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Abstract

We shav that nodesof high degreetendto occur
infrequentlyin randomgraphsbut frequentlyin a

wide variety of graphsassociatedvith real world

searchproblems. We then study some alterna-
tive modelsfor randomlygeneratinggraphswhich

have beenproposedo give more realistic topolo-

gies. For example,we shawv that Watts and Stro-

gatz's smallworld modelhasa narrow distribution

of nodedegree. On the otherhand, Baratasi and
Albert’s power law model, givesgraphswith both

nodesof high degreeanda small world topology

Thesegraphsmay thereforebe useful for bench-
marking. We thenmeasureghe impactof nodesof

high degreeanda smallworld topologyon the cost
of coloring graphs. The long tail in searchcosts
obsenedwith smallworld graphsdisappearsvhen
thesegraphsarealsoconstructedo containnodes
of highdegree.We conjecturehatthisis aresultof

the small size of their “backbone”,pairs of edges
thatarefrozento bethe samecolor.

1 Introduction

How doesthetopologyof graphsmetin practicediffer from
uniform randomgraphs?This is animportantquestionsince
commontopologicalstructuresmay have a large impacton
problemhardnessandmay be exploitable. Barakasiand Al-
bert have shavn that graphsderived from areasas diverse
asthe World Wide Web, and electricity distribution contain
morenodesof highdegreethanarelik ely in randomgraphsof
the samesize andedgedensity[Baratasiand Albert, 1999.
As a secondexample, Rednerhas shavn that the citation
graphof papersin the ISI catalogcontainsa few nodesof
very high degree[Rendeyr 1994. Whilst 633,3910ut of the
783,339papersreceve lessthan 10 citations, 64 are cited
morethan1000times,andonereceived 8907 citations. The
presencef nodeswith highdegreemayhave asignificantim-
pacton searctproblems.For instancejf theconstrainigraph
of a schedulingoroblemhasseveral nodeswith high degree,

thenit maybedifficult to solve assomeresourcesirescarce.

As a secondexample,if the adjacenyg graphin a Hamilto-
niancircuit problemhasmary nodesof high degree thenthe
problemmaybe easysincetherearemary pathsinto andout

of thesenodes,andit is hardto get stuck at a “dead-end”
node.Searchheuristicdik e Brelaz's graphcoloring heuristic
[Brelaz,1979 aredesignedo exploit suchvariationin node
degree.

This paperis structuredas follows. We first shov that
nodesof high degreetendto occurinfrequentlyin random
graphsbut frequentlyin a wide variety of real world search
problems. As testcaseswe useexactly the sameproblems
studiedin [Walsh, 1999. We then study somealternatie
modelsfor randomlygeneratinggraphswhich give morenon-
uniform graphgqspecificallyBaratasiandAlbert’s powerlaw
model, Wattsand Strogatzs smallworld model,andHogg'’s
ultrametricmodel). Finally, we explore theimpactof nodes
of high degreeon searchandin particular on graphcoloring
algorithms.

2 Random graphs

Two typesof randomgraphsare commonlyused,the G,

andthe G, , models. In the G,, ,, model, graphswith n

nodesandm edgesregeneratedy samplinguniformly from

then(n — 1)/2 possibleedges. In the G,, , model, graphs
with n nodesandan expectednumberof pn(n — 1)/2 edges
aregeneratedy including eachof then(n — 1)/2 possible
edgeswith fixed probability p. The two modelshave very
similar properties,including similar distributionsin the de-
greeof nodes.In arandomG,,,, graph,the probability thata
nodeis directly connectedo exactly k others p(k) follows a
Poissordistribution. More precisely

p(k) = e 2 N\F/k!

wheren is the numberof nodesyp is the probability thatarny
pair of nodesareconnectedand is (n — 1)p, the expected
nodedegree. As the Poissondistribution decaysexponen-
tially, nodesof high degreeareunlikely.

In this paperwe focusonthe cumulative probability, P(k)
whichis the probability of a nodebeingdirectly connectedo
k orlessnodes:

k
P(k) = Y0 pli).

Whilst p(k) is smoothlyvaryingfor randomgraphsjt canbe-
have moreerratically on real world graphs. The cumulative
probability, which is by definition monotonicallyincreasing,
tendsto give aclearermicture.Figure1l shovsthatthe cumu-
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Figure 1: Cumulatve probability (y-axis) againstthe nor-
malizednodedegree (x-axis) for randomG, , graphswith
p=0.5.

lative probability againstthe normalizeddegreefor random
graphgapidly approachea stepfunctionasn increasesThe
degreeof nodesthereforebecomedightly clusteredaround
theaveragedegree.

3 Real world graphs

We next studiedthedistribution in the degreeof nodesfound
in therealworld graphsstudiedin [Walsh,1999.

3.1 Graph coloring

We looked at somereal world graphcoloring problemsfrom
the DIMA CS benchmarHibrary. We focusedon the regis-
ter allocation problemsas theseare basedon real program
code.Figure2 demonstratethattheseproblemshave a very
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Figure2: Cummulatve probability (y-axis) againstthe nor-
malized node degree (x-axis). “Register data” is the ze-
ronin.i. 1 registerallocationproblemwhich is corverted
into a graph coloring problem with 125 nodesand 4100
edges.“Randomgraph”is a randomgraphof the samesize
andedgedensity Otherproblemsn the DIMA CSgraphcol-
oring benchmarlgave similar results.

skeweddistribution in the degreeof their nodes.Otherprob-
lemsfrom the DIMA CS benchmarKibrary gave very simi-
lar cumulative probability distributionsfor the degreeof their

nodes.Comparedo randomgraphsof thesamesizeandedge
density theseregisterallocationproblemshave a numberof
nodesthatare of muchhigherandlower degreethanthe av-
erage.For example the nodeof maximumdegreein Figure2
is directly connectedo 89% of the nodesin the graph. This
is morethantwice the averagedegree,andthereis lessthan
alin 4 million chancethatanodein arandomgraphof the
samesize and edgedensityhasdegreeaslarge asthis. On
the otherhand,the nodeof leastdegreehaslessthanhalf the
averagedegree,andthereis lessthana 1 in 7 million chance
thata nodein arandomgraphof the samesizeandedgeden-
sity hasdegreeas small asthis. The plateauregion in the
middle of the graphindicatesthat thereare very few nodes
with the averagedegree. Most nodeshave either higheror
lower degrees By comparisonthedegreesof nodesin aran-
domgrapharetightly clusterecaroundtheaverage A similar
plateauregion aroundthe averagedegreeis seenin mostof
the registerallocationproblemsin the DIMA CS benchmark
library.

3.2 Time-tabling

Time-tabling problemscan be naturally modelledas graph
coloring problems,with classesrepresentedy nodesand
time-slots by colors. We therefore tested some real
world time-tablingproblemsfrom the IndustrialEngineering
archive at the University of Toronto. Figure3 demonstrates
thatproblemsin this datasetlsohave a skewed distribution
in thedegreeof theirnodes.Otherbenchmarkproblemsrom
this library gave very similar curves. Comparedo random
graphswith thesamenumberof nodesandedgesthesetime-
tabling problemshave a numberof nodesthat have much
higherandlower degreethanthe average. For example,the
nodeof maximumdegreein Figure3 is directly connectedo
71%of the nodesin thegraph.Thisis nearlythreetimesthe
averagedegree,andthereis lessthana 1 in 102° chancethat
a nodein arandomgraphof the samesizeandedgedensity
hasdegreeaslarge asthis. On the otherhand,the nodeof
leastdegreehasapproximatelyone tenth of the averagede-
gree,andthereis lessthana 1 in 10'® chancethata nodein
arandomgraphof the samesizeandedgedensityhasdegree
assmallasthis. [Walsh,1999 suggestshatsparsegroblems
in this datasehave moreclusteringof nodesthanthe dense
problems.However, therewasno obviousindicationof this
in the distribution of nodedegrees.

3.3 Quasigroups
A quasigroups aLatin squaream by m multiplicationtable
in which eachentryappeargustoncein eachrow or column.
Quasigroupsanmodel a variety of practicalproblemslike
sportstournamenschedulingandthe designof factorial ex-
periments A numberof openguestionsn finite mathematics
aboutthe existence(or non-eistence)of quasigroupswith
particularpropertieshave beenansweredising model find-
ing andconstraintsatishctionprogramd Fujitaetal., 1993.
Recentlyaclassof quasigrougproblemshave beenproposed
asa benchmarkfor generatinghard and satisfiableproblem
instancedgor local searchmethodqAchlioptasetal., 2004.
An orderm quasigrouproblemcanberepresentedsa bi-
nary constraintsatistiction problemwith m? variables gach
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Figure 3: Cummulatve probability (y-axis) againstthe nor-
malizednodedegree(x-axis). “Time-tablingdata”is the Earl
Haig Collegiatetime-tablingproblemwhichis convertedinto
a graphcoloring problemwith 188 nodesand 4864 edges.
“Randomgraph” is a randomgraph of the samesize and
edgedensity Otherproblemsfrom the Industrial Engineer
ing archive atthe Universityof Torontogave similar results.

with a domainof sizem. The constraintgraphfor sucha
problemconsistsof 2m cliques,onefor eachrow and col-
umn,with eachcliqguebeingof sizem. Eachnodein thecon-
straintgraphis connectedo 2(m — 1) othernodes.Hence,
p(k) = 1if k = 2(m — 1) and0 otherwise,andthe cumu-
lative probability P(k) is a stepfunctionatk = 2(m — 1).

As all nodesin the constraintgraphof a quasigrouphave the
samedegree, quasigroupsnay suffer from limitations as a
benchmarkFor example,the Brelazheuristic[Brelaz,1979

(whichtriesto exploit variationsin the degreeof nodesn the
constraintgraph)may performlesswell on quasigrougprob-
lemsthan on more realisticbenchmarksn which thereis a
variability in the degreeof nodes.

4 Non-uniform random models

As the G, and G, , modelstend to give graphswith a
narrow distributionin thedegreeof nodesarethereary better
modelsfor randomlygeneratinggraphs?In this section,we
look at threedifferentrandommodels,all proposedy their
authorsto give morerealisticgraphs.

41 Small world model

Watts and Strogatzshaved that graphsthat occurin mary
biological, social and man-madesystemsare often neither
completelyregular nor completelyrandom,but have instead
a “small world” topology in which nodesare highly clus-
teredyet the path length betweenthemis small [Watts and
Strogatz,1999. Suchgraphstendto occur frequentlyin
real world searchproblems[Walsh, 1999. To generate
graphswith a small world topology we randomlyrewire a
regular graphlike a ring lattice [Watts and Strogatz,1998;
Gentet al., 1999. Thering lattice provides nodesthat are
highly clusteringwhilsttherandomrewiring introduceshort
cutswhich rapidly reduceshe averagepath length. Unfor-
tunately graphsconstructedn this mannertendnot to have
a wide distribution in the degreeof nodes,andin particular

are unlikely to containany nodesof high degree. For small
amountsof rewiring, p(k) peaksaroundthe lattice degree,
and corvergeson the Poissondistribution found in random
graphsfor moreextensie rewiring.
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Figure4: Cummulatve probability (y-axis) againstthe nor-
malizednodedegree(x-axis). “Smallworld” is agraphwith a
smallworld topologygeneratedby randomlyrewiring a ring
lattice of 1000nodesgachwith 10 neighborswith arewiring
probability, p = 1/16. “Randomgraph”is arandomgraphof
thesamesizeandedgedensity

In Figure4, we plot thecumulative probabilityfor thenode
degreesof graphsgeneratedo have a small world topology
by randomlyrewiring aring lattice. Smallworld graphshave
a distribution of nodedegreesthatis narraver thanthat for
randomgraphswith the samenumberof nodesand edges.
Due to the lack of variability in the degree of nodes,these
smallworld graphsmay have limitations asa modelof real
world graphs.The absencef nodesof high degreeis likely
toimpacton searchperformanceForinstanceheuristicdike
Brelazwhichtry to exploit variationan nodedegreearelik ely
to find thesegraphsharderto color thangraphswith a wider
variability in nodedegree. Canwe find a modelwith a vari-
ability in thenodedegreethatis similarto thatseenn thereal
world graphsstudiedin the previoussection?

4.2 Ultrametric model

To generatgyraphswith morerealistic structuresHogg has
proposedimodelbasedngroupingthenodesnto atree-like
structurdHogg,1994. In thismodel,anultrametricdistance
betweenthe n nodesis definedby groupingtheminto a bi-
narytreeandmeasuringhedistanceupthistreeto acommon
ancestar A pair of nodesat ultrametricdistanced is joined
by anedgewith relative probabilityp?. If p = 1, graphsare
purelyrandom.If p < 1, graphshave a hierarchicalcluster
ing asedgesaremorelik ely betweemearbynodes.Figure5
givesthe cumulative probability distribution for the nodede-
greesin agraphgeneratedvith anultrametricdistanceusing
the modelfrom [Hogg, 1996. Thereis a definite broaden-
ing of the distribution in nodedegreescomparedo random
graphs. Nodesof degreehigherandlower thanthe average
occurmorefrequentlyin theseultrametricgraphshanin ran-
domgraphs.For example,onenodein the ultrametricgraph
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Figure5: Cummulatve probability (y-axis) againstthe nor-
malizednodedegree(x-axis). “Ultrametric” is a graphwith
a ultrametricworld topology generatedvith 64 nodes, 1008
edgeqto give anaveragedegreeof n/2) andp = 1/4. “Ran-
domgraph”is arandomgraphof the samesizeandedgeden-
sity.

is connectedo all the othernodes.This nodehasmorethan
twice the averagedegree,andthereis lessthana 1 in 3 mil-
lion chancethata nodein a randomgraphof the samesize
and edgedensityhasdegreeas large asthis. On the other
hand,the nodeof leastdegreehasjust over half the average
degree,andthereis lessthana 1 in 500 chancethata node
in arandomgraphof the samesizeandedgedensityhasde-
greeassmallasthis. Ultrametricgraphsthusprovide a bet-
ter modelof the distribution of nodedegrees.However, they
lack a smallworld topologyasnodesarenot highly clustered
[Walsh,1999. Canwe find a modelwhich hasbotha small
world topology(whichhasshavn to becommonin realworld
graphs)anda largevariability in the nodedegree(which has
alsobeenshovn to becommon)?

4.3 Power law model

Baralasiand Albert have shovn thatreal world graphscon-
taining nodesof high degree often follow a power law in
which the probability p(k) thata nodeis connectedo & oth-
ersis proportionalto k~7 wherey is someconstan(typically
around3) [Baralasi and Albert, 1999. Rednerhasshawvn
thathighly cited papergendto follow a Zipf power law with
exponentapproximately-1/2 [Render1994. It follows from
this resultthat the degree of nodesin the citation graphfor
highly cited papersfollows a power law with p(k) propor
tionalto k—3. Suchpower law decaycompareso the expo-
nentialdecayin p(k) seenin randomgraphs.

To generatepower law graphs,Baratasi and Albert pro-
poseamodelin which, startingwith asmallnumberof nodes
(no), they repeatedlyaddnew nodeswith m (m < np) edges.
Theseedgesare preferentiallyattachedto nodeswith high
degree.They suggest linearmodelin which the probability
thatanedgeis attachedo anodei is k;/ 3 _; k; wherek; is

the degreeof nodej. Usinga mean-fieldtheory[Baralfsiet

al., 1999, they shav thatsucha graphwith n nodeshas:

_ 2m2(n—mng) 1
p(k) = T —

Thatis, p(k) is proportionalto k~7 wherey = 3. Notethat
p(k) is alsoproportionalto m?2, the squareof the averagede-

greeof the graph. In thelimit of largen, p(k) — 2—,2”33 The

presenceof non-lineartermsin the preferentialattachment
probability will changethe natureof this power law scaling

andmaybearouteto power laws in which the scalingexpo-

nentis differentto 3.
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Figure 6: Cummulatve probability (y-axis) againstthe nor-
malized node degree (x-axis) for graphsgeneratedo have
a simple power law scalingin their nodedegree. Note the
logscaleusedfor the x-axis. “Power law” is a graphcon-
structedby the modified Baratasi and Albert’'s model with
mo = 1, m = 16 andn = 128; “Random”is arandomgraph
of thesamesizeandedgedensity

We proposea minor modificationto this modelto tackle
theproblemthattheaveragedegreem is boundedy thesize
of theinitial graphng. This will hinderthe constructionof
high densitygraphg(which werenotuncommonn the previ-
oussection).We suggestonnectinganedgeto a nodes with
probabilitymin(1, mk;/ >", k;). Eachnew nodeis thencon-
nectedto the graphby approximatelym edgeson average.
This modificationis similarto moving from the G,, ,,, to the
G modelof randomgraphs.

In Figure6, we plot the cumulative probability for the de-
greeof nodesn graphgyeneratedby this modifiedmodel. As
with the ultrametricgraphs,we obsene a definite broaden-
ing of the distribution in nodedegreescomparedo random
graphs. Nodesof degreehigherandlower thanthe average
occurmorefrequentlyin thesepower law graphsthanin ran-
dom graphs. For example,the nodeof maximumdegreeis
directly connectedo 70% of the nodesin thegraph. Thisis
more thanthreetimesthe averagedegree,andthereis less
thana 1 in 10'® chancethata nodein arandomgraphof the
samesizeandedgedensityhasdegreeaslargeasthis. Onthe
otherhand thenodeof leastdegreehasnearlyonefifth of the
averagedegree,andthereis lessthana 1 in 107 chancethat
a nodein arandomgraphof the samesizeandedgedensity



hasdegreeassmall asthis. Unlike randomgraphsin which
the distribution sharpensas we increasethe size of graphs,
we seea similar spreadn thedistribution of nodedegreesas
thesegraphsareincreasedn size.

Ideally, we wantlike a methodfor generatinggraphsthat
givesgraphswith bothnodesof highdegreeandasmallworld
topology The nodesof high degreegeneratedy the (modi-
fied) BarathsiandAlbert modelarelik ely to keeptheaverage
pathlengthshort. But arethe nodesdlik ely to betightly clus-
tered?Table1 demonstratethatthesegraphstendto have a
smallworld topologyasthe graphsizeis increased.

L2l L [Lrana ]| C | Crana| 4]
16 || 100| 1.00 | 1.00| 1.00 || 1.00
32| 1.24| 1.24 | 0.81| 0.77 || 1.05
64| 1.57| 1.56 | 0.57| 0.43 || 1.35
128 1.77| 1.78 || 0.39| 0.24 | 1.62
256 || 1.93| 1.89 || 0.25| 0.12 | 2.12
512 || 2.07| 2.10 || 0.16| 0.06 | 2.58

Tablel: Averagepathlengths(L) andclusteringcoeficients
(C) for graphsconstructedo displaya simple power law in

the nodedegree. The clusteringcoeficient is the average
fraction of neighborsdirectly connectedto eachother and
is a measureof “cliqueness”. Graphshave n nodesandare
generatedy the modified Barakhasiand Albert modelusing
ng = 1 andm = 16. For comparisonthe characteristipath
lengths(L,4,q) and clusteringcoeficients (C;4,q) for ran-
domgraphsof the samesizeandedgedensityarealsogiven.
The last column s the proximity ratio (u), the normalized
ratio of the clusteringcoeficient andthe characteristigath
length(i.e. C/Crand / L/Lrana). Graphswith a proximity

ratio, u > 1 have asmallworld topology

5 Search

Graphgyeneratedy themodifiedBaratasiandAlbert model
have both a broaddistribution in degreeof their nodesanda
smallworld topology Thesearebothfeaturesvhicharecom-
monin real world graphsbut rarein randomgraphs. These
graphsmay thereforebe goodbenchmarkdgor testinggraph
coloringalgorithms.They mayalsobe usefulfor benchmark-
ing othersearchproblemsinvolving graphs(e.g. for generat-
ing the constraintgraphin constraintsatisfction problems,
theadjacenyg graphin Hamiltoniancircuit problems,..)
Unfortunatelycoloringgraphsgeneratedby the (modified)
BaralasiandAlbert modelis typically easy Most heuristics
basedon nodedegreecanquickly (in mary casesjmmedi-
ately)find am + 1-coloring. In addition,a m-clique canbe
quickly found within the nodesof high degreeshawing that
am + 1-coloringis optimal. A simplefix to this problemis
to startwith aninitial graphwhichis notaclique. Thisinitial
graphcouldbearing lattice asin [Wattsand Strogatz,1998;
Walsh,1999, or theinter-linking constrainigraphof aquasi-
groupasin [Gentet al., 1999. In both caseswe obsere
similar results. The choiceof the initial graphhaslittle ef-
fect on the evolution of nodesof high degree. In addition,

startingfrom aring lattice or the constraintgraphof a quasi-
group promotesthe appearancef a small world topology
Asin [Achlioptasetal., 2000;Gentetal., 1999, we generate
problemswith a mixture of regular structure(from theinitial
graph)andrandomnes§from theadditionof new nodes).
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Figure7: Numberof searchnodes(x-axis) againstprobabil-
ity of visiting this mary searchnodes(y-axis) when color-
ing graphsgeneratedo have eithera power law scalingin

theirnodedeggree,asmallworld topologyor a purelyrandom
topology Notethelogscaleusedfor the x-axis. “Power law”

is al25nodegraphconstructedy themodifiedBarakasiand
Albert’'s model,startingfrom the constrainigraphof anorder
5 quasigroupaddingadditionalnodesinto the graphwith 10
edgeseachon average;“Random”is a randomgraphof the
samesizeandedgedensity;“Small world” is a graphformed
by randomlyrewiring a125nodering lattice,eachnodestart-
ing with 10 neighbours,and eachedgebeing rewired with

probability 1/16. Otherinstanceof power law, randomand
smallworld graphsgeneratedvith the sameparametergave
similar searchcostdistributions.

In Figure7, we plot thedistribution in searckcostsfor col-
oring graphswith eitherapowerlaw scalingin theirnodede-
gree,asmallworld topologyor apurelyrandomtopology To
find optimalcolorings,we useanalgorithmdueto Mik e Trick
which is basedupon Brelazs DSATUR algorithm [Brelaz,
1979. Unlike smallworld graphs,power law graphsdo not
displaya long tail in the distribution of searchcosts. Whilst
power law graphsare easierto color than randomgraphs,
thereis a larger spreadn searchcostsfor power law graphs
thanfor randomgraphs. The absenceof a long tail means
thattherearelesshenefitswith thesepower law graphsfor a
randomizatiorandrapidrestartstratgly [Gomesetal., 1997;
1994 comparedo smallworld graphgWalsh,1999.

5.1 Backbones

Recentefforts to understandthe hardnessof satisfiability
problemshasfocusedon“backbone’variableghatarefrozen
to aparticularvaluein all solutions[Monassoretal., 1999.
It hasbeenshawn, for example, that hard random 3-SAT
problemsfrom the phasetransitionhave a very large back-
bone[Parkes,1997. Backbonevariablesmayleadto thrash-
ing behaiour sincesearchalgorithmscanbranchincorrectly



onthem.If thesebranchingmistalesoccurhighin thesearch
tree,they canbe very costlyto undo. The ideaof backbone
variable hasbeengeneralizedo graphcoloring [Culberson
andGent,2000. Sinceary permutatiorof the colorsis also
avalid coloring, we cannotlook at nodeswhich musttake a
givencolor. Insteadwe look at nodesthatcannotbe colored
differently. Asin [CulbersorandGent,200d, two nodesare
frozen in a k-colorablegraphif they have the samecolorin
all valid k-colorings. No edgecanoccurbetweentwo nodes
that are frozen. The backbone is simply the setof frozen
pairs.

The power law graphsgeneratedby the modified Baralasi
andAlbert modelin Figure7 hadvery smallbackbonesin-
deed,in mary casesthereareonly oneor two pairsof nodes
in the backbone.At the startof search,t is thereforehard
to color incorrectlyary of the nodesin one of thesepower
law graphs. This helpsexplain the lack of a long tail in the
distribution of searchcosts.By comparisonthe smallworld
graphshad backboneswith betweenfifty and one hundred
pairsof nodesin them. At the startof searchjt is therefore
easyto color incorrectly one of nodes. This givesriseto a
long tail in the distribution of searchcostsfor backtracking
algorithmslike Brelazs DSATUR algorithm.

6 Conclusions

We have shavn that nodesof high degreetendto occurin-
frequentlyin randomgraphsbut frequentlyin a wide variety
of real world searchproblems. As testcaseswe usedex-
actly the problemstudiedin [Walsh, 1999. We then stud-
ied somealternatve modelsfor randomly generatingnon-
uniform graphs. Watts and Strogatzs small world model
gives graphswith a very narrov distribution in node de-
gree,whilst Hogg's ultrametricmodel gives graphscontain-
ing nodesof high degreebut lacks a small world topology
Baralasi and Albert’s power law model combinesthe best
of both models, giving graphswith nodesof high degree
andwith a small world topology Suchgraphsmay be use-
ful for benchmarkinggraphcoloring, constraintsatisfction
and other searchproblemsinvolving graphs. We measured
the impactof both nodesof high degreeand a small world
topology on a graph coloring algorithm. The long tail in
searchcostsobsened with small world graphsdisappears
whenthesegraphsare also constructedo containnodesof
high degree. This maybe connectedo the smallsizeof their
“backbone” pairsof edgedrozenwith the samecolor.

What generallessonscan be learnt from this research?
First, searchproblemsmetin practicemay be neithercom-
pletely structurednor completelyrandom. Sincealgorithms
optimizedfor purely randomproblemsmay perform poorly
on problemsthat containboth structureand randomnessit
may be usefulto benchmarkvith problemgeneratorshatin-
troduceboth structureandrandomnessSecondjn addition
to a small world topology, mary real world graphsdisplay
a wide variationin the degreeof their nodes. In particulay
nodesof high degree occur much more frequently than in
purely randomgraphs. Third, thesesimple topologicalfea-
turescanhave a major impacton the costof solving search
problems. We conjecturethat graphcoloring heuristicslike

Brelaz are often able to exploit the distribution in nodede-
gree, preventingmuch of thrashingbehaiour seenin more
uniform graphs.
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