
Top-k Similarity Join over Multi-valued Objects

Wenjie Zhang, Jing Xu, Xin Liang, Ying Zhang, and Xuemin Lin

University of New South Wales, Sydney, NSW, Australia
zhangw, xjing, xinliang, yingz, lxue @ cse.unsw.edu.au

Abstract. The top-k similarity joins have been extensively studied and used
in a wide spectrum of applications such as information retrieval, decision mak-
ing, spatial data analysis and data mining. Given two sets of objects U and V,
a top-k similarity join returns k pairs of most similar objects from U×V. In the
conventional model of top-k similarity join processing, an object is usually re-
garded as a point in a multi-dimensional space and the similarity between two
objects is usually measured by distance metrics such as Euclidean distance.
However, in many applications an object may be described by multiple val-
ues (instances) and the conventional model is not applicable since it does not
address the distributions of object instances. In this paper, we study top-k sim-
ilarity join queries over multi-valued objects. We apply quantile based distance
to explore the relative instance distribution among the multiple instances of
objects. Efficient and effective techniques to process top-k similarity joins over
multi-valued objects are developed following a filtering-refinement framework.
Novel distance, statistic and weight based pruning techniques are proposed.
Comprehensive experiments on both real and synthetic datasets demonstrate
the efficiency and effectiveness of our techniques.

1 Introduction

Given two sets of objects (points) U and V in a d-dimensional metric space, the top-k
similarity join query retrieves k pairs of objects P from U ×V such that the distance
between any pair of objects in P is not greater than the distance of any object pairs
in U × V − P. Conventional similarity join query has been extensively studied in
various applications including data mining, information retrieval, and location based
services [2], [9], [10]. Top-k similarity join, also called closest pair queries, has also
attracted much research attention [6]. In many applications such as decision making
and e-business, an object may be represented by multiple points (instances) in the
d-dimensional space, namely multi-valued objects [7]. In this paper, we study the
problem of top-k similarity joins on multi-valued objects.

The needs of similarity join over multi-valued objects stem from many important
applications. In geographic information system (GIS), a group of simple spatial objects
may be evaluated as a whole [17]. For instance, to evaluate a community, a real
estate development company may model it as a multi-valued object and each instance
corresponds to a property with some feature values such as property price, household
income, distance to beach, distances to living facilities, etc. A top-k similarity join
may be issued to identify the most similar communities from two large cities or from
two countries, such that the price fluctuation of one community could be used as a
mirror to the management of another one. Similarly, in sports, the performance of



a player may be described by her game-to-game statistics in various games. So each
player could be represented by a multi-valued object where each instance corresponds
to her statistics, such as heights and number of trials in high-jump, in a particular
game she attended. A similarity join over two sets of players may help to retrieve
players with similar performances. Hence, the successful career path of one player
give a prediction of the success of her counterpart in coming competitions.

While the similarity between two conventional d-dimensional objects only involves
two single points, identifying the most similar object pairs among multi-valued object
sets involves multiple instances per object. Therefore, it is highly desirable to consider
the relative instance distributions among multi-valued objects so that the similar pairs
can be effectively retrieved. In this paper, we investigate the problem of similarity join
over multi-valued objects in a top-k fashion. That is, we aim to retrieve k pairs of
multi-valued objects with the highest level of similarity.

The existing model for handling similarity joins over objects with multiple in-
stances follows the probabilistic semantics on uncertain objects [4], [11], [14] and aims
to capture relative instance distribution among objects with multiple instances. Never-
theless, uncertain objects are inherently different than multi-valued objects. Instances
of an uncertain object are mutually exclusive which means at most one instance can
appear at a particular time, while all the values/instances of a multi-valued object
must occur simultaneously at any time. Moreover, as shown in [21], models based on
uncertain semantics cannot always capture the relative distributions of multi-valued
objects. Take the example in Figure 1. For simplicity we assume multi-valued object
U1 has only one instance with the value (score) of 10, while multi-valued objects V1

and V2 both have m instances spread between 9.0 to 9.99 as depicted in Figure 1(a).
Each instance from the same object takes the same weight. Suppose we want to re-
trieve the top-1 similarity join result from {U1} and {V1, V2}, namely, retrieve the
more similar one from V1 and V2 to U1. Following the possible world semantics, it is
easy to verify that both V1 and V2 have the same probability, 1

2 , to be the most sim-
ilar one to U1 if Euclidean distance is used as the similarity metrics. We permute the
distribution in Figure 1(a) to the distribution in Figure 1(b), V1 and V2 still have the
same probability. This example demonstrates that the probabilistic approaches fol-
lowing the possible world semantics are not able to capture the relative distributions
of instances. Another simple solution is to utilize simple aggregates such as average.
Nevertheless, such a simple aggregate will have the same problem as pointed above
regarding Figure 1.

The example in Figure 1 demonstrates that the existing probabilistic model and
simple aggregates may be insensitive to relative distributions of object instances.
Quantiles [19] provide a succinct summary of data distributions. In this paper, we
investigate the top-k similarity join problem over multi-valued objects based on a
ϕ-quantile distance (ϕ ∈ (0, 1]); for example, median is the 0.5-quantile, maximum
is the 1-quantile, minimum is the smallest quantile (note a quantile ϕ is in (0, 1]
and cannot be 0). Regarding the above example, 0.5-quantile is based on players’
median performance; 1-quantile is to retrieve the top-k similar pairs based on players’
worst performance. In this paper, we study the problem of top-k similarity joins over
multi-valued objects where the input are two sets of multi-valued objects.



9
.
0

S
c
o
r
e


1
0
.
0


 
  
  
m
/
2
 m
 m
/
2


9
.
9
9


U
1
 V
1
 V
2


(a)

9
.
0

S
c
o
r
e


1
0
.
0


 
  
  
m
/
2
 m
 m
/
2


9
.
9
9


(b)

Fig. 1. Motivating Example

Challenges and Contributions. To the best of our knowledge, this is the first paper
to study top-k similarity joins over multi-valued objects. ϕ-quantile distance is first
used for capturing instance distributions of multi-valued objects in [21]. [21] studies
top-k nearest neighbor (KNN) queries over multi-valued objects. Given a multi-valued
query object Q and a set of multi-valued objects U , a KNN query retrieve k objects
from U with smallest quantile-based distance to Q. An immediate way to solve our
problem can be conducted as follows. For each object U ∈ U (or V ∈ V), we compute
its KNN in V (or U) using the techniques in [21], and then select k most similar pairs
based on the union of KNN results. Nevertheless, this involves the computation of
KNN for each object in U (or each object in V). Clearly, not every object in U (or V)
will be involved in the top-k pairs since k is usually much smaller than min{|U|, |V|}.
Motivated by this, in this paper, we present a set of novel, efficient, effective pruning
techniques to prevent such redundant computation. Our main contributions of the
paper can be summarized as follows.

– We formalize the problem of top-k similarity join over multi-valued objects, re-
garding quantile-based distance metrics.

– Efficient and effective algorithms are developed to compute the top-k similarity
join results over two sets of multi-valued objects based on ϕ-quantile-based dis-
tances. Particularly, we propose novel and efficient distance, statistic and weight
based pruning techniques to significantly speed up the computation.

– Comprehensive experiments are conducted on both real and synthetic data to
demonstrate the efficiency and effectiveness of our techniques. It also demonstrates
that the techniques developed in this paper are up to 2 orders of magnitude more
efficient than naively applying KNN techniques in [21].

Organization of the Paper. The rest of the paper is organized as follows. Section
2 formally defines the problem of top-k similarity join over multi-valued objects re-
garding quantile-based distance and provide some necessary background information.
In Section 3, we introduce the filtering-refinement framework, as well as the data
structures utilized in the paper. Section 4 presents query processing techniques for
top-k similarity joins. In Section 5, we report our experiment results. Related work is
summarized in Section 6. This is followed by conclusions in Section 7.



2 Background

We present problem definition and necessary preliminaries in this section. For refer-
ences, notations frequently used in the paper are summarized in Table 1.

Notation Definition

U , V two sets of of objects in the join query

U (V ) multi-valued object

E entry of R-tree

u (v) instance of U (V ) - a point in d-dimensional space

w(u) (w(S)) (total) weight of u (the set S)

d(u, v) Euclidean distance between u and v

dlo(E,E′) distance lower-bound between E and E′

dϕ(U, V ) ϕ-quantile distance of U and V

U × V Cartesian product of instances from U to V

Table 1. The summary of Notations.

2.1 Problem Definition

Multi-valued Object. In our problem definition, an instance of an object U is
weighted - weight gives the representativeness of an instance in U . For instance, in
the examples in Section 1, a game statistic of a player may appear multiple times;
consequently a normalized weight (the occurrence of an instance over the total occur-
rences of all instances) may be used to indicate the representativeness of an instance.
Note that the total of such weights in U equals to 1.

A multi-valued object U is represented as {(ui, w(ui))|1 ≤ i ≤ m} where ui is a
point in a d-dimensional space, 0 < w(ui) ≤ 1 (1 ≤ i ≤ m), and

∑m
i=1 w(ui) = 1. We

use U and V to denote two sets of multi-valued objects involved in the join query.

Quantile. Given a collection S of m elements, each element si has a weight w(si)
where 0 < w(si) ≤ 1 and

∑m
i=1 w(si) = 1. Let S be sorted increasingly on a search

key f - a function; that is, f(si) ≤ f(sj) if i < j.

Definition 1 (ϕ-quantile of S). Given a ϕ (0 < ϕ ≤ 1), the ϕ-quantile Sϕ of S is

the first element si in the sorted S on the search key such that
∑i

j=1 w(sj) ≥ ϕ.

ϕ-quantile Distance. For two given objects U and V , there are totally (|U | × |V |)
pairs of instances in U × V where each pair (ui, vj) (ui ∈ U and vj ∈ V ) has the
weight w(ui)× w(vj), namely w(ui, vj). Clearly,

∑
ui∈U,vj∈V w(ui)× w(vj) = 1. The

Euclidean distance d(ui, vj)
1 between ui and vj is called the distance of (ui, vj). Let

U × V = {((ui, vj), w(ui, vj)) | ui ∈ U & vj ∈ V }.

Definition 2 (ϕ-quantile distance of U and V ). Given a ϕ ∈ (0, 1], let U × V be
sorted increasingly on the search key - the distance d(ui, vj) of each element (ui, vj).
Then, the distance of the ϕ-quantile of U × V is called the ϕ-quantile distance of
U × V , denoted by dϕ(U, V ).

1 Note that our techniques developed in this paper is based on Euclidean distance; never-
theless they can be immediately extended to cover other distance metrics.



Definition 2 states that if (u, v) is the ϕ-quantile of U ×V (i.e., (U ×V )ϕ = (u, v))
then d(u, v) is dϕ(U, V ).

U


V


u
2


v
1


v
3


v
2


u
1


Fig. 2. Distances between 2 Multi-Valued Objects

Example 1. Regarding the example in Figure 2, |U | = 2 and |V | = 3. Assume that
w(u1) = w(u2) = 1

2 ; w(v1) = w(v2) = 1
4 , w(v3) = 1

2 . Consequently, U × V consists
of the following six instance pairs sorted on their distances increasingly: U × V =
{((u2, v1),

1
8 ), ((u2, v3),

1
4 ), ((u1, v1),

1
8 ), ((u2, v2),

1
8 ), ((u1, v2),

1
8 ), ((u1, v3),

1
4 )}.

The 0.2-quantile distance d0.2(U, V ) of U and V is d(u2, v3), d0.5(U, V ) is d(u1, v1),
d0.6(U, V ) is d(u2, v2). 2
Problem Statement. Given a ϕ ∈ (0, 1], two sets of multi-valued objects U and V
in the d-dimensional space, a top-k similarity join retrieves k pairs of objects P from
U × V such that for each object pair (U, V ) from P, its ϕ-quantile distance dϕ(U, V )
is no greater that the ϕ-quantile distance of object pairs from U × V − P .

2.2 Preliminaries

ϕ-quantile Distance Computation. Given a collection S of m elements, each
element si has a weight w(si) where 0 < w(si) ≤ 1 and

∑m
i=1 w(si) ≤ 1. A naive way

to compute the ϕ-quantile is to firstly sort S regarding a given search key f , and then
scan the sorted list to obtain the ϕ-quantile of S. Clearly, the naive algorithm runs in
O(m logm). In [5], an efficient and effective partitioning technique is proposed to find
an element s ∈ S to divide S into two sub-collections S1 and S2 with the following
properties:

1. for each s′ ∈ S1, f(s
′) ≤ f(s); and for each s′ ∈ S2, f(s

′) ≥ f(s).
2. |S1| ≥ 3

10m− 6 and |S2| ≥ 3
10m− 6.

Using the partitioning technique, when S is not sorted the time complexity of com-
puting ϕ-quantile of S is linear - O(|S|).

Regarding two multi-valued objects U and V , there are totally |U | × |V | instance
pairs. Directly applying the partition based algorithm, computing ϕ-quantile distance
between U and V takes O(|U |× |V |). In [21], instances inside one multi-valued object
are indexed by an R-tree. Based on the R-tree, pruning techniques are proposed
to discard instance pairs which are guaranteed not to be the ϕ-quantile of U × V .
In this paper, we use the pruning techniques enhanced, partition based, linear time
complexity algorithm in [21] as a black box in computing ϕ-quantile distance between
two multi-valued objects.



Conventional Top-k Similarity Joins. Conventional top-k similarity joins, also
called closest pair queries, have been extensively studied over conventional (point)
spatial databases [3], [6], [9]. The most recent technique proposes to build an index on
the fly [3]. Nevertheless, this technique cannot be used to prune a group of object pairs.
That is, every object has to participate in the distance computation. As the quantile
distance computation between two objects is very expensive with the presence of
multiple instances, in this paper, we will apply an R-tree index based top-k similarity
join algorithm to facilitate the prevention of computing quantile distances between
unpromising pairs of multi-valued objects. In [6], several algorithms are proposed using
R-tree based indexes including exhaustive algorithm, recursive algorithm and Heap
algorithm. Among all techniques, Heap algorithm demonstrates a better performance
in most experiment settings. The priority query based algorithm in [9] is quite similar
to Heap algorithm except that Heap algorithm performs a simple pruning before
inserting an entry pair into the heap. We adopt the Heap algorithm and develop novel
pruning techniques to speed up the computation. Note that our pruning techniques
are general enough to be plugged into any R-tree based algorithm for computing
conventional top-k similarity joins.

3 Framework

Our techniques for solving the top-k similarity join based on quantile distance follow
a standard seeding-filtering-refinement framework outlined in Algorithm 1.

Algorithm 1: Framework

– Phase 1 - Seeding: Compute the ϕ-quantile distance for each of the k chosen object
pairs from U × V.

– Phase 2 - Filtering: Discard unpromising object pairs from U × V.
– Phase 3 - Refinement: Determine the final solution for ϕ-quantile top-k similarity

join.

In the seeding phase, we choose k object pairs and compute their ϕ-quantile dis-
tances, using the techniques introduced in Section 2.2. Let λk be the maximal of these
k ϕ-quantile distances, in the filtering phase, λk could be used to prune unpromis-
ing object pairs and iteratively updated if necessary. Any k object pairs from U × V
could be chosen to compute the ϕ-quantile distance in the seeding phase. Apparently,
similar object pairs will lead to smaller λk values; and hence better pruning power in
the filtering phase. In our framework, to select k object pairs, we first use the mean
µ(U) of the multiple instances for each multi-valued object U from the two given
datasets to represent U . µ(U) =

∑m
i=1 w(ui)×ui where m is the number of instances

in U . Clearly µ(U) is also in the d-dimensional space. Thus the top-k similarity join
is converted to join over conventional datasets where each object is a single point in
the multi-dimensional space, and we could apply the existing algorithms [6] to obtain
the k most similar pairs from the two (single-valued) datasets. The corresponding k
multi-valued object pairs from U and V are then chosen to compute the ϕ-quantile
distances. At this point, we obtain a distance threshold λk which will be used in the
filtering phase.



Data Structures

In our techniques, we use aggregate R-trees [16] to index the local instances of
each multi-valued object in U ∪V, and use two statistic information enhanced R-trees
(named sR-trees) to globally index the minimum bounding boxes (MBBs) of objects
in U and V, respectively. The local aR-trees and global sR-tress are built to facilitate
our filtering techniques.

Local aR-trees. For each multi-valued object U ∈ U ∪ V, a local aR-tree [16]
is built to organize its multiple instances. The aggregate information kept on each
intermediate entry is the sum of weights of instances indexed by the entry. Namely,
for every intermediate entry E in the local aR-tree, we record the weight of E as the
sum of weights (total weights) of instances having E as an ancestor.

Global sR-trees. We maintain two R-trees on the MBBs of multiple instances of
objects in U and V, respectively. That is, for each object in U , we first obtain the
MBB of its multiple instances. Then we build an R-tree on these MBBs. This R-tree
is called the global R-tree of U . Similarly we build the global R-tree for V. Note in a
global R-tree, each leaf (data) entry is an MBB of an object.

Suppose an object U has m instances in the d-dimensional space, u1, u2, ..., um

with the weights w(u1), w(u2), ..., w(um), respectively.

Definition 3 (Mean µ). The mean of U , denoted by µ(U), is
∑m

i=1 w(ui)× ui.

Note that µ(U) is in the d-dimensional space. For 1 ≤ i ≤ d, µi(U) denotes the
i-th coordinate of µ(U).

Definition 4 (Variance σ2). For 1 ≤ i ≤ d, σ2(U) =
∑m

j=1 w(uj)(uj,i − µi(U))2

where each uj,i denotes the i-th coordinate value of uj.

In each of the leaf (data) entry of the global R-tree, besides the MBB information
of each object, we also keep the above statistic information. And the global R-tree is
called a statistic R-tree, denoted by sR-tree. Remind that two sR-tree are built for
the multi-valued object sets U and V, respectively.

4 ϕ-Quantile Top-k Similarity Join

We present our techniques for ϕ-quantile top-k similarity join for a given ϕ ∈ (0, 1]
in this section. We first present novel distance, statistic and weight based pruning
techniques. Then, we integrate the proposed pruning techniques into the overall join
algorithm based on the Heap Algorithm in [6].

4.1 Pruning Techniques

When introducing the pruning techniques, we assume that we have an entry pair
(EU , EV ) from the join processing where EU (EV ) is an entry from the global sR-tree
of U (V). EU (EV ) could be either intermediate or leaf (data) entry. The way to access
entries from the two global sR-trees will be introduced in Section 4.2.

Distance based Pruning. The first pruning rule is based on the distance between
two entries in the join processing obtained from intermediate or leaf entries of two
global sR-trees.



Pruning Rule 1. Let dlo(EU , EV ) denote the minimum distance between the MBBs of

two entries EU and EV . If d
lo(EU , EV ) ≥ λk, then (EU , EV ) can be pruned, namely,

all entry pairs in EU × EV can be pruned.

Complexity. Computing the minimum distance between two MBBs takes O(d) time.
The complexity of Pruning Rule 1 is constant once d is fixed.

Statistic based Pruning. The second pruning technique utilizes the statistic infor-
mation kept in the global sR-tree, as introduced in Section 3. The main idea is based
on the current distance threshold λk, to derive a value α such that the α-quantile
distance between an object pair (U, V ) is not smaller than λk. If α < ϕ, we can safely
prune (U, V ). We first introduce the Cantelli’s inequality [15] which is employed in
Pruning Rule 2.

Let δ(x, y) be 1

1+ x2

y2

if y ̸= 0, 1 if x = 0 and y = 0, and 0 if x ̸= 0 and y = 0.

Theorem 1 (Cantelli’s Inequality [15]). Suppose that t is a random variable in 1-
dimensional space with mean µ(t) and variance σ2(t), Prob(t−µ(t) ≥ a) ≤ δ(a, σ(t))
for any a ≥ 0, where Prob(t− µ(t) ≥ a) denotes the probability of t− µ(t) ≥ a.

Note that Theorem 1 extends the original Cantelli’s Inequality [15] to cover the
case when σ = 0 and/or a = 0. The following theorem is proved in [13] and provides
an upper-bound for Prob(t ≤ b) when b ≤ µ .

Theorem 2. Assume that 0 ≤ b ≤ µ(t). Then, Prob(t ≤ b) ≤ δ(µ(t)− b, σ(t)).

Proof. Let t′ = 2µ(t) − t. It can be immediately verified that σ2(t′) = σ2(t) and
µ(t) = µ(t′). Applying Cantelli’s Inequality on t′, the theorem holds. 2

Now we generalize the above observations into our statistic based pruning rule.
As shown in Figure 3, for two object entries (U, V ) stored in the leaf/data entries of
global sR-tree of U and V, along the i-th dimension (1 ≤ i ≤ d), e.g., the horizontal
dimension in Figure 3, we locate two lines m and n vertical to the i-th dimension
and with distance λk between m and n. Denote Ui (Vi) as the coordinate value of
U (V ) along the i-th dimension. The line Ui = m (Vi = n) divides the MBB of U
(V ) into two parts, denoted as U1 and U2 (V1 and V2), as shown in Figure 3. Assume
µi(U) < µi(V ). Remind that λk is the current distance threshold.

U
 V


m
 n


U
1
U
2

V
1
 V
2


Fig. 3. Statistic based Pruning

The intuition of the statistic based pruning technique is along each dimension i,
based on Theorem 2, we derive an upper bound of the sum of weights in the shaded



areas of the MBBs of U1 and V1, respectively, denoted as Wup
i (U1) and Wup

i (V1).
Clearly, we can claim that instance pairs from U2 × V2 can not have distance smaller
than λk. Denote the sum of weights in U2 and V2 as Wi(U2) and Wi(V2), respectively.
Apparently, Wi(U2) ≥ 1−Wup

i (U1), and Wi(V2) ≥ 1−Wup
i (V1). Thus, using Wup

i (U1)
and Wup

i (V1), we can identify a value α such that the α-quantile distance between U
and V is not smaller than λk. Next we present the monotonic property of quantile
distance.

Theorem 3 (Monotonicity of Quantile Distance). Given two multi-valued ob-
jects U and V , α, ϕ ∈ (0, 1], if α < ϕ, then dα(U, V ) ≤ dϕ(U, V ).

Proof. The theorem immediately holds based on the definition of quantile distance in
Definition 2. 2

Based on Theorem 3, once we identify the value α such that the α-quantile distance
between U and V is larger than λk, if α < ϕ, then we can claim the ϕ-quantile distance
between U and V cannot be smaller than λk. In this way (U, V ) can be pruned based
on the statistic information kept in the global sR-tree only without accessing the local
aR-trees of U and V .

Pruning Rule 2. Given an object pair (U, V ) (U ∈ U , V ∈ V). For a dimension i
(1 ≤ i ≤ d), without lose of generality, assume µi(U) < µi(V ). If 1 - (1 - δ(m −
µi(U), σi(U)))× (1− δ(µi(V )−m,σi(U))) < ϕ, (U, V ) can be pruned.

Proof. For the i-th (1 ≤ i ≤ d) dimension, based on Theorem 2, we obtain the upper
bound of the sum of weight of instances in the shaded area U1 of the MBB of U
as Wup

i (U1) = Prob(Ui ≥ m) ≤ δ(m − µi(U), σi(U)). Similarly we get Wup
i (V1) =

Prob(Vi ≤ n) ≤ δ(µi(V ) − n, σi(V )). Since the instance pairs from U2 × V2 cannot
have distance smaller than λk, we have α ≤ 1 − (1 − Wup

i (U1)) × (1 − Wup
i (V1)) ≤

1 − (1 − δ(m − µi(U), σi(U))) × (1 − δ(µi(V ) −m,σi(U))). Together with Theorem
3, the pruning rule is correct. 2

Once we obtain an object pair (U, V ) from the join processing, we apply Pruning
Rule 2 based on the statistic information kept in the global sR-trees before accessing
the local aR-trees of U and V . If we encounter a dimension i such that 1 - (1 -
Wup

i (U1))× (1−Wup
i (V1)) < ϕ, the pruning rule stops and the object pair (U, V ) is

discarded. As shown in Figure 3, after selecting line m along the i-th dimension of U ,
line n for V is also fixed regarding the current λk. We apply the equality principle in
determining the position of m and n; namely, the center of m and n is the same as the
center of µi(U) and µi(V ). Based on Theorem 2, we obtain Wup

i (U1) and Wup
i (V1) in

constant time.

Complexity. If Wup
i (U1) and Wup

i (V1) are derived based on Theorem 2, the time
complexity of Pruning Rule 2 is O(d).

Weight based Pruning. The following pruning rule incorporates both weight and
distance information. The instances of a multi-valued object are investigated by ac-
cessing the local aR-trees. Consider an object entry pair (U, V ). If (U, V ) is not pruned
by Pruning Rule 1 and 2, we explore the instances information of the objects by ac-
cessing their local aR-trees. We traverse the local aR-trees of two objects U and V
synchronously. At level i, we trim object V using the current distance threshold λk,



and retain only the entries in V with minimum distance to U not larger than λk. We
record the entries as γV,i. Formally, γV,i = {E ∈ Li(V ), dlo(U,E) ≤ λk}, where Li(V )
denotes all remaining entries (i.e., not trimed in higher levels) in the local aR-tree of
V at the i-th level. Similarly, we obtain γU,i. If the multiplication of the weights of
γV,i and γU,i is smaller than ϕ, the object pair (U, V ) can be pruned as the ϕ-quantile
distance between U and V must be larger than λk.

Pruning Rule 3. If
∑

e∈γU,i
W (e)×

∑
e∈γV,i

W (e) < ϕ, the object pair (U, V ) can be
discarded.

Proof. From the definition of ϕ-quantile distance, it is immediate that if
∑

e∈γU,i
W (e)×∑

e∈γV,i
W (e) < ϕ, then dϕ(U, V ) > λk. 2

Example 2. As shown in Figure 4, at the i-th level, the local aR-tree of object U has
two entries U1 and U2, local aR-tree of V also has two entries V1 and V2. The current
threshold λk is as illustrated. Using λk, we trim the MBB of V and only entry V1 has
minimum distance to U smaller than λk; thus, γV,i = {V1}. Similarly, γU,i = {U2}. If
W (U2)×W (V1) < ϕ, the object pair (U, V ) could be pruned.

U
2


U
1


V
1


V
2


U


V


Fig. 4. Weight based Pruning

Applying Pruning Rule 3, we can avoid accessing all instance pairs of U × V ,
and seek to stop on intermediate levels of the local aR-trees of U and V . Note the
traversal of two aR-trees is in a synchronous fashion and level-by-level from the root
node. If one aR-tree reaches leaf nodes first, it stays in leaf level while the other one
keeps traversing till its leaf level. As a by-product, if (U, V ) cannot be pruned using
Pruning Rule 3, we call the ϕ-quantile distance computation algorithm in [21] with
the instance pairs from γU,i × γV,i only where i is the leaf (instance) level. Clearly,
the algorithm still outputs correct ϕ-quantile distance as the distance of the pruned
instance pairs are larger than λk based on the definition of γU,i and γV,i for level i.

An exceptional case of Pruning Rule 3 is that we obtain an entry pair (EU , EV )
sfrom the join processing, one is an object entry while the other is an intermediate
entry. Assume EU is the object entry of U and EV is the intermediate entry. Pruning
Rule 3 could still be applied to (U,EV ) with the following modifications: 1) We access
the local aR-tree of U only and at each level i, record γU,i as the entries in U with
minimum distance to EV not larger than λk; 2) if

∑
e∈γU,i

W (e) < ϕ, the entry pair

(U,EV ) could be pruned. Namely, the object pair of U and any object indexed in EV

must have a ϕ-quantile distance greater than λk.

Complexity. Assume the average number of entries at level i of the local aR-trees of
multi-valued objects is Ni, then clearly the complexity of Pruning Rule 3 is O(Ni) at



each level. The worst case complexity of using Pruning Rule 3 is O(|U |× |V |), namely
no entries are pruned at intermediate entries and we need to access all instance pairs.
However, in practice, as shown in Section 5, Pruning Rule 3 is very effective and saves
CPU costs significantly. Note that in Pruning Rule 3 we trim the entries at each level
of local aR-trees of U and V using λk instead of considering the combination of all
pairs of entries at each level. This is because trim based pruning is more efficient
compared with combining all pairs (time complexity O(N2

i )) and also trim based
pruning is very effective in practice.

4.2 Overall Join Algorithm

The join algorithm used in this paper is adopted from the Heap Algorithm in [6] as it
is both efficient and easy to implement in real applications. We adjust the algorithm
to deal with multi-valued objects. Given ϕ ∈ (0, 1], two multi-valued objects sets U
and V, Algorithm 2 illustrates the top-k similarity join processing. A minheap H is
maintained according to the minimum distance between two entry pairs of the two
global R-trees RU and RV indexing U and V, respectively. H is initialized with the
pair of root nodes of RU and RV .

Algorithm 2: Top-k Similarity Join Processing

Input : RU , RV , k, ϕ
Output : k object pairs from U × V with smallest ϕ-quantile distances
H = (root(RU ), root(RU )) if not PRUNED1(root(RU ), root(RU ));1

while H is not empty do2

(EU , EV ) = H.top();3

H. pop();4

if EU and EV are both intermediate entries then5

for each children pair (CEU , CEV ) from EU × EV do6

if not PRUNED1(CEU , CEV ) then7

insert (CEU , CEV ) into H;8

else if one of EU and EV is an object entry then9

if not PRUNED1(EU , EV ) and not PRUNED3(EU , EV ) then10

Lines 6 - 8;11

else /* both EU and EV are object entries */12

if not PRUNED1(EU , EV ) and not PRUNED2(EU , EV ) AND not13

PRUNED3(EU , EV ) then
Compute ϕ-quantile distance between EU and EV ;14

if dϕ(EU , EV ) < λk then15

Update λk and current k most similar pairs;16

17

The algorithm differentiates three cases based on whether the entries are object
entries or not. If both are intermediate entries (Line 5), we expand all the children
pairs and insert into heap H the pairs which survive from Pruning Rule 1 (Line 7). If
one of the entries is an intermediate entry and the other is an object entry (Line 9),
Pruning Rule 1 and 3 will be applied first (Line 10) before expanding the children
pairs. We apply all 3 Pruning Rules object pairs (Line 13), and if survived, the ϕ-



quantile distance is computed; the top-k results and λk are updated if necessary. Note
that even from the root node pair we only insert entry pairs into H if they are not
pruned by Pruning Rule 1, it is still necessary to check Pruning Rule 1 (Line 9 and
Line 13) since the distance threshold λk dynamically changes.

Correctness. Based on the correctness of the 3 pruning rules, it can be immediately
shown that Algorithm 2 is correct.

Discussions. The techniques proposed in this paper could be immediately extended
to support self-join (i.e., we compute top-k similar pairs from one data set U) and
threshold base similarity join over multi-valued objects. We omit the details due to
space limits.

5 Experiment

We report a thorough performance evaluation on the efficiency and effectiveness of
our algorithms. In particular, we implement and evaluate the following techniques.

Top-k Join: Techniques presented in Section 4 to compute top-k similarity join
based on ϕ-quantile distance (ϕ ∈ (0, 1]), with all 3 pruning techniques.

P12: Techniques in Section 4 but using Pruning Rule 1 and 2 only (i.e., distance
and statistic based pruning).

P1: Techniques in Section 4 but using Pruning Rule 1 only (i.e., distance based
pruning).

P0: Techniques in Section 4 but without any pruning rule.
KNN: Baseline algorithm by using KNN processing over multi-valued objects in

[21]. For each object U ∈ U , we compute its KNN in V, and then select k most
similar pairs based on the union of KNN results.

All algorithms are implemented in C++ and compiled by GNU GCC. Experiments
are conducted on PCs with Intel Xeon 2.4GHz dual CPU and 4G memory under
Debian Linux. Our experiments are conducted on both real and synthetic datasets.

Real dataset is extracted from NBA players’ game-by-game statistics containing
339,721 records of 1,313 players (http://www.nba.com). Each player is treated as a
multi-valued object where the statistics (score, assistance, rebound) of a player per
game is treated as an instance with the equal weight (normalized).

Synthetic datasets are generated using the methodologies in [1] regarding the fol-
lowing parameters. Dimensionality d varies from 2 to 5 with default value 3. Data
domain in each dimension is [0, 1]. Average number n of objects in each dataset varies
from 5k to 15k with default value 5k. Number of instances per object follows a uni-
form distribution in [1, m] where m varies from 100 to 800 with the default value 200.
The value K varies among 5 to 25 with default value 10. The average length of object
MBBs varies from 0.01 to 0.05 with default value 0.01. With the default setting, the
total number of instances in a dataset is about 500k.

Generating U and V. In a (real or synthetic) dataset, each object is drawn to U or
V with equal probability (i.e., probability of 1

2 ).



5.1 Overall Performance

Figure 5 reports the results of the evaluation on processing time of Top-k Join, P12,
P1, P0, and KNN over real and synthetic data. KNN is very slow and cannot terminate
when the dataset size is large, so in the synthetic dataset, we set dataset size to 1k and
other parameters take the default values. As shown, each pruning rule is very effective
and reduce the processing time significantly. Our techniques are much more efficient
compared to a naive application of KNN techniques to processing top-k similarity
joins. As P0 and KNN are very inefficient, we omit their performance evaluation in
the following sections.

100

101

102

103

104

1K NBA

P
ro

ce
ss

in
g 

T
im

e 
(s

)

top-k join
P12

P1

P0
KNN

Fig. 5. Overall Performance

5.2 Evaluating Impacts by Different Settings

 0

 5

 10

 15

0.1 0.3 0.5 0.7 0.9

P
ro

ce
ss

in
g 

T
im

e 
(s

) top-k join
P12
P1

(a) Varying ϕ

 0

 10

 20

 30

 40

5K 7.5K 10K 12.5K 15K

P
ro

ce
ss

in
g 

T
im

e 
(s

) top-k join
P12
P1

(b) Varying n

 0

 50

 100

 150

100 200 400 600 800

P
ro

ce
ss

in
g 

T
im

e 
(s

) top-k join
P12

P1

(c) Varying m

 0

 5

 10

 15

 20

 25

0.01 0.02 0.03 0.04 0.05

P
ro

ce
ss

in
g 

T
im

e 
(s

) top-k join
P12
P1

(d) Varying h

 0

 5

 10

 15

5 10 15 20 25

P
ro

ce
ss

in
g 

T
im

e 
(s

) top-k join
P12
P1

(e) Varying k

 0

 5

 10

 15

 20

 25

2 3 4 5

P
ro

ce
ss

in
g 

T
im

e 
(s

) top-k join
P12
P1

(f) Varying d

Fig. 6. Varying Parameters

In this subsection, we study the scalability of our algorithms regarding different
ϕ-values, number of objects in one dataset(n), number of instances (m), length of
MBB edges (h), k and the dimensionality d in Figure 6. While our techniques are not
very sensitive to ϕ-values and k, the processing time increases with the increase of
number of objects, instance number, MBB edge length, and dimensionality. Clearly,
the dataset size increases with objects and instances number thus the join processing
becomes more expensive. Larger MBB edge length makes it difficult to prune object
pairs as there is larger overlap in their MBBs. The results also demonstrate that each
pruning rule is very effective and significantly reduces the processing time.



5.3 I/O Costs

We report the ratio of objects accessed in Figure 7. Since Pruning Rule 3 mainly
works on two object entries and load both two objects, its effect is on saving CPU
time but not I/O. Thus, we report the performance of Top-k Join and P1 only. As
shown in the figure, our techniques could achieve dramatic saving on the total objects
loaded. Compared to P1, the saving from using Pruning Rule 2 is also significant.

 0

 2

 4

 6

 8

 10

5k 7.5k 10k 12.5k 15kob
je

ct
 a

cc
es

se
d 

ra
tio

 (
%

)

top-k join P1

(a) Varying n

 0

 4

 8

 12

 16

 20

2 3 4 5ob
je

ct
 a

cc
es

se
d 

ra
tio

 (
%

)

top-k join P1

(b) Varying d

Fig. 7. Object Accessed Ratio

6 Related Work

Conventional join queries over two multi-dimensional datasets are fundamental in
data analysis and information retrieval. Most existing techniques for join queries have
been developed based on popular spatial access methods such as R-trees. For thresh-
old based joins, there are three main stream spatial join algorithms using R*-tree [8].
They are the depth-first-join (DFJ) algorithm [2], the breadth-first-join (BFJ) algo-
rithm [10], and transformation-view-join (TVJ) algorithm [12]. Techniques for top-k
spatial/similarity queries are studied in [6], [9]. Various algorithms, such as exhaustive
algorithm, recursive algorithm, Heap algorithm, and priority queue based algorithms
are proposed. Many variation of join queries over multi-dimensional space have been
studied in different contexts, including road networks [18] and moving objects [20].

Spatial queries such as nearest neighbor queries over fuzzy objects have been
recently studied [22]. Fuzzy objects possess similar semantics as uncertain objects
(e.g., instances are mutually exclusive). The techniques in [22] are not applicable to
the problem studied in our paper due to the different semantics as well as inherent
difference in query types.

Join queries over uncertain objects are inherently different than conventional joins
where each uncertain object takes a set of mutually exclusive instances/points in
a multi-dimensional space. It is extensively studied in [4], [11], [14]. Note that all
instances in a multi-valued object exist simultaneously instead of mutually exclusive
in an uncertain object. Due to such inherent differences in semantics, join techniques
over uncertain objects cannot be directly applied to similarity joins over multi-valued
objects.

7 Conclusion

We study the problem of top-k similarity join over multi-valued objects. The dis-
tance/similarity between two multi-valued objects is measured using quantile based



distance to capture the relative instance distribution. A filtering-refinement frame-
work is developed, along with novel, efficient and efficient distance, statistic and
weight based pruning techniques. Comprehensive experimental study over both real
and synthetic datasets demonstrates the efficiency and scalability of our techniques.

Acknowledgement. Wenjie Zhang is supported by ARC DP120104168 and ARC
DE120102144. Ying Zhang is supported by ARC DP110104880 and UNSW ECR
grant PSE1799. Xuemin Lin is supported by ARC DP0987557, ARC DP110102937,
ARC DP120104168, NSFC61021004 and a Google Research Award.

References

1. S. Borzsonyi, D. Kossmann, and K. Stocker. The skyline operator. In ICDE 2001.
2. T. Brinkhoff, H.-P. Kriegel, and B. Seeger. Efficient processing of spatial joins using

r-trees. In SIGMOD 1993.
3. M. A. Cheema, X. Lin, H. Wang, J. Wang, and W. Zhang. A unified approach for

computing top-k pairs in multidimensional space. In ICDE 2011.
4. R. Cheng, S. Singh, S. Prabhakar, R. Shah, J. S. Vitter, and Y. Xia. Efficient join

processing over uncertain data. In CIKM 2006.
5. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to algorithms

2nd edition. chpater 9: Medians and order statistics. In The MIT Press.
6. A. Corral, Y. Manolopoulos, Y. Theodoridis, and M. Vassilakopoulos. Closest pair

queries in spatial databases. In SIGMOD 2000.
7. R. Elmasri and S. Navathe. Fundamentals of database systems. (6th edition). In 2011.
8. W.-S. Han, J. Kim, B. S. Lee, Y. Tao, R. Rantzau, and V. Markl. Cost-based predictive

spatiotemporal join. In TKDE 2009.
9. G. Hjaltason and H. Samet. Incremental distance join algorithms for spatial databases.

In SIGMOD 1998.
10. Y.-W. Huang, J. Ning, and E. A. Rundensteiner. Spatial joins using r-trees: Breadth-first

traversal with global optimizations. In VLDB 1997.
11. H.-P. Kriegel, P. Kunath, M. Pfeifle, and M. Renz. Probabilistic similarity search on

uncertain data. In DASFAA 2006.
12. M.-J. Lee, K.-Y. Whang, W.-S. Han, and S. I.-Y. Transform-space view: Performing

spatial join in the transform space using original-space indexes. In TKDE 2006.
13. X. Lin, Y. Zhang, W. Zhang, and M. A. Cheema. Stochastic skyline operator. In ICDE

2011.
14. V. Ljosa and A. K. Singh. Top-k spatial join of probabilistic objects. In ICDE 2008.
15. R. Meester. A Natural Introduction to Probability Theory. 2004.
16. D. Papadias, P. Kalnis, J. Zhang, and Y. Tao. Efficient OLAP operations in spatial data

warehouses. In SSTD 2001.
17. P. Rigaux, M. Scholl, and A. Voisard. Spatial databases: With applications to gis. In

2001.
18. J. Sankaranarayanan, H. Alborzi, and H. Samet. Distance join queries on spatial net-

works. In GIS 2006.
19. M. L. Yiu, N. Mamoulis, and Y. Tao. Efficient quantile retrieval on multi-dimensional

data. In EDBT 2006.
20. R. Zhang, D. Lin, K. Ramamohanarao, and E. Bertino. Continuous intersection joins

over moving objects. In ICDE 2008.
21. W. Zhang, X. Lin, M. A. Cheema, Y. Zhang, and W. Wang. Quantile-based knn over

multi-valued objects. In ICDE 2010.
22. K. Zheng, P. Fung, and X. Zhou. K nearest neighbor search for fuzzy objects. In

SIGMOD 2010.


