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Qutline

® What

® What is symmetry!?
® Why

® Why is symmetry a problem!?
® How

® How do we deal with symmetry?



Apology

® Symmetry in constraint programming

® But similar ideas will apply to other
domains:

® Combinatorial optimization
® Planning

® Search



Active research area

SymCon’0| workshop, Cyprus 2001
SymCon’02 workshop, Ithaca 2002
SymCon’03 workshop, Kinsale 2003
SymCon’04 workshop, Toronto 2004
SymCon’05 workshop, Sitges 2005
SymCon’06 workshop, Nantes 2006

| st International Symmetry Conference,
Edinbureh 2007



Symmetry
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Symmetry

® Between objects
® Scheduling problem

® Fleet of identical 747/’s




Graph colouring

A:U-S-T R.A S

® Variable for each county
® |taly, France,...
® Values are colours

® Constraints

LONGER DOWN UNDER

® |taly#Switzerland,
Italy#France, ..




Graph colouring

A-U.S:T:R.A NS

® Proper colouring
® |taly=green
® France=blue

® Spain=red




Graph colouring

A-U.S:T:R.A NS

® Symmetric colouring
® |taly=blue
® France=red

® Spain=green




Graph colouring

A-U.S:T:R.A NS

® Symmetric colouring
® |f there are m colours

® m! symmetric
solutions




Peaceable armies of
coexisting queens

® Place 9 queens
and | king of each
colour on
chessboard

No piece to
attack another of
the opposite
colour



Armies of queens

® Set of variables
® X[i,j] for the square on ith row, jth col
® Set of values

® {white queen, black queen, empty}



Armies of queens

® Set of constraints

® X[i,j]=white queen => X[i,k]#black
queen

® X[i,j]J=white queen => X[k,j]#black
queen

e X[i,j]=white queen => XJi+1,j+|]#black
queen



Peaceable armies

® Gives this to a
constraint solver

® Here’s one solution!




Peaceable armies

® Symmetries of
chessboard give other
solutions

® horizontal reflection




Peaceable armies

® Symmetries of
chessboard give other
solutions

® horizontal reflection




Peaceable armies

® Symmetries of
chessboard give other
solutions

® vertical reflection




Peaceable armies

® Symmetries of
chessboard give other
solutions

® diagonal reflections




Peaceable armies

® Symmetries of
chessboard give other
solutions

® rotation 90 degrees




Peaceable armies

® Symmetries of
chessboard give other
solutions

® rotation 90 degrees




Peaceable armies

® Symmetries of
chessboard give other
solutions

® rotation |80 degrees




Peaceable armies

® Symmetries of
chessboard give other
solutions

® rotation 270 degrees




Peaceable armies

® Symmetries of pieces

® permute any pair of
white (or black)
queens

® permute all white
pieces with black




Peaceable armies

® Difficult optimization
problem

® Unique solution up to
symmetry!

e 2,106,910,310,400
symmetric solutions

® |/4 US national debt
TR



Peaceable armies

® Difficult optimization
problem

® Unique solution up to
symmetry!

e 2,106,910,310,400
symmetric solutions

® Don’t want to visit
symmetric search
states



Social golfers

® 32 golfers play
once a week in a
foursome

® Each week they
want to meet 3
different people

e o v ¥ "':.:_
I T RN e ey ® How many weeks

el Gk

"Johnson here is the 4th for our team. HE 5 ?
not accurate, but he hits the ball a mile." can they play




Social golfers

® || weeks is infeasible

® You meet 3 new
players each week

® There are only 31
other players
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"Johnson here is the 4th for our team. He's ® |0 weeks is possible
not accurate, but he hits the ball a mile."”




Social golfers

® Difficult optimization problem
® Golfers symmetric
® Weeks symmetric
® Order of groups and of foursome irrelevant

® 32! x|0! x 8! x 4! symmetries =
923988455532966699771808443174160957

440000000000 = (mass of Universe in kg)



Social golfers

® Simple generalization: (g,s,w) problem
® g Sroups
® groups of size s

® w weeks



Schoolgirl problem

® Proposed by Rev.
Thomas Penyngton
Kirkman in the “Ladies

and Gentleman’s diary”
in 1850

® |5 girls walkin 5
groups of 3 each day
for a week. How can
the girls be arranged
so they walk together
with different girls?




Schoolgirl problem

® (5,3,7) problem

® Special type of
balanced
incomplete
block design

® Again lots of
symmetry

® girls, groups,
days, ...



Tournament scheduling

® |magine scheduling an
event like |Ist round of

World Cup
® Suppose 4 venues
® 8 teams

® / matches (or
rounds)




Tournament scheduling

® Often lots of other
constraints

® “Home” v “Away”
matches

® TV rights




Tournament scheduling

® Set of variables

® Matchl[i,j] is match played in venue i on
round |

® Set of values

o {AvB,AvC,AvD, ..}



Tournament scheduling

® Set of constraints
® EFach team plays once in each round

® Fach team plays every other team



Tournament scheduling

® Again lots of symmetry
® Venues
® Jeams

® Rounds

® 41 x8! x7! =
4,877,107,200



Symmetry

® Scheduling

® |dentical machines, orders

® Rostering
® FEqually skilled workers

® Vehicle routing

® |dentical trucks



Symmetry

® Define in terms of bijection on assighments
® Bijection is mapping 0:A—B that is:

® |njective: O(X)=0(y) = x=y

® Surjective (onto): VbeB daeA . 0 (a)=b

® Also known as permutation when A=B



Symmetry

® Bijection O:-A—A

o A={ <ltaly,red>, <ltaly,blue>, <France,red>,
<France,blue>, ...}

® g(<lItaly,red>) = <lItaly,blue>
® o(<lItaly,blue>) = <lItaly,red>

® o(<France,red>) = <France,blue>



Symmetry in CP

® Solution symmetry

® Bijection on assighments that preserves
solutions (and non-solutions)

® Constraint symmetry

® Bijection on assighments that preserves
constraints



Symmetry in CP

® Solution symmetry

® ecven(X|+X2), even(X2+X3)

® consider 0(<X2,*>) = <X3,*>
® Constraint symmetry

® cven(X|+X2), even(X2+X3), even(X|+X3)



Symmetry in CP

® Solution symmetry

® constraint symmetries C solution
symmetries

® Constraint symmetry

® Often the type of symmetries found
automatically (using graph isomorphism)



Rotation symmetry

® Symmetry is bijection, O on assignments
that preserves solutions

® 90 degree rotation

® X[I,l]=white queen, X[2,3]=black queen
..=> X[1,8]=white queen, X[3,7]=black
queen ..



Permutation symmetry

® Symmetry is bijection, 0 on assignments
that preserves solutions

® Permute venues

® Match[l,1]=AvB, Match[2,1]=CvD ..=>
Match[2, 7T=AvB, Match[l,1]=CvD ..



Permutation symmetry

® Symmetry is bijection, 0 on assignments
that preserves solutions

® Permute teams

® Match[l,1]=AvB, Match[2,1]=CvD ..=>
Match[1,1]=AvC, Match[2,1]=BvD ..



Types of symmetry

® Variable symmetry
® Value symmetry

® Variable/value symmetry



Types of symmetry

® Variable symmetry
® Only variables are changed
® E g rotations or reflections of chessboard
o X[I,I]=>X[1,8], X[2,3]=>X]3,7]

® Often represent this by permutation of
variable indices

* (Z[1),2[2]..) => (£[0(1)].£[O(2)].-)



Types of symmetry

® Value symmetry
® Only values are changed
® E.g. white queen => black queen
e Eg. AvB =>AvC, CvD => BvD
® |nh general, (Z[1],Z]2],..) => (G(Z[I]),0(Z[2]),..)



Types of symmetry

® Symmetry can act on both variables and
values simultaneously

® F g 90 degree rotation of 8-Queens
problem

® Row][l]=col2 => Row][2]=col8, ..



Set of symmetries

® Set of symmetries forms a group
® Symmetry breaking exploits group theory
® generators

® stabilizers



Groups

® Group is set of objects S,and a binary
operation °®

® closure: Va,beS . a*beS
® associativity: Va,b,c€S . (asb)*c=a*(bec)
® identity: deeS Va€eS. esa=ase=a

® inverse: VaeS dbeS . a*b=bra=e



Examples of groups

o C2:
® [e,;s} where s*s=e
o C4:

® [e,s,52,5%) where ses=s?, s2es=s3, s3es=¢



Examples of groups

@G
® lid, reflect} where reflectereflect=id
o (4.

® {id,r90,r180,r270} where r90-r90=r180,
r180¢r90=r270, r270r90=id



Example of groups

® Group is set of symmetries S, and a binary
operation * which is composition

® closure: since solution/constraints
preserved

® associativity: composition is associative
® identity: leave assighments unchanged

® inverse: invert bijection



Permutation group

® Consider permutations of the set {I,2,3}
® ¢ = identity,so e(l)=1,e(2)=2, e(3)=3
® 3 = (12),s0a(l)=2,a(2)=1,a(3)=3
® b =(23),so b(1)=1,b(2)=3,b(3)=2

® S3 = {e,ab,ab,ba,aba} forms a group under
composition of permutations



Permutation group

® Consider value symmetry in 3 colouring
from the set {r,g,b}

® ¢ = jdentity
®a=(rg)
®* b=(gb)

® S3 = {e,ab,ab,ba,aba} gives the 6 possible
permutations of the 3 colours



Group theory

® Generators
® {e,ab} generates S3 = {e,a,b,ab,ba,aba}
® a=(| 2),b=(2 3)
® Not necessarily unique

® [e,a,aba} also generates S3

® a=(| 2),aba=(l 3)



Dealing with symmetry

® Don’t want to visit symmetric search states
® “|dentical” solutions
® “Identical” failing states

® How do we eliminate these from search?



Reformulation

® Change representation

® WhiteQueen[Il]=(l,l), WhiteQueen[2]=
(1,2), .., BlackQueen[|]=(5,7), ..

o X[I,l]=white queen, X[|,2]=white queen,
..» X[5,7]=black queen



All interval series

® Order numbers 0 to n-1 so that

® Fach difference between neighbouring
numbers occurs once

®Es 081726354
® Diff8765432 |

® What symmetries does this problem
have!



All interval series

® Order numbers 0 to n-1 so that

® Fach difference between neighbouring
numbers occurs once

e Fg 081726354
o Dift8765432 |
® Reversal symmetry:453627180



All interval series

® Order numbers 0 to n-1 so that

® Fach difference between neighbouring
numbers occurs once

e Fg 081726354
o Diff87654321
® Complementation:807 162534



Reformulation of AlS

® Cyclic view
® Order numbers 0 to n-1 in a cycle

® Each difference | to n-1 occurs

e Fg. 081726354
® Diffs:876543214

® What symmetries does this now have?



Reformulation of AlS

® Cyclic view
® Order numbers 0 to n-1 in a cycle

® Each difference | to n-1 occurs

e Fg. 081726354
® Diffs:876543214

® Reversal symmetry



Reformulation of AlS

® Cyclic view
® Order numbers 0 to n-1 in a cycle

® Each difference | to n-1 occurs

e Fg. 081726354
® Diffs:876543214

® Complementation symmetry



Reformulation of AlS

® Cyclic view
® Order numbers 0 to n-1 in a cycle

® Each difference | to n-1 occurs

e Fg. 081726354
® Diffs:876543214

® Rotation symmetry



Reformulation of AlS

® Cyclic view
® Order numbers 0 to n-1 in a cycle

® Each difference | to n-1 occurs

e Fg 081726354
® Diffs:87654321 4

® Symmetry easily broken: sequence starts
On-| |



Reformulation of AlS

e Fg 081726354
o Diffs:876543214
® Given solution to cyclic view
® reverse: 453627180
® complement:807 162534
® both: 435261708

® commondiff: 6354081 72 (and its
symmetries)



Breaking symmetry

® Add symmetry breaking constraints
® Match[l,|]=AvB
® Match[2,]]=CvD



Rehearsal problem

® X[i] = scene rehearsed in ith time slot

® Actors must arrive before their first
scene and stay till their last scene

® Reflection symmetry
® Can reverse any rehearsal sequence

® Prevent this with constraint: X[|] < X[n]



LEX LEADER

® For variable symmetries, [Crawford et al.
KR96] give general method:

® Pick order on vars: X[ 1] to X[n]

® For each variable symmetry O, post LEX
LEADER constraint:

® (X[I1],..X[n]) slex (X[o(])],..X[T(n)])



Lexicographical order

o (YI,Y2,.) <lex (ZI,22,..) iff
® Y|<ZI| or
o Y|=ZI| & (Y2,...) <lex (Z2,...)
® Order used in dictionaries, etc
o (1,1,2,1,2,3,1..) <lex (1,1,3,1,3,2,1,..)

® |inear time propagator [Frisch, Hnich,
Kiziltan, Miguel, Walsh CP02]



Rehearsal problem

® X]Ji] = scene rehearsed in ith time slot

® Actors must arrive before their first
scene and stay till their last scene

® Reflection symmetry
® Can reverse any rehearsal sequence
o (X[I],..X[n]) <iex (X[n],..X[I])
® Simplifies to X[ ] < X[n]



Non-attacking queens

® X[i,j] € {white queen, black queen, empty}
® 90 rotation symmetry

o (X[I,11,X[1,21,..X[1,81,X[2,17,..X[2,8],..) Siex
(X[8,11,X[7,11,..X[ 1,11, X[8,2],..X[,2]...)



Non-attacking queens

® X[i,j] € {white queen, black queen, empty}
® |80 rotation symmetry

o (X[I,11,X[1,2],..X[1,81,X[2,1],...X[2,8],..) Stex
(X[8,81,X[8,7]...X[8,11,X[7,8],..X[7,11...)



Non-attacking queens

® X[i,j] € {white queen, black queen, empty}
® 2/0 rotation symmetry

o (X[I,11,X[1,2],..X[1,81,X[2,1],...X[2,8],..) Stex
(X[1,81,X[2,81...X[8,8],X[1,7]...X[8,7]...)



Non-attacking queens

® X[i,j] € {white queen, black queen, empty}
® horizontal reflection

o (X[I,11,X[1,2],..X[1,81,X[2,1],...X[2,8],..) Stex
(X[8,11,X[8,2]...X[8,8],X[7,11,..X[7,8]...)



Non-attacking queens

® X[i,j] € {white queen, black queen, empty}
® vertical reflection

o (X[I,11,X[1,21,..X[1,81,X[2,17,..X[2,8],..) Siex
(X[ 1,81,X[1,71,..X[1,17,X[2,8],..X[2,1],..)



LEX LEADER method

® Three challenges

® Extend method to work with other types
of symmetry (e.g. value symmetries)

® Deal with exponential number of
symmetries

® Conflict between branching heuristic and
symmetry breaking constraints



Variable symmetry

® Bijection O on vars which maps solutions
onto solutions

® E g reflection symmetry:
X[ 1] X[n], X[2] 2 X][n-1], ...

® LEX LEADER method
e Eg (X[11,.X[n]) <lex (X[n],.X[1])



Value symmetry

® Bijection O on values which maps solutions
onto solutions

® E.o. suppose two scenes have same
actors, then can permute these two
scenes (=values) in any rehearsal

e LEX LEADER method
o (X[11,..X[n]) Slex (O(X[1]),.-9(X[n]))



Value symmetry

® Puget’s propagator
® Construct symmetric assignment:
® E.o Element(X[i], [O(1),.9(m)],Y[i])
® | ex ordering result
o (X[I],.X[n]) =lex (Y[I],..Y][n])

® But does not acheive GAC!



Value symmetry

® Linear time GAC propagator

e X[I] X[2] . X[n] <lex
O(X[17) O(X[2]) .. O(X[n])
B[1]=0 B[2] . B[n] B[n+I]

® Post C(X[i],B[i],B[i+1]) where
® B[i]=B[i+1]=0 and X[i]=9(X[i]), or
® B[i]=0, B[i]=1 and X[i]<9(X[i]), or
e B[i]=B[i+I]=]
® Example: X[11€{1.2}. X[21=2. o(1)=2.0(2)=1



Var and value
symmetry

® Bijection O on vars, and bijection O on values
that maps solutions to solutions

® F g reversal of rehearsal (var symmetry)
and permutation of scenes (val symmetry)

o | EX LEADER method
® (X[17,..X[n]) <lex OX[c(1)]),-O(X[T(n)]))



Var/value symmetrey

® Symmetries may act simultaneously on vars
and values

® Cannot be decomposed into bijection on
vars, and bijection on values

® E.g.in n queens problem, rotate 90:
X[i]=j = X[j]=n-i+]

® Bijection on (vars,values)

® E.g. 0(ij)= j,n-i+



Var/value symmetrey

® Not all (partial) assignhments map onto proper
(partial) assignments

o Eg X[I]=1, X[2]=I ..— X[I]=n, X[I]=n-1 ..
® | EX leader method

e Admissible([X[1],.X[n]]) &
(X[17,..X[n]) Slex a(X[17,..X[n])



Lots of symmetries

® | EX LEADER method posts one constraint
per symmetry

® Can be exponential number of
symmetries

® E g m indistinguishable values gives m!
value symmetries

® How can we deal efficiently and effectively
with such situations!?



Modifying search

® Avoid visiting symmetric states
® SBDS (symmetry breaking during search)

® SBDD (symmetry breaking by dominance
detection)

® GE-trees (group equivalence trees)



Modifying search

® Symmetry Breaking During Search

® add a constraint at each node to rule out
symmetric equivalents in the future

® Symmetry Breaking by Dominance
Detection

® check each node before entering it, to
make sure you have not been to an
equivalent in the past



SBDS

® Branch




SBDS

® Branch
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SBDS

® Branch

® Given assignments so far X[1]=a[ ], ..,
X[k-1]=a[k-1]

e Try X[k]=b, if this fails

® Post X[k]#b, and don’t visit a symmetric
state to the last branch



SBDS

® Branch

® Given assignments so far X[1]=2a[ ], ..,
X[k-1]=a[k-1]

e Try X[k]=b, if this fails

® Post X[k]#b, if o(X[1]=a[l]) & ...
g (X[k-1]=a[k-1]) then =G (X[k]=b)



SBDS

® E g reflection symmetry

® Given assignments so far X[1]=a[ ], ..,
X[k-1]=a[k-1]

e Try X[k]=b, if this fails

® Post X[k]#b, if X[n]=a[l] & ... X[n-k+2]=a[k]
then X[n-k+|]#b



SBDS

® +vye

® Does not conflict with branching
heuristics

® -ve

® Need to post symmetry breaking
constraint for each symmetry

® |n general, may be exponential number of
symmetries



SBDD

® Fahle, Schamberger, Sellmann, 2001
® Foccaci, Milano, 2001

® prefigured by Brown, Finkelstein, Purdom,
| 988

® do not search a node if you have searched its
equivalent before

® check before entering a node



SBDD

® +vye

® Does not conflict with branching
heuristic

® -vye
® Need to code dominance detection
® Only “forward checking”

® Can take exponential time on problems
static methods solve without search



Special cases

® Value symmetry
® |nterchangeable values
® Variable symmetry

® Row and column symmetry



Interchangeable values

® Often we have some (sub)set of values
which can be freely interchanged

® [oolferl, golfer2,...}
® {white queen, black queen}

® Given solution, we can uniformly swap
values



Interchangeable values

® Often we have some (sub)set of values
which can be freely interchanged

o {oolferl, golfer2,...}
® {white queen, black queen}
® |[f there are m values, m! symmetries

® But we can deal with them efficiently and
effectively!



Interchangeable
variables

® Often we have some (sub)set of variables
which can be freely interchanged

® Queen[l]=(l,2), Queen[2]=(4,3), ..
® Easy to break this symmetry!

® Order variables, Queen[|] < Queen[2] <



Interchangeable vars
and values

® Sometimes we can have both
interchangeable variables and values

® Consider graph colouring
® Nodel = red, Node2 = blue, ..

® Suppose Nodel and Node2 have the
same neighbours



Interchangeable vars
and values

® Sometimes we can have both
interchangeable variables and values

® Consider pigeonhole problem
® Holel = pigeonl, Hole2 = pigeon3, ..

® Holes and pigeons all interchangeable



Row and col
symmetries

® Many problems can be
modelled with matrix of
decision variables

® Combinatorial problems
like BIBD

® Rows and cols can be
freely permuted



Row and col
symmetries

® Many problems can be
modelled with matrix of
decision variables

® Scheduling problems like
social golfer

® Groupl|i,j] are golfers
playing in ith group on
week |

® Rows and cols can be
freely permuted



Row and col
symmetries

® Many problems can be
modelled with matrix of
127 s © ROB-EX Gantt © 2000-2005 OPI - Machine Shop.xml (04-02-2005 13:57) 8{=13
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Operation | Drilling

® Production planning "
problems =

O Mazak mill 1

® Orderli,j,k]=1 iff order i
goes on machine j in shift k

® Rows and cols can be
(partially) permuted



Row and col
symmetries

® |f we have a n by m matrix of decision
variables

® m!n! row and col symmetries

® However, as we shall see later, efficient and
effective means to deal with this large
number of symmetries

® Again uses the LEX constraint!



Qutline

® What is symmetry!?

® Bijection on assighments preserving solutions/
constraints

® Variable and value symmetry
® [wo important special cases
® |nterchangeable values

® Row and col symmetry



Qutline

® Why is symmetry a problem!?
® |ncreases size of search space!
® How do we deal with symmetry?
® Reformulate problem
® Add constraints
e | EX LEADER method

® Modify search
e SBDS, SBDD, GE-tree



Conclusions

® Symmetry occurs in many problems

® VWe must deal with it or face a
combinatorial explosion!

® We have some generic methods (for small
numbers of symmetries)

® |n special cases, we can break all
symmetries









