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Abstract. Due to non-homogeneous spread of sunlight, sensing nodes
typically have non-uniform energy profiles in rechargeable Wireless Sen-
sor Networks (WSNs). An energy-aware work load distribution is there-
fore necessary for good data accuracy while ensuring an energy-neutral
operation. Recently proposed signal approximation strategies, in form of
Compressive Sensing, assume uniform sampling and thus cannot be de-
ployed to facilitate energy neutral operation in rechargeable WSNs. We
propose a sparse approzimation driven sensing technique (EAST) that
adapts sensor node sampling workload according to solar energy avail-
ability. To the best of our knowledge, we are the first to propose sparse
approzimation for modeling energy-aware work load distribution in order
to improve signal approximation from rechargeable WSNs. Experimental
result, by using data from an outdoor WSN deployment, suggests that
EAST significantly improves the approximation accuracy while support-
ing approximately 50% higher sensor on-time compared to an approach
that assumes uniform energy profile of the nodes.

1 Introduction

Wireless Sensor Networks (WSNs) are currently deployed to monitor micro-
climate data from different environments [1, 21]. The Springbrook National Park
WSN is one such example. The Springbrook site is part of a World Heritage
precinct in Queensland, Australia. CSIRO, in partnership with the Queensland
Government Environmental Protection Agency (EPA), is in the process of de-
ploying a WSN of 200 nodes at Springbrook by 2011 to collect micro-climate
data for enhancing knowledge of rain forest restoration processes.

Energy supply is a major design constraint in the Springbrook deployment
and the lifetime is limited by battery supplies. In the last few years, a large num-
ber of research has been conducted ([3] has a comprehensive list) to minimize
the radio activities. However, recently it has been reported that many real life
applications require specific sensors whose power consumption is significant [17].

2 This work was done while Rajib Rana was an intern at CSIRO ICT center, Australia.



Table 1. Energy consumption of some

common radios [15, 21]. T, and R, are the Table 2. Energy Consumption of some
transmission and the reception energy ac- common sensors [21]. Sensors are turned on
cordingly. We compute transmission energy for 5 seconds for one reading (Sensors are
for a 32 byte data packet. turned on for 5 seconds every 5 minutes in
the Springbrook deployment.).
Radio | Producer Energy
Consumption Sensor Sensing Energy
CC2420| Texas Tw:34 pJ Consumption
Instruments| R;:38 pJ Met One 034B| Wind Speed 45 mJ
CC1000 Texas Ty:40 pJ Met One 034B|Wind Direction 45 mJ
Instruments| R;:28 pJ

In addition, longer acquisition times of some specific sensors may even result in
significantly higher energy consumptions than the radio (see Table 1 and 2 for a
comparison of energy consumptions of some popular radio equipment with the
energy hungry wind sensors). In order to cope with the increasing energy de-
mand, a number of sensor deployments are adopting a complementary approach
of supplementing the energy supply of the system by harvesting additional en-
ergy from the environment [21, 11].

Out of the variety of energy harvesting modalities, solar current harvest-
ing provides one of the highest power densities [18]. However, solar energy will
typically not be homogeneously spread over the network which results in non-
homogeneous energy profile (i.e non-uniform solar current harvest rates) of the
sensing nodes. Therefore, sensing task allocation that assumes uniform energy
profile of the sensing nodes could deplete the energy of a number of nodes and
create holes in the network connectivity or coverage. In order to avoid such sit-
uation, the Springbrook deployment reduces the fraction of time the sensors are
turned on to take samples (we refer this quantity as sensor on-time) to less than
2% for all nodes, which results in poor approximation of the signal.

Data collected from the wireless sensor deployments are typically correlated
and therefore compressible [4] in an appropriate transform. Recent results in
Compressive Sensing [6] suggests that if the data is compressible, a signal vector
with N data values can be well approximated using only k(<< N ) transform
coefficients. If the k largest coefficients could be approximated from a small num-
ber of measurements, where measurements are taken with high probability from
energy-rich sensing nodes and with smaller probability from energy-constrained
nodes, we could approximate the signal with good accuracy while ensuring an
energy neutral operation. An energy neutral operation means that the energy
consumption should be less than the energy harvested from the environment.
The estimation techniques of compressive sensing ([20, 4, 9]) have so far as-
sumed that the signal is sampled uniformly. Therefore, in order to approximate
a signal with good accuracy while ensuring an energy neutral operation, a theo-
retical framework that supports nonuniform sampling need to be developed. In
this paper we address this challenge. Our contributions are as follows



1. We present a distributed sensing framework, EAST, which for the first time
implements sparse random projections to distribute sensing workload based
on the solar energy harvest rates of the nodes to achieve an energy-neutral
operation while at the same time is able to approximate a signal with good
accuracy with high probability. Our work therefore draws a connection be-
tween compressive sensing and the sensor selection problem.

2. We determine the upper bound of sampling requirement of EAST as a func-
tion of g;, which is a parameter that determines the sparsity of projection
matrix and is proportional to the energy harvest rate of the sensing node
nj, and show that O(poly(k,log N)Eszlé) sparse random projections are
sufficient for EAST to reconstruct a signal with error, comparable to the
best k-term approximation.

3. We evaluate EAST using the data collected from the Springbrook sensor
deployment and report that energy-aware task distribution allows EAST to
support approximately 50% higher sensor on-time, and thus allows EAST to
achieve significantly better approximation compared to a sensing technique
that assumes uniform energy profile of the nodes. Experimental result also
reveals that EAST can achive approximation accuracy close to the best k-
term approximation.

The remainder of the paper is organized as follows. In the next section, we
precisely define EAST and describe the necessary modeling assumptions. Then
we model EAST in Section 3 and describe a distributed algorithm for EAST in
Section 4. We provide the evaluation result in Section 5 and discuss the related
literature in Section 6. Finally, we conclude in Section 7.

2 Problem Definition

Consider a signal = captured over time tp, 1 < h < M from N nodes nj,
1 < j < N of a WSN. Assume that the network is rechargeable using solar
energy. Define E7 be the amount of energy harvested by node n; during time
th, 1 < h < M(in the rest of the paper we refer to E7 as the energy profile
of the node). Due to non-uniform spread of sunlight, E/ can be non-uniform,
e.g., nodes in the open space can have higher E7 whereas nodes in the forest
can have smaller E7. We want to develop a sensing framework that distributes
sampling workload based on E? (precisely we want the energy-rich sensors to
work more and thus reduce the work load of energy-constrained sensors) and
at the same time minimizes the approximation error while ensuring an energy-
neutral operation.
Let us further define an indicator variable

! 1, if sensor n; is turned on at ¢
hj = .
! 0, otherwise.



In order to ensure an energy neutral operation, we turn on sensor nj3 (i.e., fhj
will be 1) based on its energy profile E7. Consequently, some of the values of fp,;
could be zero. Note that the value of the signal  at time instances where f; = 0
are not measured, therefore, we need a method to compute an approximation
of those components in = that have not been measured. We aim to develop
a method that achieves good approximation while maintaining energy-neutral
operation.

In order to simplify the description, we will assume M = 1 for the rest of
this Section as well as in Section 3. This means that z is a 1-dimensional vector
and the j-th component of z is in fact the sensor measurement of sensor n;.

2.1 Compressible Data

Data collected from the wireless sensor deployments are typically correlated
and therefore compressible in an appropriate transform [4]. Let us consider a
transform ¥ € RV *N (Wavelets or Discrete Fourier Transform are typically used
as transforms), consisting of a set of orthonormal basis vectors {¢;..1)y }. A signal
x is compressible, if the reordered transform coefficients 6 = [¢fx, .., L z]T
decay like power law [6], i.e., the 7-th largest transform coefficient satisfies

0l(ry < R+ (2)

for each 1 < w < N, where R is a constant, and 0 < s < 1. We will call s the
compressibility parameter.

Recent results [6] of compressive sensing show that if the data is compress-
ible, the largest (in magnitude) k transform coefficients (0) capture most of the
signal information. A compressible signal can therefore be well approximated
by recovering only the k largest transform coefficients. The approximation that
keeps the k largest transform coeflicients and discards the remaining as zero
is called the best k-term approzimation [20]. In order to model EAST we as-
sume that the data collected at the energy-constrained nodes are correlated to
the data collected at the energy-rich nodes and thus, if we collect large amount
of data from the energy-rich nodes (and a small amount of data from energy
constrained nodes), the k-largest coefficients could be recovered to have a good
approximation of the signal.

2.2 Sparse Random Projections

In the literature it has been shown that if the signal is compressible, ¢ sparse
random projections can be used to recover the signal with approximation error
comparable to the best k-term approximation with high probabilities [20]. Un-
like dense projection matrix (typically used in Compressive Sensing), the degree

3 Note that, in WSN literature, a sensor can be used to refer to a sensor node (which
includes a CPU, a radio and measurement sensors) or a measurement sensor (e.g.
a temperature sensor, a wind speed sensor). In this paper, we refer to turning on
sensor nj as to turning on the measurement sensor on node n;



of sparsity of the sparse random projections can control the number of measure-

ments need to be acquired. For example, consider a sparse projection matrix
& € RN with following entries.

+1 with prob.

®;; =+/pq0  with prob.

. 1

—1 with prob. 35

1
2p
1-1

p determines the sparsity of the random projections. Thus, if % =1, the random

matrix has no sparsity (i.e., it is dense); on the other hand, if % = %, the
matrix is sparse and the expected number of non-zero elements in each row of
the projection matrix is 1(= N/N).

In order to see how sparse projections can reduce the sampling requirement,
let us first point out that the vector u (= @z) is required for signal estimation.
Note that if for a particular value j, we have @;; = 0 for all ¢ (in other words,
the j-th column of @ is all zero), then the j-th component of x is not needed to
obtain u. This means that node n; does not need to turn its sensor on to collect a
sample. For the @;; defined above, the mean number of sensors that are required
to sample is given by N(1 — (1 — %)5)7 which can be showed to be bounded from

above by &£ For p = N, this means at most ¢ samples are required. Since ¢ is
supposed to be significantly less than N, the sampling requirement is low.

3 Modeling EAST

We use sparse random projections to model EAST. We control the sparsity of
the projection matrix based on the energy profile such that measurements from
energy rich sensing nodes are taken with high probabilities and those are taken
from the energy constrained sensing nodes with small probabilities. Our sparse
projection matrix & € R has the following entries

1 +1 with prob. %
Pij =4/ — 40  with prob. 1 — g, (3)
Y921 with prob. %.
Here g; = Ej%jm * % gives the probability of a measurement from sensor n;

to be included in the i-th projection. Note that g; is proportional to the energy
profile of node n;, therefore higher energy profile of a node will increase the
probability of inclusion of measurement from the node. If @;; # 0, we want
measurement from sensor n; to be included in the i-th projection. In order to
control sensor scheduling based on @;;, we determine the value of the indicator
variable f5; based on the values of @;;. Let us consider one time snapshot (t)
of the data (z7..xy). Sensor scheduling to acquire this snapshot is determined
by

fij = (4)

0 if X, |®:i;] =0
1 otherwise.



We now prove that if the signal satisfies peak-to-total energy condition,

IEIES
[I]2

<p (5)

EAST approximates the signal with error comparable to the best k-term approx-
imation with high probability. Note that the peak-to-total energy condition (5)
can be related to the signal compressibility. If signal x is compressible in a trans-
form with compressibility parameter s, then the peak-to-total energy [20],

logN :
[ETS v
el =" " Yo(—1) ifo<s<1.
V)

We prove that EAST can approximate a signal with error comparable to the
best k-term approximation in two stages. In the first stage (Proposition 1), we
show that sparse random projections can produce estimation for the transform
coefficients of the data. Then in the second stage (Proposition 2), we show that
the approximation error of the estimation is comparable to the best k-term
approximation.

Note that the transform coefficients of the data are the inner product between
the data and the set of orthonormal bases. Therefore, we first show that sparse
random projections of our projection matrix preserve inner products within a
small error, with high probability. Proposition 1 states that an estimation of the
inner product between two vectors, using only the random projections defined
by Equation (3), has the correct expectation with bounded variance (The proof
of Proposition 1 is shown in Appendix).

(6)

Proposition 1 Let ¢ be the projection matriz given by Equation (3). Define
u = %@x and v = ﬁ@y € RY as the random projection of two vectors x and

y € RY. Ezxpectation and variance of the inner product of u and v are respectively
E [uTv] =zTy and

1 2 1
Var (u'v) = 7 <($Ty) + [l l31lyll5 + 2L, i 32jN—1x?y§) -
J

It can be observed that the variance of the estimation is largely controlled
by the factor Eszli. Thus, if g; is a small value for a node n;, the estimation
J

will have high variance. Note that g; is proportional to the energy profile EJ,
therefore when all the nodes have good access to sunlight, good estimation can be
produced. Apart from Eszl g%w the variance of the estimation is also significantly
controlled by the number of projections. A large value of ¢ could produce a
smaller variance. In Proposition 2, we will determine the value of £ based on the
factor Ej]\;1g%~ Note that in [20] it is shown that the variance of this estimation
is controlled by the number of projections (¢) only and it is not shown that how
the variance will be changed if the nodes have non-uniform energy profile.



Having showed that the estimation of the inner product between two vectors,
using only the sparse projections of those vectors, has a good quality estimation
with bounded variance, it can be shown (see Lemma 71 in Appendix) that the
error of the estimation ; for 7y;, using the sparse random projections %@x

1

and 7

Py;, satisfies
|di — 2T yi| < el|zl[o[yil |2, Vie1. - (7)
Finally, in Proposition 2 we state that the estimation error determined in
Equation (7) is comparable to the k-term approximation with high probability
(proof is included in Appendix).

Proposition 2 Assume data © € RN satisfies the peak-to-total energy condi-
tion (5), and with

1 1
(=0 231@2 log NI )

2
€ j

the sparse random matriz @ € RN satisfies condition (9). Denote u = %@x as

the sparse random projection of x and ¥ € RVN*N as an orthonormal transform.
Transform coefficients of x in ¥ is given by, 6 = W'z, Assume the best k-term
approzimation gives an approzimation (Zopt) with error ||z — Zop||3 < nllx]|3.
Using only u, @ and ¥, x can be recovered with error

A2
lle =2l g g, (8)
GE

with probability at least 1 — N~7.

From Proposition 2 it can be observed that a smaller value of the peak-to-total
energy (1) makes the requirement of number of projections ¢ to be small (this is
inherent to sparse approximation). However, ¢ is largely controlled by the factor
Ej]il gij. Thus, if g; is a small value for a node n;, a large number of projections
is required to achieve an accuracy similar to the best k-term approximation. One
of the main contributions of our work is that we enable energy-aware work load
allocation and thus support a large £ to achieve an accuracy comparable to the

best k-term approximation.

4 Distributed Algorithm

Energy-aware work load allocation typically increases the amount of communi-
cations between node and the base station and thus increases the consumption
of transmission energy. We therefore design a distributed algorithm for EAST,
which generates projections with a few communications between the sensing
nodes and the base station.



Note that our description so far has assumed M = 1, however the framework
can be readily extended to the case with M > 1. In this case, we consider the
sensor measurement xp; collected at time t;, (h = 1,...,M) by sensor n; (j =
1,..,N). Since the algorithm in Section 3 works with a vector, we will vectorize
the 2-dimensional signal x5;. We will abuse the notation and use x to denote
this vector (this should be clear from the context). The vector x has N =MN
elements where the ¢-th element of « is x; where ¢ = h + (j — 1) * M. The
corresponding projection matrix @ is now an £ x N matrix. For ¢ = h+(j—1)«M,
the elements in the ¢g-th column of the projection matrix (9,4 with i =1, ..., ¢) are
generated by Equation (3) with parameter g; and these elements will determine
whether the sensor n; will sample at time ¢;,. We will now describe an algorithm
which is used by EAST to recover an approximation of the signal (x), from the
sparse projections created locally in different nodes.

e Initially, sensor node nj; (1 < 7 < N) locally decides to generate ¢ rows of

the projection matrix where 0 < Zj < ¢ and Zﬁvzl E; =/.

e Then each node n; (1< j < N) generates the random numbers @,,...,P
using the distribution function mentioned in Equation(3)(We assume that
node n; is responsible for generating the r-th row (1 <7 <) of the projec-
tion matrix. Consider the element @,, in the projection matrix and let us
assume that the column index g and the node-time pair (4, h) have one-to-one
correspondence given by g = (j — 1) x M + h.).

o If &, # 0, node n; tasks node n; to sample at time #; and node n; sends
the sample to node n;.

e Upon receiving x5 from node n;, n; computes u, = Eé\lesﬁrqxq (where
zq = xj5). Node n; performs this operation for all the values it receives and
finally transmits u,. to the base station. This process is repeated for all node
n;,1<j<N.

e After receiving transmissions from the nodes, base station has @, gr =
[U1, ..., ug]T. Tt then generates &, ¢ using the same seed as the nodes. Finally,
with u(= @, xx), D, 5 and ¥, base station uses AMS sketching decoder [2]
to recover the signal.

5 Evaluation

In this Section we evaluate the performance of EAST using a number of micro-
climate data such as wind speed, wind direction, soil moisture and air temper-
ature, collected from the Springbrook sensor deployment. We carefully choose
the micro-climate data to evaluate EAST using both high and low frequency
signals. We have used data from 8 of the sensing nodes at the Belmont deploy-
ment, where among these 8 nodes (shown in Fig. 1(a)), node 5 is deep in the
forest whereas the rest of the nodes are in the open space. Consequently, solar
current harvest rate of node 5 is the lowest whereas the rest of the nodes have
higher and also similar harvest rates (see Fig. 1(b)). Inter-sampling interval in
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are mostly in the open space.

Fig. 1. Location and energy harvesting rate of the Springbrook sensing nodes

the deployment is 5 minutes and we collected 1 month data which gives us 7680
snapshots for both of all the four micro-climate data. As AMS sketching decoder
computes the estimation from median, it performs better with large N. There-
fore, we have arbitrarily chosen large N=2048. We made 30 smaller datasets
from 7680 snapshots, where each set has M = 256 snapshots from N = 8 nodes.
Thus, we get N = MN =2048. Note that we have also tested that for other
large values of N, such as 512 and 1024, EAST produces similar approximation.

5.1 Uniform-Energy Sensing Technique, UEST

We compare the performance of EAST with a uniform energy sensing technique
(UEST). UEST assumes that nodes have homogeneous energy profile and there-
fore allocates sampling workload uniform randomly. In particular we use EAST
to create UEST where we deliberately modify the energy profile E7 of all sensing
nodes 1 < j < N to be equal (We use equal energy profile Ei = 1/8215j§NEj).
In addition to providing a way to compare EAST with a sensing technique which
assumes uniform energy in all sensing nodes, UEST also facilities the evaluation
of EAST at uniform energy condition.

5.2 Approximation Error

Let & be the approximation of the signal z, we use relative error, ||z—2||3/||z||3 to
determine the accuracy of the approximation. The relative error is a commonly
used error metric in the signal processing literature [12, 20] that tells us how
close the approximate signal is to the real signal.

5.3 Results

Peak-to-total energy condition is a sufficient condition for sparse approximation.
In Fig. 2 we find that for both of the wind data 1Zlle is bounded by 22X and

all2 NG
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Fig. 2. Peak-to-total energy condition on data.
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Fig. 3. A comparison of the approximation error of the micro-climate data using EAST,
UEST, and optimal Haar wavelet based approximation. The relative approximation

error is plotted versus the number of random projections ¢ = k2 logN for N=2048.
The error bars show the standard deviation of the approximation error.

%. Therefore, according to Equation (6) the wind sensor data obey the peak-
N

to-total energy condition. From Fig. 2 we also observe that the compressibility
parameter s is bounded by 0 < s < 1, therefore, the wind sensnor data are also
compressible (see Equation (2)).

Fig. 3 compares the approximation accuracy of EAST and UEST against
different number of data points. We vary the number of projections (¢) and ex-
tract the number of data points included in the £ projections and then plot the
approximation accuracy against the number of data points to precisely demon-
strate the sensing requirements of EAST. For each number of data points, we
use the snapshots collected from the Springbrook deployment to compute the
mean and standard deviation of the approximation error. We observe that un-
less for very small number of data points, the mean and the standard deviation
of the approximation error using EAST is as good as UEST. Precisely, by us-
ing 400(= 19%) data points, EAST achieves an approximation error below 0.5.
Fig. 3 also compares the approximation of EAST and UEST with the best k-
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term approximation. We observe that both EAST and UEST performs closer to
the best k-term approximation when the number of data points are more than
800.

Using sparse approximation, we only reconstruct the significant coefficients of
a signal in the transform domain and let the insignificant coefficients to be zero.
We have investigated the impact of the number of significant coefficients being
retained (k) on the accuracy of approximation and found that, unless using very
small value (e.g. k = 1), accuracy of the approximation is similar for different
Valueszof k. However, in order to avoid cluttering the images, in Fig. 4, we plot

r—x
e

One of the major contributions of this paper is, EAST attempts to minimize
approximation error by increasing sensor on-time. Here we use the term sensor
on-time to indicate the fraction of time a sensor is on when it takes a sample
(For example, for an inter-sampling period of 5 minutes and a sensor on-time of
0.6, the sensor will be turned on for 0.6*5 = 3 minutes every time the sensor
takes a sample. Note that it can be shown that the duty cycle of a sensor is given
by the product of its sampling probability and sensor on-time.). The sensor on-
time is common for the network, however, the sampling probability of a sensor
is determined by its energy profile. In order to show that EAST supports longer
sensor on-time, we compare the maximum sensor on-time (while maintaining an
energy neutral operation) supported by EAST and UEST for different number
of data points. Note that in the Springbrook deployment, battery voltage V' = 3
Volts, the electrical current used to acquire a wind sample is I = 3 mA and the
inter-sampling interval is T = 5 minutes (300 seconds). Therefore, if the sensor
on-time is w, then the amount of energy spent by sensor n; over the period ¢
(where h =1,..., M) is given by A; = VIwT X1 <p<n frj- The maximum sensor
on-time that is supported by the network is the maximum value of w such that
A; < E7 for all j.

In Fig. 5 we compare supported sensor on-time for different number of data
points. It is observed that, when we use 1200(< 50%) data points, EAST can
support 50% longer sensor on-time compared to UEST.

Now let us show the impact of sensor on-time on the accuracy of approx-
imation. In Fig. 6 we plot the approximated signal along with the real signal
collected in node 5. We choose node 5 deliberately to show the robustness of
EAST. Note that node 5 has the lowest energy profile and therefore has the
least sampling probability. We use 1200 data points and sensor on-time to be 0.5
for this approximation. While using UEST, node 5 fails due to exceeding its en-
ergy budget, which causes poor approximation, whereas energy-aware workload
distribution yields significantly better approximation for EAST.

versus k for k up to 20. We use k = 5 for the rest of the paper.

6 Related Work

A large number of signal approximation techniques use Compressive Sensing [7,
20, 4, 9] to conserve transmission energy assuming that radio is the dominant



component of energy consumption, however we assume energy-hungry sensor
dominates the energy consumption.

In [5] an adaptive sampling algorithm is presented which can be used for
estimating the best sampling frequency for energy hungry sensors. However,
similar to the work of compressive sensing [20, 4, 9] their approach assume that
the sensors have uniform energy profiles.

Work presented in [13] proposes a harvest-aware adaptive sampling approach
to dynamically identify the maximum duty cycle. However, their focus is not on
signal approximation from the network.

An application-specific approach for energy conservation is presented in [23]
where adaptive sampling and energy-aware routing are applied jointly to recover
a signal. However, we consider energy-aware data acquisition in our paper.

In [19], a Bayesian estimation technique is presented to estimate the wind
speed and wind direction signals. They have supplemented their estimation using
the assumption that the wind speed and wind direction signals have a correla-
tion with hourly tide data. However, in our work we assume that signals are
compressible due to the presence of spatial-temporal correlation among the data
collected at different sensing nodes.

A number of studies [14, 22, 10, 8] have proposed to exploit the spatial-
temporal correlation of the signal to reduce sampling requirements. Though our
approach has similar assumption, we have considered non-uniform energy profile
of the sensors which is different. Moreover, we have used Sparse Approrimation
which is also different from their approaches.

A Compressive Sensing based data gathering approach is presented in [16]
which investigates the impact of a routing topology generated sparse projection
matrix on the accuracy of the approximation. Our work is different from theirs
since our projection matrix is not based on the routing topology rather it is
populated based on the energy profile of the sensors.

7 Conclusion

This paper proposes an energy-aware sensing technique (called EAST) that im-
plements distributed sparse random projections to adapt sampling workload
distribution based on the solar energy availability at nodes, and thus recovers an
approximation of the signal with good accuracy while ensuring an energy neu-
tral operation. A large number of recently developed compressive sensing driven
approximation strategies assume that each element of the projection vector is
drawn from the same probability distribution. This inherently assumes uniform
sampling and thus is inapplicable for ensuring energy neutral operation when
nodes have non-uniform energy profiles.. We develop a theoretical framework to
determine the number of projections need to be collected as a function of the en-
ergy profile of the nodes and prove that O(poly(k, N X jN:1g%.) sparse projections
are sufficient to reconstruct a N data point signal with accuracy comparable to
the best k-term approximation. We apply EAST to reduce the energy consump-
tion of wind speed and wind direction sensors; however, EAST is general and



can be used for any signal that satisfies the peak-to-total energy condition. Eval-
uation result shows that EAST increases the sensor on-time by approximately
50% and thus offers significantly better approximation of a signal compared to
a sensing technique that assumes uniform energy profile of nodes. Experimental
result also supports that approximation accuracy of EAST is close to the best
k-term approximation.
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APPENDIX

Proof (Proof of Proposition 1.). It can be proved that the projection matrix
defined by Equation (3) satisfies these conditions:

1

E[®;] = 0,E [¢}] = LE[&};] = —. 9)

9j
Define independent random variables w1, ..wy where, w; = (Z‘szlxj@j) (Eszlyj@ij)
Using the property in Equation (9), it can be shown that the expectation and
the second moment of w; satisfy: E[w;] = Ty and

1
Elw] = 2(a"y)* + |\$||§Hy||§+2jN:1gv TR ARE T
J

T

. ¢ .
Since u* v = %Zizl w;, using the above result, we can show that:

1
Var(u"v) = Z((2"y)* + [l 3lly[3 + 275 1;% Gui —35Liaiyd).
J

In order to prove proposition 2, we need the following lemma.

Lemma 71 Consider a data vector x € RN which satisfies condition (5). Let
y € RNXN_ Consider a sparse random matriz ® € RN satisfies condition (9),
with sparsity parameter p = gj Define £ = O(1+7u log NEN i). The ran-
dom projections \[@u and Q'Jvl then produces an estimation a; for Ty, with

probability at least 1 — N7, satzsfymg ld; — 2T y;| < el|z||2|vill2, Vi<in

Proof (Proof of Lemma 71). Due to lack of space, the proof for Lemma 71 cannot
be included. The proof is similar to that of Theorem 1 in [20] except that the

term (s — 3) in [20] is replaced by (Z;V 1 g— —3).



Proof (Proof of Proposition 2). Consider an orthonormal transform ¥ € RV*V,

Let the transform coefficients 6 = [2741,...,27¢N]|T. Let us order the trans-
form coefficients ¢ in decreasing of magnitude, i.e., |0]1)y > [0](2).... > [0](n)-
The approximation error by taking the largest k coeflicients in magnitude, and
setting the remaining coefficients to zero can therefore be given by ||0 — 0,,¢]|3 =
N k+1|9\2 Let |10 — 0,p¢|13 < 1]|0]|3 and assume that z satisfies condition (5),

with positive integer, £ = O( 1;2”’ 12 log NEszl gi) The random projections %@u
and {%@1/)1, ey .%@wn} thus could produce estimates {91, ey 0;\/}, where the

estimates satisfy |0; — 0;| < B]10]]2 with high probability (Lemma 71).
Now ordering the estimates 6 in decreasing magnitude, we define our approxi-
mation 0 as keeping the k largest (in magnitude) components of 9 and setting
the other components to zero. It can be shown that [20] for 3 = O(), the
approximate error is ||z — Z||3 = (1 + €)n||z||3. Therefore the number of random
projections we need can be given by
1 1
0 =0( Ejng;ﬁ log N2, ).




