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Abstract In this paper, we study the problem of con-
tinuous monitoring of reverse k nearest neighbors queries
in Euclidean space as well as in spatial networks. Exist-
ing techniques are sensitive towards objects and queries
movement. For example, the results of a query are to
be re-computed whenever the query changes its loca-
tion. We present a framework for continuous reverse k
nearest neighbor (RkNN) queries by assigning each ob-
ject and query with a safe region such that the expen-
sive recomputation is not required as long as the query
and objects remain in their respective safe regions. This
significantly improves the computation cost. As a by-
product, our framework also reduces the communica-
tion cost in client-server architectures because an ob-
ject does not report its location to the server unless it
leaves its safe region or the server sends a location up-
date request. We also conduct a rigid cost analysis for
our Euclidean space RkNN algorithm. We show that
our techniques can also be applied to answer bichro-

matic RkNN queries in Euclidean space as well as in
spatial networks. Furthermore, we show that our tech-
niques can be extended for the spatial networks that are
represented by directed graphs. The extensive experi-
ments demonstrate that our techniques outperform the
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existing techniques by an order of magnitude in terms
of computation cost and communication cost.

1 Introduction

Given a query point q, a reverse k nearest neighbor
(RkNN) query retrieves all the data points that have q
as one of their k nearest neighbors (k closest points).
Throughout this paper, we use RNN queries to refer to
RkNN queries for which k = 1. We give a formal defi-
nition of the RkNN problem in Section 2. Consider the
example of Fig. 1 where q is a RNN query in Euclidean
space. The nearest neighbor (the closest object in Eu-
clidean space) of q is o1. However, o1 is not the RNN
of q because the closest point of o1 is not q. The RNNs
of q are o3 and o4 because q is the nearest neighbor for
both of these points.
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Fig. 1 o3 and o4 are RNNs of q in Euclidean space

RNN has received considerable attention [21,39,1,37,
23,42,44,53,52,48] from database research community
based on the applications such as decision support, lo-
cation based service, resource allocation, profile-based
management, etc.
With the availability of inexpensive mobile devices,

position locators and cheap wireless networks, location
based services are gaining increasing popularity. Con-
sider the example of a battlefield. A backup army unit
may issue a RNN query to monitor other units for which
this is the closest army unit. Such army units may seek
help from the backup army unit in the case of an emer-
gency event. Therefore the backup army unit may is-



2

sue a RNN query to retrieve such army units and may
observe their status from time to time (e.g., current
location, ammunition etc.).
Note that in the above example, the query objects

and the data objects both belong to the same type
of objects (i.e., army units). Such queries are called
monochromatic queries. The queries where the query
objects and the data objects belong to two different
types of objects are called bichromatic queries (formally
defined in Section 2.1). Consider the example of a user
that needs a taxi and sends her location to a taxi com-
pany’s dispatch center. The company owns several taxis
and wants to send this job to a taxi for which she is the
closest passenger. Hence, the company notifies the taxis
that are among the bichromatic RNNs of the user. Cab-
spotting1 and Zhiing2 are two examples of such location
based services.
Other examples of location based services include lo-

cation based games, traffic monitoring, location based
SMS advertising, enhanced 911 services and army strate-
gic planning etc. These applications may require con-
tinuous monitoring of reverse nearest moving objects.
For instance, in reality games (e.g., BotFighters, Sword-
fish), players with mobile devices search for other mo-
bile devices in neighborhood. For example, in the award
winning game BotFighters, a player gets points by shoot-
ing other nearby players via mobiles. In such an appli-
cation, some players may want to continuously monitor
her reverse nearest neighbors in order to avoid being
shot by other players.
Driven by such applications, the continuous monitor-

ing of reverse nearest neighbors has been investigated
and several techniques have been proposed recently [1,
18,47,49,41] in the light of location-based services. The
existing continuous monitoring techniques [1,18,47,49]
adopt two frameworks based on different applications.
In [1], the velocity of each object is assumed to be ex-
plicitly expressed while [18,47,49] deal with a general
situation where the object velocities may be impossible
to be explicitly expressed. In this paper, our research is
based on the general situation; that is, object velocities
are not explicitly expressible.
The techniques in [18,47,49] adopt a two-phase com-

putation. In the filtering phase, objects are pruned by
using the existing pruning paradigms from [39,42] and
the remaining objects are considered as the candidate
objects. In the verification phase, every candidate ob-
ject for which the query is its closest point is reported as
the RNN. To update the results, at each time-stamp,
if the set of candidate objects is detected to be un-
changed then only the verification phase is called to
verify the results. Nevertheless, both the filtering and
verification phases are required if one of the candidate

1 http://cabspotting.org/faq.html
2 http://www.zhiing.com/how.php

objects changes its location or other objects move into
the candidate region. Similarly, a set of candidate ob-
jects is needed to be re-computed (recall filtering) if the
query changes its location.

As mentioned earlier, previous techniques [18,49,47]
require expensive filtering if the query or any of the can-
didate objects changes its location. Our initial experi-
ment results show that the cost of verification phase is
much lower than the cost of filtering phase. In our tech-
nique, we assign each query and object a safe region.
The safe region is a rectangular area for the queries in
Euclidean space and is an edge (or a part of the edge)
for the queries in spatial networks. The filtering phase
for a query is not required as long as the query and its
candidate objects remain in their corresponding safe re-
gions. This significantly reduces the computation time
of continuously monitoring RkNN queries.

As a by-product, our proposed framework also sig-
nificantly reduces the communication cost in a client-
server architecture. In the existing techniques, every
object reports its location to the server at every time-
stamp regardless whether query results will be affected
or not. Consequently, such a computation model re-
quires transmission of a large number of location up-
dates; doing this has a direct impact on the wireless
communication cost and power consumption - the most
precious resources in mobile environment [15]. In our
framework, each moving object reports its location up-
date only when it leaves the region. This significantly
saves the communication costs.

Depending on the users’ needs, applications may re-
quire RNN queries to be monitored in Euclidean space
or in spatial networks (e.g., a road network). While sev-
eral algorithms have been proposed to monitor RNN
queries in Euclidean space there does not exist any algo-
rithm that efficiently updates RNNs in spatial networks
after the objects and queries change their locations. In
this paper, we present efficient algorithms to monitor
RNN queries in Euclidean space as well as in spatial
networks.

Below, we summarize our contributions:

Query processing in Euclidean space

1. We present a framework for continuously monitoring
RNN together with a novel set of effective pruning
and efficient increment computation techniques. It
not only reduces the total computation cost of the
system but also reduces the communication cost.

2. We extend our algorithm for the continuous monitor-
ing of RkNN. Our algorithm can be used to monitor
both mono-chromatic and bichromatic RkNN (to be
formally defined in Section 2.1).

3. We provide a rigid analysis on the computation and
communication costs of our algorithm that helps us
to understand the effect of the size of the safe region
on the costs of our algorithm.
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4. Our extensive experiments demonstrate that the de-
veloped techniques outperform the previous algo-
rithms by an order of magnitude in terms of com-
putation cost and communication cost.

Query processing in spatial networks

5. We are first to present a continuous RNN monitoring
algorithm for moving objects and queries in spatial
networks. The proposed algorithm is computation-
ally efficient and has low communication cost.

6. We show that our technique can be easily extended
to monitor mono-chromatic and bichromatic RNN
queries. The algorithm can also be extended to con-
tinuously monitor RkNN queries.

7. We conduct extensive experiments on a real road
network and demonstrate that our algorithm gives
an order of magnitude improvement over an algo-
rithm that does not use the safe regions.

This paper is the extended version of our previous
work on RkNN query processing in Euclidean space [7].
In this extended paper, we extend the techniques in [7]
to process RkNN queries in spatial networks and present
extensive experimental results to evaluate the efficiency.
In addition, we also provide a brief survey of the pre-
vious work related to the query processing in spatial
networks.
The rest of the paper is organized as follows. In Sec-

tion 2, we give the problem statement, related work and
motivation. Section 3 presents RNN monitoring tech-
niques for Euclidean space including a detailed theoret-
ical analysis. Section 4 presents our technique for con-
tinuously monitoring RNN queries and its variants in
spatial networks. The experiment results are reported
in Section 5. Section 6 concludes the paper.

2 Background Information

In this section, we first formally define the problem in
Section 2.1 followed by a brief description of related
work in Section 2.2. We present the motivation of our
work in Section 2.3.

2.1 Problem Definition

There are two types of RkNN queries [21] namely,mono-

chromatic and bichromatic RkNN queries. Below we
define both.
Monochromatic RkNN query: Given a set of points
P and a point q ∈ P , a monochromatic RkNN query
retrieves every point p ∈ P s.t. dist(p, q) ≤ dist(p, pk)
where dist() is a distance function, and pk is the kth
nearest point to p according to the distance function
dist(). In Euclidean space, dist(x, y) returns the Eu-
clidean distance between any two points x and y. In

spatial networks, dist(x, y) returns the minimum net-
work distance between any two points lying on the spa-
tial network.
Note that, in such queries, both the data objects and

the query objects belong to the same class of objects.
Consider an example of the reality game BotFighters,
where a player issues a query to find other players for
whom she is the closest person.
Bichromatic RkNN query: Given two sets O and P
each containing different types of objects, a bichromatic
RkNN query for a point q ∈ O is to retrieve every object
p ∈ P such that dist(p, q) ≤ dist(p, ok) where ok is the
kth nearest point of p in O according to the distance
function dist().
In contrast to monochromatic queries, the query and

data objects belong to two different classes. Consider
the example of a battlefield where a medical unit might
issue a bichromatic RNN query to find the wounded
soldiers for whom it is the closest medical unit.
Main focus of our paper is to present the techniques

to continuously monitor monochromatic queries. How-
ever, we show that the proposed techniques can be eas-
ily extended to answer bichromatic queries. In rest of
the paper, we use RNN query to refer to a monochro-
matic RNN query unless mentioned otherwise.

2.2 Related Work

2.2.1 Spatial Queries in Euclidean Space

First, we present pruning techniques for snapshot RNN
queries. Snapshot RNN queries report the results only
once and do not require continuous monitoring.
Snapshot RNN Queries: Korn et al. [21] were first
to study RNN queries. They answer RNN query by pre-
calculating a circle for each data object p such that the
nearest neighbor of p lies on the perimeter of the circle.
RNN of a query q are the points that contain q in its
circle. Techniques to improve their work were proposed
in [51,23].
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Fig. 3 Filtering and verifica-
tion

First work that does not need any pre-computation
was presented by Stanoi et al. [39]. They solve RNN
queries by partitioning the whole space centred at the
query q into six equal regions of 60∘ each (S1 to S6 in
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Fig. 2). It can be proved that only the nearest point
to q in each partition can possibly be the RNN. This
also means that, in two-dimensional space, there are at
most six possible RNNs of a query. Consider the region
S3 where c is the nearest object to q and d cannot be
the RNN because its distance to c is smaller than its
distance to q. This can be proved by the triangle �qcd
where ∠dqc ≤ 60∘ and ∠dcq ≥ 60∘, hence dist(d, c) ≤
dist(d, q). Fig. 3 shows the area (shown shaded) that
cannot contain RNN of q.

In filtering phase, the candidate RNN objects (a, b, c,
e and f in our example) are selected by issuing nearest
neighbor queries in each region. In verification phase,
any candidate object for which q is its nearest neighbor
is reported as RNN (a and f). In this paper, we call
this approach six-regions pruning approach.

Tao et al. [42] use the property of perpendicular bi-
sectors to answer RkNN queries. Consider the example
of Fig. 4, where a bisector between q and c is shown
that divides the space into two half-spaces (the shaded
half-space and the white half-space). Any point that
lies in the shaded half-space Hc:q is always closer to c
than to q and cannot be the RNN for this reason. Their
algorithm prunes the space by the half-spaces drawn
between q and its neighbors in the unpruned region.
Fig. 5 shows the example where half-spaces between q
and a, c and f (Ha:q, Hc:q and Hf :q, respectively) are
shown and the shaded area is pruned. Then, the can-
didate objects (a, c and f) are verified as RNNs if q
is their closest object. We call this approach half-space

pruning approach. It is shown in [42] that the half-space
pruning is more powerful than the six-regions pruning
and it prunes larger area (compare the shaded areas of
Fig. 3 and Fig. 5).
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Wu et al. [48] propose an algorithm for RkNN queries
in 2d-space. Instead of using bisectors to prune the ob-
jects, they use a convex polygon obtained from the in-
tersection of the bisectors. Any object that lies outside
the polygon can be pruned.

Cheema et al. [5] introduce the concept of influence
zone to answer both snapshot and continuous RkNN
queries. Influence zone of a query q is an area such that
every point that is inside it is the RkNN of q and every
point that does not lie inside the influence zone is not

the RkNN. They present efficient techniques to com-
pute the influence zone and RkNN queries and demon-
strate improvement over existing algorithms.

Continuous RNN Queries: Computation-efficient
monitoring of continuous range queries [11,22], nearest
neighbor queries [25,54,50,16,43] and reverse nearest
neighbor queries [1,49,18,47] has received significant
attention. Although there exists work on communication-
efficient monitoring of range queries [15] and nearest
neighbor queries [15,26], there is no prior work that
reduces the communication cost for continuous RNN
queries. Below, we briefly describe the RNN monitor-
ing algorithms that improve the computation cost.

Benetis et al. [1] presented the first continuous RNN
monitoring algorithm. However, they assume that ve-
locities of the objects are known. First work that does
not assume any knowledge of objects’ motion patterns
was presented by Xia et al. [49]. Their proposed solu-
tion is based on the six-regions approach. Consider the
examples of Fig. 3, the results of the RNN query may
change in any of the following three scenarios:

1. the query or one of the candidate objects changes its
location

2. the nearest neighbor of a candidate object is changed
(an object enters or leaves the circles shown in Fig. 3)

3. an object moves into the unpruned region (the areas
shown in white in Fig. 3)

Xia et al. [49] use this observation and propose a
solution for continuous RNN queries based on the six-
regions approach. They answer RNN queries by mon-
itoring six pie-regions (the white areas in Fig. 3) and
the circles around the candidate objects that cover their
nearest neighbors.

Kang et al. [18] use the concept of half-space prun-
ing and apply the same observation that the results
may change in any of three scenarios mentioned above
(please see the three scenarios shown above and con-
sider Fig. 5 instead of Fig. 3). They continuously moni-
tor the RNN queries by monitoring the unpruned region
(white area in Fig. 5) and the circles around the can-
didate objects that cover their nearest neighbors. The
proposed approach uses a grid structure to store the lo-
cations of the objects and queries. They mark the cells
of the grid that lie or overlap with the area to be mon-
itored. Any object movement in these cells triggers the
update of the results.

Wu et al. [47] are the first to propose a solution for
continuous monitoring of RkNN which is similar to the
six-regions based RNN monitoring presented in [49].
Wu et al. [47] issue k nearest neighbor (kNN) queries in
each region instead of single nearest neighbor queries.
The kNNs in each region are the candidate objects and
they are verified if q is one of their k closest objects.
To monitor the results, for each candidate object, they
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continuously monitor the circle around it that contains
k nearest neighbors.

As mentioned earlier, Cheema et al. [5] use the con-
cept of influence zone to answer RkNN queries. Their
approach can also be used to answer continuous queries.
However, they focus on continuous bichromatic RkNN
queries where only the data objects move (the query
objects do not change their locations).
Note that the problem of RkNN queries is differ-

ent from all-nearest neighbor queries [8] where near-
est neighbors of every object in a given dataset is to
be found from another dataset. It is important to men-
tion that several safe region based approaches have been
proposed for continuous kNN queries [38,31,55,28,13,
15] and continuous range queries [55,15,3] in Euclidean
space and continuous range queries in spatial networks [4].
However, these techniques are not applicable for RkNN
queries.

2.2.2 Spatial Queries in Spatial Networks

Significant research attention has been given to devel-
oping techniques for spatial queries in spatial networks.
The shortest path queries [33,34,9], k-NN queries [17,
10,20,19,30,27,35,36] and range queries [40,30,24,46]
are among the most studied queries in spatial networks.
To the best of our knowledge, Safar et al. [32] are the

first to study the snapshot RNN queries in spatial net-
works. They use Network Voronoi Diagram (NVD) [29]
to efficiently process the RNN queries in spatial net-
works. A Network Voronoi Diagram (NVD) is similar
to a Euclidean space Voronoi Diagram in the sense that
every point in each Voronoi cell is closer to the gener-
ator point of the cell than any other point. However, a
NVD considers minimum network distances instead of
Euclidean distances between the points. More specifi-
cally, a Voronoi cell in a NVD is the set of nodes and
edges that are closer to the generator point (in terms
of minimum network distance) than any other point.
Safar et al. [32] use the properties of NVD to efficiently
process the RNN queries in network. In a following
work [45], they extend their technique to answer RkNN
queries and reverse k furthest neighbor queries in spa-
tial network. Please note that their technique cannot
be extended to answer continuous RNN queries because
the NVD changes as the locations of underlying points
change. It is computationally expensive to update NVD
whenever the underlying dataset changes.
Sun et al. [41] study the continuous monitoring of

RNN queries in spatial networks. The main idea is that
for each query a multi-way tree is created that helps in
defining the monitoring region. Only the updates in the
monitoring region affect the results. Their approach is
only applicable for the bichromatic RNN queries. More-
over, the proposed approach assumes that the query

points do not move. The extension to the case when
the query point is also moving is either non-trivial or
inefficient because the multi-way trees may be changed
as the query points move.

To the best of our knowledge, we are the first to
present a technique for continuously monitoring RkNN
queries (monochromatic and bichromatic) in spatial net-
works where both the objects and queries continuously
change their locations.

2.3 Motivation

First, we briefly describe limitations of existing tech-
niques that monitor RNNs in Euclidean space. Both
the six-regions [49] and the half-space [18] based solu-
tions have two major limitations.

1. As illustrated in the three scenarios presented in Sec-
tion 2.2.1, the existing techniques are sensitive to ob-
ject movement. If a query or any of its candidate ob-
jects changes its location, filtering phase is called again
which is computationally expensive. For example, if a
query is continuously moving, at each timestamp both
of the approaches will have to compute the results from
scratch. For example, in the half-space based approach,
the half-spaces between q and its previous candidates
are redrawn and the pruning area is adjusted. In our
initial experiments, we find that the cost of redrawing
the half-spaces (and marking and unmarking the rel-
evant cells) is computationally almost as expensive as
the initial computation of the results.

2. The previous techniques require every object to re-
port its exact location to the server at every timestamp
regardless whether it affects the query result or not.
This has a direct impact on the two most precious re-
sources in mobile environment, wireless communication
cost and power consumption. Ideally, only the objects
that affect the query results should report their loca-
tions. For example, in Fig. 5, as long as objects d, e
and g do not enter into the white region or the three
circles, they do not affect the results of the query.

Motivated by these, we present a framework that
provides a computation and communication efficient
solution. Note that, in some applications, the clients
may have to periodically report their locations to the
server for other types of queries. In this case, saving the
communication cost is not possible. Nevertheless, our
framework significantly reduces the computation costs
for such applications3.

3 In rest of the paper, we present our technique assuming that
the clients send their locations only for the RkNN query. For the
case when the clients periodically send their locations for other
types of queries, our techniques can be easily applied. The only
change is that the safe regions are stored on the server which
ignores the location updates from the objects that are still in
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3 Query Processing in Euclidean Space

In this section, we present our technique to continu-
ously monitor RNN queries in spatial networks. In Sec-
tion 3.1, we present the framework of our proposed tech-
nique. A set of novel pruning techniques is presented in
Section 3.2. Our continuous RNN monitoring algorithm
is presented in Section 3.3. In Section 3.4, we present
a detailed theoretical analysis to analyse the compu-
tation and communication cost of our proposed algo-
rithms. We present the extensions of our approach to
monitor other variants of RNN queries in Section 3.5.

3.1 Framework

Each moving object and query is assigned a safe region
of a rectangular shape. Although other simple shapes
(e.g., circles) could be used as safe regions, we choose
the safe region of a rectangular shape mainly because
defining effective pruning rules is easier for the rect-
angular safe regions. The clients may use their motion
patterns to assign themselves better safe regions. How-
ever, we assume that such information is not utilized by
the clients or the server because we do not assume any
knowledge about the motion pattern of the objects.

In our framework, the server recommends the side
lengths of the safe regions (a system parameter) to the
clients. When a client leaves its safe region, the client
assigns itself a new safe region such that it lies at the
center of the safe region and reports this safe region to
the server.

An object reports its location to the server only when
it moves out of its safe region. Such updates issued
by the clients (objects) are called source-initiated up-
dates [15]. In order to update the results, the server
might need to know the exact location of an object that
is still in its safe region. The server sends a request to
such object and updates the results after receiving its
exact location. Such updates are called server-initiated

updates [15].

If an object stops moving (e.g., a car is parked), it
notifies the server and the server reduces its safe region
to a point until it starts moving again. Client devices
such as GPS can be programmed to notify the server
when the device stops moving (e.g., the GPS notifies
the server if the car engine is turned off or if the car did
not move in last T time units).

In the previous approaches [49,18], the pruned area
becomes invalid if the query point changes its location.
On the other hand, in our framework, the query is also
assigned with a safe region and the pruned area remains

their safe regions. Experiment results shown in Section 5 show
the superiority of our approach for both of the cases.

valid as long as the query and its candidate objects re-
main in their respective safe regions and no other object
enters in the unpruned region. Although the query is
also assigned with a safe region, it reports its location at
every timestamp. This is because its location is impor-
tant to compute the exact results and a server-initiated
update would be required (in most of the cases) if it
does not report its location itself. Moreover, the num-
ber of queries in the system is usually much smaller
than the number of objects. Hence, the location up-
dates by the queries do not have significant effect on
the total communication cost.
Table 1 defines the notations used throughout this

section.
Notation Definition

Bx:q a perpendicular bisector between point x and
q

Hx:q a half-space defined by Bx:q containing point
x

Hq:x a half-space defined by Bx:q containing point q
Ha:b ∩Hc:d intersection of the two half-spaces

A[i] value of a point A in the itℎ dimension
maxdist(x, y) maximum distance between x and y (each of x

and y is either a point or a rectangle)
mindist(x, y) minimum distance between x and y (each of x

and y is either a point or a rectangle)
Rfil, Rcnd, Rq rectangular region of the filtering object, can-

didate object and query, respectively

RH [i] highest coordinate value of a rectangle R in itℎ

dimension

RL[i] lowest coordinate value of a rectangle R in itℎ

dimension

Table 1 Notations

Like existing work on continuous spatial queries [25,
18,49], we assume that the errors due to the measuring
equipments are insignificant and can be ignored. Our
continuous monitoring algorithm consists of the follow-
ing two phases.
Initial computation: When a new query is issued,
the server first computes the set of candidate objects
by applying pruning rules presented in Section 3.2. This
phase is called filtering phase. Then, for each candidate
object, the server verifies it as RkNN if the query is one
of its k closest points. This phase is called verification

phase.
Continuous monitoring: The server maintains the
set of candidate objects throughout the life of a query.
Upon receiving location updates, the server updates the
candidate set if it is affected by some location updates.
Otherwise, the server calls verification module to verify
the candidate objects and reports the results.

3.2 Pruning Rules

In this section, we present novel pruning rules for RNN
queries that can be applied when locations of the ob-
jects are unknown within their rectangular regions. Al-
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though the proposed pruning rules work in any multidi-
mensional space, to keep the discussion simple, we focus
on two dimensional space in this section. The pruning
rules for higher dimensionality are similar and we refer
the interested readers to see [7] for details.
We also remark that the proposed pruning rules can

be applied on the minimum bounding rectangles of the
spatial objects that have irregular shapes (in contrast
to the assumption that the spatial objects are points).
In Section 3.5, we extend the pruning rules for RkNN
queries.
Throughout this section, an object that is used for

pruning other objects is called a filtering object and
the object that is being considered for pruning is called
a candidate object.

3.2.1 Half-space Pruning

First, we present the challenges in defining this pruning
rule by giving an example of a simpler case where the
exact location of a filtering object p is known but the
exact location of q is not known on a line MN (shown
in Fig. 6). Any object x cannot be the RNN of q if
mindist(x,MN) ≥ dist(x, p) wheremindist(x,MN) is
the minimum distance of x from the line MN . Hence,
the boundary that defines the pruned area consists of
every point x that satisfiesmindist(x,MN) = dist(x, p).
Note that for any point x in the space on the right side
of the line LN , mindist(x,MN) = dist(x,N). Hence,
in the space on the right side of the line LN , the bisec-
tor between p and the point N satisfies the equation of
the boundary (because for any point x on this bisector
dist(x,N) = dist(x, p)).
Similarly, on the left side of LM , the bisector between

p and M satisfies the condition. In the area between
LM and LN , a parabola (shown in Fig. 6) satisfies the
equation of the boundary. Hence the shaded area de-
fined by the two half-spaces and the parabola can be
pruned. Note that the intersection of half-spaces Hp:N

and Hp:M does not define the area correctly. As shown
in Fig. 6 , a point p′ lying in this area may be closer to
q than to the point p.

p

M N
q

H
p:M

H
p:N

parabola

L
N

L
M

p'

Fig. 6 Exact location of q on
line MN is not known

p

M N
q

H
p:M

H
p:N

L
N

L
M

A

B

Fig. 7 Approximation of
parabola by a line

Unfortunately, the pruning of the shaded area may be
expensive due to presence of the parabola. One solution

is to approximate the parabola by a line AB where
A is the intersection of Hp:N and LN and B is the
intersection of Hp:M and LM . Fig. 7 shows the line AB
and the pruned area (the shaded area).

Another solution is to move the half-spacesHp:M and
Hp:N such that both pass through a point c that satis-
fies mindist(c,MN) ≥ dist(c, p) (e.g., any point lying
in the shaded area of Fig. 6). This approximation of the
pruning area is tighter if the point c lies on the bound-
ary. Fig. 8 shows the half-spaces Hp:M and Hp:N moved
to such point c. A half-space that is moved is called nor-

malized half-space and a half-space Hp:M that is moved
is denoted as H ′

p:M . Fig. 8 shows the normalized half-
spaces H ′

p:M and H ′

p:N and their intersection can be
pruned (the shaded area).

Among the two possible solutions discussed above, we
choose normalized half-spaces in developing our prun-
ing rules for the following reason. In our relatively sim-
ple example, the number of half-spaces required to prune
the area by using the normalized half-spaces is two (in
contrast to three lines for the other solution). The dif-
ference between this number becomes significant when
both the query and the filtering object are represented
by rectangles especially in multidimensional space. This
makes the pruning by normalized half-spaces a less ex-
pensive choice.

Now, we present our pruning rule that defines the
pruned area by using at most four half spaces in two
dimensional space. This pruning rule uses the normal-
ized half-spaces between 4 selected pairs of corners of
the two rectangles to prune the space. We first give
a formal description of our pruning rule and then we
briefly describe the reason of its correctness. First, we
define the following concepts:

Antipodal Corners Let C be a corner of rectangle
R1 and C′ be a corner in R2. The two corners are called
antipodal corners if both of the followings hold: i) if C
is a corner on the lower side of R1 then C′ is a corner on
the upper side of R2 and vice versa; ii) if C is a corner
on the right side of R1 then C′ is a corner on the left
side of R2 and vice versa.

For example, a lower-left corner ofR1 is the antipodal
corner of the upper-right corner of R2. Similarly, an
upper-left corner of R1 is the antipodal corner of the
lower-right corner of R2. Fig. 9 shows two rectangles
R1 and R2. The corners B and M are two antipodal
corners. Similarly, other pairs of antipodal corners are
(D,O), (C,N) and (A,P ).

Antipodal Half-Space A half-space that is defined
by the bisector between two antipodal corners is called
antipodal half-space. Fig. 9 shows two antipodal half-
spaces HM :B and HO:D.

Higher and lower midpoints. Let R1 and R2 be
two rectangles. Let R1L[i] denote the lowest coordinate
value and R1H [i] denote the highest coordinate value
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Fig. 8 Defining pruned re-
gion by moving half-spaces
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Fig. 9 Antipodal corners and
normalized half-spaces

of R1 in itℎ dimension. The higher midpoint MH [i] of
two rectangles R1 and R2 in itℎ dimension is (R1H [i]+
R2H [i])/2. Similarly, the lower midpoint ML[i] of two
rectangles R1 and R2 in itℎ dimension is (R1L[i] +
R2L[i])/2.
Assume that for a point P , we denote its x and y

coordinate values as P.x and P.y, respectively. In the
example of Fig. 9, the higher midpoint of R1 and R2
along x-axis is (N.x + A.x)/2 (see c.x). Similarly, the
lower midpoint along y-axis is (O.y +A.y)/2 (see c.y).
Normalized Half-Space LetB andM be two points
in the rectangles R1 and R2, respectively. The normal-
ized half-space H ′

M :B is a half-space defined by the bi-
sector between M and B that passes through a point
c such that c[i] = ML[i] (lower midpoint) for every di-
mension i for which B[i] > M [i] and c[j] = MH [j]
(higher midpoint) for every dimension j for whichB[j] ≤
M [j]. A normalized antipodal half-space can be repre-
sented by a mathematical inequality and we refer the
interested readers to [7] for details.
Fig. 9 shows the normalized (antipodal) half-spaces

H ′

M :B which is obtained by moving the half-spaceHM :B

to the point c where c.x is the higher midpoint of the
two rectangles along x-axis (because B.x < M.x) and
c.y is the lower midpoint along y-axis because B.y >
M.y. Fig. 9 also shows another normalized half-space
H ′

O:D that also passes through the same point c.

Pruning Rule 1 : Let Rq and Rfil be the rectangu-
lar regions of the query q and a filtering object p, re-
spectively. For any point p′ that lies in

∩4
i=1 H

′

Ci:C′

i

,

mindist(p′, Rq) > maxdist(p′, Rfil) where H ′

Ci:C′

i

is

normalized half-space between Ci (the i
tℎ corner of the

rectangle Rfil) and its antipodal corner C′

i in Rq. Hence
p′ can be pruned.

Fig. 10 shows an example of the half-space pruning
where the four normalized antipodal half-spaces define
the pruned region (the area shown shaded). The proof
of correctness is non-trivial and is given in our technical
report (Lemma 5) [6]. Below, we present the intuitive
justification of the proof.
Intuitively (as in the example of Fig. 8), if we draw all

possible half-spaces between all points of Rq and Rfil

and move them to a point c for which mindist(c, Rq) ≥

O

AB

C D

M

N

P

H’
M:B

R
q

R
fil

c
H’
O:D

H’
N:C

H’
P:A

Fig. 10 Half-space pruning
and dominance pruning
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P
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H’
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H’
O:DR

q

R
fil

c
1c

2

c

Fig. 11 Any point in shaded
area cannot be RNN of q

maxdist(c, Rfil), then the intersection of these half-
spaces correctly approximates the pruned region. Also
note that in two dimensional space, at most two normal-
ized spaces define such area. Consider the example of
Fig. 10, where only H ′

O:D and H ′

M :B define the pruned
region (the reason is that these two have largest and
smallest slopes among all other possible half-spaces).
In fact, the antipodal corners are defined such that
the half-spaces having largest and smallest slopes are
among the four antipodal half-spaces. Moreover, the
point c shown in Fig. 10 satisfies mindist(c, Rq) = max
dist(c, Rfil) because normalized half-spaces are defined
such that c lies at the middle of the line that joins the
corners A and N . Hence the four normalized antipodal
half-spaces correctly approximate the pruned region.
For ease of explanation, in Fig. 10, we have shown

an example where the two rectangles Rq and Rfil do
not overlap each other in any dimension. If the two
rectangles overlap each other in any dimension (as in
Fig. 11), the four half-spaces do not meet at the same
point. In Fig. 11, H ′

O:D and H ′

P :A are moved to c1 and
H ′

N :C and H ′

M :B are moved to point c2. However, it
can be verified by calculating the intersection that the
half-spaces that define the pruned region (H ′

M :B and
H ′

P :A) meet at a point c that satisfies mindist(c, Rq) ≥
maxdist(c, Rfil).

3.2.2 Dominance Pruning

We first give the intuition behind this pruning rule.
Consider the example of Fig. 10 again. The normalized
half-spaces are defined such that if Rfil and Rq do not
overlap each other in any dimension then all the nor-
malized antipodal half-spaces meet at the same point
c. This is because the point c is constructed using ei-
ther the upper or the lower midpoint in each dimension
depending on the x and y coordinate values of the two
corners (see the definition of normalized half-spaces and
the four normalized half-spaces in Fig. 10).
We also observe that the angle between the half-

spaces that define the pruned area (shown in grey) is
always greater than 90∘. Based on these observations,
it can be verified that the space dominated by c (the
dotted-shaded area) can be pruned. Formal proof is
given in our technical report (Lemma 6) [6].
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Fig. 13 Rcnd can be pruned
by R1 and R2

Let Rq be the rectangular region of q. We can obtain
four regions as shown in Fig. 12. Let Rfil be the rect-
angular region of a filtering object that lies completely
in one of the 4 regions. Let f be the furthest corner of
Rfil from Rq and n be the nearest corner of Rq from
f (as shown in region 1 of Fig. 12). A point Fp that
lies at the centre of the line joining f and n is called a
frontier point.

Pruning Rule 2 : Any candidate object p′ that is
dominated by the frontier point Fp of a filtering object
cannot be RNN of q.

Fig. 12 shows four examples of dominance pruning
(one in each region). In each partition, the shaded area
is dominated by the frontier point of that partition and
can be pruned. Note that if Rfil overlaps Rq in any di-
mension, we cannot use this pruning rule because the
normalized antipodal half-spaces in this case do not
meet at the same point. For example, the four nor-
malized antipodal half-spaces intersect at two points
in Fig. 11. In general, the pruning power of this rule is
less than that of the half-space pruning. Fig. 10 shows
the area pruned by the half-space pruning (the shaded
area) and dominance pruning (the dotted area). The
main advantage of this pruning rule is that the prun-
ing procedure is computationally more efficient than
the half-space pruning, as checking the dominance re-
lationship is easier.

3.2.3 Metric Based Pruning

Pruning Rule 3 : A candidate object can be pruned
ifmaxdist(Rcnd, Rfil) < mindist(Rcnd, Rq) whereRcnd

is the rectangular region of the candidate object.

This pruning approach is the least expensive because
it requires a simple distance comparison. Recall that
the half-space (or the dominance) pruning defines a re-
gion such that any point p′ that lies in it is always closer
to the filtering object than to q. Metric based pruning
checks this by a simple distance comparison. However,
this does not mean that the metric based pruning has at
least as much pruning power as half-space or dominance
pruning. This is because the half-space and dominance
pruning can trim the rectangular region of a candidate

object that lies in the pruned region. It may lead to
pruning of a candidate object when more than one fil-
tering objects are considered.
Consider the example of Fig. 13, where two rectangles

R1 and R2 of two filtering objects are shown. The rect-
angleRcnd cannot be pruned when half-space pruning is
applied on R1 or R2 alone. However, the rectangle Rcnd

can be pruned when both R1 and R2 are considered. As
in [42], we use loose trimming of the rectangle by us-
ing trimming algorithm [12]. The trimming algorithm
trims a part of the rectangle that cannot be pruned.
First, Rcnd is pruned by the half-spaces of R1 and the
trimming algorithm trims the rectangle that lies in the
pruned region. The unpruned rectangle R′

cnd (shown
with dotted shaded area) is returned. This remaining
rectangle completely lies in the area pruned by R2 so
the candidate object is pruned. Note that metric based
pruning cannot prune Rcnd.
Also note that if the exact location of a candidate ob-

ject is known (Rcnd is a point) and metric based prun-
ing fails to prune the object then half-space pruning and
dominance pruning also fail to prune the object. Hence,
half-space pruning and dominance pruning are applied
only when the exact location of a candidate object is
not known.

3.2.4 Pruning if exact location of query is known

If the exact location of the query or a filtering object is
known, previous pruning rules can be applied by reduc-
ing the rectangles to points. However, a tighter pruning
is possible if the exact location of the query is known.
Below, we present a tighter pruning rule for such case.

Pruning Rule 4 : Let Rfil be a rectangle and q be a

query point. For any point p that lies in
∩4

i=1 HCi:q (Ci

is the itℎ corner of Rfil), dist(p, q) > maxdist(p,Rfil)
and thus p cannot be the RNN of q.

Proof Maximum distance between a rectangle Rfil and
any point p is the maximum of distances between p and
the four corners, i.e.,maxdist(p,Rfil) = max(dist(p, Ci))
where Ci is the i

tℎ corner of Rfil. Any point p that lies
in a half-space HCi:q satisfies dist(p, q) > dist(p, Ci)
for the corner Ci of Rfil. Hence a point p lying in
∩2d

i=1 HCi:q, satisfies dist(p, q) > maxdist(p,Rfil). ⊓⊔
Consider the example of Fig. 14 that shows the half-

spaces between q and the corners of Rfil. Any point
that lies in the shaded area is closer to every point in
rectangle Rfil than to q.
It is easy to prove that the pruned area is tight. In

other words, any point p′ that lies outside the shaded
area may possibly be the RNN of q. Fig. 14 shows such
point p′. Since it does not lie in HP :q it is closer to q
than to the corner P . Hence it may be the RNN of q if
the exact location of the filtering object is at corner P .
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Fig. 14 Half-space pruning when exact location of query is
known

3.2.5 Integrating the pruning rules

Algorithm 1 is the implementation of all the pruning
rules. Specifically, we apply pruning rules in increasing
order of their computational costs (i.e., metric based
pruning, dominance pruning and then half-space prun-
ing). While simple pruning rules are not as restricting
as more expensive ones, they can quickly discard many
non-promising candidate objects and save the overall
computational time.

Algorithm 1 : Prune(Rq, Sfil, Rcnd)

Input: Rq: rectangular region of q ; Sfil: a set of filtering
objects ; Rcnd: the rectangular region of candidate object

Output: returns true if Rcnd is pruned; otherwise, returns false
Description:

1: for each Rfil in Sfil do

2: if maxdist(Rcnd , Rfil) < mindist(Rq , Rcnd) then //
Pruning rule 3

3: return true
4: if mindist(Rcnd , Rfil) > maxdist(Rq , Rcnd) then

5: Sfil = Sfil −Rfil // Rfil cannot prune Rcnd

6: if exact location of cnd is known then

7: return false // the object cannot be pruned

8: for each Rfil in Sfil do

9: if Rfil is fully dominated by Rq in a partition P then //
Pruning rule 2

10: trim the part of Rcnd that is dominated by Fp

11: return true if Rcnd is pruned
12: return

13: for each Rfil in Sfil do

14: Trim using half-space pruning // Pruning rule 1

15: return true if Rcnd is pruned
16: return false

Three subtle optimizations in the algorithm are:

1. As stated in Section 3.2.3, if the exact location of
the candidate object is known then only metric based
pruning is required. So, we do not consider dominance
and half-space pruning for such candidates (line 7).

2. If mindist(Rcnd, Rfil) > maxdist(Rq, Rcnd) for a
given MBR Rfil, then Rfil cannot prune any part of
Rcnd. Hence such Rfil is not considered for dominance
and half-space pruning (lines 4-5).

3. If the frontier point Fp1
of a filtering object Rfil1

is dominated by the frontier point Fp2
of another fil-

tering object Rfil2 , then Fp1
can be removed from Sfil

because the area pruned by Fp1
can also be pruned by

Fp2
. However, note that a frontier point cannot be used

to prune its own rectangle. Therefore, before deleting

Fp1
, we use it to prune the rectangle belonging to Fp2

.
This optimization reduces the cost of dominance prun-
ing. To maintain the simplicity, we do not show this
optimization in Algorithm 1.

3.3 Continuous RNN Monitoring

3.3.1 Data Structure

Our system has an object table and a query table. Ob-
ject table (query table) stores the id and the rectangular
region for each object (query). In addition, the query
table stores a set of candidate objects Scnd for each
query.
Main-memory computation is the main paradigm in

on-line/real-time query processing [25,18,49]. Grid struc-
ture is preferred when updates are intensive [25] be-
cause complex data structures (e.g., R-tree, Quad-tree)
are expensive to update. For this reason, we choose grid-
based data structure to store the locations and rectan-
gular regions of moving objects and queries. Each cell
contains two lists: 1) object list ; 2) influence list. Ob-
ject list of a cell c contains object id of every object
whose rectangular region overlaps the cell c. This list
is used to identify the objects that may be located in
this cell. Influence list of a cell c contains query ids of
all queries for which this cell lies in (or overlaps with)
the unpruned region. The intuition is that if an object
moves into this cell, we know that the queries in the
influence list of this cell are affected.
Range queries and constrained NN queries (nearest

neighbors in constrained region) are issued to compute
RNNs of a query (e.g., six constrained nearest neighbor
queries are issued in the six-regions based approach). In
our algorithm, we also need an algorithm to search the
nearby objects in a constrained area (the unpruned re-
gion). Several continuous nearest neighbors algorithms [54,
25,50] based on grid-based index have been proposed.
However, the extension of these grid-access methods for
queries on constrained area becomes inefficient. i.e., the
cells around queries are retrieved even if they lie in the
pruned region. To efficiently search nearest neighbors in
a constrained area, we use conceptual grid tree which
we introduced in [7] and then further studied in [14].
Fig. 15 shows an example of the conceptual grid-tree

of a 4 × 4 grid. For a grid-based structure containing
2n × 2n cells where n ≥ 0, the root of our concep-
tual grid-tree is a rectangle that contains all 2n × 2n

cells. Each entry at l-th level of this grid-tree contains
2(n−l)×2(n−l) cells (root being at level 0). An entry at l-
th level is divided into four equal non-overlapping rect-
angles such that each such rectangle contains 2(n−l−1)×
2(n−l−1) cells. Any n-th level entry of the tree corre-
sponds to one cell of the grid structure. Fig. 15 shows
root entry, intermediate entries and the cells of grid.
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Fig. 16 Illustration of filter-
ing phase

Note that the grid-tree does not exist physically, it is
just a conceptual visualisation of the grid.

The spatial queries algorithms that can be applied
on R-tree can easily be applied on the conceptual grid
tree. The advantage of using this grid-tree over previ-
ously used grid-based access methods is that if an in-
termediate entry of the tree lies in the pruned region,
none of the cells inside it are accessed.

3.3.2 Initial Computation

The initial computation consists of two phases namely
filtering and verification. Below we discuss them in de-
tail.

Filtering

In this phase (Algorithm 2), the grid-tree is traversed
to select the candidate objects and these objects are
stored in Scnd. These candidate objects are also used
to prune other objects. Initially, root entry of the grid-
tree is inserted in a min-heap H. We try to prune every
de-heaped entry e (line 6) by using the pruning rules
presented in the previous section. If e is a cell and can-
not be pruned, we insert the objects into heap that are
in its object list. Otherwise, if e is an intermediate en-
try of the grid-tree, we insert its four children into the
heap H with key mindist(c, Rq). If e is an object and is
not pruned, we insert it into Scnd. The algorithm stops
when the heap becomes empty.

Algorithm 2 : Filtering
1: for each query q do

2: Scnd = �

3: Initialize a min-heap H with root entry of Grid-Tree
4: while H is not empty do

5: de-heap an entry e

6: if (not Pruned(Rq , Scnd, e)) then // Algorithm 1

7: if e is a cell in Grid then

8: for each object o in object list of e do

9: insert o into H if not already inserted
10: else if e is an intermediate entry of grid-tree then

11: for each of its four children c do

12: insert c into H with key mindist(c, Rq)
13: else if e is an object then

14: Scnd = Scnd ∪ {e}

Fig. 16 shows an example of the filtering phase. For
better illustration, the grid is not shown. Objects are
numbered in order of their proximity to q. Algorithm it-

eratively finds the nearest objects and prunes the space
accordingly. In the example of Fig. 16, the algorithm
first finds o1 and prunes the space. Since the next clos-
est object o2 lies in the pruned space, it is not consid-
ered and o3 is selected instead. The algorithm continues
and retrieves o4 and o5 and the shaded area is pruned.
The algorithm stops because there is no other object in
the unpruned area (the white area). The rectangles of
the pruned objects are shown in broken lines.

One important note is that in this phase, the call to
pruning algorithm at line 6 does not consider the exact
locations of any object or query for pruning even if the
exact location is known. This is because we want to find
a set of candidate objects Scnd such that as long as all of
them remain in their rectangular regions and no other
object enters in the unpruned area, the set of candidate
objects is not affected. For example, the set of candidate
objects {o1, o3, o4, o5} will not change unless q or any
candidate object moves out of its rectangular region or
any of the remaining objects (o2 and o6) moves in the
unpruned area (the white area).

Marking the cells in unpruned area: To quickly identify
that an object has moved into the unpruned area of
a query q, each cell that lies in the unpruned area is
marked. More specifically, q is added in the influence list
of such cell. We mark these cells in a hierarchical way by
using the grid-tree. For example, if an entry completely
lies in the unpruned region, all the cells contained by it
are marked. The cells are unmarked similarly.

Verification

At this stage, we have a set of candidate objects Scnd

for each query. Now, we proceed to verify the objects.
Since every query q reports its location to the server
at every timestamp, we can use its location to further
refine its Scnd. More specifically, any object o ∈ Scnd

cannot be the RNN of q for which mindist(o, q) ≥
maxdist(o, o′) for any other o′ ∈ Scnd. If the object can-
not be pruned by this distance based pruning, we try
to prune it by using pruning rule 4. For every query q,
its candidate objects that cannot be pruned are stored
in a list Sglobal.

The server sends messages to every object in Sglobal

for which the exact location is not known. The objects
send their exact locations in response. For each query q,
the list of candidate objects is further refined by using
these exact locations. As noted in [39], at this stage,
the number of candidate objects for a query cannot be
greater than six in two dimensional space. We verify
these candidate objects as follows.

For a candidate object o, we issue a boolean range

query [37] centered at o with range dist(o, q). In con-
trast to the conventional range queries, a boolean range
query does not return all the objects in the range. It
returns true if an object is found within the range, oth-
erwise it returns false. Fig. 17 shows an example, where
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Algorithm 3 : Verification
1: Refine Scnd using the exact location of q
2: Request objects in Scnd to send their exact locations
3: Select candidate objects based on exact location of the ob-

jects
4: Verify candidate objects (at most six) by issuing boolean

range queries

candidate objects are o1 to o4. Any object for which
its exact location in its rectangular region is not known
is shown as a shaded rectangle (see objects o6, o7 and
o8). The rectangular regions of the objects for which we
know the exact locations are shown in dotted rectangles
(see objects o1 to o5 and the query q).
The object o3 cannot be the RNN because o5 (for

which we know the exact location) is found within the
range. Similarly, o4 cannot be the RNN because the
rectangular region of o6 completely lies within the range.
The object o2 is confirmed as RNN because no object
is found within the range. The only candidate object
for which the result is undecided is o1 because we do
not know the exact location of object o8 which may or
may not lie within the range. The server needs its ex-
act location in order to verify o1. For each query q, the
server collects all such objects. Then, it sends messages
to all these objects and verifies all undecided candidate
objects upon receiving the exact locations.

3.3.3 Continuous Monitoring

The set of candidate objects Scnd of a query changes
only when the query or one of the candidate objects
leaves its rectangular region or when any other object
enters into the unpruned region. If Scnd is not affected,
we simply call the verification phase to update the re-
sults. Otherwise, we have to update Scnd.
Consider the running example of Fig. 17 that shows a

query q and its four candidates (o1 to o4). Assume that
after several timestamps, one of the candidate objects
(see o1 in Fig. 18) moves out of its rectangular region.
We need to call the filtering phase again because the
pruned region is not valid anymore and Scnd may have
changed.

Fig. 17 Illustration of verifi-
cation phase

Fig. 18 Continuous monitor-
ing

One possible approach to update Scnd is to call the
filtering phase (Algorithm 2) from scratch. Second pos-

sible approach to update Scnd is to call Algorithm 2
with Scnd set to {o2, o3, o4} instead of initializing an
empty Scnd. Note that the object that moves out of
its rectangular region (e.g., o1) has not been consid-
ered in Scnd. If it is still the candidate object it will be
retrieved during the execution of Algorithm 2. In our
initial experiments, we found that the second approach
to update Scnd is almost as expensive as the first ap-
proach. Below, we show that if we choose to compute
Scnd from scratch, we may save computation cost in
upcoming timestamps.
Consider the example of Fig. 18 where the candi-

date object o1 leaves its rectangular region. Since the
query and other candidate objects are also moving, they
are likely to leave their regions in next few timestamps
which will trigger the expensive filtering phase again.
For example, it is possible that the object o4 leaves its
rectangular region in the next timestamp and we have
to call the expensive filtering phase again. To overcome
this problem, we request all the candidate objects to
send their exact locations as well as their new rectan-
gular regions (note that this does not increase the com-
munication cost because in any case we need to con-
tact these candidate objects in the verification phase at
line 2 of Algorithm 3). After receiving these new rect-
angular regions, we update Scnd by calling the filtering
phase from scratch. Now the candidate objects have
new rectangular regions and they are expected to re-
main in their respective rectangular regions for longer.
Suppose that an object o is a candidate for two queries

q1 and q2 and Scnd of q1 is affected by a location update
of any other object o′. We cannot ask o to update its
rectangular region because it will affect Scnd of query q2
as well. Hence, the server only asks an object to update
its rectangular region if it does not affect other queries.

3.4 Cost Analysis

In this section, we analyse the computation and com-
munication cost for our proposed solution. First, we
present a pruning rule based on six-regions approach
and compute the communication cost. Then, we show
that the pruning rules used in our technique are su-
perior. Hence the communication cost gives an upper
bound. Then, we analyse the computation cost.
Assumptions: We assume that the system contains N
objects in a unit space (extent of the space on both
dimensions is from 0 to 1). Each rectangular region is
a square and width of each side is w. The centers of all
rectangular regions are uniformly distributed.
Communication cost: Consider the example of Fig. 19
where a 60∘ region bounded by the angle ∠EqC is
shown in thick lines. Suppose that we find a filtering ob-
ject whose rectangular region Rfil is fully contained in
the region. Any object o′ can be pruned if dist(o′, q) ≥
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maxdist(Rfil, q). In other words, the possible candi-
dates may lie only in the space defined by qEC where
EC is an arc and qC = qE = maxdist(Rfil, q).
Let r be the distance between q and the center of

Rfil. Then, maxdist(Rfil, q) ≤ r +w/
√
2 where w/

√
2

is the half of the diagonal length of Rfil. Since, all ob-
jects are represented by rectangular regions, any object
is possible RNN candidate that has its centre at a dis-
tance not greater than w/

√
2 from the region qEC. So,

the range becomes (r +
√
2w). Total number of candi-

dates that overlap or lie within the region qEC is

�(r +
√
2w)2N

6

Let R be the maximum of r of all six regions, the
total number of candidate objects is bounded by

∣ Scnd ∣= �(R +
√
2w)2N (1)

The server sends request to all these candidate ob-
jects and receives their exact locations. So the total
number of messages M1 at this stage is bounded by

M1 = 2�(R +
√
2w)2N (2)

After receiving the updates, the server eliminates the
candidate objects that cannot be the RNN (based on
their exact locations). As proved in [39], the number
of candidate objects cannot be greater than six. Hence,
the server needs to verify those six candidate objects. In
order to verify a candidate object o, the server issues a
range query of distance dist(o, q) centered at o. In worst
case, all the objects that lie within this range must re-
port their exact locations. Total number of objects that
overlap or lie within the range is

�(dist(o, q) + w/
√
2)2N

Since these candidate objects belong to the nearest
neighbors in each region, dist(o, q) corresponds to the
distance of closest object in the region. For all six re-
gions, the maximum of dist(o, q) is the distance of sixth
nearest neighbor from q (assuming uniform distribu-
tion). So the maximum range is the radius of a circle
around q that contains six objects. As we assume a unit
space, the radius of such circle that contains six objects

is
√

6
N�

. So the maximum number of messages M2 re-

quired to verify all six candidate objects is

M2 = 6× 2�(

√

6

N�
+ w/

√
2)2N

M1 + M2 are the messages required to retrieve the
server-initiated updates. LetM3 be the number of source-
initiated updates (the objects that leave their rectan-
gular regions). Let v be the average speed of objects.

An object starting at center of the square of width w
and moving with speed v will take at least w/2v time
to leave the region. So, total number of updates M3 at
each timestamp is

M3 = N ×min(
2v

w
, 1)

Note that the equation bounds the number of source-
initiated updates by N . The total communication cost
per timestamp is (M1+M2+M3+1) where 1 denotes the
location update of the query. Note that if w is small,
the number of source-initiated updates M3 increases
and if w is large, the number of server-initiated updates
(M1 +M2) increases.
Now, we find R. Note that to use the pruning of

Fig. 19, we had assumed that Rfil completely lies in
the 60 degree region EqC. Hence r in Equation (1) cor-
responds to the distance of the closest object in each
region that completely lies in it. Similarly, R is the max-
imum of r of each region.

Fig. 19 Half-space pruning
vs six-regions based pruning
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Fig. 20 An object com-
pletely lying in the 60∘ region

Fig. 20 shows a region DqE and a rectangular region
Rfil of a filtering object (shown in broken line). Note
that any rectangular region of side length w with center
lying in ABC (the shaded area) will completely lie in
the region DqE. In other words, r corresponds to the
closest object of q in the region that has center lying in
ABC.
Let r = qH = qJ as shown in Fig. 20. Let the radius

belonging to area AMN be r′. The radius r′ can be
computed as r′ = r− qA where qA = qG+GA = qG+
w/2. The length of qG = 0.866w which can be found by
the triangle FGq where FG = w/2 and ∠GFq = 60∘.
Hence r′ = r − 1.366w.

It can be verified that when r =
√

6
N�

+ 1.366w,

then �(r′)2N = 6. In other words when radius is r,
one object in each region will be found such that it
completely lies in the region. So M1 can be rewritten
as

M1 = 2�(

√

6

N�
+ 2.78w)2N

The cost (M1 + M2 + M3 + 1) is the cost for one
RNN query. The cost of multiple RNN queries is ∣ Q ∣
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⋅(M1 + M2 + 1) + M3 where ∣ Q ∣ is the number of
queries.
Now, we show that the area pruned by our proposed

approach (pruning rule 4) contains the area pruned by
previously described six regions based approach. Con-
sider the example of Fig. 19 where Rfil completely
lies in the region. The area pruned by six-regions ap-
proach is the area of region outside qCE where CE is
an arc and qC = maxdist(Rfil, q). Our pruning ap-
proach prunes the area defined by the intersection of
the four half-spaces between q and the corners of Rfil.
Fig. 19 shows a half-spaceH (shown in broken line) that
crosses the region at a point G such that qG > qC. This
half-space fails to prune some area pruned by the six
region based approach (the six region based approach
prunes the shaded area which this half-space H fails to
prune).
In order to prove that our pruning approach always

contains the area pruned by the six-region based ap-
proach, we need to show that all four half-spaces be-
tween q and the corners of Rfil cross the region at
a point B such that qB ≤ qC. Fig. 19 shows a half-
space HD:q between corner D and q. Consider the right
triangle qAB where ∠BqA ≤ 60∘. The length of qB
is qA

cos(∠BqA) . The maximum possible value of qB is

2 × qA when ∠BqA is 60∘. Since 2 × qA = qD and
qD ≤ qC = maxdist(Rfil, q), so qB ≤ qC. Similarly, it
can be proved that qF ≤ qE. Hence all the four half-
spaces contain the area pruned by the region based ap-
proach.
Computation cost: Let Cfil and Cver be the costs
of the filtering phase and the verification phase, re-
spectively. The computation cost at each timestamp is
� × Cfil + Cver where � is the probability that at a
given timestamp at least one of the following two events
happens: i) the query or any of the candidate objects
leaves its safe region; ii) any other object enters in the
unpruned region of the query.
The verification cost includes using the exact loca-

tions of M1 objects to further refine the set of candi-
date objects and using boolean range queries to ver-
ify the remaining candidate objects (at most six). Let
the cost of refining an object be Cref and the cost of
a boolean range query be Cbr, the verification cost is
Cver = M1 × Cref+ ∣ Scnd ∣ ×Cbr where ∣ Scnd ∣≤ 6.

3.5 Extensions

Since our proposed pruning rules can be applied in mul-
tidimensional space, the extension of our algorithm to
arbitrary dimensionality is straightforward. Below, we
present extension of our algorithm to RkNN monitor-
ing.
RkNN Pruning: An object cannot be RkNN of a
query if it is pruned by at least k filtering objects. We

initialize a counter to zero and trim Rcnd by each fil-
tering object. When the whole rectangle is trimmed,
the counter is incremented and the original rectangle is
restored. We continue this process by trimming with re-
maining filtering objects. If the counter becomes equal
to k, the object is pruned.

R
q

R
1

R
2

R
cnd

R’
cnd

R
3

Fig. 21 RkNN Pruning

Suppose k is 2 and consider the example of Fig. 21
where Rcnd and three filtering objects R1, R2 and R3

are shown. Filtering objects are considered in order R1,
R2 and R3. Rcnd is trimmed to R′

cnd when R1 is used for
pruning. R′

cnd is completely pruned by R2. The counter
is incremented to one and the original rectangle Rcnd is
restored. Now,Rcnd is trimmed by R3 and the counter is
incremented to two because whole rectangle is trimmed.
The algorithm prunes Rcnd because it has been pruned
two times.

Note that if the filtering objects are processed in or-
der R1, R3 and R2, the candidate object cannot be
pruned. Finding the optimal order is difficult and trying
all possible orders is computationally expensive. This
will make filtering of this candidate object more expen-
sive than its verification. Hence, if a candidate object
is not pruned by the above mentioned pruning, we con-
sider it for verification.

RkNN Verification: An object o cannot be RkNN
if the range query centered at o with range dist(o, q)
contains greater than or equal to k objects. Otherwise,
the object is reported as RkNN. Suppose k is 2 and
consider the example of Fig. 17 again. The candidate
objects o2 and o3 are confirmed as R2NNs because there
are less than 2 objects within their ranges. The object
o1 is also confirmed because at most one object (o5) lies
within the range. The result for o4 is undecided, so the
location of o7 is requested. Note that we do not need
to request the exact location of o6.

Bichromatic Queries:Now, we briefly present the ex-
tension of our proposed solution to bichromatic queries.
Let there be two sets of objects O and P and query q
belongs to O. The area is pruned by iteratively finding
nearby filtering objects that belong to O and lie in the
unpruned region. The pruning of area is stopped when
there is no filtering object in the unpruned region. The
objects of type P that lie in the unpruned region are
the candidate objects. The server asks these candidate
objects to report their exact locations. Upon receiving
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the exact locations, any candidate object p is reported
as RNN if there does not lie an object of type O within
a circle with radius dist(p, q) centered at p. If the re-
sult is undecided, type O objects that have rectangles
overlapping with the circles are requested to send their
locations. Based on these received locations, the result
is computed and reported to the client.

4 Query Processing in Spatial Networks

In this section, we present our technique to continuously
monitor RNN queries in Euclidean space. First we in-
troduce basic concepts and notations in Section 4.1. In
Section 4.2, we study the problem characteristics. Sec-
tion 4.3 presents the framework of our technique. Fil-
tering and verification techniques are presented in Sec-
tion 4.4 and Section 4.5, respectively. We present the
extensions of our RNN monitoring algorithm to other
variants of RNN queries in Section 4.7.

4.1 Terminology

First we define few terms and notations.
Spatial network G is a weighted graph consisting of
vertices and edges. An edge between two vertices v1
and v2 is denoted as e(v1, v2). Each edge has a positive
weight that denotes the cost of travelling on that edge
(e.g., length of the edge, time taken to travel along the
edge etc.). The weight of an edge e(v1, v2) is denoted
as ∣e(v1, v2)∣.
Segment s[x,y] is the part of an edge between x and
y where both x and y are points on the edge. By def-
inition, an edge is also a segment defined by the end
points (vertices) of the edge. The weight of a segment
s[x,y] is denoted as ∣s[x,y]∣.
Fig. 22 shows an example of a road network with

eight vertices (a to ℎ). Six objects (o1 to o5 and q) are
also shown. The query object q is shown as a black star.
Several segments are also shown. For instance, the edge
e(b, g) consists of segments s[b,o5], s[o5,o4], s[o4,m], s[m,o3]

and s[o3,g]. The weights of edges and segments are also
shown. For example, the weight of the edge e(c, g) is 5
and the weight of the edge e(b, g) is 2+4+2+2+2 = 12.
Shortest network distance SNDist(x, y) between
any two points x and y is the minimum network dis-
tance between x and y (i.e., total weight of the edges on
the shortest path from x to y). In Fig. 22, the shortest
path from q to o4 is q → c → g → o4 and SNDist(q, o4)
is 14.
In Section 2.1, we had formally defined the RNN

queries based on the distance function dist(). In spa-
tial networks, the RNN query uses the distance func-
tion such that it returns the shortest network distance
between the points (i.e, dist(x, y) = SNDist(x, y)).

4.2 Problem Characteristics

In this section, we study the problem characteristics.
The lemma below identifies the objects that cannot be
the RNN of a query q.

Lemma 1 An object o cannot be the RNN of q if the

shortest path between q and o contains any other object

o′.

Proof If an object o′ lies on the shortest path between q
and o, this implies that SNDist(o, o′) < SNDist(o, q).
Hence o is not the RNN of q. ⊓⊔

In Fig. 22, the object o4 is not the RNN of q because
the shortest path from q to o4 is q → c → g → o4 which
contains another object o3.
Before we present next lemma, we define dead ver-

tices. A vertex v is called a dead vertex if there exists
an object o such that SNDist(v, o) < SNDist(v, q).
The object o is called the killer object of v because this
is the object that makes the vertex v a dead vertex. In
Fig. 22, the vertex g is a dead vertex and o3 is its killer
object. The vertex a is not a dead vertex. Note that
a dead vertex may have more than one killer objects.
For example, o3, o4 and o1 are the killer objects of the
vertex g.

Lemma 2 An object o cannot be the RNN of q if the

shortest path between q and o contains a dead vertex v
with a killer object o′ where o′ ∕= o.

Proof Assume that a dead vertex v exists on the short-
est path between q and o. The shortest network dis-
tance between o and q is SNDist(o, q) = SNDist(o, v)
+SNDist(v, q). Let o′ be the killer object of vertex
v. The shortest network distance between o and o′ is
SNDist(o, o′) ≤ SNDist(o, v)+SNDist(v, o′). By def-
inition of a dead vertex v, SNDist(v, o′) < SNDist(v, q).
Hence, SNDist(o, o′) < (SNDist(o, v) +SNDist(v, q)
= SNDist(o, q)). Hence, o cannot be the RNN of q. ⊓⊔

Fig. 22 RNN query in a spatial network

In Fig. 22, the shortest path from q to o3 contains a
dead vertex g with a killer object o1. The object o3 is
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not the RNN of the query q because SNDist(o1, o3) <
SNDist(q, o3). Similarly, the object o1 is also not the
RNN because the shortest path between q and o1 con-
tains the dead vertex g with a killer object o3.

Lemma 3 A vertex v′ is a dead vertex if the shortest

path between q and v′ contains a dead vertex v.

Proof Let o be the killer object of the vertex v. Then,
SNDist(v′, o) ≤ SNDist(v′, v)+SNDist(v, o). By def-
inition of a dead vertex v, SNDist(v, o) < SNDist(v, q).
Hence, SNDist(v′, o) ≤ (SNDist(v′, v)+SNDist(v, q)
= SNDist(v′, q)). Hence v′ is a dead vertex. ⊓⊔
In Fig. 22, the shortest path from q to e is q → c →

g → e which contains a dead vertex g. Hence, e is also
a dead vertex.

Lemma 4 Consider an edge e(v1, v2) that contains at

least two objects on it and assume that the query q
does not lie on it. The edge cannot contain any RNN

if SNDist(v1, q) ≥ ∣e(v1, v2)∣ and SNDist(v2, q) ≥
∣e(v1, v2)∣ where ∣e(v1, v2)∣ is the weight of the edge.

Proof ∣e(v1, v2)∣ ≥ SNDist(o, o′) for any two objects o
and o′ that lie on the edge e(v1, v2). For any object o
on the edge e(v1, v2), the shortest path between o and q
either passes through v1 or v2. Hence, SNDist(o, q) ≥
min(SNDist(v1, q), SNDist(v2, q)) ≥ ∣e(v1, v2)∣ ≥
SNDist(o, o′). Hence, o cannot be the RNN of q. ⊓⊔
Before we present next lemma, we define extreme ob-

jects of an edge. An object o is called an extreme object
of an edge e(v1, v2) if either the segment s[o,v1] or the
segment s[o,v2] does not contain any other object o′. In
Fig. 22, the objects o3 is an extreme object of the edge
e(b, g) because the segment s[o3,g] does not contain any
other object. Similarly, the object o5 is also an extreme
object because the segment s[o5,b] does not contain any
other object. However, the object o4 is not an extreme
object because both the segments s[o4,b] and s[o4,g] con-
tain an object other than o4. By definition of extreme
objects, each edge contains at most two extreme ob-
jects. This holds true even if more than one objects lie
at the same location. For instance, in Fig. 22, if there
was an object o′ at the same location as of o3 then both
o3 and o′ would not be the extreme objects.

Lemma 5 Only the extreme objects of an edge can be

the RNN of a query q given that q does not lie on the

edge.

Proof Let o be an object on the edge e(v1, v2) and o
be not an extreme object. Since q does not lie on the
edge e(v1, v2), the shortest path between o and q either
passes through v1 or v2. Since o is not an extreme ob-
ject, each of the segment s[o,v1] and s[o,v2] contains at
least one object other than o. Hence, the shortest path
from o to q contains at least one other object and o
cannot be the RNN of q as implied by Lemma 1. ⊓⊔

In Fig. 22, the object o4 cannot be the RNN of q
because it is not an extreme object.

Lemma 6 Regardless of the number of queries in the

system, an edge that does not contain any query has at

most two objects that can be the RNNs of any of the

queries.

Proof From Lemma 5, only the extreme objects can be
the RNN of a query q. Since each edge contains at most
two extreme objects, only at most two objects can be
the RNNs of any of the queries. ⊓⊔

In Fig. 22, assume that the object o2 is also a query
point. Only the extreme objects (o3 and o5) of the edge
e(b, g) can be the RNNs of the query points q and o2.
Lemma 5 and Lemma 6 imply that the extreme ob-
jects of an edge are the only possible candidate objects
for the queries that do not lie on the edge. Moreover,
several queries may share same candidate objects.
Based on the problem characteristics we studied in

this section, we develop an algorithm to continuously
monitor RNN queries. The next section presents the
framework of our proposed technique.

4.3 Framework

To simplify the presentation, we assume that the safe
regions of the objects and queries are segments. Later
in Section 4.6, we show that our technique can support
the safe regions that consist of more than one edges and
segments.
Each object and query is assigned a segment that is

its safe region. The safe region of an object o is denoted
as o.s[x,y]. Since the safe region of an object is a seg-
ment, we use o.x and o.y to denote the end points of
this segment. Each object and query reports its loca-
tion to the server whenever it leaves its safe region. Such
updates are called source-initiated updates. In order to
update the results, the server might need to know the
exact locations of some objects. The server receives the
exact location of each such object by requesting its cur-
rent location. Such updates are called server-initiated

updates.
The safe region of a query q is chosen such that q.s[x,y]

does not overlap with the safe region of any other ob-
ject. The segment q.s[x,y] is considered as an edge and
the end points q.x and q.y are considered as vertices.
This is to simplify the presentation because Lemma 5
and Lemma 6 are applicable to every edge if the seg-
ment that contains the query is considered as a different
edge.
The continuous monitoring algorithm consists of two

phases.
1. Filtering. In filtering phase, the set of candidate
objects are retrieved by pruning the objects that cannot
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be the RNN of a query q. The edges and segments of the
network that cannot contain any RNN are also pruned.
The part of the network that is not pruned is called
unpruned network. The set of candidate objects remain
valid unless at least one of the following happens: i) the
query or a candidate object leaves its safe region; ii)
an object enters in the unpruned network. Hence, the
filtering phase is called only when at least one of the
above two happens.

2. Verification. In verification phase, for each candi-
date object, the server checks if the candidate object
is the RNN of q or not. More specifically, if q is the
closest object of o (in terms of SNDist), the object o
is reported as the RNN. The verification phase is called
at each timestamp.

In the following, we present the details of both the
filtering and verification phases.

4.4 Filtering

The main idea is to incrementally expand the network
around the query in a way similar to Dijkstra’s algo-
rithm. More specifically, the vertices are accessed in in-
creasing order of their SNDist from q (a min-heap is
used). Whenever a vertex v is de-heaped, its adjacent
vertices are inserted in the heap if v is not a dead ver-
tex. Lemma 1 and Lemma 2 are used to identify the
candidate objects lying on the adjacent edges of v. The
algorithm stops when the heap becomes empty.

Algorithm 4 : Filtering
1: Scnd = �

2: initialize a min-heap H

3: insert q.x and q.y with keys set to zero
4: while H is not empty do

5: deheap a vertex v from H and mark it as visited
6: for each unvisited adjacent vertex v′ of v do

7: if there exists at least one object on e(v, v′) then

8: get the object o closest to v

9: Assign o a safe region o.s[x,y] and insert o in Scnd

10: d = max(∣s[v,o.x]∣, ∣s[v,o.y]∣)
11: if d < v.key then

12: mark v as dead; break;
13: if v is not marked dead then

14: for each unvisited adjacent vertex v′ of v do

15: if e(v, v′) does not contain any object then

16: if v′ is not present in the heap H then

17: insert v′ in H with key v′.key = v.key+ ∣e(v, v′)∣
18: else

19: v′.key = min(v′.key, v.key + ∣e(v, v′)∣)

Algorithm 4 presents the details. The set of candidate
objects is Scnd and is initialized to an empty set. Let
q.s[x,y] be the safe region of the query. As mentioned
earlier, the end points of the safe regions of the queries
are treated as the vertices. A min-heap is initialized
and q.x and q.y are inserted with keys set to zero. The
entries from the heap are retrieved iteratively (line 5).
When a vertex v is de-heaped, we consider its adjacent

vertices iteratively (line 6). Let v′ be an adjacent vertex
of v. We obtain an object o that lies on the edge e(v, v′)
and is closest to v and assign it a safe region o.s[x,y]
(lines 7 to 9).

Based on the safe region of the object o, we deter-
mine if the vertex v is a dead vertex or not (lines 10
to 12). Recall that a vertex v is a dead vertex if its
SNDist from an object o is smaller than its SNDist
from the query q. Since, we have assigned safe regions
to both the query object q and the data object o, we
need to make sure that a vertex v is marked dead only
if it satisfies the condition regardless of the location of
q and o in their respective safe regions. In other words,
a vertex v is marked dead if its maximum SNDist from
the safe region of o is less than its minimum SNDist
from the safe region of q. The maximum SNDist of the
safe region of o from v is the maximum of the weights
of the segments s[v,o.x] and s[v,o.y] where o.x and o.y are
the end points of the safe region of o (line 10). To be
more precise, this gives an upper bound on the maxi-
mum SNDist between v and the safe region of o. The
upper bound on the minimum distance of v from the
safe region of q is the key value v.key of v (the value
with which it was inserted in heap).

We use d to denote the maximum SNDist between
v and the safe region of o (line 10). The value of d is
compared with the key v.key of the vertex v. If v.key is
greater than d, the vertex is marked as dead (lines 11
and 12). Please note that the vertex v will remain dead
as long as both the query object and the object o remain
in their respective safe regions.

If the vertex v is marked dead, we do not need to
consider other adjacent vertices and the objects on the
adjacent edges (Lemmas 1, 2 and 3). If the vertex v is
not a dead vertex, then each of its adjacent vertex v′

that has not been visited earlier is considered (line 14).
If the edge e(v, v′) contains at least one object, the ver-
tex v′ is ignored (line 15). This is because if the shortest
path of v′ from q passes through v, the vertex v′ is a
dead vertex because an object o exists on the shortest
path. If the edge e(v, v′) does not contain any object
and v′ is not present in the heap then v′ is inserted in
the heap with key set to v.key + ∣e(v, v′)∣ (line 17). On
the other hand, if v′ is already present in the heap then
its key is updated to v.key+ ∣e(v, v′)∣ if v.key+ ∣e(v, v′)∣
is less than its existing key (line 19). The algorithm
stops when the heap becomes empty.

The edges and segments that are explored during the
execution of the algorithm form the unpruned network.
Fig. 23 shows an example of filtering phase called for the
query q. The unpruned network is shown in thick lines.
The objects o1, o2 and o3 are the candidate objects.

Proof of correctness can be obtained by proving that
the algorithm shortlists every object that may possibly
be the RNN of q (by applying Lemma 1 and Lemma 2).
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We omit the details of the proof. However, it is impor-
tant to mention that the key v.key of a vertex v may
not necessarily be the shortest network distance of v
from the safe region of q because the dead vertices are
not inserted in the heap. However, this does not affect
the correctness of the algorithm because if the shortest
path between an object and the query passes through
a dead vertex, the object cannot be the RNN. Hence,
if v.key is not the shortest network distance between
v and the safe region of q then this implies that v is a
dead vertex (Lemma 3) and we do not miss any possible
RNN of q.

4.5 Verification

An object o is the RNN of q if and only if there does
not exist any other object o′ such that SNDist(o, o′) <
SNDist(o, q). If there exists such an object o′, the ob-
ject o is not the RNN and we say that the object o′

invalidates the candidate object o.

A straight forward approach to check if a candidate
object o is the RNN is to issue a boolean range query

on the spatial network with range set to SNDist(o, q).
A conventional range query returns every object o′ for
which SNDist(o, o′) is less than a given range r. In
contrast to conventional range queries, a boolean range
query returns true if there exists at least one object
o′ for which SNDist(o, o′) is less than r otherwise it
returns false. To check if an object o is the RNN of q,
a boolean range query can be issued with range set to
SNDist(o, q). If the boolean range query returns true,
the object is not the RNN. Otherwise o is reported as
the RNN.

Fig. 23 Illustration of filter-
ing phase

Fig. 24 Computing moni-
tored network

Next, we show that some candidate objects may be
verified without issuing a boolean range query.

As implied by Lemma 4, a candidate object o that
lies on an edge e(v1, v2) that contains at least one other
object o′ and does not contain q cannot be the RNN of q
if ∣e(v1, v2)∣ ≤ SNdist(v1, q) and ∣e(v1, v2)∣ ≤ SNDist
(v2, q). Hence, we compare ∣e(v1, v2)∣ with the shortest
network distances of v1 and v2 from the safe region of
q and if the edge satisfies the above conditions then
the object o does not require verification. For each such

candidate object o, we keep a counter that records the
number of objects on the edge e(v1, v2) and we verify
the object o only if the counter is equal to one (i.e., o
is the only object on this edge).

There may be several candidates that cannot be ver-
ified by using the strategy presented above. One possi-
ble way to verify such a candidate object is to issue a
boolean range query. Note that the cost of the verifica-
tion phase may dominate the cost of the filtering phase
if a boolean range query is issued for each candidate ob-
ject. Since verification is to be called at each timestamp
regardless of the underlying data movement, the safe re-
gion based approach may not improve the performance
significantly if the verification phase is expensive.

Next, we present a technique based on the concept of
monitored network. Once the monitored network for an
object o is computed, the verification becomes compu-
tationally cheap. We show that the monitored network
of a candidate object does not require to be recomputed
at every timestamp. In fact, the monitored network of a
candidate object remains valid as long as the unpruned
network (obtained during the filtering phase) remains
valid. In other words, the monitored network is required
to be computed only when the filtering phase is called.

Let o be an unverified candidate object. Let o.s[x,y]
and q.s[x,y] denote the safe regions of the object o and
the query q, respectively. We use MaxSNDist(o, q) to
denote the maximum SNDist between the safe regions
of o and q (i.e., maximum SNDist between any two
points a and b where a is a point in o.s[x,y] and b is
a point in q.s[x,y]). In the example of Fig. 24, the safe
regions of o3 and q are s[m,g] and s[n,c], respectively.
The MaxSNDist(o3, q) is 14 (i.e., the shortest network
distance between m and n).

Monitored network of an object o is the part of the
network such that for every point p that does not lie on
it, minimum SNDist between p and the safe region of
o is greater than MaxSNDist(o, q).

Fig. 24 shows the monitored network of object o3
(shown in thick lines) and it consists of every point of
the network that has minimum SNDist from the safe
region of o3 at most 14. Intuitively, the monitored net-
work is defined as the network such that, for any object
o′ that does not lie on it, SNDist(o, o′) > SNDist(o, q)
regardless of the locations of o and q in their respective
safe regions. Hence, only the objects that lie on the
monitored network are required to be considered in or-
der to verify the candidate object o.

Note that once the monitored network is computed
it remains valid as long as q and o remain in their re-
spective safe regions. Hence, the recomputation of the
monitored network is not required unless at least one of
q and o does not leave its safe region. Recall that if q or
o leaves its safe region, the filtering phase is required to
be called again. Hence, the monitored network remains
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valid as long as the filtering phase is not required to be
called again.

To compute the monitored network, we use an algo-
rithm similar to Dijkstra’s algorithm and Algorithm 4
and expand the network starting from the safe region
of o until we visit every vertex v such that minimum
SNDist of v from the safe region of o is at most equal
to MaxSNDist(o, q).

To enable efficient computations of SNDist between
o and other objects in the monitored network, we main-
tain the minimum SNDist of each explored vertex from
the safe region of o. In addition, we also maintain the
list of objects that lie on the monitored network of o.
An object o′ notifies the server when it enters or leaves
the monitored network of the object o and the list of
the objects that lie on the monitored network of o is
updated accordingly.

Optimizations. We present two optimizations that
can help in terminating the computation of the moni-
tored network earlier.

1. During the computation of the monitored network,
we do not need to expand the network beyond a vertex
v if the shortest path between v and the safe region of
o contains the query q. This is because any object o′

that lies beyond the vertex v satisfies SNDist(o, o′) >
SNDist(o, q). For example, in Fig. 24, an object that
lies on segment s[q,a] (e.g., o2) cannot help in verifying
the object o3 because the shortest path from the safe
region of o3 to the segment s[q,a] contains the query q.
Hence, we do not need to include this segment in the
monitored network.

2. Similar to the definition of MaxSNDist(o, q), we
define MinSNDist(o, q) as the minimum SNDist(o, q)
between the safe regions of o and q. In the example of
Fig. 24, MinSNDist(o3, q) is 5 and MaxSNDist(o, q)
is 14 where the safe regions of o3 and q are s[m,g] and
s[n,c], respectively.

Note that if there exists an object o′ such that it
satisfies MaxSNDist(o, o′) < MinSNDist(o, q) then
the object o cannot be the RNN of q as long as the
objects o and o′ and the query q remain in their re-
spective safe regions. We utilize this observation and
expand the monitored network such that it covers every
point p such that SNDist(o, p) < MaxSNDist(o, o′).
Here o′ corresponds to the object that has smallest
MaxSNDist(o, o′) among all the objects discovered so
far. For instance, in Fig. 24, MaxSNDist(o3, o4) is 12
(the safe region of o4 is s[b,m]) and MaxSNDist(o3, o1)
is 9. Hence, during the computation of the monitored
network, we may stop expanding the network when the
expanded network contains every point p that has min-
imum SNDist from the safe region of o3 at most 9. To
verify the object o, we compute SNDist between o and
every other object (including the query) that lies on the
expanded network.

Note that if we use the optimization presented above,
the computed monitored network does not need to be
updated as long as o, o′ and q remain in their respec-
tive safe regions. If o′ is also a candidate object (e.g.,
o′ = o3 in Fig. 24), the monitored network remains valid
as long as the filtering phase is not called again. Oth-
erwise, when the object o′ moves out of its safe region
the monitored network is recomputed to guarantee the
correctness.

4.6 Safe regions consisting of more than one edges

In this section, we show that our proposed algorithm
can support the safe regions consisting of more than one
edges and segments. Assume that the safe region of an
object o consists of more than one edges and segments.
We denote its safe region o.s by its end points (i.e.,
boundary points). Consider the example of Fig. 23 and
assume that the safe region of the object o3 is shown in
thick lines. The end points of the safe region of o3 are
m, g, d, f and a.
The safe region of a query q is always chosen such

that it does not overlap with the safe region of any
other object. The algorithm 4 is modified as follows.
At line 3, all the end points of the safe region of q are
inserted in the heap with keys set to zero. Moreover, the
vertices that lie inside the safe region of q are marked
as visited so that they are not considered during the
network expansion. Note that as the key of every end
point of q.s is set to zero, the key of a de-heaped vertex
v denotes minimum SNDist from the safe region of q
to the vertex v. At line 10, d is set as the maximum
distance between v and the safe region of o. Note that
these changes guarantee that a vertex v remains dead
as long as q and o remain inside their respective safe
regions.
The rest of the filtering algorithm does not require

any changes. The techniques and optimizations we pre-
sented in the verification phase can be immediately ap-
plied and do not require any change.

4.7 Extensions

4.7.1 Queries on directed graphs

In the previous section, our main focus was on the RNN
queries in the spatial networks that are represented by
undirected graphs. Our proposed techniques can be eas-
ily extended for the directed graphs. Below, we high-
light the changes we need to make to extend our tech-
niques for the RNN queries on directed graphs.
1. SNDist(x, y) is defined as the total weights of the
edges and the segments on the shortest path from the
point x to the point y.



20

2. Lemma 1 and Lemma 2 are the same except that we
use the shortest path from o to q instead of the shortest
path between q and o. The definition of the dead vertex
remains unchanged.

3. Lemma 3 is the same except that we use shortest
path from v′ to q instead of shortest path between q
and v′.

4. Lemma 4 is not applicable whereas Lemma 5 and
Lemma 6 remain unchanged.

5. Filtering phase (Algorithm 4) is similar except that
we expand the network from any vertex v to v′ (see
line 6) only if there is a directed edge from the vertex
v′ to v. Please note that we expand the network in
the direction opposite to the direction of edges. This is
because the lemmas are applicable on the path from an
object o to q and not on the path from q to o.

6. The verification phase remains same and we compute
the monitored network by expanding the network in the
direction of the edges.

4.7.2 RkNN queries

We briefly discuss the necessary changes that are re-
quired to extend our proposed techniques for RkNN
queries.

1. Lemma 1 is restated as follows. An object o cannot be
the RkNN of q if the shortest path from o to q contains
at least k other objects.

2. A dead vertex v is redefined as a vertex v for which
there exist at least k objects such that for every such
object o, SNDist(v, o) < SNDist(v, q). After redefin-
ing the dead vertices, Lemma 2 and Lemma 3 do not
require any modification.

3. Lemma 4 is the same except that it is applicable
only on the edges that contain at least (k + 1) objects
on it. Recall that Lemma 4 is only applicable for RkNN
queries on undirected graphs. For the RkNN queries on
the directed graphs, we do not consider Lemma 4.

4. Extreme objects are redefined. An object o is called
an extreme object of an edge e(v1, v2) if either the seg-
ment s[o,v1] or the segment s[o,v2] contains at most k−1
other objects. Lemma 5 holds after the extreme objects
are redefined as above.

5. Lemma 6 is restated as follows. Regardless of the
number of queries in the system. An edge that does not
contain any query has at most 2k objects that can be
the RkNNs of any of the queries.

6. Filtering phase is similar except that we mark the
vertices as dead according to the redefined definition of
the dead vertices.

7. Verification phase is similar except that an object o
is reported as RkNN iff there are at most k−1 other ob-
jects closer to o than q. Computation of the monitored
network remains unchanged.

4.7.3 Bichromatic queries

Let P and O be the two sets of objects and assume that
the query q belongs to O. In the filtering phase, only the
objects of type O are considered to prune the network.
The objects of type O that are discovered during the
filtering phase are called filtering objects. The objects of
type P that lie on the unpruned network are called the
candidate objects. The set of candidate objects remain
valid unless at least one of the following three happens:
i) the query leaves its safe region; ii) one of the filtering
objects leaves its safe region; iii) one of type P objects
enters or leaves the unpruned network. In the case when
one of the first two events happens, the filtering and
verification phases are called. If only the third event
happens, we do not need to call the filtering phase again
because the unpruned network is not affected by the
movement of type P objects. Instead, we update the
set of candidate objects by adding the objects of type
P that enter the unpruned network and removing the
type P objects that leave the unpruned network.

5 Experiment Results

All the experiments were conducted on Intel Xeon 2.4
GHz dual CPU with 4 GBytes memory. All the algo-
rithms (including the competitors) were implemented in
C++. Our algorithm is called SAC (Swift And Cheap)
due to its computational efficiency and communication
cost saving.

As discussed in Section 2.3, there may be some ap-
plications where the objects have to report their loca-
tions to the server for other types of queries like range
queries, nearest neighbor queries etc. In such case, the
server is responsible for checking whether an object lies
in the safe region or not. In order to show the superi-
ority of our technique in all kinds of applications, the
computation costs shown in the experiments include the
cost of checking whether each object lies in its safe re-
gion or not. Obviously, the computation cost would be
less for the case when the clients report their locations
only when they leave their safe regions.

In Section 5.1, we evaluate the performance of our
Euclidean space algorithm. The performance of our spa-
tial network algorithm is evaluated in Section 5.2.

5.1 Query Processing in Euclidean Space

For RNN queries (k = 1), we compare our algorithm
with state-of-the-art algorithm (IGERN) [18] which has
been shown superior in [18] to other RNN monitor-
ing algorithms [49,47]. For RkNN queries (k > 1), we
compare our algorithm with CRkNN [47] which is the
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only available RkNN monitoring algorithm. In accor-
dance with work in [18] and [47], we choose 64 × 64
grid structure for IGERN and 100× 100 grid structure
for CRkNN. For our algorithm, the grid cardinality is
64× 64.
Similar to previous work, we simulated moving cars

by using the spatio-temporal data generator [2]. Input
to the generator is road map of Texas4 and output is a
set of cars (objects and queries) moving on the roads.
The size of data universe is 1000 Km× 1000 Km. The
parameters of datasets are shown in Table 2 and default
values are shown in bold.
Parameter Range

Number of objects (×1000) 40, 60, 80, 100, 120
Number of queries 100, 300, 500, 700, 1000
Average speed (in Km/hr) 40, 60, 80, 100, 120
Side length of safe region (in Km) 0.2, 0.5, 1, 2, 3, 4
Mobility (%) 5, 20, 40, 60, 80, 100

Table 2 System parameters for experiments in Euclidean space

The server reports the results continuously after ev-
ery one second (i.e., the timestamp length is 1 sec).
Both the objects and queries are cars moving on roads
and they have similar properties (e.g., average speed,
mobility). Mobility refers to the percentage of objects
and queries that are moving at any timestamp (per-
centage of objects and queries that change their loca-
tions between two consecutive timestamps). All queries
are continuously monitored for five minutes (300 times-
tamps) and the results shown correspond to total CPU
time and communication cost. Communication cost is
the total number of messages sent between clients and
server.
In Fig. 25, we conduct experiments to verify the cost

analysis presented in Section 3.4. The experiments show
that the actual cost is around 12% to 25% of the upper
bound. We also observe that the actual results follow a
trend similar to the trend anticipated by our theoretical
analysis (e.g., the cost increases if the safe region is too
small or too large).
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Fig. 25 Verifying theoretical upper bound

Fig. 26(a) shows the effect of the safe region size
on computation time our algorithm and IGERN [18].
The computation cost consists of update handling cost,
filtering cost and verification cost. The update han-
dling cost includes the cost of checking whether an ob-

4 http://www.census.gov/geo/www/tiger/

ject/query is in its safe region or not and updating the
underlying grid structure if the object/query leaves the
safe region. If the safe region is too small, the set of
candidate objects is affected frequently and the filter-
ing is required more often. Hence, the cost of the fil-
tering phase increases. On the other hand, if the safe
region is too large, the number of candidate objects
increases and the verification of these candidates con-
sumes more computation time. Also, the cost of filtering
phase increases because less space can be pruned if the
safe region is large. The update handling cost is larger
for smaller safe regions because the objects and queries
leave the safe regions more frequently.
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Fig. 26 Effect of safe region size

Fig. 26(b) studies the effect of safe region size on com-
munication cost. As studied in Section 3.4, the number
of source-initiated updates increases if the side length
of the safe region is small. On the other hand, if the
safe region is large, the number of server-initiated up-
dates increases. Fig. 26(b) verifies this. In current ex-
periment settings, our algorithm performs best when
the side length of the safe region is 1Km so we choose
this value for the remaining experiments.
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Fig. 27 Effect of datasize

Fig. 27 shows the effect of the number of objects. Our
algorithm not only outperforms IGERN but also scales
better. The composition of CPU time is not shown due
to the huge difference in the performance of both algo-
rithms. However, the composition of CPU time is sim-
ilar to Fig. 26(a) for our algorithm. For IGERN, the
filtering phase takes 95% to 99% of the total cost in
all experiments. This is because the expensive filtering
phase is called frequently.

Fig. 28 studies the effect of the average speed of
queries and objects. Fig. 28(a) shows that the compu-
tation time increases for both of the approaches as the
speed increases. For our approach, the time increases
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Fig. 28 Effect of Speed

because the objects and queries leave their respective
safe regions more frequently and the filtering phase is
called more often. Fig. 28(b) shows that IGERN re-
quires an order of magnitude more messages than our
approach. The communication cost for our approach
increases due to the larger number of source-initiated
updates as the speed increases.
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Fig. 29 Effect of data mobility

Fig. 29(a) compares the computation time for in-
creasing data mobility. As expected, IGERN performs
good when the object mobility is low (e.g., 5%). How-
ever, its computation cost increases significantly as the
object mobility increases. Our algorithm performs bet-
ter for all cases and scales decently. Fig. 29(b) studies
the effect of objects and queries mobility on the com-
munication cost. Since only the moving objects report
their locations, the number of messages increase with
the increase in mobility. However, our algorithm con-
sistently gives improvement of more than an order of
magnitude compared to IGERN.
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Fig. 30 Effect of number of queries

Fig. 30 studies the effect of number of queries. In
Fig. 30(a), we note that our algorithm gives more than
an order of magnitude improvement over IGERN in
terms of CPU time and scales better. In accordance
with the analysis in Section 3.4, Fig. 30(b) show that
the communication cost of our approach increases with
the number of queries.
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Fig. 31 Effect of k

Fig. 31 studies the effect of k on communication and
computation time. Fig. 31(a) compares our approach
with [47] referred as CRkNN. Computation cost of both
approaches increases with increase in k. However, our
algorithm scales better (note the log scale). CRkNN
continuously monitors 6k range queries to verify the
candidate objects. To monitor these queries, it keeps a
counter for the number of objects leaving and entering
within the range. However, this information becomes
useless when the candidate object or query changes its
location. As shown in Fig. 31(b), communication cost
for our approach increases for larger values of k. This
is mainly because the number of candidate objects that
require verification increases with k. Communication
cost of our algorithm reaches to 24 million when k = 64
(CPU time 23, 000 sec). We were unable to run CRkNN
for k > 16 due to its large main-memory requirement.
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Fig. 32 shows the effectiveness of pruning rules for
different safe region sizes. Pruning rules are applied in
the same order as in Algorithm 1. If a pruning rule fails
to prune an entry (an object or a node of the grid-tree),
the next pruning rule is used to prune it. Fig. 32 shows
that a greater number of entries are pruned if the safe
region size is small. Majority of the entries are pruned
by the metric based pruning (pruning rule 3) when the
safe regions are small. The average time to prune an
entry by metric based pruning, dominance pruning and
half-space pruning is 1.1, 2.3 and 10.5 micro seconds,
respectively.

Now, we show the effectiveness of grid-tree over previ-
ous proposed grid access methods CPM [25] and YPK
[54]. Fig. 33 shows the total CPU time for our RNN
monitoring algorithm when the underlying constrained
nearest neighbor algorithm (and marking and unmark-
ing of cells) use CPM, YPK and grid-tree. We change
the grid size from 8 × 8 to 256 × 256. Grid-tree based
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RNN monitoring algorithm scales much better with in-
crease in number of cells.

5.2 Query Processing in Spatial Networks

To the best of our knowledge, we are the first to propose
an algorithm to continuously monitor RNN queries in
spatial networks for the case where both the queries and
data objects continuously change their locations. We
compare our algorithm (SAC) with a näıve algorithm.
The safe regions used by SAC consist of at most one
edge. Näıve algorithm recomputes the results at every
timestamp by applying our algorithm and setting the
safe region size to zero (i.e., safe region is not used).
We choose a better competitor of our algorithm and
call it NSR (No Safe Region). NSR is the same as näıve
algorithm except that it calls the filtering phase only
when the query object or one of the candidate objects
changes its location. As obvious, the näıve algorithm
performs worse than NSR. Hence, we compare our al-
gorithm with NSR.

We use the road network of California5 that consists
of around 22, 380 road segments (edges). Each object in
the data set randomly picks a vertex and starts moving
towards it with a certain speed (a system parameter).
When the object reaches at its destination vertex, it
randomly chooses one of its adjacent vertices and con-
tinues travelling towards it. The queries are generated
similarly. Table 3 shows the default parameters used in
our experiments.
Parameter Range

Number of objects (×1000) 1, 2.5, 5, 10, 15, 30, 50, 70, 150,
300

Number of queries 25, 100, 150, 250, 500, 700, 1000
Average speed (in Km/hr) 40, 60, 80, 100, 120
Mobility (%) 5, 20, 40, 60, 80, 100

Table 3 System Parameters for experiments in road network

Each query is continuously monitored for 300 times-
tamps (five minutes) and the results shown correspond
to the total CPU time and total communication cost.
The communication cost corresponds to the number of
messages sent between the server and clients.
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Fig. 34 Effect of datasize

5 http://www.cs.fsu.edu/ lifeifei/SpatialDataset.htm

In Fig. 34, we study the effect of number of objects
on the road network. Fig. 34(a) shows the effect on the
computation time of both the algorithms (note that log-
scale is used). Interestingly, the performance of both the
algorithms is poor when the number of objects is too
small or too large. When the number of objects is large,
the performance becomes poor mainly because updates
of more objects are needed to be handled. Since the
dominant cost is handling these location updates, both
of the algorithms perform similar when the number of
objects is large.

When the number of objects is small, greater num-
ber of edges are to be explored for filtering and ver-
ification phases which results in greater computation
time. Note that if each edge contains several objects,
the RNN queries can be answered by visiting at most
one or two edges. Hence, it would be more interesting to
compare the performance of the algorithms where the
density of objects (number of objects per edge) is low.
For this reason, we choose 5000 objects for the rest of
the experiments.

Fig. 34(b) shows the trend that the communication
costs of both algorithms increase with the increase in
number of objects (log scale is used for x-axis). How-
ever, the safe region based algorithm SAC scales much
better than NSR.
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Fig. 35 Effect of data mobility

Fig. 35 studies the effect of data mobility on both
of the algorithms. As expected, both algorithms per-
form worse as the data mobility increases. However,
SAC scales much better than NSR both in terms of
computation time and communication cost.
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Fig. 36 Effect of speed

Fig. 36 studies the effect of speed of the objects and
queries on the algorithms. The experiments demonstrate
that the performance of the proposed technique is not
significantly affected by the speed. Although the objects
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and queries leave their safe regions more frequently as
the speed increases, the communication cost is not sig-
nificantly affected. This is because the total communi-
cation cost is dominated by the server initiated updates
(e.g., when the server requests the objects to send their
exact locations in order to verify if a candidate is the
RNN or not). The number of server initiated updates
does not depend on the speed hence the total commu-
nication cost is not significantly affected by the speed.
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Fig. 37 Effect of number of queries

In Fig. 37, we change the number of queries and show
the effect on the performances of both the algorithms.
The computation times for both of the algorithms in-
crease as the number of queries increases but SAC scales
much better. The communication cost of NSR does not
depend on the number of queries because each object
reports its location whenever it changes its location.
On the other hand, the communication cost of SAC in-
creases mainly because more objects are required to be
verified if the number of queries is large. To verify more
objects, greater number of server initiated updates are
required and this results in increased communication
cost. Fig. 37(b) shows that the communication cost of
SAC is more than the cost of NSR when a large pro-
portion of the data objects are also the query objects
(e.g., 1000 queries among 5000 objects).

We remark that in the worst case the communica-
tion cost of SAC can be at most two times the cost
of NSR. This is because, for each object, at most two
messages are to be sent (one to request the location
and one to receive the server). Nevertheless, in the ap-
plications where the proportion of queries is large, the
clients (data objects) may be configured to send their
locations at every timestamp. The communication cost
in this case would be the same as the cost of NSR.
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Fig. 38 shows the average time taken by a call to
filtering phase, a call to compute the monitored net-

work (shown as MN computation) and a call to verify
the objects (after the monitored network has been com-
puted). As expected, the cost of filtering and computing
the monitored network is high if the number of objects
is too large or too small. The cost of verification in-
creases when the data size is too small. This is mainly
because the number of candidate objects increases when
the data size is small. The next experiment confirms
this trend.
In Fig. 39, we study the effect of data size on the num-

ber of candidate objects and the number of RNNs. We
observe that the number of candidate objects is large
when the data size is small. This is because the algo-
rithm needs to explore more edges during the filtering
phase and the pruning power decreases.

6 Conclusion

In this paper, we studied the problem of continuous re-
verse k nearest neighbor monitoring in Euclidean space
and in spatial networks. Our proposed approach not
only significantly improves the computation time but
also reduces the communication cost for client-server
architectures. We also present a thorough theoretical
analysis for our Euclidean space RNN algorithm. Fur-
thermore, we show that our algorithms can be extended
to handle other variants of RNN queries in Euclidean
space and in spatial networks. Experiment results demon-
strate an order of magnitude improvement in terms
of both the computation time and the communication
cost. The theoretical analysis for our spatial network
RNN algorithm and the automatic computation of the
optimal size of the safe regions remain two open prob-
lems.
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17. C. S. Jensen, J. Kolárvr, T. B. Pedersen, and I. Timko. Near-
est neighbor queries in road networks. In GIS, pages 1–8,
2003.

18. J. M. Kang, M. F. Mokbel, S. Shekhar, T. Xia, and D. Zhang.
Continuous evaluation of monochromatic and bichromatic re-
verse nearest neighbors. In ICDE, 2007.

19. M. Kolahdouzan and C. Shahabi. Voronoi-based k nearest
neighbor search for spatial network databases. In VLDB,
pages 840–851, 2004.

20. M. R. Kolahdouzan and C. Shahabi. Continuous k-nearest
neighbor queries in spatial network databases. In STDBM,
pages 33–40, 2004.

21. F. Korn and S. Muthukrishnan. Influence sets based on re-
verse nearest neighbor queries. In SIGMOD, 2000.

22. I. Lazaridis, K. Porkaew, and S. Mehrotra. Dynamic queries
over mobile objects. In EDBT, pages 269–286, 2002.

23. K.-I. Lin, M. Nolen, and C. Yang. Applying bulk insertion
techniques for dynamic reverse nearest neighbor problems.
ideas, 00:290, 2003.

24. F. Liu, T. T. Do, and K. A. Hua. Dynamic range query
in spatial network environments. In DEXA, pages 254–265,
2006.

25. K. Mouratidis, M. Hadjieleftheriou, and D. Papadias. Con-
ceptual partitioning: An efficient method for continuous near-
est neighbor monitoring. In SIGMOD, 2005.

26. K. Mouratidis, D. Papadias, S. Bakiras, and Y. Tao. A
threshold-based algorithm for continuous monitoring of k
nearest neighbors. TKDE, pages 1451–1464, 2005.

27. K. Mouratidis, M. L. Yiu, D. Papadias, and N. Mamoulis.
Continuous nearest neighbor monitoring in road networks.
In VLDB, pages 43–54, 2006.

28. S. Nutanong, R. Zhang, E. Tanin, and L. Kulik. The v*-
diagram: a query-dependent approach to moving knn queries.
PVLDB, 1(1):1095–1106, 2008.

29. A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu. Spatial
Tessellations: Concepts and Applications of Voronoi Dia-
grams. Wiley, 1999.

30. D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao. Query
processing in spatial network databases. In VLDB, pages
802–813, 2003.

31. S. Prabhakar, Y. Xia, D. V. Kalashnikov, W. G. Aref, and
S. E. Hambrusch. Query indexing and velocity constrained
indexing: Scalable techniques for continuous queries on mov-
ing objects. IEEE Trans. Computers, 51(10):1124–1140,
2002.

32. M. Safar, D. Ebrahimi, and D. Taniar. Voronoi-based re-
verse nearest neighbor query processing on spatial networks.
Multimedia Syst., 15(5):295–308, 2009.

33. H. Samet, J. Sankaranarayanan, and H. Alborzi. Scalable
network distance browsing in spatial databases. In SIGMOD
Conference, pages 43–54, 2008.

34. J. Sankaranarayanan, H. Samet, and H. Alborzi. Path oracles
for spatial networks. PVLDB, 2(1):1210–1221, 2009.

35. C. Shahabi, M. R. Kolahdouzan, and M. Sharifzadeh. A road
network embedding technique for k-nearest neighbor search
in moving object databases. In ACM-GIS, pages 94–10, 2002.

36. S. Shekhar and J. S. Yoo. Processing in-route nearest neigh-
bor queries: a comparison of alternative approaches. In GIS,
pages 9–16, 2003.

37. A. Singh, H. Ferhatosmanoglu, and A. S. Tosun. High di-
mensional reverse nearest neighbor queries. In CIKM, 2003.

38. Z. Song and N. Roussopoulos. K-nearest neighbor search for
moving query point. In SSTD, pages 79–96, 2001.

39. I. Stanoi, D. Agrawal, and A. E. Abbadi. Reverse nearest
neighbor queries for dynamic databases. In ACM SIGMOD
Workshop on Research Issues in Data Mining and Knowl-
edge Discovery, pages 44–53, 2000.

40. D. Stojanovic, A. N. Papadopoulos, B. Predic, S. Djordjevic-
Kajan, and A. Nanopoulos. Continuous range monitoring
of mobile objects in road networks. Data Knowl. Eng.,
64(1):77–100, 2008.

41. H.-L. Sun, C. Jiang, J.-L. Liu, and L. Sun. Continuous re-
verse nearest neighbor queries on moving objects in road net-
works. In WAIM, pages 238–245, 2008.

42. Y. Tao, D. Papadias, and X. Lian. Reverse knn search in
arbitrary dimensionality. In VLDB, 2004.

43. Y. Tao, D. Papadias, and Q. Shen. Continuous nearest neigh-
bor search. In VLDB, pages 287–298, 2002.

44. Y. Tao, M. L. Yiu, and N. Mamoulis. Reverse nearest neigh-
bor search in metric spaces. TKDE, 18(9), 2006.

45. Q. T. Tran, D. Taniar, and M. Safar. Reverse k nearest
neighbor and reverse farthest neighbor search on spatial net-
works. T. Large-Scale Data- and Knowledge-Centered Sys-
tems, 1:353–372, 2009.

46. H. Wang and R. Zimmermann. Snapshot location-based
query processing on moving objects in road networks. In
GIS, page 50, 2008.

47. W. Wu, F. Yang, C. Y. Chan, and K.-L. Tan. Continuous
reverse k-nearest-neighbor monitoring. In MDM, 2008.

48. W. Wu, F. Yang, C. Y. Chan, and K.-L. Tan. Finch: Evalu-
ating reverse k-nearest-neighbor queries on location data. In
VLDB, 2008.

49. T. Xia and D. Zhang. Continuous reverse nearest neighbor
monitoring. In ICDE, page 77, 2006.

50. X. Xiong, M. F. Mokbel, and W. G. Aref. Sea-cnn: Scalable
processing of continuous k-nearest neighbor queries in spatio-
temporal databases. In ICDE, pages 643–654, 2005.

51. C. Yang and K.-I. Lin. An index structure for efficient reverse
nearest neighbor queries. In ICDE, 2001.

52. M. L. Yiu and N. Mamoulis. Reverse nearest neighbors search
in ad hoc subspaces. TKDE, 19(3):412–426, 2007.

53. M. L. Yiu, D. Papadias, N. Mamoulis, and Y. Tao. Reverse
nearest neighbors in large graphs. In ICDE, 2005.

54. X. Yu, K. Q. Pu, and N. Koudas. Monitoring k-nearest neigh-
bor queries over moving objects. In ICDE, 2005.

55. J. Zhang, M. Zhu, D. Papadias, Y. Tao, and D. L. Lee.
Location-based spatial queries. In SIGMOD Conference,
pages 443–454, 2003.


