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Abstract

We show that nodesof high degreetend to occur
infrequentlyin randomgraphsbut frequentlyin a
wide variety of graphsassociatedwith real world
searchproblems. We then study some alterna-
tive modelsfor randomlygeneratinggraphswhich
have beenproposedto give more realistic topolo-
gies. For example,we show that WattsandStro-
gatz’s smallworld modelhasa narrow distribution
of nodedegree. On the otherhand,Barab́asi and
Albert’s power law model,givesgraphswith both
nodesof high degreeanda small world topology.
Thesegraphsmay thereforebe useful for bench-
marking. We thenmeasurethe impactof nodesof
highdegreeandasmallworld topologyon thecost
of coloring graphs. The long tail in searchcosts
observedwith smallworld graphsdisappearswhen
thesegraphsarealsoconstructedto containnodes
of highdegree.Weconjecturethatthis is aresultof
the small sizeof their “backbone”,pairsof edges
thatarefrozento bethesamecolor.

1 Introduction
How doesthetopologyof graphsmet in practicediffer from
uniform randomgraphs?This is animportantquestionsince
commontopologicalstructuresmay have a large impacton
problemhardnessandmaybeexploitable. Barab́asiandAl-
bert have shown that graphsderived from areasas diverse
asthe World Wide Web, andelectricity distribution contain
morenodesof highdegreethanarelikely in randomgraphsof
thesamesizeandedgedensity[Barab́asiandAlbert, 1999].
As a secondexample, Rednerhas shown that the citation
graphof papersin the ISI catalogcontainsa few nodesof
very high degree[Render, 1998]. Whilst 633,391out of the
783,339papersreceive less than 10 citations,64 are cited
morethan1000times,andonereceived8907citations.The
presenceof nodeswith highdegreemayhaveasignificantim-
pacton searchproblems.For instance,if theconstraintgraph
of a schedulingproblemhasseveralnodeswith high degree,
thenit maybedifficult to solveassomeresourcesarescarce.
As a secondexample,if the adjacency graphin a Hamilto-
niancircuit problemhasmany nodesof highdegree,thenthe
problemmaybeeasysincetherearemany pathsinto andout

of thesenodes,and it is hard to get stuck at a “dead-end”
node.Searchheuristicslike Brelaz’sgraphcoloringheuristic
[Brelaz,1979] aredesignedto exploit suchvariationin node
degree.

This paperis structuredas follows. We first show that
nodesof high degreetend to occur infrequentlyin random
graphsbut frequentlyin a wide variety of real world search
problems.As testcases,we useexactly the sameproblems
studiedin [Walsh, 1999]. We then study somealternative
modelsfor randomlygeneratinggraphswhichgivemorenon-
uniformgraphs(specificallyBarab́asiandAlbert’spowerlaw
model,WattsandStrogatz’s smallworld model,andHogg’s
ultrametricmodel). Finally, we explore the impactof nodes
of high degreeon searchandin particular, on graphcoloring
algorithms.

2 Random graphs
Two typesof randomgraphsarecommonlyused,the

����� �
and the

� ��� �
models. In the

� ��� �
model, graphswith �

nodesand� edgesaregeneratedbysamplinguniformly from
the �
	��
��������� possibleedges. In the

����� �
model,graphs

with � nodesandanexpectednumberof ���
	������������ edges
aregeneratedby including eachof the �
	������������ possible
edgeswith fixed probability � . The two modelshave very
similar properties,including similar distributions in the de-
greeof nodes.In a random

����� �
graph,theprobabilitythata

nodeis directlyconnectedto exactly � others,� 	!�"� followsa
Poissondistribution. Moreprecisely,

�#	$�"�
%'&)(+*),.-����+/
where � is thenumberof nodes,� is theprobability thatany
pair of nodesareconnected,and , is 	��0�1���2� , theexpected
nodedegree. As the Poissondistribution decaysexponen-
tially, nodesof high degreeareunlikely.

In thispaper, wefocusonthecumulativeprobability, 34	!�5�
which is theprobabilityof anodebeingdirectlyconnectedto� or lessnodes:

34	!�"�
% -6 7 8#9 �#	�:;�=<
Whilst �#	$�"� is smoothlyvaryingfor randomgraphs,it canbe-
have moreerraticallyon real world graphs.The cumulative
probability, which is by definitionmonotonicallyincreasing,
tendsto giveaclearerpicture.Figure1 shows thatthecumu-
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Figure 1: Cumulative probability (y-axis) againstthe nor-
malizednodedegree(x-axis) for random

���>� �
graphswith�?%1@5< A .

lative probability againstthe normalizeddegreefor random
graphsrapidlyapproachesastepfunctionas � increases.The
degreeof nodesthereforebecomestightly clusteredaround
theaveragedegree.

3 Real world graphs
We next studiedthedistribution in thedegreeof nodesfound
in therealworld graphsstudiedin [Walsh,1999].

3.1 Graph coloring
We lookedat somerealworld graphcoloringproblemsfrom
the DIMACS benchmarklibrary. We focusedon the regis-
ter allocationproblemsas theseare basedon real program
code.Figure2 demonstratesthat theseproblemshave a very
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Figure2: Cummulative probability (y-axis) againstthe nor-
malizednodedegree (x-axis). “Register data” is the ze-
ronin.i.1 registerallocationproblemwhich is converted
into a graph coloring problem with 125 nodesand 4100
edges.“Randomgraph” is a randomgraphof the samesize
andedgedensity. Otherproblemsin theDIMACSgraphcol-
oringbenchmarkgavesimilar results.

skeweddistribution in thedegreeof their nodes.Otherprob-
lemsfrom the DIMACS benchmarklibrary gave very simi-
lar cumulativeprobabilitydistributionsfor thedegreeof their

nodes.Comparedto randomgraphsof thesamesizeandedge
density, theseregisterallocationproblemshave a numberof
nodesthatareof muchhigherandlower degreethantheav-
erage.For example,thenodeof maximumdegreein Figure2
is directly connectedto 89%of thenodesin thegraph.This
is morethantwice theaveragedegree,andthereis lessthan
a 1 in 4 million chancethata nodein a randomgraphof the
samesizeandedgedensityhasdegreeas large as this. On
theotherhand,thenodeof leastdegreehaslessthanhalf the
averagedegree,andthereis lessthana 1 in 7 million chance
thatanodein a randomgraphof thesamesizeandedgeden-
sity hasdegreeas small as this. The plateauregion in the
middle of the graphindicatesthat therearevery few nodes
with the averagedegree. Most nodeshave eitherhigheror
lowerdegrees.By comparison,thedegreesof nodesin a ran-
domgrapharetightly clusteredaroundtheaverage.A similar
plateauregion aroundthe averagedegreeis seenin mostof
the registerallocationproblemsin the DIMACS benchmark
library.

3.2 Time-tabling
Time-tablingproblemscan be naturally modelledas graph
coloring problems,with classesrepresentedby nodesand
time-slots by colors. We therefore tested some real
world time-tablingproblemsfrom theIndustrialEngineering
archive at the University of Toronto. Figure3 demonstrates
thatproblemsin this datasetalsohave a skeweddistribution
in thedegreeof theirnodes.Otherbenchmarkproblemsfrom
this library gave very similar curves. Comparedto random
graphswith thesamenumberof nodesandedges,thesetime-
tabling problemshave a numberof nodesthat have much
higherandlower degreethanthe average.For example,the
nodeof maximumdegreein Figure3 is directlyconnectedto
71%of thenodesin thegraph.This is nearlythreetimesthe
averagedegree,andthereis lessthana 1 in ��@�B�C chancethat
a nodein a randomgraphof thesamesizeandedgedensity
hasdegreeas large as this. On the otherhand,the nodeof
leastdegreehasapproximatelyonetenthof the averagede-
gree,andthereis lessthana 1 in �D@ 9FE chancethata nodein
a randomgraphof thesamesizeandedgedensityhasdegree
assmallasthis. [Walsh,1999] suggeststhatsparseproblems
in this datasethave moreclusteringof nodesthanthe dense
problems.However, therewasno obvious indicationof this
in thedistributionof nodedegrees.

3.3 Quasigroups
A quasigroupis aLatin square,a � by � multiplicationtable
in whicheachentryappearsjustoncein eachrow or column.
Quasigroupscanmodela variety of practicalproblemslike
sportstournamentschedulingandthedesignof factorialex-
periments.A numberof openquestionsin finite mathematics
about the existence(or non-existence)of quasigroupswith
particularpropertieshave beenansweredusingmodelfind-
ing andconstraintsatisfactionprograms[Fujita et al., 1993].
Recently, aclassof quasigroupproblemshavebeenproposed
asa benchmarkfor generatinghardandsatisfiableproblem
instancesfor local searchmethods[Achlioptaset al., 2000].

An order � quasigroupproblemcanberepresentedasabi-
naryconstraintsatisfactionproblemwith ��B variables,each
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Figure3: Cummulative probability (y-axis) againstthe nor-
malizednodedegree(x-axis). “Time-tablingdata”is theEarl
HaigCollegiatetime-tablingproblemwhichis convertedinto
a graphcoloring problemwith 188 nodesand 4864 edges.
“Random graph” is a randomgraph of the samesize and
edgedensity. Otherproblemsfrom the IndustrialEngineer-
ing archiveat theUniversityof Torontogavesimilar results.

with a domainof size � . The constraintgraphfor sucha
problemconsistsof �G� cliques,one for eachrow andcol-
umn,with eachcliquebeingof size � . Eachnodein thecon-
straintgraphis connectedto �"	��H����� othernodes.Hence,�#	$�"�I%J� if �K%L�5	��M����� and0 otherwise,andthe cumu-
lative probability 34	!�"� is a stepfunction at �
%N�"	O�M����� .
As all nodesin theconstraintgraphof a quasigrouphave the
samedegree,quasigroupsmay suffer from limitations as a
benchmark.For example,theBrelazheuristic[Brelaz,1979]
(which triesto exploit variationsin thedegreeof nodesin the
constraintgraph)mayperformlesswell on quasigroupprob-
lemsthanon morerealisticbenchmarksin which thereis a
variability in thedegreeof nodes.

4 Non-uniform random models
As the

� ��P �
and

� ��� �
modelstend to give graphswith a

narrow distributionin thedegreeof nodes,arethereany better
modelsfor randomlygeneratinggraphs?In this section,we
look at threedifferentrandommodels,all proposedby their
authorsto givemorerealisticgraphs.

4.1 Small world model
Watts and Strogatzshowed that graphsthat occur in many
biological, social and man-madesystemsare often neither
completelyregularnor completelyrandom,but have instead
a “small world” topology in which nodesare highly clus-
teredyet the path lengthbetweenthemis small [Wattsand
Strogatz,1998]. Such graphstend to occur frequently in
real world searchproblems[Walsh, 1999]. To generate
graphswith a small world topology, we randomlyrewire a
regular graphlike a ring lattice [Watts and Strogatz,1998;
Gentet al., 1999]. The ring lattice providesnodesthat are
highly clustering,whilst therandomrewiring introducesshort
cutswhich rapidly reducesthe averagepath length. Unfor-
tunately, graphsconstructedin this mannertendnot to have
a wide distribution in the degreeof nodes,andin particular

areunlikely to containany nodesof high degree. For small
amountsof rewiring, �#	$�"� peaksaroundthe lattice degree,
andconvergeson the Poissondistribution found in random
graphsfor moreextensiverewiring.

0

0.2

0.4

0.6

0.8

1

0 0.005 0.01 0.015 0.02 0.025 0.03

cu
m

m
ul

at
iv

e 
pr

ob
ab

ili
ty

, P
(k

)

normalized node degree, k/n

Small world
Random graph

Figure4: Cummulative probability (y-axis) againstthe nor-
malizednodedegree(x-axis).“Small world” is agraphwith a
smallworld topologygeneratedby randomlyrewiring a ring
latticeof 1000nodes,eachwith 10neighborswith a rewiring
probability, �?%��G���DQ . “Randomgraph”is arandomgraphof
thesamesizeandedgedensity.

In Figure4, weplot thecumulativeprobabilityfor thenode
degreesof graphsgeneratedto have a small world topology
by randomlyrewiring a ring lattice.Smallworld graphshave
a distribution of nodedegreesthat is narrower thanthat for
randomgraphswith the samenumberof nodesand edges.
Due to the lack of variability in the degreeof nodes,these
small world graphsmay have limitations asa modelof real
world graphs.Theabsenceof nodesof high degreeis likely
to impactonsearchperformance.For instance,heuristicslike
Brelazwhichtry to exploit variationsin nodedegreearelikely
to find thesegraphsharderto color thangraphswith a wider
variability in nodedegree.Canwe find a modelwith a vari-
ability in thenodedegreethatis similarto thatseenin thereal
world graphsstudiedin theprevioussection?

4.2 Ultrametric model
To generategraphswith morerealisticstructures,Hogg has
proposedamodelbasedongroupingthenodesinto atree-like
structure[Hogg,1996]. In thismodel,anultrametricdistance
betweenthe � nodesis definedby groupingtheminto a bi-
narytreeandmeasuringthedistanceupthis treeto acommon
ancestor. A pair of nodesat ultrametricdistanceR is joined
by anedgewith relative probability �TS . If �U%V� , graphsare
purely random.If �XWY� , graphshave a hierarchicalcluster-
ing asedgesaremorelikely betweennearbynodes.Figure5
givesthecumulativeprobabilitydistribution for thenodede-
greesin a graphgeneratedwith anultrametricdistanceusing
the model from [Hogg, 1996]. Thereis a definitebroaden-
ing of the distribution in nodedegreescomparedto random
graphs.Nodesof degreehigherandlower thanthe average
occurmorefrequentlyin theseultrametricgraphsthanin ran-
domgraphs.For example,onenodein theultrametricgraph
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Figure5: Cummulative probability (y-axis) againstthe nor-
malizednodedegree(x-axis). “Ultrametric” is a graphwith
a ultrametricworld topologygeneratedwith 64 nodes,1008
edges(to giveanaveragedegreeof �#��� ) and�Z%[�G��\ . “Ran-
domgraph”is arandomgraphof thesamesizeandedgeden-
sity.

is connectedto all theothernodes.This nodehasmorethan
twice theaveragedegree,andthereis lessthana 1 in 3 mil-
lion chancethat a nodein a randomgraphof the samesize
andedgedensityhasdegreeas large as this. On the other
hand,the nodeof leastdegreehasjust over half the average
degree,andthereis lessthana 1 in 500 chancethat a node
in a randomgraphof thesamesizeandedgedensityhasde-
greeassmall asthis. Ultrametricgraphsthusprovide a bet-
ter modelof thedistribution of nodedegrees.However, they
lackasmallworld topologyasnodesarenothighly clustered
[Walsh,1999]. Canwe find a modelwhich hasbotha small
world topology(whichhasshown to becommonin realworld
graphs)anda largevariability in thenodedegree(which has
alsobeenshown to becommon)?

4.3 Power law model

Barab́asiandAlbert have shown that real world graphscon-
taining nodesof high degree often follow a power law in
which theprobability � 	!�"� thata nodeis connectedto � oth-
ersis proportionalto � (.] wherê is someconstant(typically
around3) [Barab́asi and Albert, 1999]. Rednerhasshown
thathighly citedpaperstendto follow a Zipf power law with
exponentapproximately-1/2 [Render, 1998]. It follows from
this result that the degreeof nodesin the citation graphfor
highly cited papersfollows a power law with �#	$�"� propor-
tional to � (._ . Suchpower law decaycomparesto theexpo-
nentialdecayin � 	!�"� seenin randomgraphs.

To generatepower law graphs,Barab́asi and Albert pro-
poseamodelin which,startingwith asmallnumberof nodes
( � C ), they repeatedlyaddnew nodeswith � ( �M`�� C ) edges.
Theseedgesare preferentiallyattachedto nodeswith high
degree.They suggesta linearmodelin which theprobability
thatanedgeis attachedto a node : is �

7
�ba�c#� c where � c is

thedegreeof noded . Usinga mean-fieldtheory[Barab́asiet

al., 1999], they show thatsuchagraphwith � nodeshas:

� 	!�"�e% �G��B�	O�?��� C �� �� _
That is, � 	!�"� is proportionalto � (.] where ^X%gf . Note that�#	$�"� is alsoproportionalto ��B , thesquareof theaveragede-
greeof thegraph. In the limit of large � , �#	$�"�ihj B �lk-nm . The
presenceof non-lineartermsin the preferentialattachment
probability will changethe natureof this power law scaling
andmaybea routeto power laws in which thescalingexpo-
nentis differentto 3.
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Figure6: Cummulative probability (y-axis) againstthe nor-
malizednodedegree(x-axis) for graphsgeneratedto have
a simple power law scalingin their nodedegree. Note the
logscaleusedfor the x-axis. “Power law” is a graphcon-
structedby the modified Barab́asi and Albert’s model with� C %[� , �N%[��Q and ��%g����o ; “Random”is a randomgraph
of thesamesizeandedgedensity.

We proposea minor modificationto this model to tackle
theproblemthattheaveragedegree� is boundedby thesize
of the initial graph � C . This will hinder the constructionof
highdensitygraphs(whichwerenotuncommonin theprevi-
oussection).We suggestconnectinganedgeto a node: with
probability prqts#	;��u����

7
� a

7
�
7
� . Eachnew nodeis thencon-

nectedto the graphby approximately� edgeson average.
This modificationis similar to moving from the

� ��P �
to the����P �

modelof randomgraphs.
In Figure6, we plot thecumulative probability for thede-

greeof nodesin graphsgeneratedby thismodifiedmodel.As
with the ultrametricgraphs,we observe a definitebroaden-
ing of the distribution in nodedegreescomparedto random
graphs.Nodesof degreehigherandlower thanthe average
occurmorefrequentlyin thesepower law graphsthanin ran-
dom graphs. For example,the nodeof maximumdegreeis
directly connectedto 70%of thenodesin thegraph.This is
more than threetimes the averagedegree,and thereis less
thana 1 in ��@ 9Fv chancethata nodein a randomgraphof the
samesizeandedgedensityhasdegreeaslargeasthis. Onthe
otherhand,thenodeof leastdegreehasnearlyonefifth of the
averagedegree,andthereis lessthana 1 in �D@)w chancethat
a nodein a randomgraphof thesamesizeandedgedensity



hasdegreeassmall asthis. Unlike randomgraphsin which
the distrib

x
ution sharpensaswe increasethe size of graphs,

we seea similar spreadin thedistribution of nodedegreesas
thesegraphsareincreasedin size.

Ideally, we want like a methodfor generatinggraphsthat
givesgraphswith bothnodesof highdegreeandasmallworld
topology. Thenodesof high degreegeneratedby the(modi-
fied)Barab́asiandAlbert modelarelikely to keeptheaverage
pathlengthshort.But arethenodeslikely to betightly clus-
tered?Table1 demonstratesthat thesegraphstendto have a
smallworld topologyasthegraphsizeis increased.

� y ybz|{ � S } } z�{ � S ~
16 1.00 1.00 1.00 1.00 1.00
32 1.24 1.24 0.81 0.77 1.05
64 1.57 1.56 0.57 0.43 1.35

128 1.77 1.78 0.39 0.24 1.62
256 1.93 1.89 0.25 0.12 2.12
512 2.07 2.10 0.16 0.06 2.58

Table1: Averagepathlengths( y ) andclusteringcoefficients
( } ) for graphsconstructedto displaya simplepower law in
the nodedegree. The clusteringcoefficient is the average
fraction of neighborsdirectly connectedto eachother and
is a measureof “cliqueness”. Graphshave � nodesandare
generatedby the modifiedBarab́asi andAlbert modelusing� C %�� and ��%��DQ . For comparison,thecharacteristicpath
lengths( y z�{ � S ) andclusteringcoefficients( } z|{ � S ) for ran-
domgraphsof thesamesizeandedgedensityarealsogiven.
The last column is the proximity ratio ( ~ ), the normalized
ratio of the clusteringcoefficient andthe characteristicpath
length(i.e. } � } z�{ � S ��y���y z|{ � S ). Graphswith a proximity
ratio, ~U� � havea smallworld topology.

5 Search

Graphsgeneratedby themodifiedBarab́asiandAlbert model
have botha broaddistribution in degreeof their nodesanda
smallworld topology. Thesearebothfeatureswhicharecom-
mon in real world graphsbut rarein randomgraphs.These
graphsmay thereforebe goodbenchmarksfor testinggraph
coloringalgorithms.They mayalsobeusefulfor benchmark-
ing othersearchproblemsinvolving graphs(e.g. for generat-
ing the constraintgraphin constraintsatisfactionproblems,
theadjacency graphin Hamiltoniancircuit problems,...)

Unfortunatelycoloringgraphsgeneratedby the(modified)
Barab́asiandAlbert modelis typically easy. Most heuristics
basedon nodedegreecanquickly (in many cases,immedi-
ately)find a ����� -coloring. In addition,a � -cliquecanbe
quickly found within the nodesof high degreeshowing that
a �L��� -coloring is optimal. A simplefix to this problemis
to startwith aninitial graphwhich is notaclique.This initial
graphcouldbea ring latticeasin [WattsandStrogatz,1998;
Walsh,1999], or theinter-linking constraintgraphof aquasi-
group as in [Gent et al., 1999]. In both cases,we observe
similar results. The choiceof the initial graphhaslittle ef-
fect on the evolution of nodesof high degree. In addition,

startingfrom a ring latticeor theconstraintgraphof a quasi-
group promotesthe appearanceof a small world topology.
As in [Achlioptasetal., 2000;Gentetal., 1999], wegenerate
problemswith a mixtureof regularstructure(from theinitial
graph)andrandomness(from theadditionof new nodes).
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Figure7: Numberof searchnodes(x-axis)againstprobabil-
ity of visiting this many searchnodes(y-axis) whencolor-
ing graphsgeneratedto have either a power law scalingin
theirnodedegree,asmallworld topologyor apurelyrandom
topology. Notethelogscaleusedfor thex-axis. “Power law”
is a125nodegraphconstructedby themodifiedBarab́asiand
Albert’smodel,startingfrom theconstraintgraphof anorder
5 quasigroup,addingadditionalnodesinto thegraphwith 10
edgeseachon average;“Random” is a randomgraphof the
samesizeandedgedensity;“Small world” is a graphformed
by randomlyrewiring a125nodering lattice,eachnodestart-
ing with 10 neighbours,and eachedgebeing rewired with
probability 1/16. Otherinstancesof power law, randomand
smallworld graphsgeneratedwith thesameparametersgave
similar searchcostdistributions.

In Figure7, weplot thedistribution in searchcostsfor col-
oringgraphswith eitherapower law scalingin theirnodede-
gree,asmallworld topologyor apurelyrandomtopology. To
find optimalcolorings,weuseanalgorithmdueto MikeTrick
which is basedupon Brelaz’s DSATUR algorithm [Brelaz,
1979]. Unlike smallworld graphs,power law graphsdo not
displaya long tail in thedistribution of searchcosts.Whilst
power law graphsare easierto color than randomgraphs,
thereis a largerspreadin searchcostsfor power law graphs
than for randomgraphs. The absenceof a long tail means
that therearelessbenefitswith thesepower law graphsfor a
randomizationandrapidrestartstrategy [Gomeset al., 1997;
1998] comparedto smallworld graphs[Walsh,1999].

5.1 Backbones
Recentefforts to understandthe hardnessof satisfiability
problemshasfocusedon“backbone”variablesthatarefrozen
to a particularvaluein all solutions[Monassonet al., 1998].
It has beenshown, for example, that hard random3-SAT
problemsfrom the phasetransitionhave a very large back-
bone[Parkes,1997]. Backbonevariablesmayleadto thrash-
ing behaviour sincesearchalgorithmscanbranchincorrectly



onthem.If thesebranchingmistakesoccurhigh in thesearch
tree,they canbe very costly to undo. The ideaof backbone
variablehasbeengeneralizedto graphcoloring [Culberson
andGent,2000]. Sinceany permutationof thecolorsis also
a valid coloring,we cannotlook at nodeswhich musttake a
givencolor. Instead,we look at nodesthatcannotbecolored
differently. As in [CulbersonandGent,2000], two nodesare
frozen in a � -colorablegraphif they have thesamecolor in
all valid � -colorings.No edgecanoccurbetweentwo nodes
that are frozen. The backbone is simply the set of frozen
pairs.

Thepower law graphsgeneratedby themodifiedBarab́asi
andAlbert modelin Figure7 hadvery smallbackbones.In-
deed,in many cases,thereareonly oneor two pairsof nodes
in the backbone.At the startof search,it is thereforehard
to color incorrectlyany of the nodesin oneof thesepower
law graphs.This helpsexplain the lack of a long tail in the
distribution of searchcosts.By comparison,thesmallworld
graphshad backboneswith betweenfifty and one hundred
pairsof nodesin them. At thestartof search,it is therefore
easyto color incorrectlyoneof nodes. This givesrise to a
long tail in the distribution of searchcostsfor backtracking
algorithmslikeBrelaz’s DSATUR algorithm.

6 Conclusions

We have shown that nodesof high degreetendto occur in-
frequentlyin randomgraphsbut frequentlyin a wide variety
of real world searchproblems. As test cases,we usedex-
actly the problemstudiedin [Walsh, 1999]. We thenstud-
ied somealternative modelsfor randomly generatingnon-
uniform graphs. Watts and Strogatz’s small world model
gives graphswith a very narrow distribution in node de-
gree,whilst Hogg’s ultrametricmodelgivesgraphscontain-
ing nodesof high degreebut lacksa small world topology.
Barab́asi and Albert’s power law model combinesthe best
of both models,giving graphswith nodesof high degree
andwith a small world topology. Suchgraphsmay be use-
ful for benchmarkinggraphcoloring, constraintsatisfaction
andothersearchproblemsinvolving graphs. We measured
the impactof both nodesof high degreeanda small world
topology on a graph coloring algorithm. The long tail in
searchcostsobserved with small world graphsdisappears
when thesegraphsarealsoconstructedto containnodesof
highdegree.This maybeconnectedto thesmallsizeof their
“backbone”,pairsof edgesfrozenwith thesamecolor.

What generallessonscan be learnt from this research?
First, searchproblemsmet in practicemay be neithercom-
pletely structurednor completelyrandom.Sincealgorithms
optimizedfor purely randomproblemsmay performpoorly
on problemsthat containboth structureand randomness,it
maybeusefulto benchmarkwith problemgeneratorsthatin-
troduceboth structureandrandomness.Second,in addition
to a small world topology, many real world graphsdisplay
a wide variationin the degreeof their nodes. In particular,
nodesof high degreeoccur much more frequently than in
purely randomgraphs. Third, thesesimpletopologicalfea-
turescanhave a major impacton the costof solving search
problems.We conjecturethat graphcoloring heuristicslike

Brelazareoften able to exploit the distribution in nodede-
gree,preventingmuchof thrashingbehaviour seenin more
uniformgraphs.
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