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ABSTRACT
The information-preserving sampling properties of compres-
sive sensing have found a number of successful applications,
such as sensor scheduling, localisation and tracking to deal
with the resource constraints of the embedded systems. In
this paper, we investigate an approach to improve the perfor-
mance of compressive sensing applications through a novel
strategy for optimising the projection matrix. We formu-
late the projection matrix optimisation problem and ap-
ply greedy algorithm to solve the optimisation problem effi-
ciently. We evaluate the proposed approach by an emerging
background subtraction method designed specifically for the
embedded systems and show the proposed approach outper-
forms existing approaches significantly with little overhead.
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1. INTRODUCTION
Compressive sensing (CS) applies to sparse signals. A dis-

crete signal x ∈ RN is said to be sparse if its representation
in some transform domain D ∈ RN×N has few non-zero ele-
ments. The representation of x in D is the coefficient vector
θ ∈ RN where x = Dθ. The number of non-zero elements in
θ is given by its `0-“norm”: S = ‖θ‖0. Sparsity means that
S � N .

CS employs a sampling method that can be expressed as
the projection

y = Φx (1)
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where the the matrix Φ ∈ RM×N is called the projection ma-
trix (M � N) and y ∈ RM contains the projected/sampled
values. CS is designed to solve the following problem: given
an unknown signal x which is known to be sparse in trans-
form domain D, the problem is to recover x from the projec-
tion values y = Φx together with the knowledge of Φ and D.
The problem is underdetermined because the number of un-
knowns N is larger than number of constraints M . However,
by exploiting the sparsity of x, the theory of CS shows that
it is possible to recover x, by the following `1 minimisation
problem

θ̂ = arg min ‖θ‖1 subject to y = ΦDθ (2)

CS uses projection matrices to produce“compressed”sam-
ples. Random Gaussian and Bernoulli matrices are the pro-
jection matrices of choice in most CS based applications.
However, The randomness of such matrices makes the per-
formance vary substantially . In this paper we propose a
novel strategy for optimising the projection matrix that of-
fers superior performance to purely random strategies. Then
we evaluate our optimised matrix on the efficient background
subtraction method [2].

2. PROJECTION MATRIX OPTIMISATION
A sensing matrix A ∈ RM×N is defined as the product of

projection matrix Φ and transform matrix D

A = ΦD (3)

There are two types of coherence in CS: the coherence
between the columns (e.g. mutual coherence) and between
the rows (row coherence) in the sensing matrix. It has been
shown [1] in fact that both mutual coherence and row coher-
ence affect the performance of CS. In this paper, we focus
on the row coherence.

The row coherence is defined as:

ν(A) = max |A ·AT − diag(A ·AT )| (4)

which is the maximum absolute value of cross-correlation
between the rows of matrix A which are normalised.

2.1 Optimising Row Coherence
Let us assume we have a finite (but still very large) set Ω

of projection matrices stemming from either a random Gaus-
sian or Bernoulli distribution. We know that any projection
matrix Φ stemming from the set Ω will result in a sensing
matrix A that with high probability will have relatively low
mutual and row coherence. The row-coherence of A can be



further minimised by choosing the sampling matrix Φ that
minimises,

arg min
Φ

ν(A) subject to Φ ⊆ Ω . (5)

It is clear that since the set Ω is finite, random is not
convex making the objective in Equation (5) non-convex.
Further, the search space for this combinatorial optimisation
problem is enormous (even though Ω is finite) and is in fact
NP-hard.

3. APPLICATIONS AND PERFORMANCE
EVALUATION

In this section, we evaluate the performance of the opti-
mised projection matrix derived from an efficient solution
(greedy search) of Equation (5). We use G-mtx denote
the optimised projection matrix from greedy algorithm, and
compare it with the traditional pure random matrix: R-mtx.

In [2], the authors proposed a new MoG based background
subtraction method, called CS-MoG. CS-MoG applies ran-
dom Bernoulli matrix to reduce the dimensionality.

3.1 Coherence Analysis
Since there is no signal reconstruction in this application,

the sparse transform domain D is not determined. However
it is known that natural image are often sparse in DCT or
wavelet domain. DCT or wavelet domain can be expressed
as an orthonormal basis. We can assume there is a hidden
basis in this application, which is either DCT, wavelet or
other bases with similar properties. The comparison of the
coherence of the R-mtx and G-mtx is shown in Figure 1. The
results of R-mtx come from 30 independent trials. From the
results, we can assert our proposed algorithm can achieve
significantly better performance in minimising the row co-
herence of the projection matrix (up to 30%). The coherence
of R-mtx shows large variance.
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Figure 1: Comparison of row coherence of the
Bernoulli matrix under different number of projec-
tions

3.2 Performance Evaluation
To further demonstrate the validity of the row coherence

minimisation strategy, we evaluated the CS-MoG with R-
mtx and G-mtx on two different datasets: PETS 2001 and
VS-PETS’ 2003 from http://www.cvg.rdg.ac.uk/.

In a similar fashion to [2], we regard a pixel in background
(resp. foreground) as a negative (positive) event. Therefore,
the accuracy of the background subtraction is analogous to
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(a) PETS 2001
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(b) PETS 2003

Figure 2: ROC curves of different public datasets

binary classification problem. The vertical axis of the ROC
curve is the probability of detection (PD) which is the total
number of true positive detection divided by the number
of the positive events in the ground truth. The horizontal
axis of the ROC curve is the false alarm (FA) which is the
total number of false positives divided by the number of the
negative events in the ground truth.

The ROC curves of the CS-MoG with different projection
matrices are shown in Figure 3.2. We evaluate background
subtraction performance using 1000 consecutive video frames
from each dataset. Figure 3.2 demonstrates that G-mtx sig-
nificantly outperforms R-mtx.

4. CONCLUSION
In this paper, we propose that by minimising the row co-

herence of the sensing matrix, we can find an optimal projec-
tion matrix that will significantly improve the performance
of CS based background subtraction in embedded systems.
The evaluation shows that the optimised projection matrix
give consistently better performance than random projec-
tion matrix.
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