Reformulating propositional satisfiability as
constraint satisfaction

Toby Walsh

University of York, York, England. tw@cs.york.ac.uk

Abstract. We study how propositional satisfiability (SAT) problems
can be reformulated as constraint satisfaction problems (CSPs). We anal-
yse four different mappings of SAT problems into CSPs. For each map-
ping, we compare theoretically the performance of systematic algorithms
like FC and MAC applied to the encoding against the Davis-Putnam
procedure applied to the original SAT problem. We also compare local
search methods like GSAT and WalkSAT on a SAT problem against
the Min-Conflicts procedure applied to its encoding. Finally, we look at
the special case of local search methods applied to 2-SAT problems and
encodings of 2-SAT problems. Our results provide insight into the rela-
tionship between propositional satisfiability and constraint satisfaction,
as well as some of the potential benefits of reformulating problems as
constraint satisfaction problems.

1 Introduction

A number of different computational problems have been solved by reformulating
them as propositional satisfiability (SAT) problems. Surprisingly, even problems
for higher complexity classes than SAT can be efficiently solved by reformulat-
ing them as (a sequence of) SAT problems. For example, Kautz and Selman’s
BLACKBOX system won the AIPS-98 planning competition by reformulating
STRIPS planning problems as a sequence of SAT problems [KS98a,KS98b].
Other computational problems as diverse as quasigroup existence, hardware di-
agnosis and spacecraft control have been translated into SAT problems and
solved efficiently. But is SAT the best choice as a target language for such refor-
mulation?

One possible weakness of SAT is that variables have only two possible values
(true or false). Constraint satisfaction, by comparison, offers a target language in
which variables can take larger domains. Such domains might allow us to model
problems more naturally and reason about them more efficiently. Another possi-
ble weakness of SAT is the limited number of systematic solvers available, most
of which are based upon the (now elderly) Davis-Putnam procedure. Constraint
satisfaction, by comparison, offers a vast array of systematic solvers (e.g. BT, FC,
MAC, BJ, CBJ, FC-CBJ, MAC, MAC-CBJ, DB, ...). To explore when refor-
mulating problems into CSPs is worthwhile, and to understand the relationship
between SAT and CSPs, we are studying mappings between SAT problems and
CSPs. Bennaceur has previously looked at reformulating SAT problems as CSPs

[Ben96]. However, this study was limited to a single mapping. Since the choice
of mapping can have a very large impact on our ability to solve problems, it
is instructive to study the range of mappings possible between SAT problems
and CSPs. A more complete picture of the relationship between propositional
satisfiability and constraint satisfaction then starts to emerge, as well as of the
potential benefits of reformulating problems into constraint satisfaction prob-
lems.

2 Constraint satisfaction

A constraint satisfaction problem (CSP) is a triple (X,D,C). X is a set of
variables. For each z; € X, D; is the domain of the variable. Each k-ary con-
straint ¢ € C is defined over a set of variables (x1,...x) by the subset of the
cartesian product D; x ... Dy which are consistent values. A binary CSP has
only binary constraints. A non-binary CSP has larger arity constraints. A so-
lution for a CSP is an assignment of values to variables that is consistent with
all constraints. Many lesser levels of consistency have been defined for binary
constraint satisfaction problems (see [DB97] for references). A binary CSP is
arc-consistent (AC) iff it has non-empty domains and every binary constraint is
arc-consistent. A binary constraint is arc-consistent iff any assignment to one of
the variables in the constraint can be extended to a consistent assignment, for the
other variable. When enforcing arc-consistency, any value assigned to a variable
that cannot be extended to a second variable can be removed from the variable’s
domain. If all values for a variable are removed, a domain wipeout occurs, and
the problem is insoluble. Other stronger local consistencies have shown promise,
including singleton arc-consistency. A problem is singleton arc-consistent (SAC)
iff it has non-empty domains and for any assignment of a variable, the prob-
lem can be made arc-consistent. Singleton arc-consistency provides useful extra
pruning compared to arc-consistency at a moderate additional computational
expense [DB97].

Most of these definitions can be extended to non-binary constraints. For ex-
ample, a (non-binary) CSP is generalized arc-consistent (GAC) iff for any vari-
able in a constraint and value that it is assigned, there exist compatible values for
all the other variables in the constraint. Systematic algorithms for solving CSPs
typically maintain some level of consistency at every node in their search tree. For
example, the MAC algorithm for binary CSPs maintains arc-consistency at each
node in the search tree. The FC algorithm (forward checking) for binary CSPs
maintains arc-consistency only on those constraints involving the most recently
instantiated variable and those that are uninstantiated. Finally, for non-binary
CSPs, the nFCO algorithm maintains generalized arc-consistency on those con-
straints involving one uninstantiated variables, whilst the nFC1 algorithm main-
tains generalized arc-consistency on those constraints and constraint projections
involving one uninstantiated variable [BMFL99]. Local search methods can also
be used to solve CSPs. For example, the Min-Conflicts procedure (MC) repairs
a complete assignment by randomly choosing a variable that is in an unsatisfied

constraint, and giving it a new value which minimizes the number of violated
constraints.

3 Propositional satisfiability

Given a propositional formula, the satisfiability (SAT) problem is to determine
if there is an assignment of truth values to the variables that makes the whole
formula true. One of the best systematic procedures to solve the SAT problem
is the so-called Davis-Putnam (DP) procedure (though it is actually due to
Davis, Logemann and Loveland [DLL62]). The DP procedure consists of three
main rules: the empty rule (which fails and backtracks when an empty clause is
generated), the unit propagation rule (which deterministically assigns any unit
literal), and the branching or split rule (which non-deterministically assigns a
truth value to a variable). As is often the case in implementations of DP, we will
ignore the pure literal and tautology rules (which deletes any tautologous clause)
as neither are needed for completeness or soundness, nor usually for efficiency.
Note that the unit propagation rule is effectively the “singleton” empty rule.
That is, if we assign the complement of an unit clause, the empty rule shows that
the resulting problem is unsatisfiable; we can therefore delete this assignment.
Local search methods can also be used to solve SAT problems. There are two
popular families of local search procedures based upon GSAT and WalkSAT. The
GSAT procedure repairs a complete truth assignment by flipping the truth value
of a variable that minimizes the number of unsatisfied clauses (sideways moves
are allowed). The WalkSAT procedure repairs a complete truth assignment by
flipping the truth value of a variable that occurs in an unsatisfied clause. The
variable is either chosen at random or using a greedy heuristic based on the
number of satisfied clauses.

4 Reformulating SAT problems as CSPs

There are several different ways that a SAT problem can be reformulated as a
binary or non-binary CSP.

Dual encoding: We associate a dual variable, D; with each clause ¢;. The
domain of D; consists of those tuples of truth values which satisfy the clause
c;. For example, associated with the clause x; V x3 is a dual variable D; with
domain {(T', F),(F,T),(T,T)}. These are the assignments for z; and z3 which
satisfy the clause z; V z3. Binary constraints are posted between dual variables
which are associated with clauses that share propositional variables in common.
For example, between the dual variable D; associated with the clause x; V3 and
the dual variable D, associated with the clause x> V -3 is a binary constraint
that the second element of the tuple assigned to D; must be the complement of
the second element of the tuple assigned to Ds.

Hidden variable encoding: We again associate a dual variable, D; with each
clause ¢;, the domain of which consists of those tuples of truth values which

satisfy the clause. However, we also have (propositional) variables z; with do-
mains {7, F'}. A binary constraint is posted between a propositional variable
and a dual variable if its associated clause mentions the propositional variable.
For example, between the dual variable D- associated with the clause x5 V -3
and the variable x3 is a binary constraint. This constrains the second element
of the tuple assigned to D> to be the complement of the value assigned to x3.
There are no direct constraints between dual variables.

Literal encoding: We associate a variable, D; with each clause ¢;. The domain
of D; consists of those literals which satisfy the clause ¢;. For example, associated
with the clause z; V3 is a dual variable D, with domain {z;,z3}, and associated
with the clause o V —z3 is a dual variable Dy with domain {z2,—~zs}. Binary
constraints are posted between D; and D; iff the associated clause ¢; contains a
literal whose complement is contained in the associated clause c;. For example,
there is a constraint between D; and Ds as the clause ¢; contains the literal
x3 whilst the clause ¢ contains the complement —ax3. This constraint rules out
incompatible (partial) assignments. For instance, between D; and D, is the
constraint that allows D; = z; and Dy = 2, or D; = z; and Dy = —x3, or
Dy = z3 and D, = x». However, the assignment D; = x3 and Dy = -3 is ruled
out as a nogood. This encoding appears in [Ben96].

Non-binary encoding: The CSP has variables z; with domains {T', F'}. A non-
binary constraint is posted between those variables that occurring together in
a clause. This constraint has as nogoods those partial assignments that fail to
satisfy the clause. For example, associated with the clause z; V x5 V —z3 is a
non-binary constraint on 1, x2 and x3 that has a single nogood (F, F, T').
Note that the literal encoding using variables with smaller domains than
the dual or hidden variable encodings. The dual variables have domains of size
O(2%) where k is the clause length, whilst the variables in the literal encoding
have domains of size just O(k). This could have a significant impact on runtimes.

5 Systematic procedures

We now compare the performance of the Davis-Putnam (DP) procedure against
some popular systematic CSP algorithms like FC and MAC on these different
encodings. When comparing two algorithms that are applied to (possibly) differ-
ent representations of a problem, we say that algorithm A dominates algorithm
B iff algorithm A visits no more branches than algorithm B assuming “equiva-
lent” branching heuristics (we will discuss what we mean by “equivalent” in the
proofs of such results as the exact details depend on the two representations).
We say that algorithm A strictly dominates algorithm B iff it dominates and
there exists one problem on which algorithm A visits strictly fewer branches.

5.1 Dual encoding

There are several difficulties in comparing DP against algorithms like FC and
MAC applied to the dual encoding. One complication is that branching in DP

can instantiate variables in any order, but branching on the dual encoding must
follow the order of variables in the clauses. In addition, branching on the dual
encoding effectively instantiates all the variables in a clause at once. In DP, by
comparison, we can instantiate a strict subset of the variables that occur in a
clause. Consider, for example, the two clauses z; V ...z, and y; V ...yi. DP
can instantiate the z; and y; in any order. By comparison, branching on the
dual encoding either instantiates all the z; before the y; or vice versa. Similar
observations hold for the literal encodings. In the following results, therefore,
we start from a branching heuristic for the dual encoding and construct an
“equivalent” branching heuristic for DP. It is not always possible to perform the
reverse (i.e. start from a DP heuristic and construct an equivalent heuristic for
the dual encoding).

Theorem 1. Given equivalent branching heuristics, DP strictly dominates FC
applied to the dual encoding.

Proof. We show how to take the search tree explored by FC and map it onto
a proof tree for DP with no more branches. The proof proceeds by induction
on the number of branching points in the tree. Consider the root. Assume FC
branches on the variable D; associated with the SAT clause I; Vis V ...V .
There are 2% —1 children. We can build a corresponding proof subtree for DP with
at most 2¥ — 1 branches. In this subtree, we branch left at the root assigning
Iy, and right assigning —l;. On both children, we branch left again assigning
Iy and right assigning —ly unless 5 is assigned by unit propagation (in which
case, we move on to I3). And so on through the I; until either we reach Iy or
unit propagation constructs an empty clause. Note that we do not need to split
on [, as unit propagation on the clause I} VI3 V ...V [forces this instantiation
automatically. In the induction step, we perform the same transformation except
some of the instantiations in the DP proof tree may have been performed higher
up and so can be ignored. FC on the dual encoding removes some values from the
domains of future variables, but unit propagation in DP also effectively makes
the same assignments. The result is a DP proof tree (and implicitly an equivalent
branching heuristic for DP) which has no more branches than the tree explored
by FC. To show strictness, consider a 2-SAT problem with all possible clauses in
two variables: e.g. x1 Vxo, ~x1 Vo, 1V xs, w1 V xe. DP explores 2 branches
showing that this problem is unsatisfiable, irrespective of the branching heuristic.
FC, on the other hand, explores 3 branches, again irrespective of the branching
heuristic.

Theorem 1 shows that DP, in a slightly restricted sense, dominates FC applied
to the dual encoding. What happens if we maintain a higher level of consistency
in the dual encoding that that maintained by FC? Consider, for example, all
possible 2-SAT clauses in two variables. Enforcing arc-consistency on the dual
encoding shows that this problem is unsatisfiable. However, as the problem does
not contain any unit clauses, unit propagation does not show it is unsatisfiable.
Hence enforcing arc-consistency on the dual encoding can do more work than
unit propagation. This might suggest that MAC (which enforces arc-consistency

at each node) might outperform DP (which only performs unit propagation at
each node). DP’s branching can, however, be more effective than MAC’s. As a
consequence, there are problems on which DP outperforms MAC, and problems
on which MAC outperforms DP, in both cases irrespective of the branching
heuristics used.

Theorem 2. MAC applied to the dual encoding is incomparable to DP.

Proof. Consider a k-SAT problem with all 2¥ possible clauses: 1 Vs V...V g,
1 VaaV...Vxp, 1 V22V ...V, "1 V-2V ...VZT,...7x1 VT2V
...V——zy. DP explores 2¥~! branches showing that this problem is unsatisfiable
irrespective of the branching heuristic. If £ = 2, MAC proves that the problem
is unsatisfiable without search. Hence, MAC outperforms DP in this case. If
k > 2, MAC branches on the first variable (whose domain is of size 2¥ — 1) and
backtracks immediately. Hence MAC takes 2 — 1 branches, and is outperformed
by DP.

5.2 Hidden variable encoding

We will restrict ourselves to branching heuristics that instantiate propositional
variables before the associated dual variables. It is then unproblematic to branch
in an identical fashion in the hidden variable encoding and in the SAT problem.

Theorem 3. Given equivalent branching heuristics, MAC applied to the hidden
variable encoding explores the same number of branches as DP.

Proof. We show how to take the search tree explored by DP and map it onto
a proof tree for MAC with the same number of branches (and vice versa). The
proof proceeds by induction on the number of propositional variables. In the
step case, consider the first variable branched upon by DP or MAC. The proof
divides into two cases. Either the first branch leads to a solution. Or we backtrack
and try both truth values. In either case, as unit propagation and enforcing
arc-consistency reduce both problems in a similar way, we have “equivalent”
subproblems. As these subproblems have one fewer variable, we can appeal to
the induction hypothesis.

What happens if we maintain a lower level of consistency in the hidden
variable encoding that that maintained by MAC? For example, what about the
FC algorithm which enforces only a limited form of arc-consistency at each node?
Due to the topology of the constraint graph of a hidden variable encoding, with
equivalent branching heuristic, FC can be made to explore the same number of
branches as MAC.

Theorem 4. Given equivalent branching heuristics, FC applied to the hidden
variable encoding explores the same number of branches as MAC.

Proof. In FC, we need a branching heuristic which chooses first any propositional
variable with a singleton domain. This makes the same commitments as unit
propagation, without introducing any branching points. With such a heuristic,
FC explores a tree with the same number of branches as DP. Hence, using the
last result, FC explores a tree with the same number of branches as MAC.

5.3 Literal encoding

DP can branch more effectively than MAC on the literal encoding (as we dis-
covered with the dual encoding). Since unit propagation in the SAT problem is
equivalent to enforcing arc-consistency on the literal encoding, DP dominates
MAC applied to the literal encoding.

Theorem 5. Given equivalent branching heuristic, DP strictly dominates MAC
applied to the literal encoding.

Proof. We show how to take the search tree explored by MAC and map it onto
a proof tree for DP with no more branches. The proof proceeds by induction on
the number of branching points in the tree. Consider the root. Assume MAC
branches on the variable D; associated with the SAT clause I; Vis V...V Ig.
There are k children, the ith child corresponding to the value I; assigned to D;.
We can build a corresponding proof subtree for DP with k£ branches. In this
subtree, we branch left at the root assigning l;, and right assigning —l;. On the
right child, we branch left again assigning /> and right assigning —l>. And so on
through the l; until we reach [;,. However, we do not naed to split on I}, as unit
propagation on the clause I3 VI V...V forces this instantiation automatically.
Schematically, this transformation is as follows:

node(ly,la, ..., 1) = node(ly,node(ly, . ..node(lg—1,1) .. .)).

In the induction step, we perform the same transformation except: (a) some
of the instantiations in the DP proof tree may have been performed higher up
and so can be ignored, and (b) the complement of some of the instantiations
may have been performed higher up and so we can close this branch by unit
propagation. The result is a DP proof tree (and implicitly a branching heuristic
for DP) which has no more branches than the tree explored by MAC. To prove
strictness, consider the example in the proof of the next theorem.

Although DP can explore a smaller search tree than MAC applied to the
literal encoding, both are exponential in the worst case. However, MAC’s worst
case behaviour scales with a larger exponent than DP’s. The problem with MAC
is that the branching factor of its search is governed by the clause size. Branching
propositionally (on whether a variable is true or false) can be more efficient.
Indeed, we can exhibit a class of problems on which the ratio of the number of
branches explored by DP compared to that explored by MAC vanishes to zero
as problem size grows.

Theorem 6. There exists a class of SAT problems in n variables on which the
ratio of the number of branches explored by DP compared to that explored by MAC
on the literal encoding tends to zero as n — oo, whatever branching heuristics
are used.

Proof. Consider a k-SAT problem with all 2¥ possible clauses: z1 Vs V...V g,
—r1VraV...Vxp, T1VxaV.. Vo, 71V xaV.. VT, ... 21 VT V... VT,
DP explores 2°~1 branches showing that this problem is unsatisfiable irrespective
of the branching heuristic. However, MAC takes k! branches whatever variable
and value ordering we use. As k — 0o, the ratio of the number of branches ex-
plored by DP to that explored by MAC is O(2* /k!). By Stirling’s approximation,
this tends to zero.

5.4 Non-binary encoding

If the SAT problem contains clauses with more than two literals, the non-binary
encoding contains non-binary constraints. Hence, we compare DP on the SAT
problem with algorithms that enforce (some level of) generalized arc-consistency
on the non-binary encoding. With equivalent branching heuristics, DP explores
the same size search tree as nFCO, the weakest non-binary version of the for-
ward checking algorithm. DP is, however, dominated by nFC1 (the next stronger
non-binary version of forward checking) and thus an algorithm that maintains
generalized arc-consistency at each node.

Theorem 7. Given equivalent branching heuristics, DP explores the same num-
ber of branches as nFCO applied to the non-binary encoding.

Proof. We show how to take the proof tree explored by DP and map it onto a
search tree for nFCO with the same number of branches. The proof proceeds by
induction on the number of propositional variables. In the step case, consider
the first variable branched upon by DP. The proof divides into two cases. Either
this is a branching point (and we try both possible truth values). Or this is not a
branching point (and unit propagation makes this assignment). In the first case,
we can branch in the same way in nFCO. In the second case, forward checking
in nFCO will have reduced the domain of this variable to a singleton, and we
can also branch in the same way in nFC0. We now have a subproblem with one
fewer variable, and appeal to the induction hypothesis. The proof reverses in a
straightforward manner.

Theorem 8. Given equivalent branching heuristics, nFC1 applied to the non-
binary encoding strictly dominates DP.

Proof. Trivially nFC1 dominates nFCO0. To show strictness, consider a 3-SAT
problem with all possible clauses in 3 variables: 21 V 22 V 3, =21 V 22 V 23,
T,V 1y \/373, —xy V s \/333, 1 VeV r3, T VsV T3, Ty V —xy V T3,
—x1 V —xy V —x3. DP takes 4 branches to prove this problem is unsatisfiable
whatever branching heuristic is used. nFC1 by comparison takes just 2 branches.

Suppose we branch on ;. The binary projection of the non-binary constraints
on x1, ¥o and x3 onto x; and x» is the empty (unsatisfiable) constraint. Hence,
forward checking causes a domain wipeout.

6 Local search methods

It is more difficult to compare theoretically the performance of local search
procedures like GSAT on a SAT problem with methods like Min-Conflicts (MC)
applied to an encoding of this problem. For example, whilst the assignments for
the dual variables will often not be consistent with each other, the only values
allowed are those that satisfy the clauses. MC applied to the dual encoding
cannot therefore be in a part of the search space in which clauses are not satisfied.
By comparison, GSAT’s search is almost exclusively over states in which some of
the clauses are not satisfied. A similar observation applies to the literal encoding.

It is easier to make comparisons with the hidden variable and non-binary
encodings. With both these encodings, MC will have a complete assignment to
the (propositional) variables which, as in GSAT and WalkSAT, may not satisfy
all the clauses. One remaining difficulty is that most of the local search methods
have a stochastic component. Our comparison of search methods is therefore
of the form: if method A moves from state X to state Y, is there a non-zero
probability that method B can move between corresponding states in its search
space? If this is the case, we say that method B can simulate method A. This
means that, in theory at least, method B can follow the same trajectory through
the search space as method A. It does not mean that method B is necessarily
any more efficient than method A (or vice versa) as the probability that method
B can follow method A’s trajectory to a solution could be very small. However,
if method A cannot simulate method B and vice versa, it is likely that there will
be significant differences in their performance.

Theorem 9. MC on the non-binary encoding can neither simulate GSAT on
the original SAT problem nor vice versa.

Proof. Suppose we cannot increase the number of satisfied clauses by flipping
a single variable (this is a very common situation in GSAT’s search). Then it
is possible that GSAT will pick a variable to flip that only occurs in satisfied
clauses. MC, on the other hand, must pick a variable in one of the unsatisfied
clauses. Hence, MC cannot simulate GSAT. Suppose MC picks a variable in
an unsatisfied clause, and flipping it decreases the number of satisfied clauses
(again this is a very common situation in MC’s search). GSAT, on the other
hand, cannot pick this variable. Hence, GSAT cannot simulate MC.

Theorem 10. MC on the non-binary encoding can simulate WalkSAT on the
original SAT problem (and vice versa).

Proof. Suppose WalkSAT picks a variable in an unsatisfied clause and flips it.
MC has a non-zero probability of picking the same clause and variable. Although

10

MC is limited to give this variable a new value which minimizes the number
of violated clauses, variables only have two values (true or false) so we flip it
the same way as WalkSAT. Hence MC can simulate WalkSAT. To show the
reverse, suppose MC picks a variable in an unsatisfied clause and flips it. Then
WalkSAT has a non-zero probability of picking the same clause and variable.
Hence WalkSAT can simulate MC.

In the hidden variable encoding, we focus on the variable assignments given
to the propositional variables (those given to the dual variables must, by con-
struction, satisfy all the clauses). We therefore ignore dual variables flipped by
MC and consider instead only those situations where MC flips one of the proposi-
tional variables. Note that since each constraint in the hidden variable encoding
is between a propositional and a dual variable, every unsatisfied constraint in
the hidden variable encoding contains a propositional variable which MC might
chose to flip.

Theorem 11. MC on the hidden variable encoding can neither simulate GSAT
on the original SAT problem nor vice versa.

Proof. Suppose we have two disjoint sets of clauses, one of which is satisfied and
the other not. GSAT can pick a variable to flip that occurs in the satisfied set.
MC applied to the hidden variable encoding, on the other hand, must pick a
variable in the unsatisfied set. Hence, MC applied the hidden variable encoding
cannot simulate GSAT. To show that the reverse also does not hold, observe that
MC applied to the hidden variable encoding may flip a propositional variable
that decreases the number of satisfied clauses. However, GSAT cannot flip such
a variable. Hence, GSAT cannot simulate MC.

Theorem 12. MC on the hidden variable encoding can simulate WalkSAT on
the original SAT problem (but not vice versa).

Proof. Suppose WalkSAT picks a variable in an unsatisfied clause and flips it.
MC has a non-zero probability of picking the same propositional variable as the
constraint between it and the dual variable associated with the unsatisfied clause
cannot be satisfied. As variables only have two values (true or false), we flip the
propositional variable in the same way as WalkSAT. Hence MC can simulate
WalkSAT. To show that the reverse may not hold, suppose we have two disjoint
sets of clauses, and a truth assignment which satisfies only one of the sets. Also
suppose that one of the dual variables associated with a clause in the satisfied
set has an assignment which contradicts the satisfying propositional assignment.
Now MC may flip one of the propositional variables associated with this clause.
WalkSAT, however, cannot flip this variable as it is not in an unsatisfied clause.
Hence WalkSAT cannot simulate MC. Note that we could modify MC so that
dual variables are always set according to the values given to the propositional
variables. WalkSAT can simulate this modified MC algorithm (and vice versa).

11

6.1 2-SAT

For the tractable case of 2-SAT (in which each clause has 2 literals), we can
give more precise results comparing the performance of some simple local search
methods on the original SAT problem and on its encoding. We consider Pa-
padimitriou’s random walk (RW) algorithm which starts from a random truth
assignment, picks at random an unsatisfied clause and a variable within this
clause, and flips its truth assingment [Pap91]. A straight forward generaliza-
tion to CSPs is to start from a random assignment of values to variables, pick
at random a constraint that is violated and a variable within this constraint,
and randomly change this variable’s assignment. Papadimitriou has proved that
RW applied to a satisfiable 2-SAT problem can be expected to find a model in
quadratic time.

Theorem 13. RW is expected to take at most n® flips to find a satisfying as-
signment for a satisfiable 2-SAT problem in n variables [Pap91].

Proof. The problem reduces to an one-dimensional random walk with a reflecting
and an absorbing barrier (or “gambler’s ruin against the sheriff”). We give the
details here as a similar proof construction is used in the next proof. Consider
a satisfying assignment S for the 2-SAT problem. Let N (i) be the expected
number of flips to find a satisfying assignment given that we start i flips away
from S. Now N(0) = 0. For ¢ > 0, we chose one of the literals in an unsatisfied
clause. At least one of these literals must be true in S. Hence, we have at least a
half chance of moving closer to S. Thus, N(i) < 1/2(N(i—1)+ N(i+1))+1 for
0<i<mn.Andfori=n, N(n) < N(n—1)+ 1 since we must move nearer to S.
Consider the recurrence relation M (0) =0, M (i) =1/2(M(i—1)+M(i+1))+1
for 0 <i <n.and M(n) = M(n—1)+ 1. We have M (i) > N(i) for all i. And a
solution for M (i) is M (i) = 2in — 2. The worst case is i = n, when M (n) = n?.
Hence N (i) < n?.

It follows from this result that the probability that RW finds a satisfy-
ing assignment after 2n? flips is at least 1/2. This appeals to the lemma that
prob(z > k.(z)) < 1/k for any k > 0 where (z) is the expected value of z. The
(generalized) RW algorithm applied to the literal encoding of a 2-SAT problem
also runs in expected quadratic time.

Theorem 14. RW is expected to take at most 1> flips to find a satisfying as-
signment when applied to the literal encoding of a satisfiable 2-SAT problem in
l clauses.

Proof. The problem again reduces to an one-dimensional random walk with a
reflecting and an absorbing barrier. However, there are now [variables (one for
each clause), each with two possible values. Again, the probability of flipping one
of these variables and moving nearer to a (distinguished) satisfying assignment
is at least 1/2. Hence, the expected number of flips is at most [2.

12

Note that RW on the literal encoding is expected to take (at most) [% flips
whilst RW on the original 2-SAT problem is expected to take (at most) n? flips.
Performance is likely to be similar as [and n for satisfiable 2-SAT problems
tend to be closely related. For instance, the phase transition for random 2-SAT
problems occurs around [/n = 1 [CR92,Goe92]. That is, in the limit random
2-SAT problems are almost always satisfiable for I/n < 1, and almost always
unsatisfiable for [/n > 1.

There is little point in considering the non-binary encoding of the 2-SAT
problem as this reduces to a binary CSP which is isomorphic in structure to the
original 2-SAT problem. Hence RW will perform in an identical manner on this
encoding as on the original 2-SAT problem. Analysing the behaviour of RW on
the dual and hidden variable encoding of 2-SAT problems is more problematic
as the dual variables have domains of size 3, and correspond to the assignment
of values to pairs of variables.

7 Related work

Bennaceur studied the literal encoding for reformulating SAT problems as CSPs
[Ben96]. He proved that enforcing arc-consistency on the literal encoding is equiv-
alent to unit propagation. Bennaceur also proved that a CSP is arc-consistent
iff its literal encoding has no unit clauses, and strong path-consistent iff it has
no unit or binary clauses. Bacchus and van Beek present one of the first detailed
studies of encodings of non-binary CSPs into binary CSPs [BvB98]. The dual
and hidden variable encodings studied here can be constructed by composing
the non-binary encoding of SAT problems into non-binary CSPs, with the dual
and hidden variable encodings of non-binary CSPs into binary CSPs. Bacchus
and van Beek’s study is limited to the FC algorithm (and a simple extension
called FC+). Stergiou and Walsh look at the maintenance of higher levels of
consistency, in particular arc-consistency within these encodings [SW99]. They
prove that arc-consistency on the dual encoding is strictly stronger than arc-
consistency on the hidden variable, and this itself is equivalent to generalized
arc-consistency on the origianl (non-binary) CSP. More recently, van Beek and
Chen have shown that reformulating planning problems as constraint satisfaction
problems (CSPs) using their CPlan system is highly competitive [vBC99].

8 Conclusions

We have performed a comprehensive study of reformulations of propositional
satisfiability (SAT) problems as constraint satisfaction problems (CSPs). We
analysed four different mappings of SAT problems into CSPs: the dual, hidden
variable, literal and non-binary encodings. We compared theoretically the perfor-
mance of systematic search algorithms like FC and MAC applied to these encod-
ings against the Davis-Putnam procedure. Given equivalent branching heuristics,
DP strictly dominates FC applied to the dual encoding, is incomparable to MAC
applied to the dual encoding, explores the same number of branches as MAC

13

applied to the hidden variable encoding, and strictly dominates MAC applied
to the literal encoding. We also compared local search methods like GSAT and
WalkSAT against the Min-Conflicts procedure applied to these encodings. On
the hidden variable and non-binary encodings, we showed that the WalkSAT and
Min-Conflicts procedures could follow similar trajectories through their search
space. However, this was not necessarily the case for the GSAT and Min-Conflicts
procedures. We also proved that a simple random walk procedure is expected to
take quadratic time on the literal encoding of a 2-SAT problem, similar to the
performance of the procedure applied directly to the 2-SAT problem.

What general lessons can be learned from this study? First, the choice of en-
coding can have a large impact on search. For example, despite the higher level of
consistency achieved by enforcing arc-consistency in the dual encoding compared
to unit propagation on the original SAT problem, DP applied to the original
SAT problem can sometimes beat MAC applied to the dual encoding because
DP allows more flexible branching heuristics. Second, comparing theoretically
the performance of local search procedures on these mappings is problematic.
For instance, the state space explored by Min-Conflicts applied to the dual en-
coding is completely different to that explored by GSAT. Empirical studies may
therefore be the only way we can make informative comparisons between such
local search procedures. Third, whilst a clearer picture of the relationship be-
tween SAT problems and CSPs is starting to emerge, there are several questions
which remain unanswered. For example, how do non-chronological backtracking
procedures like backjumping [Dec90] and dynamic backtracking [Gin93] compare
on these different encodings? What is the practical impact of these theoretical
results? And finally, do mappings in the opposite direction (i.e. of CSPs into
SAT) support similar conclusions?

Acknowledgements

The author is supported by an EPSRC advanced research fellowship. The author
is a member of the APES research group (http://www.cs.strath.ac.uk/ apes)
and wishes to thank the other members for their comments and feedback.

References

[Ben96] H. Bennaceur. The satisfiability problem regarded as a constraint satisfac-
tion problem. In W. Wahlster, editor, Proceedings of the 12th ECAI pages
155-159. European Conference on Artificial Intelligence, Wiley, 1996.

[BMFL99] C. Bessiere, P. Meseguer, E.C. Freuder, and J. Larrosa. On forward check-
ing for non-binary constraint satisfaction. In Proceedings of IJCAI-99 Work-
shop on Non-binary constraints. International Joint Conference on Artificial
Intelligence, 1999.

[BvB98] F. Bacchus and P. van Beek. On the conversion between non-binary and
binary constraint satisfaction problems. In Proceedings of 15th National
Conference on Artificial Intelligence, pages 311-318. AAAI Press/The MIT
Press, 1998.

14

[CR92|

[DB97]

[Dec90]

[DLL62]
[Gin93]

[Goe92]

[KS98a]

[KS98b]

[Pap9l]

[SW99]

[vBC99)

V. Chvatal and B. Reed. Mick gets some (the odds are on his side). In
Proceedings of the 33rd Annual Symposium on Foundations of Computer
Science, pages 620-627. IEEE, 1992.

R. Debruyne and C. Bessiere. Some practicable filtering techniques for the
constraint satisfaction problem. In Proceedings of the 15th IJCAI pages
412-417. International Joint Conference on Artificial Intelligence, 1997.

R. Dechter. Enhancement schemes for constraint processing: Backjump-
ing, learning and cutset decompositio. Artificial Intelligence, 41(3):273-312,
1990.

M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-
proving. Communications of the ACM, 5:394-397, 1962.

M. L. Ginsberg. Dynamic backtracking. Journal of Artificial Intelligence
Research, 1:25-46, 1993.

A. Goerdt. A theshold for unsatisfiability. In I. Havel and V. Koubek,
editors, Mathematical Foundations of Computer Science, Lecture Notes in
Computer Science, pages 264-274. Springer Verlag, 1992.

H. Kautz and B. Selman. BLACKBOX: A new approach to the application
of theorem proving to problem solving. In Working notes of the Workshop on
Planning as Combinatorial Search, 1998. Held in conjunction with ATPS-98,
Pittsburgh, PA, 1998.

H. Kautz and B. Selman. The role of domain-specific knowledge in the
planning as satisfiability framework. In Proceedings of AIPS-98, Pittsburgh,
PA, 1998.

C.H. Papadimitriou. On selecting a satisfying truth assigment. In Pro-
ceedings of the Conference on the Foundations of Computer Science, pages
163-169, 1991.

K. Stergiou and T. Walsh. Encodings of non-binary constraint satisfaction
problems. In Proceedings of the 16th National Conference on AL American
Association for Artificial Intelligence, 1999.

P. van Beek and X. Chen. Cplan: a constraint programming approach to
planning. In Proceedings of 16th National Conference on Artificial Intelli-
gence. AAAT Press/The MIT Press, 1999.

