
Merge-Replay: Efficient IFDS-Based Taint Analysis
by Consolidating Equivalent Value Flows

Yujiang Gui∗
University of New South Wales

Sydney, Australia
yujiang.gui@unsw.edu.au

Dongjie He∗,†
University of New South Wales

Sydney, Australia
dongjieh@cse.unsw.edu.au

Jingling Xue†
University of New South Wales

Sydney, Australia
jingling@cse.unsw.edu.au

Abstract—The IFDS-based taint analysis employs two mutually
iterative passes: a forward pass that identifies taints and a
backward pass that detects aliases. This approach ensures both
flow and context sensitivity, leading to remarkable precision. To
preserve flow sensitivity, the IFDS-based taint analysis enhances
data abstractions with activation statements that pinpoint the
moment they acquire taint. Nonetheless, this mechanism can in-
advertently introduce equivalent, yet redundant, value flows. This
occurs when distinct activation statements are linked with the
same data abstraction, resulting in unnecessary computational
and memory-intensive demands on the analysis process.

We introduce MERGEDROID, a novel approach to improve the
efficiency of IFDS-based taint analysis by consolidating equiv-
alent value flows. This involves merging activation statements
linked to the same data abstraction from various reachable data
facts that are reachable at a given program point during the
backward pass. This process generates a representative symbolic
activation statement applicable to all equivalent data facts,
reducing them to a single symbolic data fact. During the forward
pass, when this symbolic data fact returns to its point of creation,
the analysis reverts to the original data facts alongside their initial
activation statements. This merge-and-replay strategy eliminates
redundant value flow propagation, resulting in performance
gains. Furthermore, we also improve analysis efficiency and
precision by leveraging context-sensitive insights from activation
statements. Our evaluation on 40 Android apps demonstrates that
MERGEDROID significantly enhances IFDS-based taint analysis
performance. On average, MERGEDROID accelerates analysis by
9.0× while effectively handling 6 more apps scalably. Addition-
ally, it reduces false positives by significantly decreasing reported
leak warnings, achieving an average reduction of 19.2%.

Index Terms—Taint analysis, IFDS, scalability, precision.

I. INTRODUCTION

Static taint analysis is a foundational approach for monitor-
ing the potential flow of sensitive data from program sources
to untrusted sinks. It has wide-ranging applications, including
memory leak detection [1], SQL injection identification [2],
[3], and data leak validation [4], [5] across industries. The
analysis algorithm’s precision and efficiency significantly im-
pact these applications’ effectiveness.

While FLOWDROID [4] stands as a leading tool for static
taint analysis of Android apps, its approach can pose com-
putational and memory challenges. It relies on an IFDS-
based algorithm [6] with two mutually iterative passes: a

∗, † The first two authors contributed equally and are listed in alphabetical
order by their last names, while the last two authors share corresponding
authorship.

forward pass to detect taints and a backward pass to uncover
aliases. Each pass is handled by a separate IFDS solver.
The forward solver, upon detecting a new taint and needing
related aliased taints, invokes the backward solver to search
in reverse. Discovered aliased taints are then relayed to the
forward solver for further propagation. Although FLOWDROID
is known for its high precision due to the flow-sensitive and
context-sensitive nature of the IFDS algorithm [6] employed,
a previous study [7] revealed that it may struggle to analyze
some Android apps, even on a server with 730GB RAM, due
to exceeding a 24-hour time budget or memory limitations.

We introduce MERGEDROID, an innovative approach to
enhance IFDS-based taint analysis, particularly FLOWDROID.
Our focus is on consolidating equivalent value flows, lever-
aging an unexplored insight that sets it apart from existing
FLOWDROID acceleration methods [8]–[11]. In the context of
FLOWDROID, the forward solver propagates an aliased taint
forward immediately upon discovery by the backward solver.
However, it activates the taint only upon reaching the pro-
gram point where the corresponding alias query was initiated,
maintaining flow sensitivity. To achieve this, FLOWDROID
employs activation statements to decorate data abstractions
(i.e., statements triggering alias queries) and discern their taint
activation moments. Nonetheless, as elaborated in Section II,
the presence of multiple activation statements linked to the
same data abstraction can lead to equivalent and thus redun-
dant value flows. This redundancy unnecessarily heightens the
computational and memory demands of the analysis.

Built upon this insight, MERGEDROID employs a simple
yet effective merge-and-replay algorithm to consolidate equiv-
alent value flows while maintaining precision. This approach
is conceptually straightforward. During the backward pass,
activation statements linked to the same data abstraction
from diverse data facts reachable at a given program point
are merged. This yields a representative symbolic activation
statement applicable to all equivalent data facts, reducing them
to a single symbolic data fact. During the forward pass, as the
symbolic data fact propagates back to the same program point,
the analysis reverts to the original data facts alongside their
initial activation statements. This merge-and-replay process
eliminates equivalent and redundant value flows originating
from activation statements between these two points, all with-
out compromising precision.

Establishing suitable merge-and-replay points poses a chal-
lenge, particularly given the distributive nature of IFDS-based
taint analysis [6]. Deploying merge-and-replay at every pro-
gram point for all data facts can result in excessive overhead.
To tackle this, we opt to strategically implement merge-and-
replay solely at callsites. When the backward solver propagates
a new data fact from a callee method m′ to a callsite c within
method m, our merge procedure activates. This procedure
generates a symbolic activation statement s and produces
a corresponding symbolic data fact, after which backward
propagation resumes as usual. Subsequently, as the forward
solver propagates a symbolic data fact with s as its activation
statement to c, just prior to advancing into m′, our replay
procedure comes into play. This contextualizes s in the context
of both m and m′, executing merge-and-replay in a context-
sensitive manner to prevent spurious value flows into callee
methods. This results in improved efficiency and precision.

To demonstrate the improved performance of MERGE-
DROID compared to FLOWDROID, we have evaluated both
tools on a set of 40 Android apps, comprising 20 apps from
[9], 13 apps from [10], and 7 apps from F-Droid [12]. Each app
is allocated a time budget of 3 hours and a memory budget of
256GB. Our results show that MERGEDROID has successfully
analyzed 6 apps that FLOWDROID failed to complete due to
exceeding the time budget, i.e., OoT (out of time). For the
remaining 34 apps, MERGEDROID has significantly reduced
the number of path edges and the amount of memory used
by an average of 9.7× and 5.2×, respectively. This reduction
led to an average speedup of 9.0× for MERGEDROID over
FLOWDROID (with the best speedup of 137.9× achieved in
one app). Furthermore, MERGEDROID has effectively reduced
false positives by significantly decreasing the number of
reported leak warnings by an average of 19.2%.

The paper makes the following main contributions:
• A novel merge-and-replay algorithm for consolidating

equivalent value flows and consequently improving the
efficiency and precision of FLOWDROID;

• an open-source implementation of MERGEDROID; and
• an extensive evaluation (in terms of efficiency and pre-

cision) of MERGEDROID against FLOWDROID on both
micro-benchmarks and real-world Android apps.

II. MOTIVATION

We utilize a carefully constructed example (Section II-A)
to illustrate the functioning of FLOWDROID in detecting data
leaks (Section II-B), and to demonstrate how MERGEDROID’s
merge-and-replay mechanism operates while highlighting its
efficiency and precision advantages (Section II-C).

A. The Motivating Example

The motivating example, shown in the grey-shaded back-
ground of Figure 1, contains two classes, A and B (line 1),
and four static methods: foo() (lines 2-11), goo() (lines
12-14), bar() (lines 15-19), and main() (lines 20-28). In
main(), s1 is tainted by source() and then passed into
bar() (line 25) and foo() (line 26), resulting in s2 and s3

being tainted, respectively. It is worth mentioning that foo()
is invoked twice, first at line 18 and then again at line 26. In
foo(), s3 causes p3.f to be tainted after lines 5 and 7 in
the control flow, leading to a data leak at line 27 (due to p1
being aliased with p3). Meanwhile, a data leak arises at line
8 due to p1 = q1 at line 23, resulting in p3 and q3 being
aliased at line 2. Since goo() is called before lines 5 and 7,
no data leak emerges at line 13. Additionally, no data leaks
occur at line 10 due to two reasons: (1) r3 does not alias any
of the other three parameters of foo() during its call at line
26, and (2) although r3 aliases with q3, neither r3 nor q3
aliases with p3 during the call to foo() at line 18.

For simplicity, lines 5 and 7 are identical. We could have
added s5 = s3 just before line 5 and replaced its s3 by s5.

B. FLOWDROID: The IFDS-Based Taint Analysis

To address the taint analysis problem, FLOWDROID [4]
employs the conventional IFDS algorithm [6]. The process is
depicted in Figure 1a, where a forward pass identifies tainted
access paths and a backward pass discovers their aliases. Both
passes are simplified into graph reachability tasks on their
respective exploded supergraphs, with gray and red nodes
representing data facts established in the forward and back-
ward passes, respectively. The two passes operate iteratively,
injecting path edges to each other (depicted as →). Note that
understanding our example does not necessitate familiarity
with the concept of path edges (explained in Section III-A).
For clarity, return edges are omitted, and only call edges (→)
and summary edges (→) maintain the reachability relationship.

In Figure 1a, only 0 in main() is initially reachable. As the
forward pass runs, tainted access paths are gradually discov-
ered: s1 is first tainted by source() (line 21), followed by
s2 and s3 (due to parameter passing at lines 25 and 26), and
finally p3.f (due to store statements at lines 5 and 7). When
FLOWDROID injects a path edge to the backward pass to find
aliases of p3.f, it attaches an activation statement at line 5
(7) to decorate the data abstraction in order to maintain flow
sensitivity, forming a new data fact: p3.f ∥ l5 (p3.f ∥ l7).
During the backward pass, FLOWDROID identifies the aliases
p4.f ∥ l5, p2.f ∥ l5, q1.f ∥ l5, and p1.f ∥ l5 (p4.f ∥ l7,
p2.f ∥ l7, q1.f ∥ l7, and p1.f ∥ l7) corresponding to
p3.f ∥ l5 (p3.f ∥ l7). Subsequently, FLOWDROID inserts
appropriate path edges at lines 12, 16, 22, and 23—where
these aliases are defined—into the forward pass. This in-
tegration facilitates the identification of additional tainted
access paths: q1.f ∥ l5, q1.f ∥ l7, p1.f ∥ l5, p1.f ∥ l7,
p1.f, q1.f, q2.f ∥ l5, q2.f ∥ l7, r2.f ∥ l5, r2.f ∥ l7,
q3.f ∥ l5, q3.f ∥ l7, q3.f, r3.f ∥ l5, r3.f ∥ l7, and
r3.f. Note that q3.f ∥ l5 and q3.f ∥ l7 (r3.f ∥ l5 and
r3.f ∥ l7) become q3.f (r3.f) after passing through their
corresponding activation statements. The callsite at line 26
is also an activation statement for p1.f ∥ l5, p1.f ∥ l7,
q1.f ∥ l5, and q1.f ∥ l7, enabling the conclusion that p1.f
(q1.f) is reachable at the program point before line 27. Based
on this taint analysis, FLOWDROID reports three leaks at lines
8, 10, and 27, of which the one at line 10 is a false positive.

 1 class A{} class B { A f; }

 2 void foo(s3, p3, q3, r3) {

 3 goo(p3);

 4 if (...) {

 5 p3.f = s3;

 6 } else {

 7 p3.f = s3;

 8 sink(q3.f); // leak

 9 }

10 sink(r3.f); // false positive

11 }

15 void bar(A s2, B q2) {

16 B p2 = new B();

17 B r2 = q2;

18 foo(s2, p2, q2, r2);

19 }

12 void goo(B p4) {

13 sink(p4.f); // no leak

14 }

20 void main() {

21 A s1 = source();

22 B q1 = new B();

23 B p1 = q1;

24 B r1 = new B();

25 bar(s1, q1);

26 foo(s1, p1, q1, r1);

27 sink(p1.f); // leak

28 }

0 s1 p1.f p1.f || l5 p1.f || l7 q1.f || l5 q1.f || l7 q1.f

s2 q2.f || l5 q2.f || l7 r2.f || l5 r2.f || l7

p4.f || l5 p4.f || l7

s3 p3.f p3.f || l5 q3.f || l5 q3.f || l7 r3.f || l5 r3.f || l7 r3.fp3.f || l7 q3.f

p2.f || l5 p2.f || l7p2.f

Intra-Proc Edges (Forward)

Call Edges (Forward)

Summary Edges Path Edge Injection

Intra-Proc Edges (Backward)

Call Edges (Backward)

(a) FLOWDROID: the classic IFDS-based taint analysis.

 1 class A{} class B { A f; }

 2 void foo(s3, p3, q3, r3) {

 3 goo(p3);

 4 if (...) {

 5 p3.f = s3;

 6 } else {

 7 p3.f = s3;

 8 sink(q3.f); // leak

 9 }

10 sink(r3.f); // no leak

11 }

15 void bar(A s2, B q2) {

16 B p2 = new B();

17 B r2 = q2;

18 foo(s2, p2, q2, r2);

19 }

12 void goo(B p4) {

13 sink(p4.f); // no leak

14 }

20 void main() {

21 A s1 = source();

22 B q1 = new B();

23 B p1 = q1;

24 B r1 = new B();

25 bar(s1, q1);

26 foo(s1, p1, q1, r1);

27 sink(p1.f); // leak

28 }

0 s1 p1.f p1.f || sym1 q1.f || syml q1.f

s2

p4.f || GAS

s3 p3.f p3.f || l5 q3.f || l5 q3.f || l7p3.f || l7 q3.f

p2.f || sym2p2.f q2.f || GAS r2.f || GAS

r3.f || GASq3.f || GAS

(b) MERGEDROID: the IFDS-based taint analysis incorporated with a merge-and-replay mechanism.

Fig. 1: Comparing FLOWDROID and MERGEDROID in discovering taints (aliases) in a forward (backward) pass performed on
an exploded supergraph with its nodes colored in gray (red). All return edges are omitted to avoid cluttering. Both passes run
mutually iteratively via path edge injection. The data abstractions are expressed as k-limited access paths. Active and inactive
data facts are represented by da and da ∥ as, where da is a data abstraction and as is an activation statement.

Let us highlight the two limitations of FLOWDROID below:
• Redundant Propagation of Equivalent Value Flows.

Propagating multiple data facts that share the same data
abstraction but have different activation statements, such
as pi.f ∥ l5 and pi.f ∥ l7, qj.f ∥ l5 and qj.f ∥ l7, and
rk.f ∥ l5 and rk.f ∥ l7, where 1 ≤ i ≤ 4, 1 ≤ j ≤ 3,
and 2 ≤ k ≤ 3, is unnecessary and inefficient, as it serves
only to waste time and memory resources.

• Activation Statements without Contexts. Activation
statements in FLOWDROID pinpoint where data facts
should be activated, but overlooking their contexts can
lead to false positives. When foo() is analyzed, both l5
and l7 serve as activation statements for q1.f ∥ l5 and
q1.f ∥ l7 during its calls at lines 18 and 26, respectively.
However, if foo() is invoked at line 26, q1.f ∥ l5 and
q1.f ∥ l7, initially established during the analysis, will
propagate backward to find aliases of q1. This causes
them to reach the callsite at line 26, progress to line 23
where p1 and q1 are identified as aliases, and finally
reach bar() into which both q1.f ∥ l5 and q1.f ∥ l7
flow. This sequence creates a context mismatch, prompt-
ing unnecessary propagations and ultimately causing a
false positive at line 10 when foo() is analyzed again.

C. MERGEDROID in a Nutshell

We have designed MERGEDROID that applies a novel
merge-and-replay algorithm to overcome the two limitations
of FLOWDROID, resulting in better efficiency and precision.

In Figure 1b, our merge-and-replay approach is illustrated,
where it introduces a symbolic activation statement to repre-
sent the concrete activation statements of data facts with the
same data abstraction propagated from a callee to a caller dur-
ing the backward pass (Merge). For instance, sym1 and sym2
are introduced as representative symbolic activation statements
when p3.f ∥ l5 and p3.f ∥ l7 are propagated from foo()
into main() and bar(), respectively. During the forward
pass, MERGEDROID switches to the original activation state-
ments of the data facts to continue propagation in callees
(Replay). For example, when p1.f ∥sym1, q1.f ∥sym1,
and p2.f ∥sym2 are propagated back into foo(), MERGE-
DROID recovers the original data facts by replacing symi with
l5 and l7 for both i = 1 and i = 2. However, MERGEDROID
does not select any merge-and-replay point for p3.f ∥ l5
and p3.f ∥ l7 (q3.f ∥ l5 and q3.f ∥ l7) in foo() as it
is difficult to determine which data facts share the same
data abstraction at which program points, particularly in an
IFDS-based algorithm. Our approach allows MERGEDROID to
merge equivalent value-flows adequately, resulting in improved
performance without sacrificing precision.

Our merge-and-replay approach incorporates context infor-
mation in a symbolic activation statement, enabling MERGE-
DROID to prune unnecessary value flows and enhancing both
efficiency and precision. In Figure 1b, during the analysis of
bar(s1, q1) at line 25 where q2 is the corresponding
formal parameter of q1, MERGEDROID employs a call edge
from q1.f ∥sym1 to q2.f ∥GAS. Here, GAS represents

a globally unique symbolic activation statement introduced
solely for computing summaries within MERGEDROID. This
choice deviates from using a call edge from q1.f ∥sym1 to
q2.f ∥sym1, since sym1 originates at line 26 and does not
match the calling context at line 25. This avoids a false leak re-
ported by FLOWDROID at line 10 as follows. When bar() is
analyzed, r2.f ∥GAS is found to be an alias of q1.f ∥sym1
and thus tainted. While propagating r2.f ∥GAS into foo()
at line 18 will indeed taint r3.f ∥GAS, MERGEDROID will
not activate it as GAS is not an activation statement in foo().
As a result, MERGEDROID will not report it as a false positive
at line 10. Note that when foo() is analyzed due to line
18, q3.f ∥GAS is also tainted as q2.f ∥GAS is tainted.
In this scenario, there is an extra overhead incurred while
propagating q3.f ∥GAS within foo() (as it is not introduced
by FLOWDROID). Interestingly, when analyzing goo() due
to line 3, MERGEDROID replaces the call edge from p3.f ∥ ℓ
to p4.f ∥ ℓ with a call edge from p3.f ∥ ℓ to p4.f ∥GAS,
where ℓ ∈ {l5, l7}. This replacement effectively eliminates
the redundant propagation of p4.f within goo().
GAS-related handling introduces occasional additional prop-

agation and, in other instances, prevents redundant propaga-
tion. However, the substantial performance improvement re-
sulting from this approach far surpasses the incurred overhead
(as analyzed in Section IV-E and assessed in Section V).

Below we emphasize several noteworthy characteristics of
MERGEDROID, which utilizes the merge-and-replay strategy:

• Enhanced Efficiency and Precision. MERGEDROID’s
merging of equivalent value flows within FLOWDROID,
as illustrated in Figure 1, results in reduced alias queries
and path edges, ultimately enhancing efficiency. By
introducing context sensitivity into symbolic activation
statements, MERGEDROID prunes spurious value flows in
FLOWDROID, enhancing precision and eliminating false
positives (e.g., as seen at line 10 of Figure 1), while also
further boosting overall performance.

• Multi-Threading Support. MERGEDROID seamlessly
operates within FLOWDROID’s multi-threaded setup.

• Simplicity. MERGEDROID is conceptually simple and
coded in about 400 lines of Java at its core.

III. PRELIMINARIES

We review the classic IFDS framework (Section III-A)
and an IFDS-based taint analysis algorithm (Section III-B) to
provide a foundation for understanding our merge-and-replay
approach used by MERGEDROID, as presented in Section IV.

A. The IFDS Framework

The IFDS framework [6] addresses a special kind of data-
flow problem, called inter-procedural, finite, distributive, sub-
set (IFDS) problem, of which an instance IP is a quintuple
IP = (G∗, D, F,M,⊓), where G∗ = (N∗, E∗) is the super-
graph of the program, D is a finite set of data-flow facts (i.e.,
data facts), F ∈ 2D → 2D is a set of distributive data-flow
functions, M :E∗ 7→ F is a map from the supergraph edges

Algorithm 1: The IFDS-based taint analysis algorithm employed by FLOWDROID [4]. The underlined statements are
essential for facilitating context- and flow-sensitive taint analysis.

1 WFW ← WBW ← PathEdgeFW ← PathEdgeBW ← SFW ← SBW ← ∅
2 Prop(⟨main,0⟩→⟨smain,0⟩,WFW,PathEdgeFW)

3 ForwardAnalysis()
4 BackwardAnalysis()

5 function ForwardAnalysis()
6 while WFW ̸= ∅ ∨WBW ̸= ∅ do
7 Wait until WFW ̸= ∅ and pop ⟨m, d1⟩→⟨n, d2⟩ from WFW

8 if n activates d2 then d2 = ActiveCopy(d2)

9 if n is a call node then
10 Let m′ be the method called at n and r be the return node of n
11 for d3 such that ⟨n, d2⟩ → ⟨sm′ , d3⟩ ∈ E#

FW do
12 Inject(⟨m, d1⟩→⟨n, d2⟩, ⟨m′, d3⟩,E#

BW,PathEdgeBW, SBW,WBW)

13 Prop(⟨m′, d3⟩→⟨sm′ , d3⟩,WFW,PathEdgeFW)
14 for ⟨m′, d3⟩→⟨em′ , d4⟩∈SFW∧⟨em′ , d4⟩→⟨r, d5⟩∈E#

FW do
15 Prop(⟨m, d1⟩→⟨r, d5⟩,WFW,PathEdgeFW)

16 for d3 such that ⟨n, d2⟩ → ⟨r, d3⟩ ∈ E#
FW do

17 Prop(⟨m, d1⟩→⟨r, d3⟩,WFW,PathEdgeFW)

18 elif n = em then
19 Insert ⟨m, d1⟩→⟨n, d2⟩ into SFW
20 for each callsite c that calls m do
21 Let m′′ (r) be the containing method (the return node) of c
22 for ⟨m′′, d3⟩→⟨c, d4⟩ ∈ PathEdgeFW ∧ ⟨c, d4⟩→⟨sm, d1⟩ ∈ E#

FW

∧⟨n, d2⟩→⟨r, d5⟩ ∈ E#
FW do

23 Prop(⟨m′′, d3⟩→⟨r, d5⟩,WFW,PathEdgeFW)

24 else
25 for ⟨n′, d3⟩ such that ⟨n, d2⟩ → ⟨n′, d3⟩ ∈ E#

FW do
26 Prop(⟨m, d1⟩→⟨n′, d3⟩,WFW,PathEdgeFW)
27 if n is an assign node ∧ d3 ̸= d2 then
28 d′3 = InactiveCopy(d3, n)

29 Prop(⟨m, d1⟩→⟨n, d′3⟩,WBW,PathEdgeBW)

30 function Prop(⟨m, d1⟩→⟨n, d2⟩,WorkList,PathEdge)
31 if ⟨m, d1⟩→⟨n, d2⟩ /∈ PathEdge then
32 Insert ⟨m, d1⟩→⟨n, d2⟩ into both PathEdge and WorkList

33 function BackwardAnalysis()
34 while WBW ̸= ∅ ∨WFW ̸= ∅ do
35 Wait until WBW ̸= ∅ and pop ⟨m, d1⟩→⟨n, d2⟩ from WBW

36 if n is a call node then
37 Let m′ be the method called at n and r be the return node of n
38 for d3 such that ⟨n, d2⟩ → ⟨em′ , d3⟩ ∈ E#

BW do
39 Inject(⟨m, d1⟩→⟨n, d2⟩, ⟨m′, d3⟩,E#

FW,PathEdgeFW, SFW,WFW)

40 Prop(⟨m′, d3⟩→⟨em′ , d3⟩,WBW,PathEdgeBW)
41 for ⟨m′, d3⟩→⟨sm′ , d4⟩ ∈ SBW ∧ ⟨sm′ , d4⟩→⟨r, d5⟩ ∈ E#

BW do
42 Prop(⟨m, d1⟩→⟨r, d5⟩,WBW,PathEdgeBW)

43 for d3 such that ⟨n, d2⟩ → ⟨r, d3⟩ ∈ E#
BW do

44 Prop(⟨m, d1⟩→⟨r, d3⟩,WBW,PathEdgeBW)

45 elif n = sm then
46 Insert ⟨m, d1⟩ → ⟨n, d2⟩ into SBW
47 for each callsite c that calls m do
48 Let m′′ (r) be the containing method (the return node) of c
49 for ⟨m′′, d3⟩→⟨c, d4⟩ ∈ PathEdgeBW ∧ ⟨c, d4⟩→⟨em, d1⟩ ∈ E#

BW

∧⟨n, d2⟩ → ⟨r, d5⟩ ∈ E#
BW do

50 Prop(⟨m′′, d3⟩→⟨r, d5⟩,WBW,PathEdgeBW)

51 else
52 for ⟨n′, d3⟩ such that ⟨n, d2⟩ → ⟨n′, d3⟩ ∈ E#

BW do
53 Prop(⟨m, d1⟩ → ⟨n′, d3⟩,WBW,PathEdgeBW)
54 if n is an assign node ∧ d3 ̸= d2 then
55 Prop(⟨m, d1⟩→⟨n, d3⟩⟩,WFW,PathEdgeFW)

56 function Inject(⟨m, d1⟩→⟨c, d2⟩, ⟨m′, d3⟩,E#,PathEdge, S,W)
57 Insert ⟨m, d1⟩→⟨c, d2⟩⟩ into PathEdge
58 Let r be the return node of c
59 for ⟨m′, d3⟩ → ⟨n′, d4⟩ ∈ S ∧ ⟨n′, d4⟩ → ⟨r, d5⟩ ∈ E# do
60 Prop(⟨m, d1⟩→⟨r, d5⟩,W,PathEdge)

to data-flow functions, and the meet operator ⊓ is either union
or intersection (depending on the problem modeled).

The supergraph G∗ consists of a set of control flow graphs
(CFGs), one for each method. For a method m, its CFG Gm

has a unique start node sm ∈ N∗ and exit node em ∈ N∗.
A callsite is represented by a call node c ∈ N∗ and a return
node by r ∈ N∗. The remaining nodes, termed normal nodes,
encompass statements and predicates in the usual manner.
Examples include assign nodes for representing assignment
statements. Edges in E∗ are classified into four kinds: call
edges (connecting a call node to a start node), return edges
(connecting an exit node to a return node), call-to-return edges
(connecting a call node to a return node), and normal edges
(connecting normal nodes).

Reps et al. [6] reduce the IFDS problem to a graph reacha-
bility problem on an exploded supergraph G#

IP = (N#, E#)
transformed from the supergraph G∗, where N# = N∗×(D∪
{0}) and E# = {⟨n1, d1⟩ → ⟨n2, d2⟩ | n1 → n2 ∈ E∗, f =
M(n1, n2), d2 ∈ f(d1)}. Note that f ∈ F is the data-flow
function of the edge n1 → n2 ∈ E∗, and 0 is a special fact

that allows new facts to be generated at some program points.
The graph reachability problem is tackled through an efficient
tabulation algorithm, functioning as a worklist algorithm. It
begins from an initial path edge ⟨smain, 0⟩→⟨smain, 0⟩, with
main signifying the program’s main entry. This algorithm ac-
cumulates additional path edges until a fixed point is achieved.
Each path edge ⟨sm, d1⟩→⟨n, d2⟩ symbolizes a feasible path
suffix in G#IP from ⟨smain, 0⟩ to ⟨n, d2⟩. For comprehensive
details, we refer to [6, Figure 3].

B. IFDS-Based Taint Analysis Algorithm

The IFDS-based taint analysis algorithm utilized by FLOW-
DROID [4] (Algorithm 1) has a forward analysis (lines 5-
29) and a backward analysis (lines 33-55), both of which are
IFDS-based and executed iteratively. To better understand the
algorithm, we introduce some notations below.

In the forward (backward) IFDS analysis (solver), we use
WFW, PathEdgeFW, SFW, and E#

FW (WBW, PathEdgeBW, SBW, and
E#
BW) to represent the worklist, path edges, end summaries (a

variation of traditional summaries [6] extended in [13]), and

exploded supergraph edges. A path edge can be processed
by both analyses, which swap entry and exit nodes, so we
use a variant form of path edge ⟨m, d1⟩ → ⟨n, d2⟩, where
m is a method, n is a statement, and d1 and d2 are data
facts. A data fact d is represented as abs ∥ as, where abs
denotes its data abstraction and as is its activation statement.
Furthermore, d is indicative of being a taint (i.e., active)
when as = null, while it remains inactive otherwise. To
facilitate these operations, two auxiliary functions are used.
ActiveCopy(d) generates an active copy of d by setting
as = null, and InactiveCopy(d, n) returns d if it is
inactive, otherwise, it produces an inactive copy of d with
its activation statement replaced by n.

In Algorithm 1, the forward (lines 5-29) and backward (lines
33-55) IFDS-based analyses detect taints and aliases, respec-
tively. They are initialized in lines 1-4 and only terminate when
both WFW and WBW are empty (lines 6 and 34).

During the forward analysis, a new path edge ⟨m, d1⟩ →
⟨n, d2⟩ is retrieved from WFW (line 7), and if possible, d2 is ac-
tivated (line 8). In FLOWDROID [4], a statement n can activate
a data fact d if n is the activation statement of d or a callsite
that transitively invokes the method where the activation
statement of d is located. Lines 9-26 follow the conventional
approach of the classic IFDS algorithm [6], with the exception
of line 12. In particular, lines 9-17 (18-23) manage the inter-
procedural data flows entering (exiting) a method, while lines
24-26 manage the intra-procedural data flows within a method.
In the case where statement n represents an assignment (lines
27-29), a path edge ⟨m, d1⟩ → ⟨n, d′3⟩ is inserted into the
backward analysis to identify aliases of d3, where d′3 denotes
an inactive data fact produced by InactiveCopy (d3, n).

Moving to the backward analysis, lines 36-53 are also
standard except for line 39. Note that in the backward analysis,
em is considered as the start node, while sm is the exit
node, in contrast to the forward analysis. When analyzing an
assignment statement, a new path edge ⟨m, d1⟩ → ⟨n, d3⟩ is
injected into the forward analysis to find data facts tainted by
d3 (lines 54-55). Despite the current inactivity of d3, these
tainted data facts may become activated in the future (line 8).

In FLOWDROID [4], a call statement can generate new data
facts that need to be propagated to the other IFDS solver. To
handle this, a path edge ⟨m, d1⟩ → ⟨n, d2⟩ is injected at the
call statement into the other solver (lines 12 and 39).

IV. MERGEDROID: OUR APPROACH

We outline our merge-and-replay algorithm in Algorithm 2,
extending Algorithm 1. Here, each line l is replaced by line la,
and optionally lb for 11 ≤ l ≤ 50, with significant changes
highlighted in light gray . The “...” between lines 15a and
22a (42a and 49a) indicates the omission of lines 16–21 (lines
43–48) from Algorithm 1. The notations used in Algorithm 2
are introduced in Section IV-A. We explain where and how
equivalent value-flows are merged in Section IV-B, and how
to replay (unmerge) merged value-flows in Section IV-C and
prune spurious ones in Section IV-D. Finally, we provide an
overhead analysis and discuss design choices in Section IV-E.

A. Notations

Given a data fact d = abs ∥ as, DataAbstraction(d)
and ActivationStmt(d) return its data abstraction abs
and its activation statement as, respectively. Given a sym-
bolic activation statement sym = ⟨abs, caller, callee⟩,
Context(sym) = ⟨caller, callee⟩ returns its context. In
addition, two functions are used for recovering value flows
for sym. Symb2Reps maps sym to the set of activation
statements represented by sym. SymbolIncoming maps sym
to the set of path-edge and abstraction pairs ⟨⟨caller, d1⟩ →
⟨c, d2⟩, abs⟩, where ⟨caller, d1⟩ → ⟨c, d2⟩ is a path edge at
the callsite c, sym is the symbolic activation statement of d2,
⟨caller, callee⟩ = Context(sym), and abs is a data abstrac-
tion of a data fact d3 such that ⟨c, d2⟩→⟨scallee, d3⟩ ∈ E#

FW is
an forward exploded supergraph edge processed.
GAS is a globally unique activation statement introduced

for pruning value flows. We temporarily exclude its related
lines (underlined) from Algorithm 2 in Section IV-B and
Section IV-C, as they will be covered in Section IV-D.

B. Merging Equivalent Value-flows Symbolically

In the backward pass, equivalent data facts with the same
data abstraction abs at any program point can be merged
to avoid separate propagation. Symbolize() (lines 70-
77) creates a special symbolic activation statement sym to
represent their concrete activation statements and returns a
symbolic data fact with abs decorated by sym (line 77) for
propagation. The concrete activation statements of sym are
stored in Symb2Reps(sym) for future use (lines 74-75).

Determining which set of data facts should have their
activation statements symbolized and at which program points
is a challenge because multiple data facts sharing the same
data abstraction can occur at unpredictable program points,
especially for the IFDS algorithm [6]. Symbolizing every data
abstraction at every program point would be impractical due
to memory overhead. Instead, we only perform symbolization
at callsites for the set of data facts propagated from the same
callee method. Furthermore, we merge data facts arriving at
different callsites in the same caller method from the same
callee method. As shown at lines 41b and 49b of Algorithm 2,
we utilize OnReturnFlow(), which calls Symbolize()
(line 103), to acquire a symbolic data fact for ongoing prop-
agation. In alignment with our design decision, a symbolic
activation statement encompasses a data abstraction abs, a
caller method caller, and a callee method callee (line 73).
We will discuss some other design choices in Section IV-E
shortly. Line 76 is concerned with replaying value flows and
will be explained further in Section IV-C.

C. Replaying Merged Value-flows Concretely

In the forward pass, activating data facts containing sym-
bolic activation statements poses a challenge in MERGEDROID
(Algorithm 1). Symbolic activation statements result from
merging equivalent value flows in the backward pass and are
propagated through path edges in the forward analysis. In
Algorithm 1, inactive data facts are activated at line 8 upon

Algorithm 2: The merge-and-replay algorithm in MERGEDROID (built on top of Algorithm 1). The lines shaded in
light gray (underlined) indicate part of the algorithm responsible for value-flow consolidation (value-flow pruning).

function ForwardAnalysis()
11a for d3 such that ⟨n, d2⟩ → ⟨sm′ , d3⟩ ∈ E#

FW do
11b for d′3 ∈ Concretize(⟨m, d1⟩→⟨n, d2⟩,m′, d3) do
12a Inject(⟨m, d1⟩→⟨n, d2⟩, ⟨m′, d′3⟩,E#

BW,PathEdgeBW, SBW,WBW)
13a Prop(⟨m′, d′3⟩→⟨s′m, d′3⟩,WFW,PathEdgeFW)
14a for ⟨m′, d′3⟩→⟨em′ , d4⟩ ∈ SFW ∧ ⟨em′ , d4⟩→⟨r, d5⟩ ∈ E#

FW do
14b d′5 = AttachActivationStmt(d5, d2)

15a Prop(⟨m, d1⟩→⟨r, d′5⟩,WFW,PathEdgeFW)
. . .

22a for ⟨m′′, d3⟩→⟨c, d4⟩ ∈ PathEdgeFW ∧ ⟨c, d4⟩→⟨sm, d1⟩ ∈ E#
FW

∧⟨n, d2⟩→⟨r, d5⟩ ∈ E#
FW do

22b d′5 = AttachActivationStmt(d5, d4)

23a Prop(⟨m′′, d3⟩→⟨r, d′5⟩,WFW,PathEdgeFW)

function BackwardAnalysis()
38a for d3 such that ⟨n, d2⟩ → ⟨em′ , d3⟩ ∈ E#

BW do
38b d′3 = DataAbstraction(d3) ∥GAS
39a Inject(⟨m, d1⟩→⟨n, d2⟩, ⟨m′, d′3⟩,E#

FW,PathEdgeFW, SFW,WFW)
40a Prop(⟨m′, d′3⟩→⟨em′ , d′3⟩,WBW,PathEdgeBW)
41a for ⟨m′, d′3⟩→⟨sm′ , d4⟩ ∈ SBW ∧ ⟨sm′ , d4⟩→⟨r, d5⟩ ∈ E#

BW do
41b d′5 = OnReturnFlow(d5, d2,m,m′)
42a Prop(⟨m, d1⟩→⟨r, d′5⟩,WBW,PathEdgeBW)

. . .
49a for ⟨m′′, d3⟩→⟨c, d4⟩ ∈ PathEdgeBW ∧ ⟨c, d4⟩→⟨em, d1⟩ ∈ E#

BW

∧⟨n, d2⟩→⟨r, d5⟩ ∈ E#
BW do

49b d′5 = OnReturnFlow(d5, d4,m′′,m)
50a Prop(⟨m′′, d3⟩→⟨r, d′5⟩,WBW,PathEdgeBW)

61 function OnActivationStmtAdded(sym, as)
62 ⟨m,m′⟩=Context(sym) // m is caller,m′ is callee
63 for ⟨⟨m, d1⟩→⟨c, d2⟩, abs⟩ ∈ SymbolIncoming(sym) do
64 d3 = abs ∥ as
65 Prop(⟨m′, d3⟩→⟨sm′ , d3⟩,WFW,PathEdgeFW)
66 Let r be the return node of c
67 for ⟨m′, d3⟩→⟨em′ , d4⟩ ∈ SFW ∧ ⟨em′ , d4⟩→⟨r, d5⟩ ∈ E#

FW do
68 Prop(⟨m, d1⟩→⟨r, d5⟩,WFW,PathEdgeFW)

69 SymbolIncoming = Symb2Reps = {}
70 function Symbolize(dret, caller, callee)
71 as = ActivationStmt(dret)
72 abs = DataAbstraction(dret)
73 sym = ⟨abs, caller, callee⟩ // Symbolic activation stmt
74 if as /∈ Symb2Reps(sym) then
75 Symb2Reps(sym) ∋ as
76 OnActivationStmtAdded(sym, as)
77 return abs ∥ sym

78 function Concretize(⟨caller, d1⟩→⟨c, d2⟩, callee, d3)
79 if d3 is active then return {d3}
80 as = ActivationStmt(d3)
81 if as is a concrete statement or as = GAS then return {d3}
82 assert as is a symbolic activation statement
83 sym = as // Rename variable
84 reps = {} // Set of represented facts
85 abs = DataAbstraction(d3)
86 if Context(sym) = ⟨caller, callee⟩ then
87 SymbolIncoming(sym) ∋ ⟨⟨caller, d1⟩→⟨c, d2⟩, abs⟩
88 for v ∈ Symb2Reps(sym) do
89 reps ∋ abs ∥ v

90 else
91 reps ∋ abs ∥GAS

92 return reps

93 function AttachActivationStmt(dret, dcall)
94 u = ActivationStmt(dret)
95 v = ActivationStmt(dcall)
96 if u = GAS then
97 return DataAbstraction(dret) ∥ v
98 return dret

99 function OnReturnFlow(dret, dcall, caller, callee)
100 u = ActivationStmt(dret)

101 if u = GAS then
102 return AttachActivationStmt(dret, dcall)
103 return Symbolize(dret, caller, callee)

passing through their activation statements or at any callsite
that transitively invokes methods containing these activation
statements. However, activating data facts with symbolic ac-
tivation statements requires careful consideration due to their
potential representation of a set of activation statements, which
may include other symbolic activation statements.

To address this challenge, we intuitively replay value flows
during the forward analysis, just before data facts containing
symbolic activation statements are propagated into a method
(as indicated in line 11b and Concretize() (lines 78-92)).
For active data facts or those with non-symbolic activation
statements, we propagate them normally (lines 79-81). For a
data fact, say, d3, with a symbolic activation statement sym
(line 83) and data abstraction abs (line 85), we use the set of
concrete activation statements recorded in Symb2Reps(sym)
(represented by sym) to decorate abs and create new data
facts for propagation into the method being analyzed (lines
88-89). For any activation statements not yet recorded in
Symb2Reps(sym) (due to IFDS being distributive [6]), the

incoming path edge ⟨caller, d1⟩→ ⟨c, d2⟩ and abs are saved
into SymbolIncoming(sym) (line 87). When a new activation
statement u is later recorded in Symb2Reps(sym) (line 75),
OnActivationStmtAdded is called (line 76) to complete
the value-flow replaying (lines 61-68).

Theorem 1. (Preservation of Precision). Algorithm A, ob-
tained by deleting the underlined statements in Algorithm 2,
replacing d′3 with d3 in lines 39a-41a, and d′5 with d5 in
lines 14b-23a, yields the same data leak results as Algorithm 1.

Proof Sketch. Follows from the fact that every merged data
flow fact is replayed before it reaches its activation points.

D. Pruning Spurious Value flows

In addition to enhancing the performance of IFDS-based
taint analysis, MERGEDROID further improves its precision
by removing false-positive value flows. This is achieved by
leveraging a key observation described below.

Observation 1. Algorithm 1’s backward pass is only triggered
on-demand in certain contexts, highlighting the need for
context-sensitive activation statements that allow for specific
data facts to be propagated under certain contexts.

Activation statements in FLOWDROID (Algorithm 1) are
context-insensitive, causing spurious value flows that degrade
not only its efficiency but also its precision. Observation 1
highlights the importance of context-sensitive activation state-
ments to propagate data facts with specific activation state-
ments only in certain contexts. Such context information has
not been exploited in previous taint analysis research.

Efficiently maintaining activation statement context infor-
mation without excessive overhead is challenging. A cloning-
based approach similar to pointer analysis [14]–[16], utilizing
k context elements (like callsites in callsite sensitivity [17]–
[20] and allocation sites in object sensitivity [21], [22]) to
differentiate under k-limited calling contexts (typically small,
e.g., 2), would significantly increase time and memory over-
heads. This is due to the necessity of managing a large number
of data facts in an IFDS-based taint analysis framework. In-
stead, we have opted to encode context information implicitly
in symbolic activation statements. This approach seamlessly
aligns with the IFDS algorithm [6] and achieves precision by
analyzing activation statements with full context sensitivity.

In Algorithm 2, the underlined statements leverage context
information within symbolic activation statements to prevent
spurious value flows during the handling of call statements in
both the forward and backward passes.

During the forward analysis, value-flow replaying is per-
formed (lines 87-89) only when the context of the symbolic
activation statement sym matches the current calling context
⟨caller, callee⟩ (line 86). Otherwise, a new data fact is formed
using GAS (line 91). Since sym is always uniquely identified
by ⟨caller, callee⟩ (line 73), all activation statements are
therefore analyzed with full callsite-based context sensitivity
within the IFDS framework, as intended.

During the backward analysis, a newly established data fact
through a return edge at a callsite (line 38a) is always formed
by replacing the activation statement with GAS (line 38b). This
propagation of a GAS-decorated data fact aims to compute
reusable summaries in callee methods. If a GAS-decorated data
fact is returned from an exit statement (entry statement) to a
callsite at lines 14b and 22b (lines 41b and 49b) during the
forward (backward) analysis, GAS is replaced with the acti-
vation statement of the corresponding data fact at the callsite
(line 97) using AttachActivationStmt() (lines 93-98),
either directly (lines 14b and 22b) or indirectly (lines 41b,
49b, and 101-102). Overall, GAS-decorated data facts aid in
pruning value flows, enhancing precision by reducing false
positives (e.g., the false leak reported by FLOWDROID at
line 10 of Figure 1), and improving efficiency by avoiding
spurious propagation. However, they may introduce additional
propagation (e.g., q3.f ∥GAS in foo() in Figure 1). The
overall benefits significantly outweigh the incurred overhead.

Theorem 2. (Improvement of Precision). Algorithm 2 is

designed to generate a subset of the leak warnings reported by
Algorithm 1, which may not be strictly smaller in all cases.

Proof Sketch. Follows from Algorithm 2 pruning only spuri-
ous value-flows from mismatched contexts (line 86).

E. Overhead Analysis and Design Choices

We explore the time and space overheads introduced by
Algorithm 2 in comparison to Algorithm 1.

To maintain SymbolIncoming and Symb2Reps, additional
space is introduced. The worst-case space required for
Symb2Reps is O(c · |P | · |A|), where c is the maximum
number of merged activation statements per symbolic acti-
vation statement, |P | is the caller-callee pairs, and |A| is the
maximum abstractions per method. For SymbolIncoming, it is
O(|Ecall| · |D|2 · |A|), where |Ecall| is total call edges and |D|
is total data facts. Given that |P | < |Ecall| and c is small in
practice, the overall space overhead is O(|Ecall| · |D|2 · |A|).

The time complexities of Algorithms 1 and 2 match that of
the IFDS algorithm [6], i.e., O(|E∗|·|D|3). Therefore, we only
estimate the time overhead introduced by merge-and-replay
(Algorithm 2). This overhead originates from three sources.
First, the operations for maintaining SymbolIncoming and
Symb2Reps (lines 63-68, 75, and 87-89) collectively require
O(|Ecall|·|D|2 ·|A|), significantly smaller than O(|E∗|·|D|3).
Second, to prevent data races in a multi-threaded environment,
both SymbolIncoming and Symb2Reps utilize a lock-based data
structure, which may result in minor additional time overhead.
Typically, this overhead is negligible, as it is a small constant
related to the number of operations on these structures. Finally,
while the path edges created by GAS-decorated data facts
intend to compute reusable summaries, not all are reused in
the analysis. The redundant propagation they introduce could
consume O(|E∗| · |A|3+ |Ecall| · |A|(|D|2−|A|2)) in extreme
cases, which is rare in practice and overly conservative.

Finally, we delve into the design choices concerning the
representation of symbolic activation statements. As described
in Section IV-B, when a set of data facts sharing the same data
abstraction within a callee are propagated to their correspond-
ing callsites within a given caller, they are merged into a single
data fact utilizing a symbolic activation statement. According
to Theorem 1, encoding either a callsite or a caller as part of
the context information for a symbolic activation statement
does not compromise the precision-preserving property of
our approach. While encoding a callsite permits the merging
of activation statements from various callee methods of a
polymorphic call, polymorphic calls constitute only a small
proportion of the overall calls in most programs. Therefore, in
our current implementation, we have opted to encode a caller
instead of a callsite, to avoid introducing unnecessary memory
overhead without substantial performance gains in practice.

V. EVALUATION

We demonstrate the significant performance benefits and
precision improvements of our merge-and-replay algorithm by
comparing MERGEDROID with FLOWDROID. Our evaluation
aims to answer the following three research questions:

TABLE I: Comparing the performance of FLOWDROID (FD) and MERGEDROID (MD). The apps are categorized based on
their sources and are ordered in increasing order of FLOWDROID’s analysis time. OoT stands for Out of Time.

Group App Version
Analysis Time (s) Memory Usage (GB) #PathEdges (M) #Leaks
FD MD FD MD FD MD FD MD

From [9]

com.ilm.sandwich 2.2.4f 2 1 (2.0×) 0.8 0.4 (2.0×) 0.5 0.3 (1.7×) 9 9 (0.0%)
com.github.yeriomin.dumbphoneassistant 0.5 3 1 (3.0×) 0.9 0.5 (1.8×) 1.0 0.2 (5.0×) 2 2 (0.0%)
com.poupa.vinylmusicplayer 0.20.1 4 1 (4.0×) 1.2 1.1 (1.1×) 0.4 0.1 (4.0×) 5 4 (20.0%)
dk.jens.backup 0.3.4 4 1 (4.0×) 0.9 0.6 (1.5×) 0.5 0.2 (2.5×) 3 3 (0.0%)
org.csploit.android 1.6.5 7 4 (1.8×) 1.9 1.5 (1.3×) 0.3 0.2 (1.5×) 1 1 (0.0%)
com.kunzisoft.keepass.libre 2.5.0.0beta18 8 2 (4.0×) 0.9 0.8 (1.1×) 2.7 0.6 (4.5×) 6 3 (50.0%)
org.materialos.icons 2.1 21 11 (1.9×) 2.1 1.3 (1.6×) 6.9 3.4 (2.0×) 3 3 (0.0%)
com.app.Zensuren 1.21 22 13 (1.7×) 2.4 1.7 (1.4×) 8.0 4.7 (1.7×) 9 9 (0.0%)
org.decsync.sparss.floss 1.13.4 27 35 (0.8×) 3.5 3.5 (1.0×) 5.9 5.3 (1.1×) 25 24 (4.0%)
de.schildbach.oeffi 10.5.3-google 34 8 (4.2×) 2.1 0.9 (2.3×) 6.6 1.8 (3.7×) 8 7 (12.5%)
org.secuso.privacyfriendlytodolist 2.1 48 5 (9.6×) 6.3 1.0 (6.3×) 17.7 1.5 (11.8×) 4 2 (50.0%)
name.myigel.fahrplan.eh17 1.33.16 81 3 (27.0×) 3.0 0.3 (10.0×) 8.0 0.2 (40.0×) 4 2 (50.0%)
com.emn8.mobilem8.nativeapp.bk 5.0.10 182 51 (3.6×) 2.6 0.8 (3.2×) 3.5 0.9 (3.9×) 25 25 (0.0%)
com.microsoft.office.word 16.0.11425.20132 204 121 (1.7×) 5.4 2.0 (2.7×) 12.1 3.4 (3.6×) 13 8 (38.5%)
com.vonglasow.michael.satstat 3.3 310 28 (11.1×) 25.8 2.9 (8.9×) 127.2 10.2 (12.5×) 7 6 (14.3%)
com.adobe.reader 19.2.1.9183 742 74 (10.0×) 6.1 2.1 (2.9×) 11.5 1.4 (8.2×) 20 19 (5.0%)
org.totschnig.myexpenses 3.0.1.2 746 31 (24.1×) 53.1 2.9 (18.3×) 247.3 6.5 (38.0×) 16 15 (6.2%)
com.igisw.openmoneybox 3.2.2.10 1222 276 (4.4×) 83.7 21.4 (3.9×) 407.2 106.8 (3.8×) 9 8 (11.1%)
com.ichi2.anki 2.8.4 OoT 877 - 13.9 - 51.2 - 21
org.openpetfoodfacts.scanner 2.9.8 OoT 18 - 2.2 - 6.6 - 4

From [10]

org.gateshipone.odyssey 1.1.18 8 3 (2.7×) 1.2 0.4 (3.0×) 2.9 0.9 (3.2×) 7 3 (57.1%)
com.alfray.timeriffic 1.09.05 21 4 (5.2×) 3.2 1.6 (2.0×) 7.4 1.1 (6.7×) 15 11 (26.7%)
com.github.axet.callrecorder 1.17.13 65 9 (7.2×) 7.2 1.0 (7.2×) 21.2 2.8 (7.6×) 10 6 (40.0%)
org.secuso.privacyfriendlyweather 2.1.1 371 5 (74.2×) 28.5 0.4 (71.2×) 112.5 1.2 (93.8×) 5 5 (0.0%)
com.genonbeta.TrebleShot 1.4.2 385 56 (6.9×) 7.9 1.9 (4.2×) 30.2 3.9 (7.7×) 3 2 (33.3%)
org.fdroid.fdroid 1.8-alpha0 477 103 (4.6×) 4.2 2.4 (1.8×) 7.3 2.8 (2.6×) 26 14 (46.2%)
com.github.axet.bookreader 1.12.14 856 249 (3.4×) 66.5 21.0 (3.2×) 372.6 115.5 (3.2×) 1 1 (0.0%)
com.kanedias.vanilla.metadata 1.0.4 1035 11 (94.1×) 57.0 1.7 (33.5×) 193.2 3.3 (58.5×) 1 1 (0.0%)
bus.chio.wishmaster 1.0.2 2894 36 (80.4×) 87.7 1.7 (51.6×) 391.0 3.7 (105.7×) 9 7 (22.2%)
org.lumicall.android 1.13.1 2904 100 (29.0×) 48.9 1.7 (28.8×) 247.9 5.2 (47.7×) 7 5 (28.6%)
nya.miku.wishmaster 1.5.0 4551 33 (137.9×) 117.1 1.4 (83.6×) 562.3 3.7 (152.0×) 6 5 (16.7%)
de.k3b.android.androFotoFinder 0.8.0.191021 OoT 268 - 5.4 - 18.2 - 12
fr.gouv.etalab.mastodon 3.21.2 OoT 423 - 8.3 - 37.9 - 18

F-Droid

com.icecondor.nest 20150402 22 1 (22.0×) 2.8 0.4 (7.0×) 5.5 0.1 (55.0×) 5 4 (20.0%)
com.dimowner.audiorecorder 0.9.26 53 3 (17.7×) 1.7 1.2 (1.4×) 3.6 0.2 (18.0×) 5 4 (20.0%)
me.austinhuang.caweather 2.4 238 6 (39.7×) 20.6 0.8 (25.8×) 93.0 2.0 (46.5×) 8 6 (25.0%)
com.activitymanager 4.1.4 460 6 (76.7×) 27.6 0.8 (34.5×) 114.3 1.6 (71.4×) 3 2 (33.3%)
de.deftk.openww.android 0.4.3 640 9 (71.1×) 26.5 1.3 (20.4×) 80.0 2.6 (30.8×) 7 6 (14.3%)
net.sourceforge.opencamera 1.49.2 OoT 216 - 19.9 - 74.8 - 3
com.fastaccess.github.libre 4.6.7 OoT 10 - 1.6 - 1.2 - 1

Mean - - - 9.0× - 5.2× - 9.7× - 19.2%

• RQ1. Is MERGEDROID more precise?
• RQ2. Is MERGEDROID faster?
• RQ3. Is MERGEDROID more memory-efficient?

Implementation. We have built MERGEDROID on top of
a recent FLOWDROID revision (d8c80ac). With about 400
lines at its core, our implementation is compact and efficient,
benefiting from our streamlined algorithms and key insights.
MERGEDROID is open-source and can be accessed at https:
//www.cse.unsw.edu.au/∼corg/MergeDroid/.

Benchmark Selection. Due to the absence of standardized
benchmarks, we have considered a set of 58 apps from

previous studies, comprising 40 from [9] and 18 from [10],
which are carefully selected by their authors for comparing
their tools with FLOWDROID. However, we have excluded 25
apps from this set, including 3 apps that caused FLOWDROID
to crash, 3 apps with no source or sink definitions due to using
a newer version of FLOWDROID, 3 apps used in both [9] and
[10] but with different versions (we used their newer versions),
14 apps that could be analyzed by FLOWDROID in 3 seconds,
and 2 apps that were unscalable within a 3-hour budget by both
FLOWDROID and MERGEDROID due to running out of time or
memory. We have updated fr.gouv.etalab.mastodon

Fig. 2: Percentage of symbolic activation statements that merge
more than one activation statement (symbolic or concrete) in
each app, identified by its ordinal number in Table I.

to its latest version as the one used in [10] is no longer
available. In addition to the remaining 33 apps (20 from [9]
and 13 from [10]), we have selected 7 apps from F-Droid [12]
to increase the total number of apps to 40.

Experimental Setting. Experiments were conducted on an
Ubuntu 20.04.5 LTS (Focal Fossa) machine with 8 CPU cores
(16 processors) and 512GB RAM. The maximum heap size for
the JVM was set to 256GB (-Xmx). Both FLOWDROID and
MERGEDROID utilized 16 threads for their IFDS-based taint
analysis, with a 3-hour time budget using the -dt option.
Analysis of multiple dex files in Android apps was enabled
via --mergedexfiles. The maximum callback chain depth
was specified with -md, and path reconstruction mode was set
to precise for detailed leak reports with -pr. Default values
in FLOWDROID were applied to other options, including the
default access path length of 5 and source/sink definitions.

Results. Table I presents our main results across four
dimensions: analysis time (Columns 4-5), maximum mem-
ory consumption during analysis (Columns 6-7), number of
path edges processed by the forward and backward solvers
(Columns 8-9), and number of reported leaks (Columns 10-
11). For each app, the analysis time, memory usage, and path
edges (#PathEdges) represent averages drawn from three runs.
The final row displays average values, with the first three being
geometric means and the last being the arithmetic mean.

A. RQ1: Precision

We have validated the correctness of MERGEDROID using
two benchmark suites with established ground truth: DROID-
BENCH (the FLOWDROID companion benchmark suite) [23]
and TAINTBENCH (a real-world malware benchmark suite)
[24]. Additionally, the theoretical assurances provided by
Theorems 1 and 2 reinforce its reliability. MERGEDROID has
demonstrated success in passing all test cases that FLOW-
DROID has successfully handled. Our primary focus now lies
in assessing the enhanced precision of MERGEDROID over
FLOWDROID in terms of identifying false positive leaks.

As shown in Columns 10-11 of Table I, MERGEDROID
achieves a significant reduction in the number of reported
leaks on 24 out of 34 apps (that are analyzed scalably by
both tools), indicating a significant improvement in precision
compared to FLOWDROID. On average, MERGEDROID re-
duces the number of leak warnings reported by FLOWDROID

Fig. 3: Comparing MERGEDROID and FLOWDROID by cor-
relating the reduction in #PathEdge with that in analysis time.

by 19.2% (in percentage) for the 34 apps that can be ana-
lyzed by both tools, with a maximum reduction of 57.1%
observed on org.gateshipone.odyssey. This precision
improvement is attributed to the use of context information of
activation statements, as explained in Section IV.

B. RQ2: Speedups

In Table I, Columns 4-5 highlight MERGEDROID’s
improvements in both scalability and efficiency compared
to FLOWDROID. MERGEDROID successfully scales to
analyze all 40 apps. Additionally, for the 6 apps where
FLOWDROID exceeds its time limit, MERGEDROID
completes the analysis within 1812 seconds. The speedups
of MERGEDROID over FLOWDROID for the remaining
34 apps range from 0.8× to 137.9× with an average
of 9.0×. Typically, MERGEDROID is more effective for
large apps as they present more opportunities for applying
our merge-and-replay strategy. The three largest speedups
are observed on nya.miku.wishmaster (137.9×),
com.kanedias.vanilla.metadata (94.1×), and
bus.chio.wishmaster (80.4×). For smaller apps,
MERGEDROID is generally faster than FLOWDROID, but the
speedups are relatively smaller.

Below we analyze the reasons behind these speedups.
In Figure 2, about 13.0% of symbolic activation statements

on average can merge more than one activation statement
(either symbolic or concrete), demonstrating MERGEDROID’s
effectiveness in consolidating equivalent value flows. Addi-
tionally, upon invoking Concretize() in Algorithm 2, the
condition Context(sym) = ⟨caller, callee⟩ (line 86) fails
to hold for an average of 54.5%, underscoring the successful
pruning of numerous spurious value flows (line 90). In the
case of name.myigel.fahrplan.eh17, MERGEDROID
achieves an impressive speedup of 27.0× over FLOWDROID
(Table I). While effective mergings for activation statements
are relatively infrequent (Figure 2), spurious value-flow prun-
ings occur 41.7% of the time (line 90). Consequently, MERGE-
DROID significantly reduces the number of path edges pro-
cessed by FLOWDROID by 40.0×, leading also to a reduction
in the operations required for reallocating and rehashing the
PathEdge data structure during the analysis [8], [25]. Both
reductions contribute to MERGEDROID’s achieved speedup.

Fig. 4: Comparing MERGEDROID and FLOWDROID by corre-
lating the reduction in #PathEdge with that in memory usage.

We have further compared MERGEDROID with FLOW-
DROID by examining the relationship between the reduc-
tion in path edges and analysis time. Figure 3 illustrates
this correlation, where the ratios FLOWDROID′s #PathEdge

MERGEDROID′s #PathEdge and
FLOWDROID′s Analysis T ime

MERGEDROID′s Analysis T ime show a strong positive correlation
(Pearson correlation coefficient: 0.93). This underscores that
the speedups achieved by MERGEDROID are attributed to the
effectiveness of our merge-and-replay algorithm.

In our evaluation, we noted a single instance of slow-
down on org.decsync.sparss.floss. Despite process-
ing 10.2% fewer path edges than FLOWDROID, MERGE-
DROID experienced a 29.6% (8-second) slowdown in analyz-
ing this app. This minor slowdown could be attributed to the
overhead of MERGEDROID, as discussed in Section IV-E.

C. RQ3: Memory Requirements

MERGEDROID also significantly reduces the memory re-
quirements of FLOWDROID, as indicated by the memory
usage reduction factor for each app given in parentheses in
Columns 6-7. We calculate the maximum amount of mem-
ory consumed by each app using the same Java Runtime
APIs as in FLOWDROID. For all the 34 apps analyzed by
FLOWDROID, MERGEDROID uses less memory. The mem-
ory usage ratios of FLOWDROID over MERGEDROID range
from 1.0× (org.decsync.sparss.floss) to 83.6×
(nya.miku.wishmaster) with an average of 5.2×.

The memory reduction achieved by MERGEDROID in
comparison to FLOWDROID is attributed to the decrease in
the number of processed path edges, as depicted in Fig-
ure 4. The correlation between FLOWDROID′s #PathEdge

MERGEDROID′s #PathEdge and
FLOWDROID′s Memory Usage

MERGEDROID′s Memory Usage exhibits a strong positive relation-
ship, with a Pearson correlation coefficient of 0.95.

To assess the memory impact of maintaining two additional
data structures, SymbolIncoming and Symb2Reps, we mea-
sured their memory usage using Java instrumentation APIs.
On average, as seen in Figure 5, these two data structures
account for 7.1% of the total memory consumed during the
analysis. Since MERGEDROID consistently uses less memory
overall than FLOWDROID for all evaluated apps (Table I), the
added overhead from maintaining these structures is negligible.

Fig. 5: Percentage of memory consumed by SymbolIncoming
and Symb2Reps over the total memory of MERGEDROID for
each app, identified by its ordinal number in Table I.

VI. RELATED WORK

Various approaches have been proposed to improve the
efficiency of FLOWDROID [4], including sparse analysis [9],
heap snapshot-assisted optimization [26], streaming-based par-
allelism enhancement [11], disk-assisted optimization [10],
[27], and memory reclamation [8], [25]. However, MERGE-
DROID stands out by improving both efficiency and precision
in FLOWDROID through the consolidation of equivalent value
flows—a unique approach that differs from these existing ones.

While some approaches, like IccTA [5], focus on enhancing
the precision of FLOWDROID by extending its intercomponent
data leak detection capabilities, MERGEDROID refines FLOW-
DROID’s precision by introducing context-sensitive activation
statements to mitigate spurious value flows.

Numerous taint analysis tools, including Amandroid [28],
DidFail [29], IccTA [5], DroidSafe [30], P/Taint [31], EvoTaint
[32], CHEX [33], and DROIDINFER [34], have been proposed
alongside FLOWDROID in recent years. However, FLOW-
DROID, rooted in the IFDS taint analysis framework, remains
the most widely adopted tool in this domain.

The IFDS algorithm was initially introduced by Reps et
al. [6] as a foundation for many critical applications, such as
taint analysis [4], pointer analysis [35]–[37] and bug detection
[38]. It was later generalized to the IDE algorithm [39] for
solving inter-procedural distributed environment problems. As
a popular algorithm, IFDS has been extended or improved
by recent works [9], [40], [41] and has been implemented
in many popular compiler frameworks, including WALA [14],
SOOT [42], [43], and LLVM [44], [45].

VII. CONCLUSION

In this paper, we propose a novel merge-and-replay algo-
rithm to enhance the performance of IFDS-based taint anal-
ysis. By consolidating equivalent value flows and integrating
context information into activation statements, our approach
reduces unnecessary propagation and prunes spurious value
flows. We have implemented a prototype tool, MERGEDROID,
and demonstrated that it significantly improves the efficiency
and precision of FLOWDROID on a range of Android apps.

ACKNOWLEDGMENTS

We thank our reviewers for their constructive comments.
This research is supported by an ARC grant DP210102409.

REFERENCES

[1] Z. Li, J. Wang, M. Sun, and J. C. Lui, “Detecting cross-language memory
management issues in Rust,” in Computer Security–ESORICS 2022: 27th
European Symposium on Research in Computer Security, Copenhagen,
Denmark, September 26–30, 2022, Proceedings, Part III. Springer,
2022, pp. 680–700.

[2] V. B. Livshits and M. S. Lam, “Finding security vulnerabilities in
Java applications with static analysis,” in Proceedings of the 14th
Conference on USENIX Security Symposium - Volume 14. USA:
USENIX Association, 2005, p. 18.

[3] N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: a static analysis tool for
detecting web application vulnerabilities,” in 2006 IEEE Symposium on
Security and Privacy (S&P’06), 2006, pp. 6 pp.–263.

[4] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. L.
Traon, D. Octeau, and P. D. McDaniel, “FlowDroid: precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for Android
apps.” in PLDI. ACM, 2014, pp. 259–269.

[5] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. Le Traon, S. Arzt,
S. Rasthofer, E. Bodden, D. Octeau, and P. McDaniel, “Iccta: Detecting
inter-component privacy leaks in Android apps,” in Proceedings of the
37th International Conference on Software Engineering, ser. ICSE ’15.
IEEE Press, 2015, p. 280–291.

[6] T. Reps, S. Horwitz, and M. Sagiv, “Precise Interprocedural Dataflow
Analysis via Graph Reachability,” in Proceedings of the 22nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, ser. POPL ’95. New York, NY, USA: Association for
Computing Machinery, 1995, pp. 49–61.

[7] V. Avdiienko, K. Kuznetsov, A. Gorla, A. Zeller, S. Arzt, S. Rasthofer,
and E. Bodden, “Mining apps for abnormal usage of sensitive data,”
in 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, vol. 1. New York, NY, USA: IEEE, 2015, pp. 426–436.

[8] S. Arzt, “Sustainable solving: Reducing the memory footprint of IFDS-
based data flow analyses using intelligent garbage collection,” in 2021
IEEE/ACM 43rd International Conference on Software Engineering
(ICSE). New York, NY, USA: IEEE, 2021, pp. 1098–1110.

[9] D. He, H. Li, L. Wang, H. Meng, H. Zheng, J. Liu, S. Hu, L. Li, and
J. Xue, “Performance-boosting sparsification of the IFDS algorithm with
applications to taint analysis,” in 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE). New York,
NY, USA: IEEE, 2019, pp. 267–279.

[10] H. Li, H. Meng, H. Zheng, L. Cao, J. Lu, L. Li, and L. Gao,
“Scaling up the IFDS algorithm with efficient disk-assisted computing,”
in 2021 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO). New York, NY, USA: IEEE, 2021, pp. 236–247.

[11] X. Wang, Z. Zuo, L. Bu, and J. Zhao, “DStream: A streaming-based
highly parallel IFDS framework,” in 2023 IEEE/ACM 45th International
Conference on Software Engineering (ICSE), 2023, pp. 2488–2500.

[12] F-Droid. [Online]. Available: https://f-droid.org
[13] N. A. Naeem, O. Lhoták, and J. Rodriguez, “Practical Extensions to

the IFDS Algorithm,” in Compiler Construction. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 124–144.

[14] WALA, “WALA: T.J. Watson Libraries for Analysis,” 2023. [Online].
Available: http://wala.sourceforge.net/

[15] D. He, J. Lu, and J. Xue, “Qilin: A New Framework For Supporting
Fine-Grained Context-Sensitivity in Java Pointer Analysis,” in 36th
European Conference on Object-Oriented Programming (ECOOP 2022),
ser. Leibniz International Proceedings in Informatics (LIPIcs), K. Ali
and J. Vitek, Eds., vol. 222. Dagstuhl, Germany: Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2022, pp. 30:1–30:29.

[16] M. Bravenboer and Y. Smaragdakis, “Strictly declarative specification of
sophisticated points-to analyses,” in Proceedings of the 24th ACM SIG-
PLAN conference on Object oriented programming systems languages
and applications. New York, NY, USA: Association for Computing
Machinery, 2009, pp. 243–262.

[17] M. Sharir and A. Pnueli, “Two approaches to interprocedural data flow
analysis,” in Program Flow Analysis: Theory and Applications, S. S.
Muchnick and N. D. Jones, Eds. Prentice-Hall, 1981, ch. 7, pp. 189–
234.

[18] O. Shivers, “Control-flow analysis of higher-order languages,” Ph.D.
dissertation, Citeseer, 1991.

[19] L. Li, C. Cifuentes, and N. Keynes, “Boosting the performance of
flow-sensitive points-to analysis using value flow,” in Proceedings of
the 19th ACM SIGSOFT Symposium and the 13th European Conference

on Foundations of Software Engineering, ser. ESEC/FSE ’11. New
York, NY, USA: Association for Computing Machinery, 2011, p.
343–353. [Online]. Available: https://doi.org/10.1145/2025113.2025160

[20] J. Lu, D. He, and J. Xue, “Selective context-sensitivity for k-CFA with
CFL-reachability,” in Static Analysis - 28th International Symposium,
SAS 2021, Chicago, IL, USA, October 17-19, 2021, Proceedings, ser.
Lecture Notes in Computer Science, C. Dragoi, S. Mukherjee, and
K. S. Namjoshi, Eds., vol. 12913. Springer, 2021, pp. 261–285.
[Online]. Available: https://doi.org/10.1007/978-3-030-88806-0 13

[21] A. Milanova, A. Rountev, and B. G. Ryder, “Parameterized object
sensitivity for points-to and side-effect analyses for Java,” in Proceedings
of the 2002 ACM SIGSOFT international symposium on Software testing
and analysis. New York, NY, USA: Association for Computing
Machinery, 2002, pp. 1–11.

[22] Y. Smaragdakis, M. Bravenboer, and O. Lhoták, “Pick your contexts
well: understanding object-sensitivity,” in Proceedings of the 38th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2011, Austin, TX, USA, January 26-28, 2011, T. Ball
and M. Sagiv, Eds. ACM, 2011, pp. 17–30. [Online]. Available:
https://doi.org/10.1145/1926385.1926390

[23] S. S. E. G. at Paderborn University and F. IEM. (2023) DroidBench:
an open test suite for evaluating the effectiveness of taint-
analysis tools specifically for Android apps. [Online]. Available:
https://github.com/secure-software-engineering/DroidBench

[24] L. Luo, F. Pauck, G. Piskachev, M. Benz, I. Pashchenko, M. Mory,
E. Bodden, B. Hermann, and F. Massacci, “TaintBench: Automatic
real-world malware benchmarking of Android taint analyses,” Empirical
Softw. Engg., vol. 27, no. 1, jan 2022.

[25] D. He, Y. Gui, Y. Gao, and J. Xue, “Reducing the memory footprint of
IFDS-based data-flow analyses using fine-grained garbage collection,”
in Proceedings of the 32nd ACM SIGSOFT International Symposium on
Software Testing and Analysis. New York, NY, USA: Association for
Computing Machinery, 2023, p. 101–113.

[26] M. Benz, E. K. Kristensen, L. Luo, N. P. Borges, E. Bodden, and
A. Zeller, “Heaps’n leaks: How heap snapshots improve Android taint
analysis,” in Proceedings of the ACM/IEEE 42nd International Confer-
ence on Software Engineering, ser. ICSE ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 1061–1072.

[27] K. Wang, A. Hussain, Z. Zuo, G. Xu, and A. Amiri Sani, “Graspan: A
single-machine disk-based graph system for interprocedural static anal-
yses of large-scale systems code,” in Proceedings of the Twenty-Second
International Conference on Architectural Support for Programming
Languages and Operating Systems. New York, NY, USA: Association
for Computing Machinery, 2017, p. 389–404.

[28] F. Wei, S. Roy, X. Ou et al., “Amandroid: A precise and general
inter-component data flow analysis framework for security vetting of
Android apps,” in Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security. New York, NY, USA:
Association for Computing Machinery, 2014, pp. 1329–1341.

[29] W. Klieber, L. Flynn, A. Bhosale, L. Jia, and L. Bauer, “Android taint
flow analysis for app sets,” in Proceedings of the 3rd ACM SIGPLAN
International Workshop on the State of the Art in Java Program Analysis.
New York, NY, USA: Association for Computing Machinery, 2014, pp.
1–6.

[30] M. I. Gordon, D. Kim, J. H. Perkins, L. Gilham, N. Nguyen, and
M. C. Rinard, “Information flow analysis of Android applications in
DroidSafe,” in NDSS, vol. 15, 2015, p. 110.

[31] N. Grech and Y. Smaragdakis, “P/taint: Unified points-to and taint
analysis,” Proceedings of the ACM on Programming Languages, vol. 1,
no. OOPSLA, pp. 1–28, 2017.

[32] H. Cai and J. Jenkins, “Leveraging historical versions of Android apps
for efficient and precise taint analysis,” in Proceedings of the 15th
International Conference on Mining Software Repositories. New York,
NY, USA: Association for Computing Machinery, 2018, pp. 265–269.

[33] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “CHEX: Statically vetting
Android apps for component hijacking vulnerabilities,” in Proceedings of
the 2012 ACM Conference on Computer and Communications Security.
New York, NY, USA: Association for Computing Machinery, 2012, p.
229–240.

[34] W. Huang, Y. Dong, A. Milanova, and J. Dolby, “Scalable and precise
taint analysis for Android,” in Proceedings of the 2015 International
Symposium on Software Testing and Analysis, ser. ISSTA 2015. New
York, NY, USA: ACM, Jul. 2015, pp. 106–117.

[35] J. Späth, L. N. Q. Do, K. Ali, and E. Bodden, “Boomerang: Demand-
Driven Flow- and Context-Sensitive Pointer Analysis for Java,” in 30th
European Conference on Object-Oriented Programming (ECOOP 2016),
ser. Leibniz International Proceedings in Informatics (LIPIcs), vol. 56.
Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2016, pp. 22:1–22:26.

[36] D. He, J. Lu, and J. Xue, “IFDS-based context debloating for object-
sensitive pointer analysis,” ACM Transactions on Software Engineering
and Methodology, vol. 32, no. 4, jan 2023.

[37] ——, “Context debloating for object-sensitive pointer analysis,” in
2021 36th IEEE/ACM International Conference on Automated Software
Engineering (ASE). New York, NY, USA: IEEE, 2021, pp. 79–91.

[38] D. He, L. Li, L. Wang, H. Zheng, G. Li, and J. Xue, “Understanding
and detecting evolution-induced compatibility issues in Android apps,”
in Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering. New York, NY, USA: Association
for Computing Machinery, 2018, pp. 167–177.

[39] M. Sagiv, T. Reps, and S. Horwitz, “Precise interprocedural dataflow
analysis with applications to constant propagation,” Theoretical Com-
puter Science, vol. 167, no. 1-2, pp. 131–170, 1996.

[40] N. A. Naeem, O. Lhoták, and J. Rodriguez, “Practical extensions to the

IFDS algorithm,” in International Conference on Compiler Construction.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 124–144.

[41] S. Arzt and E. Bodden, “Reviser: efficiently updating IDE-/IFDS-based
data-flow analyses in response to incremental program changes,” in Pro-
ceedings of the 36th International Conference on Software Engineering.
New York, NY, USA: ACM, 2014, pp. 288–298.

[42] E. Bodden, “Inter-procedural data-flow analysis with IFDS/IDE and
Soot,” in Proceedings of the ACM SIGPLAN International Workshop
on State of the Art in Java Program analysis. New York, NY, USA:
Association for Computing Machinery, 2012, pp. 3–8.

[43] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan,
“Soot: A Java bytecode optimization framework,” in CASCON First
Decade High Impact Papers. USA: IBM Corp., 2010, p. 214–224.

[44] P. D. Schubert, B. Hermann, and E. Bodden, “Phasar: An inter-
procedural static analysis framework for C/C++,” in International Con-
ference on Tools and Algorithms for the Construction and Analysis of
Systems. Cham: Springer International Publishing, 2019, pp. 393–410.

[45] C. Lattner and V. Adve, “LLVM: a compilation framework for lifelong
program analysis & transformation,” in International Symposium on
Code Generation and Optimization, 2004. CGO 2004. New York,
NY, USA: IEEE, 2004, pp. 75–86.

