(S∗
c1,1

) = 0.01+0.002×

0.2 = 0.0104, ω(S∗
c1,2

) = 0.0112, and ω(S∗
c1,3

) = ω(S∗
c1,4

) =

0.0102. Meanwhile, since Vc2 × u1.p = 0.004 < ω(S∗
c1,1

), we

have ω(S∗
c1,1,c2

) = 0.004, ∆(S∗
c1,1,c2

) = ω(S∗
c1,1

)−ω(S∗
c1,1,c2

)

= 0.0064 and S∗
c1,1,c2

= {(c2, 0.2)}. Similarly, we have

ω(S∗
c1,3,c2

) = ω(S∗
c1,4,c2

) = 0.002, ∆(S∗
c1,3,c2

) = ∆(S∗
c1,4,c2

)

= 0.0082 and S∗
c1,3,c2

= S∗
c1,4,c2

= {(c2, 0.1)}. Since there is

no gain by pushing u2 to c2 as 0.6×Vc2 > ω(S∗
c1,2

), we have

ω(S∗
c1,2,c2

) = ω(S∗
c1,2

) = 0.0112, and hence ∆(S∗
c1,2,c2

) = 0

and S∗
c1,2,c2

= S∗
c1,2

= {(c1,2, 0.6)}. In Algorithm 2, g =
P

c∈χ(c2) ∆(S∗
c,c2

) = 0.0228 and g > Fc2 = 0.02. Therefore,

we have S∗
U = S∗

c2
=

S

c∈χ(c2) S∗
c,c2

= {(c1,2, 0.6), (c2, 0.4)}

and ω(S∗
U) = 0.0392.

Correctness. With similar argument in Theorem 2, re-
garding all instances assigned to the cells above c′, we can
move them to c′ to reduce the cost since all instances are
contained by c′. Therefore, we only need to consider the
cells in ϕ(c′) during the optimal summary construction.

The following proof is by induction on the levels of U -
Quadtree. The correctness of the optimal summaries of the
cells on the first level is immediate based on their definitions.
Suppose Algorithm 2 is correct regarding cells on the levels
lower than k, then for a cell c on level k, we first show the
correctness of its optimal summary S∗

c .
Clearly, the cell c is either empty or occupied in S∗

c . Let
S1

c denote the merged result of the optimal summaries of
its child cells, i.e., S1

c =
S

ci∈χ(c) S∗
ci

. S1
c is a summary of c

because, for any instance x ∈ c, there is exactly one child cell
ci ∈ χ(c) in which x ∈ ci and hence x is assigned to exactly
one cell in S1

c . Moreover, we have ω(S1
c) =

P

ci∈χ(c) ω(S∗
ci

).

Then we show S1
c is the optimal summary when c is empty.

The proof is by contradiction. Suppose there is another
summary S2

c with ω(S2
c) < ω(S1

c), where S2
c =

S

ci∈χ(c) S2
ci

and S2
c (c) = ∅, then there is a summary S2

ci
where ci ∈ χ(c)

such that ω(S2
ci

) < ω(S∗
ci

) because ω(S2
c) =

P

ci∈χ(c) ω(S2
ci

).

This is against our assumption since the level of ci is lower
than k and S∗

ci
is the optimal summary of ci. Therefore, S1

c

is the optimal summary when c is empty.
If c is occupied in S∗

c , some instances must be pushed to c
in S∗

c . Let S3
c denote the merged result of the optimal sum-

maries of the child cells regarding c, i.e., S3
c =

S

ci∈χ(c) S∗
ci,c.

S3
c is a summary of c because any instance contained by c

is contained by exactly one of its child cell, say ci, and any
instance x ∈ ci must be assigned to exactly one cell in S∗

ci,c.
With similar rational to the above case where c is empty, we

Recall that we do not include the filtering cost on c (Fc)
when computing the cost of the optimal summary of each
child cell regarding c (i.e., ω(S∗

ci,c) for each ci ∈ χ(c)).
Entries with the same cell id will be merged by accumulat-

ing their probability values.

can prove that S3
c has the lowest cost among the summaries

of c in which c is occupied. g > Fc in Line 15 of Algorithm 2
implies that ω(S3

c) < ω(S1
c); that is, it is worthwhile to oc-

cupy the cell c by pushing some instances to c because this
can pay off the filtering cost of c. Consequently, S3

c is the op-
timal summary when c is occupied and hence the correctness
of the optimal summaries of the cells on level k holds.

The correctness of the optimal summary of c regarding
its ancestor cells can be obtained with similar rationale, we
omit the details of the proof due to space limits.

Cost Analysis. In Algorithm 2, it takes O(h) time to locate
c′ where h is the height of the U -Quadtree. It takes O(hm)
time to create the virtual instances in a top-down fashion
where m is the number of the instances in U . As to each cell
c, it costs O(h) time to compute related optimal summaries
(S∗

c and S∗
c,cj

where c ⊂ cj). Note that it takes O(1) time to
merge child summaries and calculate related costs at Line 16,
18 and 20 because the child summaries share at most one cell
(e.g., cell c in Line 16). Therefore, the time complexity

of Algorithm 2 is O(h × m + h × 4h
−1
3

) in the worst case

since the number of cells in UQT is bounded by 4h
−1
3

. For

a cell c on level s, there are at most 4s−1 entries for each
optimal summary since c has at most 4s−1 descendant cells
on the first level. There are at most 4h−s cells on level s
and we only need to keep at most h− s + 1 related optimal
summaries for each cell. Therefore, the space usage for each
level is O(4h−1 × h) in the worst case. Since in Algorithm 2
we do not need to keep the summaries of the child cells once
the optimal summaries computation of a cell is finished, the
space complexity of Algorithm 2 is O(4h−1 × h).

Addressing three factors in Section 1. The final part
of this subsection shows that three factors mentioned in Sec-
tion 1 are carefully addressed in Algorithm 2. The resources
allocated to an object are measured by the number of entries
in its optimal summary. For an object with large uncertain
region size, the number of virtual instances is large and hence
more resources (i.e., the number of entries in S∗

U) may be al-
located. The instances in the sparse part of the PDF tends
to be pushed to the cells on higher levels in U -Quadtree be-
cause the gain of “pushing up” is more significant than that
of the instances from the dense part. Therefore, more re-
sources are allocated to the dense part of an object. With
same rationale, the instances of the objects with high veri-
fication cost tend to stay on the lower level cells, and hence
lead to a large summary size.

4.2 Optimal U-Quadtree Construction
According to the cost model in Section 3, the U -Quadtree

is optimal if all summaries of the objects are optimal be-
cause E(C) =

P

U∈U
ω(SU). Therefore, we can easily come

up with the optimal U -Quadtree construction algorithm by
updating UQT and UQE based on the entries in S∗

U .
Algorithm 3 illustrates how to insert an object into the U -

Quadtree. We first create the optimal summary of U based
on Algorithm 2 (Line 1). Then each entry of S∗

U is inserted
to the entry index of U -Quadtree (Line 2-8). The procedure
is the same as the insertion of B+ tree except that we need
to maintain page links of the cells (Lines 6 and 8).

Cost Analysis. Let n and ne denote the number of the ob-
jects in U and the average number of entries in the optimal
summaries, respectively. According to the analysis of Algo-

Suppose x ∈ c, it takes O(1) time to identify the child cell
of c which contains x.

Algorithm 3: Insert(UQ, U)

Input : UQ : the U -Quadtree,
U : an object in U

Output: UQ : the updated U -Quadtree
S∗

U ← BuildOptSummary(UQ, U) ;1

for each entry e in S∗
U do2

find corresponding entry page P based on e.c;3

if P is full then4

Split page P ;5

Reset the page links of the cells whose entries6

are moved to the new page ;

Insert e into corresponding entry page ;7

Set the page link of e.c ;8

return UQ9

rithm 2, the space complexity of the optimal U -Quadtree
construction algorithm is O(n × ne + 4h−1 × h). The dom-
inant cost of Algorithm 3 is the summary construction and
B+ Tree (UQE) maintenance. According to [10], the amor-
tized cost of the insertion for B+ Tree is O(logf n × ne).
Consequently, the time complexity of our index construc-

tion algorithm is O(n× 4h
−1
3
× h +n× ne × logf (n× ne)).

Deletion. The deletion of an object U from U -Quadtree is
straightforward. Firstly we find the cells which are contained
or overlapped by Umbb. Then the entries associated with the
cells are removed from UQE . Same as the insertion, we also
need to maintain the page links of the cells.

4.3 Unknown Query Distribution
When the distribution of the query load is unknown, it

is intuitive to construct the U -Quadtree with query uni-
form assumption. This is arguably the best choice since
that, without any priori knowledge, we should assume that
all cells at the same level of the U -Quadtree have the same
chance to be contained or overlapped by the search region. In
the experiments, we construct the U -Quadtree based on the
query uniform assumption and it is shown that our technique
can significantly outperform the competitors against various
query distributions. Particularly, we assume each query re-
gion is a square whose center is uniformly distributed in the
space [0, 1]d and the length l is randomly chosen from [0, 1].
With similar argument in [22], we have Pc(c) + Po(c) =
min((l + w)d, 1.0) where w is the length of cell c. Simi-
larly, Po(c) = (l + w)d − (l − w)d if the w < l; Otherwise,

Po(c) = min((l + w)d, 1.0).

5. PERFORMANCE EVALUATION
We present results of a comprehensive performance study

to evaluate the efficiency and scalability of the proposed
techniques in the paper. Following algorithms are evaluated.

U-Tree The U -Tree technique presented in [21]. Note that
the R-tree based technique is a special case of U -Tree
where the catalog size equals one. As shown in [21], the
R-tree technique is significantly outperformed by U -
Tree. So we exclude R-tree technique in our empirical
study.

UI-Tree The UI-Tree technique proposed in [25].

UP The pivot indexing technique proposed in [3].

UD-Tree The U -Quadtree technique. By default, the query
uniform assumption in Section 4.3 is used to construct
U -Quadtree for comparison fairness.

Datasets. Three real spatial datasets, CA, LB and US ,
are employed to represent the centers of the uncertain re-
gions. They contain 62K, 53K and 200K 2-dimensional
points representing locations in Los Angeles, Long Beach
and the United States respectively which are available at
http://www.census.gov/geo/www/tiger and CA is the de-
fault dataset. We also generate synthetic dataset where di-
mensionality various from 2 to 4, named 2D, 3D and 4D re-
spectively. There are 200K points in each synthetic dataset
and they are uniformly distributed. All dimensions are nor-
malized to domain [0, 10000]. In our experiment, the un-
certain region of the uncertain object is a circle or sphere
with expected radius ru varying from 100 to 300 with de-
fault value 200 for 2-dimensional data. ru is set to 600 and
1200 for 3 and 4 dimensional data respectively. For a given
ru, the radius of the objects are randomly chosen between 0
and 2× ru. Suppose the PDF of an object is described by
m instances which follow two popular distributions Normal
and Uniform, where the expected m varies from 200 to 1000
with default value 400. Given m, the number of instances for
each object uniformly distributes between 0 and 2m. The
Normal serves as default distribution with standard devia-
tion ru

2
. There are totally around 24.8M instances for the

default dataset (CA) and the maximal number of instances
is 80M in US dataset.

Workload. A workload for the range query consists of 200
queries in our experiments. Same as [21, 25], the region of
a range query rq is a circle or sphere with radius γ (query
distance). By default, γ is uniformly distributed between
500 and 1500 in 2-dimensional space, and γ is set to 1900
and 3500 in 3 and 4 dimensional space respectively. We use
Q(CA) to denote the queries whose centers are generated
from the centers of the CA datasets. Similarly, we have
Q(LB) and Q(US). By default, the query distribution fol-
lows the underlying target data distribution. For instance,
Q(CA) is the default query distribution for CA dataset. We
also create synthetic query distributions whose centers fol-
low the uniform, anti-correlated and correlated distributions
based on the generator from [7], denoted by Q(E), Q(A)
and Q(C) respectively. Meanwhile, we randomly choose the
probabilistic threshold θ ∈ (0, 1] for each query. The average
response times are recorded to evaluate the overall perfor-
mance of the range searching algorithms. We also record the
average number of disk accesses (index I/O and data I/O),
candidate objects and false positives.

All algorithms proposed in this paper are implemented in
standard C++ with STL library support and compiled with
GNU GCC. Experiments are run on a PC with Intel Xeon
2.40GHz dual CPU and 4G memory running Debian Linux.
The disk page size is fixed to 4096 bytes and the capacity of
the entry page (f) is set to 512.

 0

 100

 200

 300

 400

 500

5 6 7 8 9

C
on

st
ru

ct
io

n
T

im
e(

s)

1.8(M) 3.9(M) 9.6(M)
20(M)

28(M)

U-Quadtree Construction

Figure 9: Diff. h

 0
 5

 10
 15
 20
 25
 30
 35
 40

5 6 7 8 9

R
es

po
ns

e
T

im
e(

s)

Figure 10: Diff. h

In order to achieve the best overall performance, the cat-
alog size of U -Tree [21] is set to 8, 10 and 12 for 2, 3 and

 0
 2
 4
 6
 8

 10
 12
 14

500 800 1000 1200 1500

ca

nd
id

at
es

 (
K

) UP
U-Tree
UI-Tree

UD-Tree

(a) # Candidates

 1

 2

 3

500 800 1000 1200 1500

F

al
se

 P
os

iti
ve

 (
K

)

UP
U-Tree
UI-Tree

UD-Tree

(b) # False positives

100

101

102

103

500 800 1000 1200 1500

IO

 a
cc

es
se

s
(K

) UP
U-Tree

UI-Tree
UD-Tree

(c) # IO accesses

 0

 50

 100

 150

 200

 250

500 800 1000 1200 1500

R
es

po
ns

e
T

im
e(

s)

UP
U-Tree

UI-Tree
UD-Tree

(d) Response Time

Figure 11: Diff. γ

4-dimensional dataset respectively. Similarly, the merge fac-
tor m of UI-Tree [25] is set to 8, 4 and 3 respectively. As
suggested in [3], we set the histogram size l to 100 and there
are 10 × d pivot points for d-dimensional dataset. Table 3
lists parameters which may have an impact on our perfor-
mance study. In our experiments, all parameters use default
values unless otherwise specified.

Notation Definition (Default Values)
h height of U -Quadtree (8)
γ query distance (1000)
ru radius of uncertain object region(200)
n number of uncertain objects (62K)
m number of instances per object (400)
θ probabilistic threshold (∈ (0, 1])

Table 3: System Parameters

5.1 Construction ofU-Quadtree
For comparison fairness, in the experiments we construct

the U -Quadtree based on the uniform assumption of the
query load as discussed in Section 4.3. We set tio = 1 and
set tU to the number of pages occupied by the object U
since we only need to know the ratio of tU

tio
for the optimal

U -Quadtree construction, instead of exact tio and tU values.
Fig. 9 shows the construction times on CA dataset where

h varies from 5 to 9. As expected, the construction time and
index size grow with h. The index size is 20M when h = 8,
which is 1.3% of the dataset. The index size of U -Tree, UI-
Tree and UP -Index are 13M , 34M and 969M respectively.
The construction time of UD-Tree is 155 second when h = 8,
and it takes 120, 332, 1152 seconds for U -Tree, UI-Tree and
UP respectively.

Fig. 10 reports the range query response time where the
solid bar and empty bar represent the filtering time and
verification time respectively. It is interesting to see that
the performance of the algorithm becomes stable once h is
sufficiently large (h ≥ 8). This is because the instances of
the objects can be“pushed up”to a proper level by the index
construction algorithm. In the following experiments, we set
h to 8, 6 and 4 for 2, 3 and 4 dimensional data respectively.

5.2 Evaluate Range Query
In this subsection, we evaluate the performance of the

algorithms for range searching.

Impact of query distance (γ). Fig. 11 reports the aver-
age query response time, the average number of candidates,
false positives and disk accesses of four algorithms (U -Tree,
UI-Tree, UP and UD-Tree) against query distance γ. Recall
that, by default the query distribution is obtained from the
centers of the underlying target objects. Therefore Q(CA)
is the query distribution. Results show that although UP
Algorithm has the smallest number of false positives, the
candidate size is large because UP -Index Algorithm can-
not validate any object. Moreover, the number of I/O ac-
cesses is also large since the whole index is scanned for the

object pruning. Therefore, the overall performance of UP -
Index Algorithm is not competitive compared with other al-
gorithms and hence we exclude UP -Index Algorithm in the
following experiments. Fig. 11 shows that UD-Tree Algo-
rithm always outperforms UI-Tree and U -Tree Algorithms.

Impact of query distribution. Fig. 12 reports the re-
sponse time of the algorithms on CA dataset where vari-
ous query distributions are employed. Particularly, the UD-
Tree(OPT) Algorithm constructs the U -Quadtree based on
each corresponding query distribution (i.e., query distribu-
tion is known). Recall that the query uniform assumption in
Section 4.3 is employed for UD-Tree Algorithm. It is shown
that UD-Tree(OPT) Algorithm can make some performance
improvement compared with UD-Tree Algorithm. Results
shows that UD-Tree Algorithm significantly outperforms U -
Tree and UI-Tree Algorithms under all query distributions,
which implies that constructing U -Quadtree based on query
uniform assumption is a good choice in practise when the
query distribution is unknown.

 0

 5

 10

 15

 20

 25

 30

Q(E) Q(A) Q(C) Q(CA) Q(LB) Q(USA)

R

ep
on

se
 T

im
e

(s
)

UD-Tree(OPT)
UD-Tree
UI-Tree
U-Tree

Figure 12: Diff. Query Distributions

Impact of datasets. Fig. 13 reports the number of I/O
accesses and the query response time of three algorithms
against CA, LB , US and 3D datasets. Results show that
UD-Tree Algorithms ranks first under all datasets.

I
n
d
e
x

I
O

(
U
D
)
 I
n
d
e
x

I
O

(
U
I
)
 d
a
t
a

I
O
I
n
d
e
x

I
O
(
U
)
 F
i
l
t
e
r
i
n
g
(
U
D
)
 F
i
l
t
e
r
.
(
U
I
)
 F
i
l
t
e
r
.
(
U
)
 V
e
r
i
f
i
c
a
t
i
o
n

 0

 10

 20

 30

 40

CA LB USA 3D

I/O

 a
cc

es
se

s
(K

)

(a) I/O

 0

 20

 40

 60

 80

CA LB USA 3D

R
es

po
ns

e
T

im
e(

s)

(b) Response Time

Figure 13: Performance vs diff. datasets

Impact of other parameters. We also study the impact
of other parameters which may potentially affect the perfor-
mance of the algorithms. Specifically, Fig. 14(a), Fig. 14(b),
Fig. 14(c) and Fig. 14(d) investigate the scalability of the
algorithms against d (dimensionality), ru (uncertain region
size), m (instance size) and n (object size) respectively. As
expected, Fig. 14(a) shows that the performances of three al-
gorithms degrade rapidly against dimensionality. Neverthe-
less, UD-Tree Algorithm is more scalable than UI-Tree and

Note that UP -Index focus on supporting the range search
on general metric space, which cannot be achieved by U -
Tree, UI-Tree and U -Quadtree techniques.

 100

 200

 300

2d 3d 4d

R
es

po
ns

e
T

im
e(

s)
 U-Tree

UI-Tree
UD-Tree

(a) Diff. d

 0

 10

 20

 30

100 150 200 250 300

R
es

po
ns

e
T

im
e(

s)
 U-Tree

UI-Tree
UD-Tree

(b) Diff. ru

 0

 10

 20

 30

 40

 50

 60

200 400 600 800 1000

R
es

po
ns

e
T

im
e(

s)
 U-Tree

UI-Tree
UD-Tree

(c) Diff. m

 0

 10

 20

 30

 40

 50

 60

50K 100K 150K 200K

R
es

po
ns

e
T

im
e(

s)
 U-Tree

UI-Tree
UD-Tree

(d) Diff. n

 0

 10

 20

 30

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

R
es

po
ns

e
T

im
e(

s)
 U-Tree

UI-Tree
UD-Tree

(e) Diff. θ

Figure 14: Impact of various parameters

 0

 1

 2

 3

 4

 5

100 150 200 250 300 #
 I/

O
 a

cc
es

se
s

(K
)

ESTIMATE
UD-Tree

Figure 15: Accuracy Evaluation

U -Tree Algorithms, and UD-Tree Algorithm always outper-
forms other algorithms under all settings. Note that in
Fig. 14(d) we randomly choose 50K, 100K and 150K ob-
jects from US dataset. Finally, Fig. 14(e) shows that the
performances of the algorithms are not sensitive to the prob-
abilistic threshold θ.

5.3 Accuracy of the Cost Model
We evaluate the accuracy of the cost model by estimating

the number of I/Os in the experiments. Particularly, in the
cost model (Equation 6) we set tio and tU to 1 and the num-
ber of pages the object U occupied respectively. Then E(C)
corresponds to the expected number of I/O accessed. Fig. 15
verifies the accuracy of the cost model on CA dataset where
ru varies from 100 to 300, and search regions are squares
with length 4000. The total number of I/O accesses are
predicated, and results show the proposed analytical model
is quite accurate, the relative error usually being around 8%.

6. CONCLUSION AND FUTURE WORK
To address the uncertainty in various applications, we

have developed an effective indexing technique to support
range search on multi-dimensional uncertain objects. Based
on some insights of the range search we build a cost model
which carefully considers various factors which may impact
the performance of the range query. An effective and ef-
ficient index construction algorithm is proposed based on
the cost model. Our experiments convincingly demonstrate
the effectiveness and efficiency of our indexing techniques.
As a future work, we will investigate how to extend our in-
dexing technique to tackle the correlation among the multi-
dimensional uncertain objects.

Acknowledgement. Ying Zhang is supported by ARC
DP110104880 and UNSW ECR grant PS27476. Wenjie Zhang
is supported by ARC DP120104168 and ARC DE12010 2144.
Xuemin Lin is supported by ARC DP0987557, DP110102937
and DP120104168.

7. REFERENCES

[1] P. K. Agarwal, S.-W. Cheng, Y. Tao, and K. Yi. Indexing
uncertain data. In PODS, 2009.

[2] C. Aggarwal and P. Yu. On high dimensional indexing of
uncertain data. In ICDE 2008.

[3] F. Angiulli and F. Fassetti. Indexing uncertain data in
general metric space. TKDE, to appear.

[4] G. Beskales, M. A. Soliman, and I. F. Ilyas. Efficient search
for the top-k probable nearest neighbors in uncertain
databases. PVLDB, 1(1), 2008.

[5] C. Böhm, M. Gruber, P. Kunath, A. Pryakhin, and
M. Schubert. Prover: Probabilistic video retrieval using the
Gauss-tree. In ICDE 2007.

[6] C. Böhm, A. Pryakhin, and M. Schubert. Probabilistic
ranking queries on Gaussians. In SSDBM 2006.

[7] S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline
operator. In ICDE, 2001.

[8] J. Chen and R. Cheng. Efficient evaluation of imprecise
location-dependent queries. In ICDE, 2007.

[9] R. Cheng, Y. Xia, S. Prabhakar, R. Shah, and J. S. Vitter.
Effcient indexing methods for probabilistic threshold
queries over uncertain data. In VLDB 2004.

[10] D. Comer. The ubiquitous b-tree. ACM Comput. Surv.,
11(2):121–137, 1979.

[11] C. Faloutsos. Gray codes for partial match and range
queries. IEEE Trans. Software Eng., 1988.

[12] R. A. Finkel and J. L. Bentley. Quad trees: A data
structure for retrieval on composite keys. Acta Inf., 1974.

[13] E. Frentzos, K. Gratsias, and Y. Theodoridis. On the effect
of location uncertainty in spatial querying. TKDE,
21(3):366 –383, 2009.

[14] G. R. Hjaltason and H. Samet. Speeding up construction of
pmr quadtree-based spatial indexes. VLDB J., 2002.

[15] H. Kimura, S. Madden, and S. B. Zdonik. Upi: A primary
index for uncertain databases. PVLDB, 2010.

[16] H.-P. Kriegel, P. Kunath, M. Pfeifle, and M. Renz.
Probabilistic similarity join on uncertain data. In
DASFAA, 2006.

[17] X. Lian and L. Chen. A generic framework for handling
uncertain data with local correlations. PVLDB, 2010.

[18] Y. Ma, D. V. Kalashnikov, and S. Mehrotra. Toward
managing uncertain spatial information for situational
awareness applications. TKDE, 20(10), 2008.

[19] J. H. Schiller and A. Voisard. Location-based Services.
Morgan Kaufmann, 2004.

[20] S. Singh, C. Mayfield, S. Prabhakar, R. Shah, and S. E.
Hambrusch. Indexing uncertain categorical data. In ICDE,
2007.

[21] Y. Tao, X. Xiao, and R. Cheng. Range search on
multidimensional uncertain data. ACM Trans. Database
Syst., 32(3), 2007.

[22] Y. Theodoridis and T. K. Sellis. A model for the prediction
of r-tree performance. In PODS, 1996.

[23] T. T. L. Tran, C. Sutton, R. Cocci, Y. Nie, Y. Diao, and
P. J. Shenoy. Probabilistic inference over rfid streams in
mobile environments. In ICDE, 2009.

[24] M. Zhang, S. Chen, C. S. Jensen, B. C. Ooi, and Z. Zhang.
Effectively indexing uncertain moving objects for predictive
queries. PVLDB, 2009.

[25] Y. Zhang, X. Lin, W. Zhang, J. Wang, and Q. Lin.
Effectively indexing the uncertain space. TKDE, 2010.

