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Abstract—The ubiquity of wearable and implantable devices
has sparked a new set of mobile computing applications that
leverage the abundant information from sensors. For many
of these applications, ensuring the security of communication
between legitimate devices is a crucial problem. In this paper,
we design Walkie-Talkie, a shared secret key generation scheme
that allows two legitimate devices to establish a common cryp-
tographic key by exploiting users’ walking characteristics (gait).
The intuition is that the sensors on different locations on the same
body experience similar accelerometer signals when the user is
walking. However, the accelerometer also captures motion signals
produced by other body parts (e.g., swinging arms). It is shown
that a Blind Source Separation (BSS) technique can extract
the informative signal produced by the unique gait patterns.
Our experimental results show that the keys generated by two
independent devices on the same body are able to achieve up
to a 100% bit agreement rate. To demonstrate the feasibility,
the proposed key generation scheme is implemented on modern
smartphones. The evaluation results show that the proposed
scheme can run in real-time on modern mobile devices and incurs
low system overhead.

Index Terms—Secret key generation, Source separation, Wear-
able devices

I. INTRODUCTION

With recent advances in wireless sensor networks and em-
bedded computing technologies, on-body smart devices such
as smartphones and smart watches have become increasingly
popular and play significant roles in our daily lives. On the
other hand, Implantable Medical Devices (IMDs) that can be
used for continuous monitoring and treatment of chronic med-
ical disorders are also becoming increasingly commonplace in
the health-care sector to provide better health care services to
patients. With the rise of these on-body IoT devices, secure
data exchange among them becomes a significant problem. For
example, smartphones need to frequently push notifications to
devices such as smart watches, and read health-related sensor
data from wearables or IMDs. Since these devices usually
contain sensitive private information, data sharing needs to
be kept strictly among devices that belong to the same user
(on the same body).

The wireless nature of the communication between these
devices gives rise to security problems. A malicious external
device can listen to the wireless communication between legiti-
mate on-body devices and eavesdrop private information about
the user. To address this problem, conventional mechanisms
rely on cryptographic keys to support the integrity and con-
fidentiality of data communication. Specifically, two devices
need to agree on a common secret key before communication,
and then the established key can be used to encrypt/decrypt
subsequent communications between these two parties. In
dynamic mobile environments, devices need to perform peer-
to-peer associations on-the-fly. However, a trusted authority for
key management is not always available, making it difficult to
distribute keys between legitimate devices.

In this paper, we propose and implement a motion-assisted
key generation technique for secure on-body device communi-
cation. The intuition of the proposed key generation approach
is that the devices on the same body experience similar motion
signals that are produced by the unique walking pattern of
the user. Therefore, the unique gait signal can be exploited
as shared information to generate secret keys for all on-body
devices. Since walking is a common daily activity, human gait
can be automatically detected and measured in daily life with-
out requiring the users to perform key generation explicitly.
The proposed approach enables unobtrusive establishment of
secure communications between on-body devices.

A. Motivation

This section discusses the benefits offered and applications
enabled by the motion-assisted key generation technique pro-
posed in this paper.

• On-body Authentication. By allowing secure communica-
tion establishment only between legitimate on-body devices
using the unique body motion signals, Walkie-Talkie enables
on-body device authentication without any intrusive manual
assistance. Unlike state-of-the-art biometric authentication



methods that use face and fingerprints, Walkie-Talkie re-
duces expensive computation as well as the manual user
input required by conventional authentication approaches.
This makes it a promising technique for light-weight con-
tinuous authentication for on-body IoT devices. This feature
is desirable especially for wearable and implantable devices,
which are usually small, sensor-equipped, produce sensitive
private data, and require frequent authentication.

• Automatic Secure Pairing. In mobile systems, device
pairing is required to agree on common encryption schemes
and encryption keys before communicating data. Currently,
device pairing is achieved either through explicit input
(e.g., entering the key manually on the device’s screen) or
sophisticated peer-to-peer key-exchange algorithms.
For explicit input, some common mechanisms are a Per-
sonal Identification Number (PIN) code entry or pushing
buttons on the devices to be paired. However, these manual
approaches suffer from several limitations. First, the form
factor of wearable devices are usually small, making it hard
for users to enter the keys manually. Second, the number
of pairings required is expected to grow considerably as
IoT devices become increasingly pervasive. Consequently,
explicit pairing places a large burden on device users and
automatic pairing improves the user experience significantly.
Another approach is through a peer-to-peer key-exchange
algorithm. A popular key exchange algorithm is the Diffie-
Hellman (DH) protocol [1], which is used to distribute
symmetric keys between two parties. However, the DH
protocol requires computationally intensive operations and
a public key infrastructure, and is infeasible for resource-
constrained wearable devices.

• Spontaneous Key Generation. To reduce manual input, a
user can choose to store the static keys on the device locally,
e.g., user can pair two devices on their first use together and
use the same key afterwards. However, a critical component
of key management is key revocation which is used to
revoke and update the secret key. Storing static keys locally
poses significant security risks, especially when devices are
only authorized to communicate temporarily for short-lived
data exchange. So it is crucial that the keys are generated
on-the-fly only when they are authorized to communicate.

B. Challenges and Contributions

Gait refers to an individual’s unique walking pattern [2].
The gait signal produced when a user is walking serves as a
valuable signal for key-generation for on-body devices, since
the sensors on different body locations sense the same signal.
The key idea of the proposed key-generation approach is based
on this observation. However, due to the complexity of body
movements, devices placed on different body locations will
capture different acceleration signals due to the movement of
other body parts (such as arms), and this becomes the key
challenge when exploiting the common gait signal for key-
generation.

Figure 1 plots the acceleration signal in the gravity direction
captured by devices placed at different body locations when
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Fig. 1: Acceleration signal in the gravity direction captured
by devices located at different body locations when a user is
walking.

the user is walking. The acceleration readings on the body
trunk (waist and chest) originate primarily from the walking
action, and generate similar patterns. However, the sensors on
the wrist capture the aggregated acceleration signal produced
by both gait and arm swing. Thus the common motion signals
(caused by gait) for key generation is overwhelmed by noise
(caused by the arm swing motion). This makes it infeasible to
use the raw motion signals captured by the sensors to generate
a common secret key directly. To address this challenge,
Walkie-Talkie uses the Blind Source Separation technique
described in Section IV to separate the signals produced
from gait and arm swing, and use the common gait signal
to generate key for secure communication for all on-body
devices.

The second challenge is that the on-body devices are
limited by their computational capacity and power supply.
As described in [3], IMDs are long-lived devices and bat-
tery replacement requires surgical intervention. Therefore, the
pairing protocol should be lightweight and energy-inexpensive.
The proposed key generation scheme requires only lightweight
signal processing techniques, Advanced Encryption Standard
(AES) invocations and hash computations by the on-body
devices.

To the best of our knowledge, this is the first work that
exploits gait signals to achieve efficient key generation and
secure communication establishment for devices placed at
different body locations. The main contributions of this paper
are threefold:

• Source separation for body motion signal: By using Blind
Source Separation to separate motion signals generated
from different body movements, e.g., gait and arm swing
motions, the proposed key generation approach achieves
robust performance in generating keys for devices located
at different body locations.

• Shared key generation scheme: We present a novel, light-
weight key generation scheme for on-body IoT devices
based on body motion signals. We experimentally demon-
strate that the keys generated on two independent wearable
devices on the same body can achieve up to 100% bit agree-
ment rate, while the scheme also provides adequate security
guarantees against impersonation attacks. By walking for 5s
(≈10 steps), the proposed key generation approach is able



to generate a 128-bit key with entropy varying from 0.93 to
1.

• System implementation: We illustrate the practicability
of the proposed key generation approach by implementing
the system in Bluetooth Low Energy (BLE) peripheral
mode. We report the system computation overhead and
power consumption, and demonstrate the feasibility of the
proposed scheme for contemporary on-body IoT devices.
The rest of the paper is organized as follows. We introduce

the user model and the adversary model in Section II. We
specify the design overview in Section III, signal processing
in Section IV, and key generation in Section V respectively.
We then evaluate the performance of the proposed scheme
and analyze security issues in Section VI, and present the
system implementation in Section VII. Section VIII discusses
the related work, and finally Section IX concludes the paper.

II. MODEL

Before discussing the framework of Walkie-Talkie, we first
introduce the user model and the adversarial model.

A. User Model

We envision the use of Walkie-Talkie primarily for pairing
wearable and implantable devices. Figure 2 illustrates a typical
user model for on-body device communication in Walkie-
Talkie. One morning, a user wants to pair his smart watch
(Alice) with pacemaker (Bob) to read health information.
The user launches Walkie-Talkie on the smart watch and
walks several steps, and then both Alice and Bob generate a
secret symmetric key by exploiting the measured gait signals
during this period. The key is then used to encrypt/decrypt the
messages between Alice and Bob.
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Fig. 2: Pacemaker and smart watch measure the gait signals
simultaneously and use the gait signals to generate a shared
secret key. The key is then used to ensure the security of
communication between two parties.

B. Adversarial Model

To achieve secure communication, a common attack that
needs to be addressed is the impersonation attack, in which an
adversary (Eve) tries to impersonate a legitimate device to steal
private information. We assume the presence of two types of
impersonation attack during a key generation session: a passive
eavesdropping adversary and an active spoofing attack. The
passive adversary knows the key generation mechanism and
can eavesdrop on the messages exchanged between Alice and
Bob during the key generation process. The active spoofing

attacker tries to mimic the walking style of the genuine user
to pair with one or both of the legitimate devices.

As discussed in [4], although the attacker can monitor
messages exchanged between the legitimate devices, we as-
sume that they can neither control the acceleration recorded
locally by these devices nor perfectly estimate it, otherwise
the protection of legitimate devices is impossible. We also
assume that all the devices on the user’s body are legitimate
devices, i.e., an adversary cannot insert a device on the user
to get the acceleration data. Further potential threats include
deriving the acceleration by studying a video of the target’s
gait through computer vision techniques. We believe this is
a potential vulnerability of unknown severity and leave it as
future work.

III. DESIGN OVERVIEW

Fig. 3: Flowchart of the key generation scheme.

Figure 3 shows the work-flow of Walkie-Talkie. Suppose
Alice (e.g., smart watch) wants to read data from Bob (e.g.,
pacemaker). Alice first broadcasts a REQ request to Bob. After
receiving the REQ, Bob replies with a RSP response. Then
both Alice and Bob start to collect local motion sensor data
and follow the steps shown in Figure 3 to generate a shared
secret key. Finally, the key is used to encrypt/decrypt data to
ensure secure communication between Alice and Bob.

The key component of Walkie-Talkie consists of the follow-
ing two steps:

• Signal Processing Signal processing consists of two
steps: source separation and signal alignment. Source
separation is performed on the acceleration data collected
from the on-body devices to extract the signals produced
by gait. As Alice and Bob sample acceleration data
independently, we apply signal alignment to synchronize
acceleration samples at Alice and Bob and transform
the acceleration to the same body coordinate system to
facilitate key generation.

• Key Generation The key generation component con-
sists of three basic steps: quantization, reconciliation
and privacy amplification. In quantization, the legitimate
devices, Alice and Bob, convert acceleration samples into
bits if they are both on the same body. In the recon-
ciliation stage, Alice and Bob exchange error-correcting
messages over a public channel that allows them to agree



on an identical string of bits. However, the publicly ex-
changed messages reveal a certain amount of information
about the bit strings to Eve. To address this issue, Alice
and Bob diminish the partial information revealed to Eve
by privacy amplification.

In the following sections, we will describe design details of
each component. Table I summarizes the notation used in this
paper.

TABLE I: A summary of the main symbol notations.

Symbol Meaning

Acc(t) raw linear acceleration data
A mixing matrix
S(t) independent components
W unmixing matrix
S̃(t) estimated independent components
Acc

′
(t) reconstructed acceleration

q+, q− quantization boundaries (upper and lower)
LAlice, LBob index list of generated bits
L̃ common index list between LAlice and LBob

MAC(·) message authentication code algorithm
KAlice,KBob generated key after quantization
K

′
Alice,K

′
Bob generated key after reconciliation

K
′′
Alice,K

′′
Bob final key after privacy amplification

IV. SIGNAL PROCESSING

A. ICA-based Source Separation

When an individual is walking, accelerometer recordings
from one body location are typically a mixture of accelerations
produced from multiple body locations (e.g., leg, waist, and
arm). For wearable and implantable devices, most common
locations are waist, chest, head and wrist. As described in
Section I-B, the sensors on the body trunk measure the motion
signals produced by gait primarily. Therefore, the devices on
the body trunk can exploit the acceleration readings directly to
generate a key. However, sensors worn on the wrists capture
signals from a combination of gait and arm swing motions. In
order to exploit the useful signal (gait) to generate a key, we
need to separate signals produced from leg motions (walking)
and arm swing motions.

In this paper, we apply independent component analy-
sis (ICA) technique to separate signals from different body
sources [5]. ICA is one of the most popular blind source
separation (BSS) methods, which aims to separate the mixed
signals into a set of independent sources (ICs) given very little
information (or no prior information) about the source signals.
Before applying ICA, we first justify that on-body accelerom-
eter satisfies the conditions for ICA. 1) The acceleration from
the different sources is mixed linearly at each sensor location,
as we record the linear acceleration along 3 channels of the
accelerometer sensor for each location. 2) The acceleration
of arm swing is independent from that originating from heel
strike. As stated in [2], the movement patterns of various parts
of the body are independent, and gait is the total pattern of
movement when they are integrated together. 3) Time delays
in signal transmission through the body are negligible. 4)
There are fewer sources than mixtures. For each location,

we attach a 3-channel accelerometer sensor, thus we have an
observation of 3 channels and the signals are mainly from two
sources: arm swing and walking. 5) Statistical distributions of
the acceleration values produced by body movement are not
Gaussian [6].

Suppose a smart watch is worn on one wrist of the user, and
the measured linear accelerations by the built-in three chan-
nel accelerometer are Acc(t). As the accelerometer signals
recorded on the wrist are a mixture of the signal from leg and
arm swing respectively, the ICA model of our problem can be
written as:

Acc(t) = A · S(t) (1)

where A is the mixing matrix and S(t) represents independent
sources. Our aim is to find an unmixing matrix W (W = A−1),
so that we can calculate the estimated source signal S̃(t) by:

S̃(t) = W ·Acc(t) = W ·A · S(t) (2)

In this paper, we use FastICA (A fast fixed-point algorithm
of independent component analysis) to solve the ICA model in
Eq. 1, i.e., to estimate W . FastICA has been found to be 10-
100 times faster than conventional gradient descent methods
for ICA [6]. Therefore, FastICA is well suited for the resource-
constrained on-body devices in this work.

After obtaining W , we obtain the estimated sources S̃(t)
by Eq. 2. In our problem, the rows of Acc(t) are the linear
acceleration values along three axes of the accelerometer.
The acceleration signal without arm swing motion can be
derived from Acc

′
(t) = WS̄, where S̄ is the matrix of

derived independent components with the row representing the
arm swing set to zero. Assume the second ICA component
represents the signal from arm swing. S̄ can then be written
as:

S̄ =

 S̃11 S̃12 · · · S̃1N

0 0 · · · 0

S̃31 S̃32 · · · S̃3N

 (3)

where S̃ij(i, j = 1, . . . , N) are the elements of matrix S̃(t)
and N is the number of acceleration samples. In the following
section, we describe how we identify different motion com-
ponents.

B. Identifying Motion Component

From the ICA model in Eq. 1, it can be seen that one
cannot determine the order of the independent components,
as a permutation matrix P and its inverse P−1 can be added
in the model to yield Acc(t) = AP−1PS(t). The elements of
PS(t) are the original independent variables, but in a different
order. The matrix AP−1 is therefore a new unknown mixing
matrix, to be solved by the ICA algorithm. Furthermore, the
order of components may also vary from one data segment to
the next. Consequently, one has to depend on visual inspection
of the ICA components for further processing, a method which
is not desirable for on-body sensors.

In practice, the separated components tend to have more
distinctive properties than the original signals both in time
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Fig. 5: ICA results: (a) Raw acceleration Acc(t). (b) Estimated
independent components S̃(t). (c) Frequency of raw acceler-
ation. (d) Frequency of estimated independent components.

and frequency domains. Figure 4 shows the frequency of
walking while swinging an arm, walking without swinging an
arm, and swinging an arm only. We notice that the dominant
frequency of the signal from walking only is two times of
that of arm swing signal. This is easy to understand because
a gait cycle is composed of two steps and one arm swing
cycle. Therefore, each step (left or right) registers as a strong
repetitive acceleration signal and the signal is transmitted
through the foot to the whole body. Due to the symmetry
of the body, the signal produced by left and right step can
be deemed to be same. However, the arm swing signal only
repeats every two steps as the smart watch is worn on one
wrist of the user. We use this observation to identify the signal
from arm swing and foot. Specifically, after obtaining S̃(t)
by Eq. 2, we perform a Fast Fourier Transform (FFT) on the
three independent components (ICs) in S̃(t) (i.e., three rows of
S̃(t)). Figure 5(d) illustrates the magnitude of the acceleration
signals in three directions before ICA and after ICA. We can
see that the original acceleration data contains signals from
two frequencies primarily. The three separated independent
components (ICs) present different frequency distributions.
The frequencies of IC-2 are concentrated on the fundamental

frequencies. As discussed above, the reconstructed signal
without arm swing motion can be obtained by setting the
second row of the matrix S̄ to zero (see Eq. 3).

Figure 6 presents the acceleration in the gravity direction
before and after source separation. We can see that the
acceleration produced by walking is overwhelmed by arm
swing in the raw acceleration signals. The acceleration after
source separation is very similar to the readings on the chest,
just the magnitude of the signal is reduced, because the signal
produced from leg motion is attenuated through the body to
the wrist. Note that one cannot simply apply a low-pass filter
to filter out the signal produced by arm swing motion because
the walking signal also contains a fundamental frequency
component as shown in Figure 4.
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Fig. 6: Comparison of raw signal and extracted signal.

C. Signal Alignment

The raw acceleration data cannot be used to generate the
key directly as the accelerometer values are sensitive to sensor
orientation and location. Additionally, different devices are
usually not well time-synchronized which leads to the problem
of signal synchronization. We address these two issues by
temporal alignment and spatial alignment.

1) Temporal Alignment: As devices sample acceleration
values independently, temporal synchronization is required
for key generation. In this paper, we use an event-based
approach in which devices detect the time point of a heel-strike
event, and use this event as an anchor point. The intuition
is that the acceleration values along gravity direction reach
the peak simultaneously when the foot touches the ground,
and time delays in signal transmission through the body are
negligible. To detect heel-strike, we first apply a low-pass filter
on acceleration along the gravity direction to reduce noise.
The cutoff frequency is chosen as 3Hz as the normal step
frequency lies between 1.6-2.8 Hz [2]. Then the local maxima
are detected to identify heel-strike events as shown in Figure 7.

Heel-strike events can be detected locally at each device
without communication which eliminates the need for explicit
synchronization between devices. When Alice receives a RSP
from Bob, both of them reach to agreement to record accelera-
tion from the next nstart-th heel-strike event and end recording
at the subsequent nend-th heel-strike event. The acceleration
samples are then transformed to the body coordinate system
as described in the following section.
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Fig. 9: Acceleration of two legitimate devices and an adversary device.
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2) Spatial Alignment: Walking is inherently a three-
dimensional movement. 3D acceleration data independently
recorded at different locations lack spatial alignment and can-
not be directly used to generate a shared secret key. We address
this by transforming acceleration values of different devices to
a common body reference coordinate system independent of
orientation and location. Figure 8 illustrates the definition of
the world coordinate system, the body reference coordinate
system and the coordinate system of different devices. The
world coordinate system is defined by North, East and the
Down or gravity direction (−G). We refer to the device’s local
coordinate system as (X, Y, Z). The user plane of motion is
defined as the Forward-Sideways plane which is perpendicular
to gravity. Sideways points toward the right side of the user’s
forward direction.

Taking a smartphone as an example, assume the linear accel-
eration signals along three orthogonal directions of smartphone
are Accx, Accy , and Accz respectively, the linear acceleration

in the body reference system can be computed as:AccGAccF

AccS

 = Rw
b ·Rd

w ·

AccxAccy

Accz

 (4)

where AccG, AccF , and AccS are linear accelerations along
gravity direction, forward direction and sideways direction in
the body reference system, Rw

b is the rotation matrix from
the world coordinate system to the body coordinate system
and can be computed by the method in [7]. Rd

w is the
rotation matrix from the device coordinate system to the world
coordinate system and can be obtained by the Android API.
Note that the absolute walking direction of the user cannot
be obtained accurately using a smartphone compass [8]. In
Walkie-Talkie we don’t have this problem because we consider
the acceleration values only instead of walking direction. After
obtaining the acceleration in the body coordinate system, we
use AccG, AccF and AccS for key generation.

V. KEY GENERATION

After source separation and signal alignment, we obtain
acceleration values caused by gait along three directions:
AccG, AccF and AccS . Figure 9 plots the acceleration of two
legitimate devices and an adversary device in three directions.
We can see that the devices on the same body follow the
same pattern, however, the acceleration signal recorded by an
adversary device significantly differs. This result is promising
since our goal is to generate symmetric keys only for devices
on the same body. The following key generation method is
applied on two legitimate devices separately.

A. Quantization

We perform filtering, and quantization for the acceleration
values along the three directions separately. We first apply a
low-pass filter for noise reduction. The cutoff frequency is
chosen as 10Hz as the useful frequency of human motion lies
below 10 Hz [9]. Note that the cutoff frequency of this low-
pass filter is different from that used for heel-strike mentioned
in Section IV-C1. After filtering, the acceleration values are
normalized to have zero-mean and unit length to alleviate the
influence of different body locations. Then we employ the bit
extraction mechanism described in [10], [11] to convert the
acceleration values to bits. More specifically, we segment the



acceleration values with a moving window with no overlap
(window size W = 10). Thereafter, for each window, we
calculate two thresholds q+ and q− as follows:

q+ = µ+ α ∗ σ, q− = µ− α ∗ σ (5)

where µ and σ are the mean and standard deviation of accel-
eration values in a particular window. Then the acceleration
samples > q+ are encoded as bit 1, and samples < q− are
encoded as bit 0. The key is then extracted by combining the
bits of each window together. The quantization process for
each window is explained in Figure 10.
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Fig. 10: Quantization process: (a) A sample of acceleration
time series. (b) Secret bit extraction in a window of 10
samples.

At the end of this process, three separate bit streams
KG,KF ,KS are extracted from AccG, AccF and AccS re-
spectively, and the secret key for Alice is obtained by concate-
nating three bit streams together as KAlice = [KG,KF ,KS ].
The same quantization process is also performed by Bob
independently to get KBob.

B. Reconciliation

In practice, there may be some bit mismatches due to
noise and we often get KAlice ≈ KBob. This is because the
samples discarded during quantization at one party may be
different from those at another. To increase the bit agreement
rate, Alice and Bob need to exchange the sample indexes
of generated bits. Only the bits corresponding to common
sample indices are retained by both the parties to get the
same key. For the sake of illustration, assume Alice and Bob
each have 10 measurements. After quantization, Alice obtains
“10110” and Bob yields “1001” (the length of KAlice and
KBob is not necessary to be same). Assume Alice generates
bits at positions 1, 2, 3, 5, and 7, respectively. She sends
LAlice = [1, 2, 3, 5, 7] to Bob. Bob observes these positions
in his list and finds the bits are extracted at positions 1, 2, 4,
and 5. He sends LBob = [1, 2, 4, 5] back to Alice. Then they
use the bits at positions 1,2 and 5 to generate the same key
as K

′

Alice = K
′

Bob =“101”.

Since Alice and Bob do not share an authenticated channel,
Eve can impersonate as Alice or Bob during the reconciliation
process. Such an attack would allow Eve to insert her own fake
messages, thus spoofing a legitimate device and disrupting
the protocol without revealing his presence. To address this
issue, we employ the message authentication code (MAC)
method proposed in [12] to verify that the message has not
been modified. Specifically, the MAC method contains the
following three steps:

• To ensure the LAlice is indeed sent from Alice, Bob
computes the fraction of indexes in LAlice that lies in
LBob. If this fraction is less than 0.5+ ε for some fixed ε
(ε = 0.3 in our system), Bob concludes that the message
was not sent by Alice, indicating the presence of an
adversary.

• If Bob does not detect the presence of an adversary,
he computes K

′

Bob and replies to Alice with a message
L̃Bob =

{
L̃,MAC(K

′

Bob, L̃)
}

, where L̃ contains those
indexes lying in both LAlice and LBob, and MAC(·)
represents a message authentication code (MAC) algo-
rithm [13].

• Upon receiving L̃Bob, Alice computes K
′

Alice and
uses it for MAC verification. If Alice obtains
MAC(K

′

Alice, L̃) = MAC(K
′

Bob, L̃), she can confirm
that the message was indeed sent by Bob. Since Eve does
not know the bits in K

′

Bob generated by Bob (he can just
listen to the output of the MAC(K

′

Bob, L̃)), modifying
L̃Bob will fail the MAC verification at Alice.

Apart from verifying that the message has not been mod-
ified, the MAC verification also verifies whether Alice and
Bob generate the same key. Because if K

′

Alice 6= K
′

Bob, Alice
cannot obtain MAC(K

′

Alice, L̃) = MAC(K
′

Bob, L̃). In this
case, the key generation process fails, and Alice will either
notify Bob to restart the key generation process, or consider
Bob as an unauthorized device and deny all Bob’s consequent
requests, depending on application requirements.

C. Privacy Amplification

After reconciliation, Alice and Bob agree on a common
secret key as K

′

Alice = K
′

Bob. Simply concatenating the
bits generated from each time window does not necessar-
ily produce a random secret key, as correlation between
different steps may result in high correlation between key
bits. This issue can be addressed by privacy amplification
techniques [14]. In the system, we use a bit-wise XOR function
to combine keys generated from each direction and eliminate
the correlation between them. Specifically, we interleave the
bit streams from three directions in the time sequence and
segment the concatenated keys into small windows with no
overlap. Each window contains 30 bits which is close to
the bits generated in a gait cycle duration as the evaluation
results show in Section VI-D. Then we XOR two consecutive
windows together to obtain the final key K

′′

Alice and K
′′

Bob.
Another advantage of privacy amplification is that it di-

minishes the partial information revealed to Eve as discussed
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in [14]. In the reconciliation stage, Alice and Bob exchange
messages over a public channel and the publicly exchanged
messages reveal a certain amount of information about the
bit strings to Eve. To reduce the impact of the revealed
information, the privacy amplification significantly improves
the randomness of the keys generated as the evaluation results
show in Section VI-D. Note that other privacy amplification
methods such as a universal hash [14] can be employed to
further enhance the randomness of the concatenated key. We
refer the reader to [14] for more details.

After privacy amplification, the final key can be used
by symmetric-key algorithms such as AES to ensure secure
communication between Alice and Bob. If the length of final
key is greater than 128 bits, the first 128 bits are used.

VI. EVALUATION

A. Goals, Metrics and Methodology

In this section, we evaluate the performance of the pro-
posed key generation scheme. The goals of the evaluation are
fourfold: 1) to determine the choice of the key parameters
including the window size (W ) and α in the quantization
process as well as the sampling frequency (Fs); 2) to evaluate
the impact of different components in the work-flow including
ICA, reconciliation, and privacy amplification; 3) to evaluate
the impact of different body locations on bit agreement rate
including head, chest, waist, and wrist; 4) to evaluate the
security of the scheme against various adversary attacks.

a) Data Collection: The dataset used to evaluate the
performance of the proposed system consists of 20 subjects
(14 males and 6 females)1. As shown in Figure 11, we
collect acceleration data from the following body positions:
head, chest, waist, and wrist. These positions represent the
common locations of mobile devices and medical sensors (e.g.,
pacemaker). The sampling rate of all devices used in data
collection is set to 100 Hz.

During the data collection phase, the participants were asked
to wear mobile devices as shown in Figure 11 and walk for

1Ethical approval for carrying out this experiment has been granted by the
corresponding organization (Approval Number HC15304)

about 5 minutes at their normal speed (0.7-1.1m/s). The data
collection was performed both indoors and outdoors to capture
different terrains in practical scenarios. Note that we do not
consider data collection on different days or different walking
speeds (slow, normal and fast) as all the devices worn by the
subject are measuring the same gait signal simultaneously,
which is different from the data collection requirements in
the study of gait recognition. The detected peaks which indi-
cate heel-strikes are used to synchronize acceleration samples
recorded on different devices and segment steps. For each
device attached on one subject, we break the continuous
acceleration values into segments according to heel-strike
points, each segment contains 10 steps. The segments are used
to generate keys and evaluate the following metrics.

b) Metrics: For a shared key generation protocol, we
focus on the following three evaluation metrics:

• Bit agreement rate: this represents the percentage of bits
matching in the secret keys generated by two parties. This
metric evaluates the potential of Alice and Bob agreeing
on the same key.

• Bit rate: This denotes the average number of bits gen-
erated from the acceleration samples per unit time and
is usually measured in bits per second (bps). This metric
evaluates how fast Alice and Bob can generate shared
secret bits.

• Entropy: This is the measure of uncertainty or random-
ness associated with the generated bit strings. Entropy of
a binary bit string varies in the range [0, 1], and larger
entropy indicates more randomness of the bit string.

We examine the impact of parameters on the generated key
by a systematic exhaustive search. We vary the respective
parameters within a dedicated range, i.e. W = 5, 10, . . . , 50,
α = 0, 0.1, . . . , 1, and Fs = 10, 20, 30, 50, 100. The goal of
the exhaustive search is to find the optimal combinations which
concurrently maximize the agreement rate. After choosing the
best combination (W = 10, α = 0.8, Fs = 30), we take turns
to investigate the impact of each parameter on agreement rate
and bit rate by fixing the other two parameters. Results are
presented for the average values and 95% confidence levels of
the performance metrics (bit agreement rate and bit rate).

B. Parameter Selection

1) Impact of Sampling Rate: As mentioned above, the
initial sampling rate is 100Hz. We evaluate the impact of
different sampling rates on bit rate and bit agreement rate
by downsampling Fs from 100Hz to 50Hz, 30Hz, 20hz and
10 Hz respectively. Figure 12(a) and Figure 12(b) show the
impact of Fs on bit rate and bit agreement rate respectively.
We can see that the agreement rate between legitimate devices
varies inversely with sampling rate. The reason is that a higher
sampling rate is able to record more acceleration values during
the same period and thus improve bit rate; however, it reduces
bit agreement as a higher sampling rate captures acceleration
variation in more detail leading to less similarity between
legitimate devices.
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Fig. 12: Evaluation results.

2) Impact of α: We evaluate the impact of α to explore
the tradeoff between agreement rate and bit rate. Figure 12(c)
shows that the bit rate decreases as α increases. This is because
the parameter α in Eq. 5 decides the decision band to include
or discard the acceleration measurements. A larger α means
more acceleration readings are discarded. This reduces the
length of generated keys and decreases the bit rate. On the
other hand, as shown in Figure 12(d), the bit agreement rate
increases with increasing α because more mismatches in the
decision band are excluded. However, we notice that α has
inverse impact on agreement rate for an adversary device. This
is because more samples are discarded for quantization at all
the devices when α increases. Therefore, the legitimate devices
know the index numbers used and they exchange the index list
during reconciliation, so the agreement rate increases. How-
ever, for the adversary, as the signal values itself are different
from that of legitimate devices, the remaining extracted bits
after dropping more samples in quantization will have lower
matching rates.

Apart from sampling rate and α, we also investigated the
impact of different window sizes when generating keys. We
found that the moving window size W does not have much
influence on the performance and a moving window with size
of 10 is adequate for the proposed system.

C. Impact of Reconciliation

Reconciliation is used to correct errors between Alice’s and
Bob’s keys. Figure 12(e) and Figure 12(f) show the impact of
reconciliation on the bit rate and agreement rate respectively.
We can see a significant increase in the bit agreement rate
after using reconciliation technique. One drawback of the
reconciliation process is that it reduces bit rate as shown in
Figure 12(e). Because the primary goal of a key generation

protocol is to generate a shared common key, reconciliation is
necessary for the proposed key generation approach.

D. Improvement of Key Randomness with Privacy Amplifica-
tion

We now examine how the XOR function in privacy am-
plification helps to enhance the randomness of the final key.
Figure 12(g) shows the entropy of the final key after privacy
amplification. From the results, we can see that the distribution
of entropy is closer to 1 after the XOR operation. We also
notice that the entropy of the final keys varies from 0.93 to 1
which in turn indicates that the proposed method can extract
secret keys with good entropy. Note that a drawback of using
the XOR function is that the bit rate is reduced by a factor of
2 (we XOR two consecutive windows together). As the results
in Figure 12(e) show, the bit rate can still achieve 26 bit/sec
after reconciliation and privacy amplification.

E. Improvement of Bit Agreement Rate with ICA

We examine whether the application of ICA can improve
the agreement rate. As ICA is applied on acceleration signals
recorded from the smart watch only, we compute the bit
agreement rate between keys generated from smart watch and
devices placed at other locations by using raw acceleration
values (without ICA) and extracted acceleration values (with
ICA) respectively. From the results in Figure 12(h), we can
see a significant improvement in agreement rate after ICA.
The maximum agreement rate of using raw acceleration values
(without ICA) is near 50% which is like a random guess
between 0 and 1. The results suggest that applying ICA can
extract walking signals from arm swing signals effectively and
thus improve the agreement rate significantly.
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Fig. 13: Bit agreement rate of different body parts.

F. Bit Agreement Rate of Devices on Different Body Parts

We evaluate how well the proposed method performs for
each body part: wrist, chest, waist, and head. For each body
part, we compare the keys generated from other locations with
the keys generated from this location. For example, in terms
of wrist, we calculate the agreement rate by comparing the
keys generated from wrist with keys generated from other
locations (e.g., waist, chest, and head) respectively. As shown
in Figure 13, we notice that the pairs of waist-to-chest and
chest-to-head achieve the best agreement rate. This result is
intuitive as sensors on the body trunk observe acceleration
more similarly than sensors on the limbs. We also investigate
the bit agreement rate of devices on different sides of the
body. We compare the keys generated from one side of the
body (left wrist) with keys generated from the other side of
the body (right wrist). From the results in Figure 14, we find
that the agreement rate of devices on different sides can still
achieve 100% after performing source separation to extract the
useful signals.
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G. Randomness of the Final Key

Guaranteeing that the generated keys are random is crucial
because they are intended for use as a cryptographic key.
In order to validate the randomness of the final key, we
apply the NIST suite of statistical tests [15] to all the keys
generated from our dataset. The NIST statistical test gives the
p-values of different random test processes, and the p-values
indicate the probability that the key sequence is generated by
a random process. Conventionally, if p-value is less than 1%,
the randomness hypothesis is rejected which means the key is
not random. From Table II, we can see that the p-values are
all greater than 1% in the sense that the generated keys pass
the random tests.

TABLE II: P-values of NIST Statistical Test.

NIST Test p-value

Frequency 0.606072
FFT Test 0.562699
Longest Run 0.027173
Linear Complexity 0.386887
Block Frequency 0.984496
Cumulative Sums 0.974180
Approximate Entropy 0.995898
Non Overlapping Template 0.302941

H. Security Analysis

We assume the presence of a passive adversary (eavesdrop-
per) and an active attacker during an authentication session.
The eavesdropper can listen to all the communications between
Alice and Bob and knows the bit generation algorithm. The
active attacker has complete communication control, i.e. can
jam, forge and modify messages. Additionally, the adversary
may mimic the walking style of the genuine user and start
new protocol instances by injecting appropriate authentication
request messages with multiple legitimate devices in parallel.
We evaluate the robustness of the proposed system against the
eavesdropper and active attacker by conducting the following
two imposter attempt experiments.

• A passive impostor attempt is an attempt when an attacker
tries to pair his device to a legitimate device by submitting
his own walking signals.

• An active impostor attempt mimics the gait of the genuine
user with the aim to pair with the devices of the genuine
user.

The first experiment is conducted to evaluate the robustness
to a passive imposter. For each location of one subject, we
use the keys generated from the same location but from other
subjects as passive imposter attempts. We then repeat this
experiment by testing all the locations of the 20 subjects in the
dataset. To evaluate the robustness against the second imposter
attack scenario, we group the 20 subjects into 10 pairs. Each
subject was told to mimic his/her partner’s walking style and
try to imitate him or her. Firstly, one participant of the pair
acted as an attacker, the other one as a target, and then the
roles were exchanged. The genders of the attacker and the
target were the same. They observed the walking style of
the target visually, which can be easily done in a real-life



situation as gait cannot be hidden. Every attacker made 5
active impostor attempts. Figure 15 plots the bit agreement
rate of passive imposter and active imposter, we can see that
the agreement rate of passive impostor attempt is below 30%
when α > 0.8. Although an active imposter can improve the
agreement rate significantly by mimicking the target’s walking
style, the agreement rate rises to only about 50% when α = 0.8
(we set α = 0.8 in the system). The results in VI-D show
that Walkie-Talkie is able to generate 128 bits in about 5s.
However, an active imposter can obtain 50% of the bits by
imitating the user’s walking pattern; therefore, the generated
bits provide 64 bits of entropy, i.e., it takes about 10 seconds
(about 20 steps) to generate a 128-bit secret key.
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Fig. 15: Agreement rate of impostors.

The individual nature of walking gait provides our scheme
security against passive eavesdroppers. Even if an active
imposter can observe and try to mimic the walking style of
the target, the results in Figure 15 show that he still cannot
obtain a common secret key. However, an active attacker can
impersonate Alice or Bob in the reconciliation stage and insert
false values. Walkie-Talkie prevents such attack by the MAC
method described in Section V-B. A further concern to all key-
agreement protocols is the man-in-the-middle attack (MITM).
A MITM attack against our scheme rarely occurs as Alice
and Bob exchange the index of the generated key only instead
of shared key during the reconciliation stage. Therefore, the
shared key will not be compromised by MITM.

VII. SYSTEM IMPLEMENTATION

To validate the feasibility of the proposed key generation
approach on wearable devices, we implemented the whole
system using an Android OS application. The system is
implemented in Java and the implementation of FastICA is
based on the Fastica Java library [16]. The MAC algorithm
described in Section V-B is implemented by keyed-hash mes-
sage authentication code (HMAC-MD5). The sampling rate of
the accelerometer is set as 30Hz and Bluetooth Low Energy
(BLE) functionality is employed for wireless communication.

Table III presents the system overhead (computation and
energy consumption) of our system on a Moto E2 smartphone,
which supports BLE peripheral mode. The major components
in Walkie-Talkie: the source separation (including ICA and
component identification) and key generation take an average
time of 108.3ms and 208.1ms respectively. When the scheme

TABLE III: System overhead measured on Moto E2.
Computation

time (ms)
Energy

consumption (mJ)
ICA 105.7 71.2

Component Identification 2.6 1.5
Key Generation 208.1 12.7
AES Encryption 0.2 0.1
AES Decryption 0.2 0.1

Total 316.8 85.6

is fully employed, the computation time and energy consump-
tion are 316.8ms and 85.6mJ respectively. The battery capacity
of the Moto E2 smartphone is 2390 mAh (30.1 kJ), therefore,
the energy cost of Walkie-Talkie amounts to 0.002‰ of the
total energy supply. We assume the smartphone with a targeted
lifespan of one day which results in an energy budget of
1.25KJ per hour. To put this into perspective, with 5% of the
budget per hour (62.5 J), Walkie-Talkie is capable of running
approximately 730 times per hour, i.e., Walkie-Talkie can
continuously run every 5 seconds. These results demonstrate
that the proposed key generation approach has a low system
overhead and can run in real-time on modern mobile devices.

VIII. RELATED WORK

In this section, we review the related work in the literature.
Applications of ICA. ICA has been successfully applied in

numerous areas such as biomedical signal processing [17] and
speech separation [18]. The application of ICA on body sensor
networks (BSN) is an emerging field. In [19], the authors
applied ICA on body sensor signals to separate different
sources of movement due to running and respiration. In [20],
the researchers use the ICA technique to detect walking gait
impairment with an ear-worn sensor. In our study, we use
ICA to separate accelerometer signals from different body
movements such as arm swing and walk.

Key generation system for on-body devices. Many tech-
niques exist that could be used to generate a shared secret
key between two parties by exploiting the wireless channel
information. Some of the examples are physical layer char-
acteristics based security mechanisms, e.g., Received Signal
Strength Indicator (RSSI) have been proposed by researchers
in [10], [21], [22]. However, these schemes are suitable for
wearable devices which are frequently exchanging wireless
packets. The potential of using acceleration to generate a
shared key has not been well explored in the literature. The
prior work that probably has the closest relation to ours is [23],
in which the researchers developed a method to generate a
shared key based on acceleration data of shaking devices
together.

Authentication system for on-body devices. There have
been several previous works using accelerometers to determine
whether the devices are worn on the same body. [24] proposed
to use coherence to analyze the similarity of acceleration
signals from different devices, and then decide whether two
devices are carried on the same body.The idea of shaking two
devices together to pair them was first proposed in [25]. [4]



used the same technique but extended it to include secure
authentication. [26] developed a similar method to pair devices
that uses bumping rather than shaking together. These methods
require the user to participate and shake/move the devices
together, which is not suitable for many on-body devices
such as a pacemaker. The proposed scheme can improve user
experience significantly as walking is a normal activity, and
two devices can be paired automatically when the user is
walking.

Biometric based authentication system. Biometric recog-
nition is the science of establishing the identity of a person
using his/her anatomical and behavioral traits [27]. In this
paper, we have addressed a different problem (key genera-
tion) by using biometric gait. Our work belongs to biometric
cryptosystems (BCS) which were developed for the purpose
of either securing a cryptographic key using biometric features
or directly generating a cryptographic key from biometric fea-
tures. State-of-the-art BCSs which were proposed previously
mostly utilize physiological modalities such as iris [28], and
fingerprint [29]. There are also some studies that use behav-
ioral biometrics such as signature [30] and voice [31]. To the
best of our knowledge, gait has not been well explored in BCS.
In a similar work [32], the researchers used gait to encrypt a
cryptographic key through a fuzzy commitment scheme [33].
In contrast, gait is explored to generate a cryptographic key
directly in our work.

IX. CONCLUSION AND FUTURE WORK

In this paper, we propose and implement a key generation
approach that exploits the acceleration signals produced by
gait to establish a common cryptographic key between two
legitimate devices. The proposed method obtains a security
advantage from the fact that different people have distinctive
walking styles. Evaluation results show that the keys generated
by two independent devices on the same body are able to
achieve up to a 100% bit agreement rate. We also analyze the
security against various attackers. Finally, we prototype the
proposed scheme on Motorola E2 smartphone to demonstrate
the feasibility on contemporary mobile devices.
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based on acceleration data of shaking processes. Springer, 2007.

[24] C. T. Cornelius and D. F. Kotz, “Recognizing whether sensors are on
the same body,” Pervasive and Mobile Computing, vol. 8, no. 6, pp.
822–836, 2012.

[25] L. E. Holmquist, F. Mattern, B. Schiele, P. Alahuhta, M. Beigl, and H.-
W. Gellersen, “Smart-its friends: A technique for users to easily establish
connections between smart artefacts,” in Ubicomp’ 2001. Springer,
2001, pp. 116–122.

[26] K. Hinckley, “Synchronous gestures for multiple persons and com-
puters,” in Proceedings of the 16th annual ACM symposium on User
interface software and technology. ACM, 2003, pp. 149–158.

[27] A. K. Jain, K. Nandakumar, and A. Nagar, “Biometric template security,”
EURASIP Journal on Advances in Signal Processing, vol. 2008, p. 113,
2008.

[28] R. A. Marino, F. H. Alvarez, and L. H. Encinas, “A crypto-biometric
scheme based on iris-templates with fuzzy extractors,” Information
Sciences, vol. 195, pp. 91–102, 2012.

[29] P. Li, X. Yang, H. Qiao, K. Cao, E. Liu, and J. Tian, “An effective
biometric cryptosystem combining fingerprints with error correction
codes,” Expert Systems with Applications, vol. 39, no. 7, pp. 6562–6574,
2012.

[30] E. Maiorana, “Biometric cryptosystem using function based on-line
signature recognition,” Expert Systems with Applications, vol. 37, no. 4,
pp. 3454–3461, 2010.

[31] B. Carrara and C. Adams, “You are the key: generating cryptographic
keys from voice biometrics,” in Privacy Security and Trust (PST), 2010
Eighth Annual International Conference on. IEEE, 2010, pp. 213–222.

[32] T. Hoang and D. Choi, “Secure and privacy enhanced gait authentication
on smart phone,” The Scientific World Journal, vol. 2014, 2014.

[33] A. Juels and M. Wattenberg, “A fuzzy commitment scheme,” in Pro-
ceedings of the 6th ACM conference on Computer and communications
security. ACM, 1999, pp. 28–36.

http://sourceforge.net/projects/fastica/

	Introduction
	Motivation
	Challenges and Contributions

	Model
	User Model
	Adversarial Model

	Design Overview
	Signal Processing
	ICA-based Source Separation
	Identifying Motion Component
	Signal Alignment
	Temporal Alignment
	Spatial Alignment


	Key Generation
	Quantization
	Reconciliation
	Privacy Amplification

	Evaluation
	Goals, Metrics and Methodology
	Parameter Selection
	Impact of Sampling Rate
	Impact of 

	Impact of Reconciliation
	Improvement of Key Randomness with Privacy Amplification
	Improvement of Bit Agreement Rate with ICA
	Bit Agreement Rate of Devices on Different Body Parts
	Randomness of the Final Key
	Security Analysis

	System Implementation
	Related work
	Conclusion and Future Work
	References

