
Reformulating propositional satis�ability asconstraint satisfactionToby WalshUniversity of York, York, England. tw@cs.york.ac.ukAbstract. We study how propositional satis�ability (SAT) problemscan be reformulated as constraint satisfaction problems (CSPs). We anal-yse four di�erent mappings of SAT problems into CSPs. For each map-ping, we compare theoretically the performance of systematic algorithmslike FC and MAC applied to the encoding against the Davis-Putnamprocedure applied to the original SAT problem. We also compare localsearch methods like GSAT and WalkSAT on a SAT problem againstthe Min-Con
icts procedure applied to its encoding. Finally, we look atthe special case of local search methods applied to 2-SAT problems andencodings of 2-SAT problems. Our results provide insight into the rela-tionship between propositional satis�ability and constraint satisfaction,as well as some of the potential bene�ts of reformulating problems asconstraint satisfaction problems.1 IntroductionA number of di�erent computational problems have been solved by reformulatingthem as propositional satis�ability (SAT) problems. Surprisingly, even problemsfor higher complexity classes than SAT can be e�ciently solved by reformulat-ing them as (a sequence of) SAT problems. For example, Kautz and Selman'sBLACKBOX system won the AIPS-98 planning competition by reformulatingSTRIPS planning problems as a sequence of SAT problems [KS98a,KS98b].Other computational problems as diverse as quasigroup existence, hardware di-agnosis and spacecraft control have been translated into SAT problems andsolved e�ciently. But is SAT the best choice as a target language for such refor-mulation?One possible weakness of SAT is that variables have only two possible values(true or false). Constraint satisfaction, by comparison, o�ers a target language inwhich variables can take larger domains. Such domains might allow us to modelproblems more naturally and reason about them more e�ciently. Another possi-ble weakness of SAT is the limited number of systematic solvers available, mostof which are based upon the (now elderly) Davis-Putnam procedure. Constraintsatisfaction, by comparison, o�ers a vast array of systematic solvers (e.g. BT, FC,MAC, BJ, CBJ, FC-CBJ, MAC, MAC-CBJ, DB, . . . ). To explore when refor-mulating problems into CSPs is worthwhile, and to understand the relationshipbetween SAT and CSPs, we are studying mappings between SAT problems andCSPs. Bennaceur has previously looked at reformulating SAT problems as CSPs



2[Ben96]. However, this study was limited to a single mapping. Since the choiceof mapping can have a very large impact on our ability to solve problems, itis instructive to study the range of mappings possible between SAT problemsand CSPs. A more complete picture of the relationship between propositionalsatis�ability and constraint satisfaction then starts to emerge, as well as of thepotential bene�ts of reformulating problems into constraint satisfaction prob-lems.2 Constraint satisfactionA constraint satisfaction problem (CSP) is a triple (X;D;C). X is a set ofvariables. For each xi 2 X , Di is the domain of the variable. Each k-ary con-straint c 2 C is de�ned over a set of variables (x1; : : : xk) by the subset of thecartesian product D1 � : : : Dk which are consistent values. A binary CSP hasonly binary constraints. A non-binary CSP has larger arity constraints. A so-lution for a CSP is an assignment of values to variables that is consistent withall constraints. Many lesser levels of consistency have been de�ned for binaryconstraint satisfaction problems (see [DB97] for references). A binary CSP isarc-consistent (AC) i� it has non-empty domains and every binary constraint isarc-consistent. A binary constraint is arc-consistent i� any assignment to one ofthe variables in the constraint can be extended to a consistent assignment for theother variable. When enforcing arc-consistency, any value assigned to a variablethat cannot be extended to a second variable can be removed from the variable'sdomain. If all values for a variable are removed, a domain wipeout occurs, andthe problem is insoluble. Other stronger local consistencies have shown promise,including singleton arc-consistency. A problem is singleton arc-consistent (SAC)i� it has non-empty domains and for any assignment of a variable, the prob-lem can be made arc-consistent. Singleton arc-consistency provides useful extrapruning compared to arc-consistency at a moderate additional computationalexpense [DB97].Most of these de�nitions can be extended to non-binary constraints. For ex-ample, a (non-binary) CSP is generalized arc-consistent (GAC) i� for any vari-able in a constraint and value that it is assigned, there exist compatible values forall the other variables in the constraint. Systematic algorithms for solving CSPstypically maintain some level of consistency at every node in their search tree. Forexample, the MAC algorithm for binary CSPs maintains arc-consistency at eachnode in the search tree. The FC algorithm (forward checking) for binary CSPsmaintains arc-consistency only on those constraints involving the most recentlyinstantiated variable and those that are uninstantiated. Finally, for non-binaryCSPs, the nFC0 algorithm maintains generalized arc-consistency on those con-straints involving one uninstantiated variables, whilst the nFC1 algorithm main-tains generalized arc-consistency on those constraints and constraint projectionsinvolving one uninstantiated variable [BMFL99]. Local search methods can alsobe used to solve CSPs. For example, the Min-Con
icts procedure (MC) repairsa complete assignment by randomly choosing a variable that is in an unsatis�ed



3constraint, and giving it a new value which minimizes the number of violatedconstraints.3 Propositional satis�abilityGiven a propositional formula, the satis�ability (SAT) problem is to determineif there is an assignment of truth values to the variables that makes the wholeformula true. One of the best systematic procedures to solve the SAT problemis the so-called Davis-Putnam (DP) procedure (though it is actually due toDavis, Logemann and Loveland [DLL62]). The DP procedure consists of threemain rules: the empty rule (which fails and backtracks when an empty clause isgenerated), the unit propagation rule (which deterministically assigns any unitliteral), and the branching or split rule (which non-deterministically assigns atruth value to a variable). As is often the case in implementations of DP, we willignore the pure literal and tautology rules (which deletes any tautologous clause)as neither are needed for completeness or soundness, nor usually for e�ciency.Note that the unit propagation rule is e�ectively the \singleton" empty rule.That is, if we assign the complement of an unit clause, the empty rule shows thatthe resulting problem is unsatis�able; we can therefore delete this assignment.Local search methods can also be used to solve SAT problems. There are twopopular families of local search procedures based upon GSAT and WalkSAT. TheGSAT procedure repairs a complete truth assignment by 
ipping the truth valueof a variable that minimizes the number of unsatis�ed clauses (sideways movesare allowed). The WalkSAT procedure repairs a complete truth assignment by
ipping the truth value of a variable that occurs in an unsatis�ed clause. Thevariable is either chosen at random or using a greedy heuristic based on thenumber of satis�ed clauses.4 Reformulating SAT problems as CSPsThere are several di�erent ways that a SAT problem can be reformulated as abinary or non-binary CSP.Dual encoding: We associate a dual variable, Di with each clause ci. Thedomain of Di consists of those tuples of truth values which satisfy the clauseci. For example, associated with the clause x1 _ x3 is a dual variable D1 withdomain fhT ; F i; hF ; T i; hT ; T ig. These are the assignments for x1 and x3 whichsatisfy the clause x1 _ x3. Binary constraints are posted between dual variableswhich are associated with clauses that share propositional variables in common.For example, between the dual variableD1 associated with the clause x1_x3 andthe dual variable D2 associated with the clause x2 _ :x3 is a binary constraintthat the second element of the tuple assigned to D1 must be the complement ofthe second element of the tuple assigned to D2.Hidden variable encoding: We again associate a dual variable, Di with eachclause ci, the domain of which consists of those tuples of truth values which



4satisfy the clause. However, we also have (propositional) variables xi with do-mains fT ; Fg. A binary constraint is posted between a propositional variableand a dual variable if its associated clause mentions the propositional variable.For example, between the dual variable D2 associated with the clause x2 _ :x3and the variable x3 is a binary constraint. This constrains the second elementof the tuple assigned to D2 to be the complement of the value assigned to x3.There are no direct constraints between dual variables.Literal encoding:We associate a variable, Di with each clause ci. The domainof Di consists of those literals which satisfy the clause ci. For example, associatedwith the clause x1_x3 is a dual variableD1 with domain fx1; x3g, and associatedwith the clause x2 _ :x3 is a dual variable D2 with domain fx2;:x3g. Binaryconstraints are posted between Di and Dj i� the associated clause ci contains aliteral whose complement is contained in the associated clause cj . For example,there is a constraint between D1 and D2 as the clause c1 contains the literalx3 whilst the clause c2 contains the complement :x3. This constraint rules outincompatible (partial) assignments. For instance, between D1 and D2 is theconstraint that allows D1 = x1 and D2 = x2, or D1 = x1 and D2 = :x3, orD1 = x3 and D2 = x2. However, the assignment D1 = x3 and D2 = :x3 is ruledout as a nogood. This encoding appears in [Ben96].Non-binary encoding: The CSP has variables xi with domains fT; Fg. A non-binary constraint is posted between those variables that occurring together ina clause. This constraint has as nogoods those partial assignments that fail tosatisfy the clause. For example, associated with the clause x1 _ x2 _ :x3 is anon-binary constraint on x1, x2 and x3 that has a single nogood hF ; F ; T i.Note that the literal encoding using variables with smaller domains thanthe dual or hidden variable encodings. The dual variables have domains of sizeO(2k) where k is the clause length, whilst the variables in the literal encodinghave domains of size just O(k). This could have a signi�cant impact on runtimes.5 Systematic proceduresWe now compare the performance of the Davis-Putnam (DP) procedure againstsome popular systematic CSP algorithms like FC and MAC on these di�erentencodings. When comparing two algorithms that are applied to (possibly) di�er-ent representations of a problem, we say that algorithm A dominates algorithmB i� algorithm A visits no more branches than algorithm B assuming \equiva-lent" branching heuristics (we will discuss what we mean by \equivalent" in theproofs of such results as the exact details depend on the two representations).We say that algorithm A strictly dominates algorithm B i� it dominates andthere exists one problem on which algorithm A visits strictly fewer branches.5.1 Dual encodingThere are several di�culties in comparing DP against algorithms like FC andMAC applied to the dual encoding. One complication is that branching in DP



5can instantiate variables in any order, but branching on the dual encoding mustfollow the order of variables in the clauses. In addition, branching on the dualencoding e�ectively instantiates all the variables in a clause at once. In DP, bycomparison, we can instantiate a strict subset of the variables that occur in aclause. Consider, for example, the two clauses x1 _ : : : xk and y1 _ : : : yk. DPcan instantiate the xi and yj in any order. By comparison, branching on thedual encoding either instantiates all the xi before the yj or vice versa. Similarobservations hold for the literal encodings. In the following results, therefore,we start from a branching heuristic for the dual encoding and construct an\equivalent" branching heuristic for DP. It is not always possible to perform thereverse (i.e. start from a DP heuristic and construct an equivalent heuristic forthe dual encoding).Theorem 1. Given equivalent branching heuristics, DP strictly dominates FCapplied to the dual encoding.Proof. We show how to take the search tree explored by FC and map it ontoa proof tree for DP with no more branches. The proof proceeds by inductionon the number of branching points in the tree. Consider the root. Assume FCbranches on the variable Di associated with the SAT clause l1 _ l2 _ : : : _ lk.There are 2k�1 children. We can build a corresponding proof subtree for DP withat most 2k � 1 branches. In this subtree, we branch left at the root assigningl1, and right assigning :l1. On both children, we branch left again assigningl2 and right assigning :l2 unless l2 is assigned by unit propagation (in whichcase, we move on to l3). And so on through the li until either we reach lk orunit propagation constructs an empty clause. Note that we do not need to spliton lk as unit propagation on the clause l1 _ l2 _ : : : _ lk forces this instantiationautomatically. In the induction step, we perform the same transformation exceptsome of the instantiations in the DP proof tree may have been performed higherup and so can be ignored. FC on the dual encoding removes some values from thedomains of future variables, but unit propagation in DP also e�ectively makesthe same assignments. The result is a DP proof tree (and implicitly an equivalentbranching heuristic for DP) which has no more branches than the tree exploredby FC. To show strictness, consider a 2-SAT problem with all possible clauses intwo variables: e.g. x1_x2, :x1_x2, x1_:x2, :x1_:x2. DP explores 2 branchesshowing that this problem is unsatis�able, irrespective of the branching heuristic.FC, on the other hand, explores 3 branches, again irrespective of the branchingheuristic.Theorem 1 shows that DP, in a slightly restricted sense, dominates FC appliedto the dual encoding. What happens if we maintain a higher level of consistencyin the dual encoding that that maintained by FC? Consider, for example, allpossible 2-SAT clauses in two variables. Enforcing arc-consistency on the dualencoding shows that this problem is unsatis�able. However, as the problem doesnot contain any unit clauses, unit propagation does not show it is unsatis�able.Hence enforcing arc-consistency on the dual encoding can do more work thanunit propagation. This might suggest that MAC (which enforces arc-consistency



6at each node) might outperform DP (which only performs unit propagation ateach node). DP's branching can, however, be more e�ective than MAC's. As aconsequence, there are problems on which DP outperforms MAC, and problemson which MAC outperforms DP, in both cases irrespective of the branchingheuristics used.Theorem 2. MAC applied to the dual encoding is incomparable to DP.Proof. Consider a k-SAT problem with all 2k possible clauses: x1 _x2 _ : : :_xk,:x1 _ x2 _ : : : _ xk, x1 _ :x2 _ : : : _ xk , :x1 _ :x2 _ : : : _ xk, : : ::x1 _ :x2 _: : :_::xk . DP explores 2k�1 branches showing that this problem is unsatis�ableirrespective of the branching heuristic. If k = 2, MAC proves that the problemis unsatis�able without search. Hence, MAC outperforms DP in this case. Ifk > 2, MAC branches on the �rst variable (whose domain is of size 2k � 1) andbacktracks immediately. Hence MAC takes 2k�1 branches, and is outperformedby DP.5.2 Hidden variable encodingWe will restrict ourselves to branching heuristics that instantiate propositionalvariables before the associated dual variables. It is then unproblematic to branchin an identical fashion in the hidden variable encoding and in the SAT problem.Theorem 3. Given equivalent branching heuristics, MAC applied to the hiddenvariable encoding explores the same number of branches as DP.Proof. We show how to take the search tree explored by DP and map it ontoa proof tree for MAC with the same number of branches (and vice versa). Theproof proceeds by induction on the number of propositional variables. In thestep case, consider the �rst variable branched upon by DP or MAC. The proofdivides into two cases. Either the �rst branch leads to a solution. Or we backtrackand try both truth values. In either case, as unit propagation and enforcingarc-consistency reduce both problems in a similar way, we have \equivalent"subproblems. As these subproblems have one fewer variable, we can appeal tothe induction hypothesis.What happens if we maintain a lower level of consistency in the hiddenvariable encoding that that maintained by MAC? For example, what about theFC algorithm which enforces only a limited form of arc-consistency at each node?Due to the topology of the constraint graph of a hidden variable encoding, withequivalent branching heuristic, FC can be made to explore the same number ofbranches as MAC.Theorem 4. Given equivalent branching heuristics, FC applied to the hiddenvariable encoding explores the same number of branches as MAC.



7Proof. In FC, we need a branching heuristic which chooses �rst any propositionalvariable with a singleton domain. This makes the same commitments as unitpropagation, without introducing any branching points. With such a heuristic,FC explores a tree with the same number of branches as DP. Hence, using thelast result, FC explores a tree with the same number of branches as MAC.5.3 Literal encodingDP can branch more e�ectively than MAC on the literal encoding (as we dis-covered with the dual encoding). Since unit propagation in the SAT problem isequivalent to enforcing arc-consistency on the literal encoding, DP dominatesMAC applied to the literal encoding.Theorem 5. Given equivalent branching heuristic, DP strictly dominates MACapplied to the literal encoding.Proof. We show how to take the search tree explored by MAC and map it ontoa proof tree for DP with no more branches. The proof proceeds by induction onthe number of branching points in the tree. Consider the root. Assume MACbranches on the variable Di associated with the SAT clause l1 _ l2 _ : : : _ lk.There are k children, the ith child corresponding to the value li assigned to Di.We can build a corresponding proof subtree for DP with k branches. In thissubtree, we branch left at the root assigning l1, and right assigning :l1. On theright child, we branch left again assigning l2 and right assigning :l2. And so onthrough the li until we reach lk. However, we do not naed to split on lk as unitpropagation on the clause l1_ l2_ : : :_ lk forces this instantiation automatically.Schematically, this transformation is as follows:node(l1; l2; : : : ; lk) ) node(l1; node(l2; : : : node(lk�1; lk) : : :)):In the induction step, we perform the same transformation except: (a) someof the instantiations in the DP proof tree may have been performed higher upand so can be ignored, and (b) the complement of some of the instantiationsmay have been performed higher up and so we can close this branch by unitpropagation. The result is a DP proof tree (and implicitly a branching heuristicfor DP) which has no more branches than the tree explored by MAC. To provestrictness, consider the example in the proof of the next theorem.Although DP can explore a smaller search tree than MAC applied to theliteral encoding, both are exponential in the worst case. However, MAC's worstcase behaviour scales with a larger exponent than DP's. The problem with MACis that the branching factor of its search is governed by the clause size. Branchingpropositionally (on whether a variable is true or false) can be more e�cient.Indeed, we can exhibit a class of problems on which the ratio of the number ofbranches explored by DP compared to that explored by MAC vanishes to zeroas problem size grows.



8Theorem 6. There exists a class of SAT problems in n variables on which theratio of the number of branches explored by DP compared to that explored by MACon the literal encoding tends to zero as n ! 1, whatever branching heuristicsare used.Proof. Consider a k-SAT problem with all 2k possible clauses: x1 _x2 _ : : :_xk,:x1_x2_: : :_xk, x1_:x2_: : :_xk , :x1_:x2_: : :_xk , : : ::x1_:x2_: : :_::xk .DP explores 2k�1 branches showing that this problem is unsatis�able irrespectiveof the branching heuristic. However, MAC takes k! branches whatever variableand value ordering we use. As k ! 1, the ratio of the number of branches ex-plored by DP to that explored by MAC is O(2k=k!). By Stirling's approximation,this tends to zero.5.4 Non-binary encodingIf the SAT problem contains clauses with more than two literals, the non-binaryencoding contains non-binary constraints. Hence, we compare DP on the SATproblem with algorithms that enforce (some level of) generalized arc-consistencyon the non-binary encoding. With equivalent branching heuristics, DP exploresthe same size search tree as nFC0, the weakest non-binary version of the for-ward checking algorithm. DP is, however, dominated by nFC1 (the next strongernon-binary version of forward checking) and thus an algorithm that maintainsgeneralized arc-consistency at each node.Theorem 7. Given equivalent branching heuristics, DP explores the same num-ber of branches as nFC0 applied to the non-binary encoding.Proof. We show how to take the proof tree explored by DP and map it onto asearch tree for nFC0 with the same number of branches. The proof proceeds byinduction on the number of propositional variables. In the step case, considerthe �rst variable branched upon by DP. The proof divides into two cases. Eitherthis is a branching point (and we try both possible truth values). Or this is not abranching point (and unit propagation makes this assignment). In the �rst case,we can branch in the same way in nFC0. In the second case, forward checkingin nFC0 will have reduced the domain of this variable to a singleton, and wecan also branch in the same way in nFC0. We now have a subproblem with onefewer variable, and appeal to the induction hypothesis. The proof reverses in astraightforward manner.Theorem 8. Given equivalent branching heuristics, nFC1 applied to the non-binary encoding strictly dominates DP.Proof. Trivially nFC1 dominates nFC0. To show strictness, consider a 3-SATproblem with all possible clauses in 3 variables: x1 _ x2 _ x3, :x1 _ x2 _ x3,x1 _ :x2 _ x3, :x1 _ :x2 _ x3, x1 _ x2 _ :x3, :x1 _ x2 _ :x3, x1 _ :x2 _ :x3,:x1 _ :x2 _ :x3. DP takes 4 branches to prove this problem is unsatis�ablewhatever branching heuristic is used. nFC1 by comparison takes just 2 branches.



9Suppose we branch on x1. The binary projection of the non-binary constraintson x1, x2 and x3 onto x1 and x2 is the empty (unsatis�able) constraint. Hence,forward checking causes a domain wipeout.6 Local search methodsIt is more di�cult to compare theoretically the performance of local searchprocedures like GSAT on a SAT problem with methods like Min-Con
icts (MC)applied to an encoding of this problem. For example, whilst the assignments forthe dual variables will often not be consistent with each other, the only valuesallowed are those that satisfy the clauses. MC applied to the dual encodingcannot therefore be in a part of the search space in which clauses are not satis�ed.By comparison, GSAT's search is almost exclusively over states in which some ofthe clauses are not satis�ed. A similar observation applies to the literal encoding.It is easier to make comparisons with the hidden variable and non-binaryencodings. With both these encodings, MC will have a complete assignment tothe (propositional) variables which, as in GSAT and WalkSAT, may not satisfyall the clauses. One remaining di�culty is that most of the local search methodshave a stochastic component. Our comparison of search methods is thereforeof the form: if method A moves from state X to state Y , is there a non-zeroprobability that method B can move between corresponding states in its searchspace? If this is the case, we say that method B can simulate method A. Thismeans that, in theory at least, method B can follow the same trajectory throughthe search space as method A. It does not mean that method B is necessarilyany more e�cient than method A (or vice versa) as the probability that methodB can follow method A's trajectory to a solution could be very small. However,if method A cannot simulate method B and vice versa, it is likely that there willbe signi�cant di�erences in their performance.Theorem 9. MC on the non-binary encoding can neither simulate GSAT onthe original SAT problem nor vice versa.Proof. Suppose we cannot increase the number of satis�ed clauses by 
ippinga single variable (this is a very common situation in GSAT's search). Then itis possible that GSAT will pick a variable to 
ip that only occurs in satis�edclauses. MC, on the other hand, must pick a variable in one of the unsatis�edclauses. Hence, MC cannot simulate GSAT. Suppose MC picks a variable inan unsatis�ed clause, and 
ipping it decreases the number of satis�ed clauses(again this is a very common situation in MC's search). GSAT, on the otherhand, cannot pick this variable. Hence, GSAT cannot simulate MC.Theorem 10. MC on the non-binary encoding can simulate WalkSAT on theoriginal SAT problem (and vice versa).Proof. Suppose WalkSAT picks a variable in an unsatis�ed clause and 
ips it.MC has a non-zero probability of picking the same clause and variable. Although



10MC is limited to give this variable a new value which minimizes the numberof violated clauses, variables only have two values (true or false) so we 
ip itthe same way as WalkSAT. Hence MC can simulate WalkSAT. To show thereverse, suppose MC picks a variable in an unsatis�ed clause and 
ips it. ThenWalkSAT has a non-zero probability of picking the same clause and variable.Hence WalkSAT can simulate MC.In the hidden variable encoding, we focus on the variable assignments givento the propositional variables (those given to the dual variables must, by con-struction, satisfy all the clauses). We therefore ignore dual variables 
ipped byMC and consider instead only those situations where MC 
ips one of the proposi-tional variables. Note that since each constraint in the hidden variable encodingis between a propositional and a dual variable, every unsatis�ed constraint inthe hidden variable encoding contains a propositional variable which MC mightchose to 
ip.Theorem 11. MC on the hidden variable encoding can neither simulate GSATon the original SAT problem nor vice versa.Proof. Suppose we have two disjoint sets of clauses, one of which is satis�ed andthe other not. GSAT can pick a variable to 
ip that occurs in the satis�ed set.MC applied to the hidden variable encoding, on the other hand, must pick avariable in the unsatis�ed set. Hence, MC applied the hidden variable encodingcannot simulate GSAT. To show that the reverse also does not hold, observe thatMC applied to the hidden variable encoding may 
ip a propositional variablethat decreases the number of satis�ed clauses. However, GSAT cannot 
ip sucha variable. Hence, GSAT cannot simulate MC.Theorem 12. MC on the hidden variable encoding can simulate WalkSAT onthe original SAT problem (but not vice versa).Proof. Suppose WalkSAT picks a variable in an unsatis�ed clause and 
ips it.MC has a non-zero probability of picking the same propositional variable as theconstraint between it and the dual variable associated with the unsatis�ed clausecannot be satis�ed. As variables only have two values (true or false), we 
ip thepropositional variable in the same way as WalkSAT. Hence MC can simulateWalkSAT. To show that the reverse may not hold, suppose we have two disjointsets of clauses, and a truth assignment which satis�es only one of the sets. Alsosuppose that one of the dual variables associated with a clause in the satis�edset has an assignment which contradicts the satisfying propositional assignment.Now MC may 
ip one of the propositional variables associated with this clause.WalkSAT, however, cannot 
ip this variable as it is not in an unsatis�ed clause.Hence WalkSAT cannot simulate MC. Note that we could modify MC so thatdual variables are always set according to the values given to the propositionalvariables. WalkSAT can simulate this modi�ed MC algorithm (and vice versa).



116.1 2-SATFor the tractable case of 2-SAT (in which each clause has 2 literals), we cangive more precise results comparing the performance of some simple local searchmethods on the original SAT problem and on its encoding. We consider Pa-padimitriou's random walk (RW) algorithm which starts from a random truthassignment, picks at random an unsatis�ed clause and a variable within thisclause, and 
ips its truth assingment [Pap91]. A straight forward generaliza-tion to CSPs is to start from a random assignment of values to variables, pickat random a constraint that is violated and a variable within this constraint,and randomly change this variable's assignment. Papadimitriou has proved thatRW applied to a satis�able 2-SAT problem can be expected to �nd a model inquadratic time.Theorem 13. RW is expected to take at most n2 
ips to �nd a satisfying as-signment for a satis�able 2-SAT problem in n variables [Pap91].Proof. The problem reduces to an one-dimensional random walk with a re
ectingand an absorbing barrier (or \gambler's ruin against the sheri�"). We give thedetails here as a similar proof construction is used in the next proof. Considera satisfying assignment S for the 2-SAT problem. Let N(i) be the expectednumber of 
ips to �nd a satisfying assignment given that we start i 
ips awayfrom S. Now N(0) = 0. For i > 0, we chose one of the literals in an unsatis�edclause. At least one of these literals must be true in S. Hence, we have at least ahalf chance of moving closer to S. Thus, N(i) � 1=2(N(i� 1)+N(i+1))+1 for0 < i < n. And for i = n, N(n) � N(n� 1)+ 1 since we must move nearer to S.Consider the recurrence relationM(0) = 0,M(i) = 1=2(M(i�1)+M(i+1))+1for 0 < i < n. and M(n) =M(n� 1)+ 1. We have M(i) � N(i) for all i. And asolution for M(i) is M(i) = 2in� i2. The worst case is i = n, when M(n) = n2.Hence N(i) � n2.It follows from this result that the probability that RW �nds a satisfy-ing assignment after 2n2 
ips is at least 1/2. This appeals to the lemma thatprob(x � k:hxi) � 1=k for any k > 0 where hxi is the expected value of x. The(generalized) RW algorithm applied to the literal encoding of a 2-SAT problemalso runs in expected quadratic time.Theorem 14. RW is expected to take at most l2 
ips to �nd a satisfying as-signment when applied to the literal encoding of a satis�able 2-SAT problem inl clauses.Proof. The problem again reduces to an one-dimensional random walk with are
ecting and an absorbing barrier. However, there are now l variables (one foreach clause), each with two possible values. Again, the probability of 
ipping oneof these variables and moving nearer to a (distinguished) satisfying assignmentis at least 1/2. Hence, the expected number of 
ips is at most l2.



12 Note that RW on the literal encoding is expected to take (at most) l2 
ipswhilst RW on the original 2-SAT problem is expected to take (at most) n2 
ips.Performance is likely to be similar as l and n for satis�able 2-SAT problemstend to be closely related. For instance, the phase transition for random 2-SATproblems occurs around l=n = 1 [CR92,Goe92]. That is, in the limit random2-SAT problems are almost always satis�able for l=n < 1, and almost alwaysunsatis�able for l=n > 1.There is little point in considering the non-binary encoding of the 2-SATproblem as this reduces to a binary CSP which is isomorphic in structure to theoriginal 2-SAT problem. Hence RW will perform in an identical manner on thisencoding as on the original 2-SAT problem. Analysing the behaviour of RW onthe dual and hidden variable encoding of 2-SAT problems is more problematicas the dual variables have domains of size 3, and correspond to the assignmentof values to pairs of variables.7 Related workBennaceur studied the literal encoding for reformulating SAT problems as CSPs[Ben96]. He proved that enforcing arc-consistency on the literal encoding is equiv-alent to unit propagation. Bennaceur also proved that a CSP is arc-consistenti� its literal encoding has no unit clauses, and strong path-consistent i� it hasno unit or binary clauses. Bacchus and van Beek present one of the �rst detailedstudies of encodings of non-binary CSPs into binary CSPs [BvB98]. The dualand hidden variable encodings studied here can be constructed by composingthe non-binary encoding of SAT problems into non-binary CSPs, with the dualand hidden variable encodings of non-binary CSPs into binary CSPs. Bacchusand van Beek's study is limited to the FC algorithm (and a simple extensioncalled FC+). Stergiou and Walsh look at the maintenance of higher levels ofconsistency, in particular arc-consistency within these encodings [SW99]. Theyprove that arc-consistency on the dual encoding is strictly stronger than arc-consistency on the hidden variable, and this itself is equivalent to generalizedarc-consistency on the origianl (non-binary) CSP. More recently, van Beek andChen have shown that reformulating planning problems as constraint satisfactionproblems (CSPs) using their CPlan system is highly competitive [vBC99].8 ConclusionsWe have performed a comprehensive study of reformulations of propositionalsatis�ability (SAT) problems as constraint satisfaction problems (CSPs). Weanalysed four di�erent mappings of SAT problems into CSPs: the dual, hiddenvariable, literal and non-binary encodings. We compared theoretically the perfor-mance of systematic search algorithms like FC and MAC applied to these encod-ings against the Davis-Putnam procedure. Given equivalent branching heuristics,DP strictly dominates FC applied to the dual encoding, is incomparable to MACapplied to the dual encoding, explores the same number of branches as MAC



13applied to the hidden variable encoding, and strictly dominates MAC appliedto the literal encoding. We also compared local search methods like GSAT andWalkSAT against the Min-Con
icts procedure applied to these encodings. Onthe hidden variable and non-binary encodings, we showed that the WalkSAT andMin-Con
icts procedures could follow similar trajectories through their searchspace. However, this was not necessarily the case for the GSAT and Min-Con
ictsprocedures. We also proved that a simple random walk procedure is expected totake quadratic time on the literal encoding of a 2-SAT problem, similar to theperformance of the procedure applied directly to the 2-SAT problem.What general lessons can be learned from this study? First, the choice of en-coding can have a large impact on search. For example, despite the higher level ofconsistency achieved by enforcing arc-consistency in the dual encoding comparedto unit propagation on the original SAT problem, DP applied to the originalSAT problem can sometimes beat MAC applied to the dual encoding becauseDP allows more 
exible branching heuristics. Second, comparing theoreticallythe performance of local search procedures on these mappings is problematic.For instance, the state space explored by Min-Con
icts applied to the dual en-coding is completely di�erent to that explored by GSAT. Empirical studies maytherefore be the only way we can make informative comparisons between suchlocal search procedures. Third, whilst a clearer picture of the relationship be-tween SAT problems and CSPs is starting to emerge, there are several questionswhich remain unanswered. For example, how do non-chronological backtrackingprocedures like backjumping [Dec90] and dynamic backtracking [Gin93] compareon these di�erent encodings? What is the practical impact of these theoreticalresults? And �nally, do mappings in the opposite direction (i.e. of CSPs intoSAT) support similar conclusions?AcknowledgementsThe author is supported by an EPSRC advanced research fellowship. The authoris a member of the APES research group (http://www.cs.strath.ac.uk/~apes)and wishes to thank the other members for their comments and feedback.References[Ben96] H. Bennaceur. The satis�ability problem regarded as a constraint satisfac-tion problem. In W. Wahlster, editor, Proceedings of the 12th ECAI, pages155{159. European Conference on Arti�cial Intelligence, Wiley, 1996.[BMFL99] C. Bessiere, P. Meseguer, E.C. Freuder, and J. Larrosa. On forward check-ing for non-binary constraint satisfaction. In Proceedings of IJCAI-99 Work-shop on Non-binary constraints. International Joint Conference on Arti�cialIntelligence, 1999.[BvB98] F. Bacchus and P. van Beek. On the conversion between non-binary andbinary constraint satisfaction problems. In Proceedings of 15th NationalConference on Arti�cial Intelligence, pages 311{318. AAAI Press/The MITPress, 1998.



14[CR92] V. Chvatal and B. Reed. Mick gets some (the odds are on his side). InProceedings of the 33rd Annual Symposium on Foundations of ComputerScience, pages 620{627. IEEE, 1992.[DB97] R. Debruyne and C. Bessi�ere. Some practicable �ltering techniques for theconstraint satisfaction problem. In Proceedings of the 15th IJCAI, pages412{417. International Joint Conference on Arti�cial Intelligence, 1997.[Dec90] R. Dechter. Enhancement schemes for constraint processing: Backjump-ing, learning and cutset decompositio. Arti�cial Intelligence, 41(3):273{312,1990.[DLL62] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-proving. Communications of the ACM, 5:394{397, 1962.[Gin93] M. L. Ginsberg. Dynamic backtracking. Journal of Arti�cial IntelligenceResearch, 1:25{46, 1993.[Goe92] A. Goerdt. A theshold for unsatis�ability. In I. Havel and V. Koubek,editors, Mathematical Foundations of Computer Science, Lecture Notes inComputer Science, pages 264{274. Springer Verlag, 1992.[KS98a] H. Kautz and B. Selman. BLACKBOX: A new approach to the applicationof theorem proving to problem solving. InWorking notes of the Workshop onPlanning as Combinatorial Search, 1998. Held in conjunction with AIPS-98,Pittsburgh, PA, 1998.[KS98b] H. Kautz and B. Selman. The role of domain-speci�c knowledge in theplanning as satis�ability framework. In Proceedings of AIPS-98, Pittsburgh,PA, 1998.[Pap91] C.H. Papadimitriou. On selecting a satisfying truth assigment. In Pro-ceedings of the Conference on the Foundations of Computer Science, pages163{169, 1991.[SW99] K. Stergiou and T. Walsh. Encodings of non-binary constraint satisfactionproblems. In Proceedings of the 16th National Conference on AI. AmericanAssociation for Arti�cial Intelligence, 1999.[vBC99] P. van Beek and X. Chen. Cplan: a constraint programming approach toplanning. In Proceedings of 16th National Conference on Arti�cial Intelli-gence. AAAI Press/The MIT Press, 1999.


