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Abstract

We perform an extensive study of several differ-
ent models of permutation problems proposed by
Smith in [Smith, 2000. We first define a mea-
sure of constraint tightness parameterized by the
level of local consistency being enforced. We then
compare the constraint tightness in these different
models with respect to a large number of local con-
sistency properties including arc-consistency, (re-
stricted) path-consistency, path inverse consistency,
singleton arc-consistency and bounds consistency.
We also compare the constraint tightness in SAT
encodings of these permutation problems. These
results will aid users of constraints to choose a
model for a permutation problem, and a local con-
sistency property to enforce upon it. They also il-
lustrate a methodology, as well as a measure of con-
straint tightness, that can be used to compare differ-
ent constraint models.

Introduction

is an assignment of values to variables that is consisteht wi
all constraints. Many lesser levels of consistency have bee
defined for binary constraints (s¢@ebruyne and Bessiere,
1997 for references). A problem i§i, j)-consistentff it

has non-empty domains and any consistent instantiation of
i variables can be consistently extended tdditional vari-
ables[Freuder, 198b A problem isarc-consisten{AC) iff

it is (1, 1)-consistent. A problem ipath-consisten{PC) iff

it is (2,1)-consistent. A problem istrong path-consistent
(ACPC) iff it is AC and PC. A problem ipath inverse con-
sistent(PIC) iff itis (1, 2)-consistent. A problem irestricted
path-consistentRPC) iff it is AC and if a value assigned to

a variable is consistent with just one value for an adjoining
variable then for any other variable there exists a comfgatib
value. A problem issingleton arc-consistefSAC) iff it has
non-empty domains and for any instantiation of a variable,
the resulting subproblem can be made AC. For non-binary
constraints, there has been much less work on different lev-
els of local consistency. One exception is generalized arc-
consistent. A problem igeneralized arc-consistefGAC)

iff for any value for a variable in a (non-binary) constraint
there exist compatible values for all the other variablet@
constrainfMohr and Masini, 198B For ordered domains, a

In modeling a constraint satisfaction problem, we oftenehav
a choice as to what to makg the variable_s, and yvhat t0 MakgJins and the minimum and maximum values for any vari-
the val_ues. For example, in an exam timetabling prObIemable in a (binary or non-binary) constraint can be extended t
the variables could be the exams, and the values could be ﬂ%%tisfy the constraifentenryclet al, 1999

times. Alternatively, the variables could be the times, tred 5 '
values could be the exams. This choice is especially difficulCal consistency property is as strong as a local consistency

in permutation problems. In an empirical study of Langferd’ ; o i X ;
problem, Smith proposes a number of different models of perpropertyB (written A ~ B) iff in any problem in whichA

mutation problemgSmith, 2000 which we study in detail Elolit%egﬁ Eglt%s’iIilSt;lopsgiigghrﬁgi;\r(z\vk:;ge\/vr}%_()wﬁztlef{w

here. In a permutation problem, we have as many values as o B) iff neither A ~ B nor B ~ A, andA is equivalent
variables, and each variable takes an unique value. We c3g (written A <> B) iff both A ~ B and B qu The
therefore easily swap variables for values. Many aSS|gm,menfOIIOWing summarizes results frofidebruyne and Béssiére,

scheduling and routing problems are permutation problems_[ 97 and elsewhere: ACPG> SAC — PIC — RPC— AC
For example, sports tournament scheduling can be modele BC '

as finding a permutation of the games to fit into the available . .
slots, whilst the traveling saleperson problem can be neadel . Many algorithms enforce a local consistency property dur-
ing search. For example, tHerward checkingalgorithm

as finding a permutation of the cities. (FC) maintains a restricted form of AC that ensures that cur-
rent and future variables are AC. FC has been generalized to
2 Formal background non-binary constraintiBessiéreet al, 1999. nFCO makes

A constraint satisfaction problefCSP) consists of a set of everyk-ary constraint withk — 1 variables instantiated AC.
variables, each with a finite domain of values, and a set ohFC1 applies (one pass of) AC to each constraint or constrain
constraints. Each constraint is a relation defining thenadtb  projection involving the current and exactly one futureivar
values for a given subset of variables. A solution to a CSRable. nFC2 applies (one pass of) GAC to each constraint in-

roblem isbounds consisteBC) iff it has non-empty do-

Following[Debruyne and Bessiere, 199%e say that a lo-



volving the current and at least one future variable. Threeneasure of constraint tightness would also be usefulin anum
other generalizations of FC to non-binary constraints, iFC ber of other applications (e.g. reasoning about the value of
to nFC5 degenerate to nFC2 on the single non-binary conimplied constraints).

straint describing a permutation, so are not consideregl. her \We say that a set of constraintsis as tight asa setB
Finally, the maintaining arc-consistencglgorithm (MAC)  with respect tob-consistency (writter® 4 ~» ® ) iff, given
maintains AC during search, whilst MGAC maintains GAC. any domains for their variables, if is ®-consistent ther3
is also®-consistent. Note that tightness is over all possible
3 Permutation problems domains for the variables. It thus measures the possibte pru
ing of domains during search as variables are instantiatéd a
A permutation problenis a constraint satisfaction problem domains pruned (possibly by other constraints in the prob-
with the same number of variables as values, in which eaclem). We say that a set of constraintsis tighter than a set
variable takes an unique value. We also congiolgitiple per- B wrt ®-consistency (writte® 4 — ®p) iff &4 ~» &5 but
mutation problem# which the variables divide into a num- not®z ~ &4, A isincomparableto B wrt ®-consistency
ber of (possibly overlapping) sets, each of which is a permugwritten ® 4 ® ® ) iff neither® 4 ~» &g nor® g ~ &4, and
tation problem. Smith has proposed a number of different4 is equivalento B wrt ®-consistency (writte® 4 <+ ®3)
models for permutation probleniSmith, 2000. Thepri-  iff both &4 ~» ®5 and®z ~» ®4. We can easily gener-
mal not-equals model has not-equals constraints between thglize these definitions to compageconsistency om with
variables in each permutation. Thamal all-differentmodel  ©-consistency or3. This definition of constraint tightness
has an all-different constraint between the variables thea has some nice monotonicity and fixed-point properties which
permutation. In alual model, we swop variables for values. we will use extensively throughout this paper.
Primal and dualmodels have primal and dual variables, and
channelling constrainténking them of the form:z; = j iff ~ Theorem 1 (monotonicity and fixed-point)
d; = i wherez; is a primal variable and; is a dual vari-
able. Primal and dual models can also have not-equals andl. ACaup ~» ACa ~ ACanB
all-different constraints on the primal and/or dual valégb N
There will, of course, typically be other constraints whitgh 2. ACs = ACp impliesACaup ¢ ACa
pend on the nature of the permutation problem. For exam-
ple, in the all-interval series problem from CSPLib, theivar
ables and the differences between neighboring variabtes a
both permutations. In what follows, we do not consider di-
rectly the contribution of such additional constraints torp le
ing. However, the ease with which we can specify and reasoB(A’

with these additional constraints may have a large impact ol g any domains for their variablex, visits no more nodes

our choice of the primal, dual or primal and dual models. on A than onB, whilst A is tighter than B wrt algorithm X
We use the following subscripts:2" for the primal not- (written X 4 — :XB) iff X4 ~» Xp butnotXp ~ X 4. Sim-
equals constraints,™ for channellm_g constraln_ts,;écm for ilar monotonicity and fixed-point results can be given for, FC

the primal not-equals and channelling constraings2" for MAC and MGAC. Finally, we writeX 4 = Xz if X4 — Xp
the primal not-equals, dual not-equals and channelling conyq there is a problem on whick visits exponentially fewer
straints, %" for the primal all-different constraint,vc” for branches withd than B

the primal all-different and channelling constraints, &ng” '

for the primal all-different, dual all-different and chasiimg

constraints. For example, SACis SAC applied to the pri- 5  Theoretical comparison
mal not-equals and channelling constraints.

Similar monotonicity and fixed-point results hold for BC,
RPC, PIC, SAC, ACPC, and GAC. We also extend these defi-
hitions to compare constraint tightness wrt search algast
like MAC that maintain some local consistency. For exam-
we say thatl is as tight asB wrt algorithm X (written

~ Xp) iff, given any fixed variable and value odering

In an experimental study of Langford’s problem, a simple per
4 Constraint tightness mut_ation probl_em from CSPLib, Smith obser_ves that chan-
nelling constraints remove the need for the primal not-&qua
To compare how different models of permutation problemsconstraintdSmith, 2000. She also observes that MAC ap-
prune the search tree, we define a new measure of constrajplied to a model of Langford’s problem with channelling
tightness. Our definition assumes constraints are defined ovconstraints explores more branches than MGAC applied to
the same variables and values or, as in the case of primal amdmodel with a primal all-different constraint. We show that
dual models, variables and values which are bijectively rethese results do not extend to algorithms that maintaindrigh
lated. An interesting extension would be to compare two settevels of local consistency like PIC We also prove that the
of constraints up to permutation of their variables andeslu differences can lead to exponential reductions in runtime.
Our definition of constraint tightness is strongly influetibg
the way local consistency properties are compébebruyne 5 1 Arc-consistency
and Bessiere, 1997 Indeed, the definition is parameterized
by a local consistency property since, as we show later, théV/e first prove that, with repsect to arc-consistency, chan-
amount of pruning provided by a set of constraints can denelling constraints are tighter than the primal not-equals
pend upon the level of local consistency being enforceds Thistraints, but less tight than the primal all-different coaist.



Theorem 2 On a permutation problem: which algorithmX visits exponentially fewer branches with
GAG, A than B. Note that GAG and AC are both polynomial to

1 v enforce so an exponential reduction in branches trandiates
GAGy = AC,e, ¢+ ACye < AC, — AC, an exponential reduction in runtime.

Theorem 3 On a permutation problem:
MGAG; = MAC..« + MAC,. +» MAC, = MAC.

Proof: We give proofs for the most important identities.
Other results follow immediately from the last theorem.

To show GAG, — AC., consider a permutation problem eI%l?thc)iv(;/nGMAl;cl;d = '\fQCC_ C(;n3|der a? +.3<var|ablle
_ o b p problem withy; = {1,...,n} fori < n +
whose primal all-different constraint is GAC. Suppose theanda: — — {n+1,n+2mn43). Then, given a
channelling constraint between andd; was not AC. Then Cond2 T nd3 TS : Y ;
eitherx; is set toj andd; hasi eliminated from its domain, Iex!cograph|cal variable ordering, GMAGmmediately fails,
: . g = ; . whilst MAC,. takesn! branches.

or d; is set to¢ andz; hasj eliminated from its domain. To show MAC. = MAC.., consider ai + 2 variable per-
But neither of these two cases is possible by the ConSt'mCtiomutation problem with: _7{'{1 2}, anda; — {3 n-|-p2}
i i 2 1 — ) ’ i — R
of the primal and dual model. Hence the channeliing “ON%or i > 2. Then, given a lexicographical variable ordering,
straints are all AC. To show strictness, consider a 5 vr;ﬂ,rlabllvIAC takes 2 branches to show insolubility. whist MAC
permutation problem in whiclh; = z, = z3 = {1,2} and takes? (n— 1)! branches. QED 4 A
x4 = x5 = {3,4,5}. This is AG. but not GAG,. AL - -

To show AG. — AC, suppose that the channelling con- 5 3 Forward checking
straints are AC. Consider a not-equals constraint# «; R : )
(i # j) that is not AC. Now,; anda; must have the sa]me Maintaining (generalized) arc-consistency on large péamu

singleton domain{k}. Consider the channelling constraint 0N problems can be expensive. We may therefore cons-

betweenz; andd,. The only AC value fordy is i. Simi- N9 using a more restricted local consistency property IiI§e
larly, the only AC value fordj, in the channelling constraint forward checking. For example, the Choco finite-domain
betweenz; anddy is j. Buti # j. Hence,d; has no AC toolkit in Cla|.re uses just nFCO on all-different consttain
values. This is a contradiction as the channelling comasai | h€ channelling constraint remain tighter than the prinoi n
are AC. Hence all not-equals constraints are AC. To shov#duals constraints wrt FC.
strictness, consider a 3 variable permutation problem withrheorem 4 On a permutation problem:
z1 = @2 = {1,2} andzs = {1,2,3}. Thisis AC. but is
not AC.. nFC2;, — FC#C# Ad FC#C ~ FC. — FC¢ — nFCOQy

To show AC,., <+ AC,, by monotonicity, AC.., ~+ AC.. T
To show the reverse, consider a permutation problem which nFC2y — nFCly
is AC. but not AC.... Then there exists at least one not- Proof: We again prove the most important identities. Other
equals constraints that is not AC. Without loss of gensralit results follow quickly, often by means of the transitiviand
let this be on two dual variables (a symmetric argument can bghe monotonicity and fixed-point theorems.
made for two primal variables). So both the associated Jdual [Gentet al, 2004 proves FC implies nFCQ. To show
variables, call themi; andd; must have the same unitary strictness on permutation problems (as opposed to the more
domain, sayt. Hence, the domain of the primal variable  general class of decomposable constraints studif@éntet
includesi and;. Consider the channelling constraint betweena|., 2004), consider again a 5 variable permutation problem
xj, andd;. Now this is not AC as the value, = j hasno with z; = 2y = 23 = x4 = {1,2,3} andzs = {4,5}
support. This is a contradiction. Irrespective of the variable and value ordering, FC shows th

To show GAG,.v <+ GACy, consider a permutation prob- problem is unsatisfiable in at most 12 branches. nFCO by
lem that is GAG. For every possible assignment of a value comparison takes at least 18 branches.
to a variable, there exist a consistent extension to therothe To show FC — FC., consider assigning the valgi¢o the
variablesz, = d, ,...wn = do, Withz; # x; foralli # j.  primal variablez;. FC. removesj from the domain of all
As this is a permutation, this corresponds to the assignmerther primal variables. FGnstantiates the dual variablg
of unique variables to values. Hence, the correspondinb dugyith the valuei, and then removesfrom the domain of all
all-different constraint is GAC. Finally, the channelliogn-  other primal variables. Hence, E@runes all the values that

GAGy.

Proof: We give proofs for the most important identities.
Other results follow quickly, often using transitivity, éithe
monotonicity and fixed-point theorems.

straints are trivially AC. QED. FC, does. To show strictness, consider a 4 variable permuta-
s . tion problem withz, = {1,2} andz, = z3 = x4 = {3,4}.
5.2 Maintaining arc-consistency Given a lexicographical variable and numerical value order

These results can be lifted to algorithms that maintain{gening, FC. shows the problem is unsatisfiable in 4 branches.
eralized) arc-consistency during search. Indeed, thelgaps FC. by comparison takes just 2 branches.

tween the primal all-different and the channelling coristsa [Gentet al, 2000 proves nFC} implies FC.. To show
and between the channelling constraints and the primal nothe reverse, consider assigning the valde the primal vari-
equals constraints can be exponentially large. RecallWieat ablexz;. FC. removesj from the domain of all primal vari-
write X4 = Xp iff X4 — Xp and there is a problem on ables except;. However, nFCl also removeg from the



domain of all primal variables excepi since each occurs in dual variabled;). As the all-different constraint is BC, this

a binary not-equals constraint with obtained by projecting can be extended to all the other primal variables using each

out the all-different constraint. Hence, nRC& FC.. of the values once. This gives us a consistent assignment for
To show nFC2 — FC..», consider instantiating the pri- any other primal or dual variable. Hence, itis BG. To

mal variablez; with the valuej. FC... removesj from the  show strictness, consider a 5 variable permutation problem

domain of all primal variables except, i from the domain ~ with 1 = 2 = 3 = [1,2] andzs = x5 = [3,5]. Thisis

of all dual variables except;, instantiated; with the value  BC..» but not BG,.

¢, and then remove from the domain of all dual variables ~ To show BG < AC., consider a permutation problem

exceptd;. nFC2, also removeg from the domain of all pri-  whichis BG, but not AC.. Then they must be one constraint,

mal variables except;. The only possible differenceisifone z; # x; with 2; andz; having the same singleton domain,

of the other dual variables, saly has a domain wipeout. If {k}. But, if this is the case, enforcing BC on the channelling

this happensy; has one value in its domaihthat is in the  constraint betweem; andd;, and between;; andd;, would

domain of no other primal variable. Enforcing GAC immedi- prove that the problem is unsatisfiable. Hence, it is:/ACo

ately detects that; cannot take the valug and mustinstead show strictness, consider a 3 variable permutation problem

take the valué:. Hence nFC2 has a domain wipeout when- with z; = z» = [1,2] andzs = [1, 3]. This is AC, but not

ever FC..» does. To show strictness, consider a 7 variableBC.. QED.

permutation problem withy; = 2 = z3 = x4 = {1,2,3} . )

andzs = zg = x7 = {4,5, 6,7} Irrespective of the variable 5.5 Restricted path consistency

and value ordering, F&.» takes at least 6 branches to show Debruyne and Bessiére have shown that RPC is a promising

the problem is unsatisfiable. nF¢By comparison takes no filtering technique above AfDebruyne and Bessiere, 1997

more than 4 branches. It prunes many of the PIC values at little extra cost to AC-Sur
[Bessiéreet al., 1999 proves nFC2 implies nFC1. To  prisingly, channelling constraints are incomparable &ogh-

show strictness on permutation problems, consider a 5 varmal not-equals constraints wrt RPC. Channelling condiain

able permutation problem withy = 2z, = 3 = 24 = can increase the amount of propagation (for example, when a

{1,2,3} andz; = {4,5} Irrespective of the variable and dual variable has only one value left in its domain). However

value ordering, nFC1 shows the problem is unsatisfiable iflRPC is hindered by the bipartite constraint graph betweien pr

at least 6 branches. nFC2 by comparison takes no more thanal and dual variables. Additional not-equals constramts

3 branches. QED. primal and/or dual variables can therefore help propagatio

5.4 Bounds consistency Theorem 6 On a permutation problem;

Another common method to reduce costs is to enforce jusPAG, = RPCsez = RPCs. = RPG. ®@ RPC: ®@ AC,

bounds consistency. For examdBggin and Rueher, 2000 Proof: To show RPC @ RPC,, consider a 4 variable per-
use bounds consistency rather than arc-consistency to eflinytation problem witht;, = 2, = z3 = {1,2,3} and
ciently prune a global constraintinvolving a sum of varebl ;, — {1,2 3 4}. This is RPG. but not RPC. For the re-
and a set of inequalities. As a second example, some of thgerse direction, consider a 5 variable permutation problem
experiments on permutation problemd 8mith, 2000 used  with 2, = 25 = 23 = {1,2} andz4 = x5 = {3,4,5}. This
bounds consistency on certain of the constraints. With dsun s RPC. but not RPC..

consistency on permutation problems, we obtain a very simi- To show RPG, — RPC,, consider again the last example.

lar ordering of the models as with arc-consistency. This is RPC but not RPC.,..
Theorem 5 On a permutation problem: TtO tShOW Rg’lf;c;ﬁ ?hEPC.#c, COﬂSi(?{?FQa;ZEgi%?e pder_
mutation problem withe;y = z, = {1,2,3,4,5,6} an
BCy = BCrer ¢ BCxe ch =BG « ACy Ts = 14 = 5 = 76 = {4,5,6}. This is RPG, but not
AC, RPCy..

To show GAG, —+ RPC,.., consider a permutation prob-

Proof: To show BC — BC., consider a permutation prob- lem which is GAG.. Suppose we assign a valjiéo a primal
lem which is BC but one of the primal not-equals constraints variable,z; (or equivalently, a valuéto a dual variabled;).
is not BC. Then, it would involve two variables; andz;  As the all-different constraint is GAC, this can be extended
both with identical interval domaing;, k]. Enforcing BC on  to all the other primal variables using up all the other val-
the channelling constraint betweep andd;, would reduce ues. This gives us a consistent assignment for any two other
dy, to the domairji, ¢]. Enforcing BC on the channelling con- primal or dual variables. Hence, the problem is RIC and
straint betweemr; andd, would then cause a domian wipe- thus RPC.... To show strictness, consider a 7 variable per-
out. But this contradicts the channelling constraints §ein mutation problem withe; = 25 = 23 = z4 = {1,2,3} and
BC. Hence, all the primal not-equals constraints must be BCzs = x4 = x7 = {4, 5,6, 7}. Thisis RPC.. but not GAG,.
To show strictness. consider a 3 variable permutation prob- To show AC ® RPC., consider a 4 variable permuta-
lem withz, =z, = [1,2] andz; = [1,3]. Thisis BC, but  tion problem withz; = 2z, = 23 = {1,2,3} andz, =
not BC.. {1,2,3,4}. This is RPC but not AG. For the reverse

To show BG < BC., consider a permutation probem direction, consider a 5 variable permutation problem with
which is BG,. Suppose we assign a boundary vaju® a =, = z2 = x5 = {1,2} andzy = z5 = {3,4,5}. This
primal variablez; (or equivalently, a boundary valieto a  is AC, but not RPC.. QED.



5.6 Path inverse consistency at most one other value. Consider the dual variable asso-

The incomparability of channelling constraints and primalciated with this value. Then under this instantiation of the
not-equals constraints remains when we move up the locdlimal variablex;, enforcing AC on the channelling con-

consistency hierarchy from RPC to PIC. straint between the primal variabte and the dual variable,

i and between the dual variable angdandx;, results in a do-
Theorem 7 On a permutation problem: main wipeout on the dual variable. Hence the problem is
GAG, = PIC4. = PIC. = PIC. ® PIC, © AC,. not SAC.. This is a contradiction. The primal not-equals

i i model can therefore be made AC following the instantia-

Proof: To show PIC ® PIC,, consider a 4 variable per- jon of z;. That is, the problem is SAC To show strict-
mutation problem withe; = z, = 23 = {1,2,3} and  negs consider a 5 variable permutation problem with domain
zs = {1,2,3,4}. This is PIC; but not PIC. Enforcing 21 = 2y = 3 = 34 = {0,1,2} andas = {3,4}. This is
PIC on the channelling constraints reduagsgo the single- SAC.. but not SAG.
ton domain{4}. For the reverse direction, consider a 5 vari- 14" show GAG — SAC., consider a permutation prob-
able permutation problem with, = z, = z3 = {1,2} and | that is GAG. Consider any possible instantiation for
74 =5 = {3,4,5}. Thisis PIC but not PIG;. _a primal variable. This can be consistently extended to all

To show PIG.. — PIC,, consider a 5 variable permutation \ariaples in the primal model. But this means that it can

problem withz, = w» = w3 = {1,2} andes = 25 =  pe consistently extended to all variables in the primal and

{3,4,5}. Thisis PIC but not PIC... _ dual model, satisfying any (combination of) permutation or
To show PIG... — PIC,., consider a 6 variable per- channeliing constraints. As the channelling constrainés a
mutation problem withe; = w; = {1,2,3,4,5,6} and  gaisfiaple, they can be made AC. Consider any possible in-
w3 = x4 = w5 = w5 = {4,5,6}. Thisis PIC, but not  gantiation for a dual variable. By a similar argument, tiaki
PIC.cx. the appropriate instantiation for the associated primal va

To show GAG, — PIC.., consider a permutation prob- ape “the resulting problem can be made AC. Hence, given
lem in which the all-different constraint is GAC. Suppose 5y nhossible instantiation for a primal or dual variables th
we assign a valug to a primal variableg; (or equivalently,  channeliing constraints can be made AC. That s, the problem

a valuei to a dual variabled;). As the all-different con- 5 SAG, To show strictness, consider a 7 variable permuta-
straint is GAC, this can be extended to all the other pri-;gn problem witha; = 25 = 23 = z4 = {0,1,2} and
- - - - ) )

mal variables using up all the other values. This gives u s = 15 = 7 = {3,4,5,6). This SAG but is not GAG,.
a C.OBT'SteE't aSS|grr11ment for a?y tvx&o Ether ﬂ_”mal or dual "5 show SAC. ® AC., consider a four variable permu-
variables. Hence, the not-equals and channelling consirai (aiion problem in whiche, to s have the(1, 2,3} anda

are PIC. To show strictness, consider a 7 variable permutg < the domaif0, 1,2, 3}. This is SAG. but not AG.. For

tion problem withz, = z, = 3 = x4 = {1,2,3} and ¢ reverse, consider a 4 variable permutation problem with
Ty = &g = L7 = {4,5,6,7} ThlS IS Plc;gci bUt not GAG/ T, =Ty = {0 1} and$3 =4 = {0 p2 3} This |SpAQ but
To show PIC. ® AC,, consider a 4 variable permuta- . SAC,. QéD. 14
tion problem withz; = z» = z3 = {1,2,3} andzs =
{1,2,3,4}. This is PIC: but not AC.. Enforcing ACon gg Strong path-consistency
the channelling constraints reduces to the singleton do-

main {4}. For the reverse direction, consider a 5 variableAdding primal or dual not-equals constraints to channgllin
permutation problem withy = z, = z3 = {1,2} and constraints does not help AC or SAC. The following result

x4 = x5 = {3,4,5}. This is AC, but not PIC.. QED. shows that their addition does not help higher levels oflloca
Y consistency like strong path-consistency (ACPC).

5.7 Singleton arc.—\con5|stency ) ~Theorem 9 On a permutation problem:
Debruyne and Bessiére also showed that SAC is a promis-

ing filtering technique above both AC, RPC and PIC, prun-GAGy ® ACPCy. +» ACPC,. +> ACPC. — ACPC;: © AC,
ing many values for its CPU timEDebruyne and Bessiere, proof: To show ACPC — ACPC,, consider some chan-
1997. Prosser et al. reported promising experimental resultﬁe”iné constraints that are ACPC. Now AG» AC., SO we
with SAC on quasigroup problems, a multiple permutationjust need to show PC— PC,. Consider a consistent pair
problem[Prosseet al, 200d. Interestingly, as with AC (but ¢ values,l andm for a pair of primal variablesy; andz;.
unlike RPC and PIC which lie between AC and SAC), chan-raye any third primal variables,. As the constraint between
neIh_ng constraints are tighter than the primal not-equals d;, d,, andz; is PC, we can find a value far;, consistent
straints wrt SAC. with the channelling constraints. But this also satisfies th
Theorem 8 On a permutation problem: not-equals constraint between primal variables. Hence, th
problem is PC.. To show strictness, consider a 4 variable
GAGy = SACscx ¢ SAC: > SAG — SAG: @ AC, permutation p%oblem with; = 25 = 23 = 24 = {1,2,3}.
Proof: To show SAC — SAC., consider a permutation This is ACPC; but not ACPC.
problem that is SACand any possible instantiation for a pri-  To show ACPGC... <+ ACPC.. <+ ACPC,, we recall that
mal variabler;. Suppose that the primal not-equals model ofAC_. <+ AC. +» AC.. Hence we need just show that RC
the resulting problem cannot be made AC. Then there must PC.. <+ PC.. Consider a permutation problem. Enforcing
exist two other primal variables, say andxz; which have  PC on the channelling constraints alone infers both theadrim



and the dual not-equals constraints. Hence: P& PCy. «+ procedure. For exampléBejar and Manya, 20Q0report
PC.. promising results for propositional encodings of roundmob
To show GAG, ® ACPC..», consider a 6 variable per- problems, which include permutation constraints. We con-
mutation problem withe; = > = 23 = x4 = {1,2,3},  sider just “direct” encodings into SAT (sé@/alsh, 2000 for
andzs = z¢ = {4,5,6}. This is ACPC.. but not GAG,. more details). We have a Boolean varialllg which istrue
For the reverse direction, consider a 3 variable permutatioiff the primal variabler; takes the valug. In the primal SAT
problem with the additional binary constrainten(z; +x3).  model, there ares clauses to ensure that each primal vari-
Enforcing GAG,. prunes the tor;, = 23 = {1,3}, and able takes at least one valug(n?) clauses to ensure that no
x> = {2}. However, these domains are not ACRC. En-  primal variable gets two values, attn?) clauses to ensure
forcing ACPC tightens the constraint betwegrandzs from  that no two primal variables take the same value. Intergistin

not-equalsta:; = 1,23 =30orz; = 3,23 = 1. the channelling SAT model has the same number of Boolean
To show ACPC: ® AC,, consider a 5 variable permuta- variables as the primal SAT model (as we can sgto rep-
tion problem withz; = z» = z3 = {1,2}, andzy = z5 = resent both thégth value of the primal variable; andtheith

{3,4,5}. This is AG; but not ACPC:. For the reverse direc- value for the dual variablé;), and justn additional clauses
tion, consider again the 4 variable permutation problerhwit to ensure each dual variable takes a value. Jhe*) clauses
r = 22 = x3 = x4 = {1,2,3}. Thisis ACPC: but not  to ensure that no dual variable gets two values are equiva-

AC.. QED. lent to the clauses that ensure no two primal variables get th
. . same value. The following result show that DP can be placed
5.9 Multiple permutation problems between MAC and FC on these different models.

These results extend to multiple permutation problems underpegrem 11 On a permutation problem:
a simple restriction that the problem tisangle preserving
[Stergiou and Walsh, 199@hat is, any triangle of not-equals MGAGy = MAC.z > MAC,. <+ MAC. — MAC,

constraints in the primal not-equals moel covers variables + + + +
in the same permutation). For example, all-diff(z», z4), VMGAGy = DPycx < DPx. > DP. — DPy
all-diff(x1, z3, z5), and all-diff(zs, 3, z¢) are not triangle + + I

preserving as1, z» andz; occur in a triangle but are not MGAGy = FCurey ¢ FCze < FC. —FCy
in the same permutation. The following theorem collects toProof: DP. <« FC. is a special case of Theorem 14 in
gether and generalizes many of the previous results. [Walsh, 2000, whilst MAC. — FC. is a special case of
Theorem 15.
To show DR < FC. suppose unit propagation sets a lit-
GAG; ® ACPCgq +» ACPC,. <» ACPCG. — ACPC.: ® AC. erall. There are four cases. In the first case, a clause of the
{ { { { form X;; V...V X;, has been reduced to an unit. That is, we
GAG; »SAC.cx <> SAC.. < SAG — SAC: ®AC. have one value left for a primal variable. A fail first heuris-
{ tic in FC picks this one remaining value to instantiate. la th
GAG; =»PIC,., —PIC, —PIC. ®@ PIC, ®AC. second case, a clause of the formt;; vV =X, for j # k
+ + 4 3 has been reduced to an unit. This ensures that no primal vari-
GAG; #RPCs.z — RPC:. — RPCG ® RPC:. ®AC. able gets two values. The FC algorithm trivially never tries
+ + 4 3 two simultaneous values for a primal variable. In the third
GAGy =ACLcz < ACz. << AC. —AC: <«BC. case, aclause of the formX;; V - Xy; for i # k has been
s 1 1 { { reduced to an unit. This ensures that no dual variable gets
BC; —BCi.x <« BC., <«BC. —BC two values. Again, the FC algorithm trivially never triesotw
Proof: The proofs lift in a straight forward manner from simultaneous values for a dual variable. In the fourth case,

the single permutation case. Local consistencies like ACPCXU V...V.X,; hasbeen reduced toan unit. That_|s,_ we have
SAC, PIC and RPC consider triples of variables. If these2!'® value left for a dual variable. A fail first heuristic in FC
are linked together, we use the fact that the probem is tripicks this one remaining value to instantiate. Hence, gaven

angle preserving and a permutation is therefore defined ovéHitable branching heuristic, the FC algorithm tracks tife D
them. If these are not linked together, we can decompos@lgor'thm' To show the reverse, suppose forwqrd checking
the argument into AC on pairs of variables. Without trian-'€Moves a value. There are two cases. In the first case, the
gle preservation, GAG may only achieve as high a level Valuéi is removed from a dual variabig due to some chan-

of consistency as AG. For example, consider again the nelling constraint. This means that there is a primal vaeiab

non-triangle preserving constraints in the last paragraph £k Which has been set to some valugs j. Unit propaga-
w1 = @ = x5 = {1,2} andzy = x5 = 26 = {1,2,3} then tion on—X,; V —X;; setsXy; to false. Unit propagation on

the problem is GAG, but it is not RPG., and hence neither Xij ¥ 7 Xkj then sets\';; to false as required. In the second
PIC.., SAC, nor ACPC. QED. case, the valué is removed from a dual variabté;, again
due to some channelling constraint. The proof is now dual to
6 SAT del the first case.
modaels To show MAG. — DP,, we use MAC— FC and FC «
Another solution strategy is to encode permutation problemDP.. To show strictness, consider a permutation problem in
into SAT and use a fast Davis-Putham (DP) or local searchhree variables with additional binary constraints th& nut

Theorem 10 On a multiple permutation problem:



the same value for all three primal variables. Enforcing ACa permutation from 1 ta — 1. Whilst polynomial solutions
on the channelling constraints immediately causes a domaito ais(n) exist, it remains difficult to compute all solutions.
wipeout on the dual variable associated with this value. AsAs on Langford’s probleniSmith, 2009, MAC. visits only
their are no unit constraints, DP does not immediately solvea few more branches than MGACEfficiently implemented,
the problem. MAC. is therefore the quickest solution method.

To show DR — DP,, we note that the channelling SAT

model constrains more clauses. Hence, it dominates the pri- n | MAC. | MAC. | MGACy
mal SAT model. To show strictness, consider a four variable 6 135 34 34
permutation problem with three additional binary consiisi 7 569 153 152
that if z; = 1 thenzy, = 2, z3 = 2 andzy, = 2 are all 8 2608 627 626
ruled out. Consider branching an = 1. Unit propagation 9| 12137| 2493 2482
on both models set& 2, Xo2, X33, X42, Xo1, X31 andXy 10 | 60588| 10552 10476
to false. On the channelling SAT model, unit propagation 11 | 318961| 47548 47052

against the claus&,, V X5 V X35 V X4o then generates an

empty clause. By comparison, unit propagation on the primal  Table 1: Branches to compute all solutionsiie(n).
SAT model does no more work. QED.

7 Asymptotic comparison 8.2 Circular Golomb rulers

The previous results tell us nothing about the relative cosf® perfec_t circular Golomb rqlerconsstsmfmarks arranged

of achieving these local consistencies. Asymptotic arslys " the circumference of a circle of lengiffn — 1) such that
adds detail to the results. Regin's algorithm achieves GAC the distances between any pair of marks, in either direction
in O(n*) [Régin, 1994 AC on binary constraints can be 2l0ng the circumference, form a permutation. Again polyno-
achieved irD(ed?) wheree is the number of constraints and mial solytlons exist for certain, byt it is difficult to compute

d is their domain size. As there a¥(n?) channelling con- 2l solutions or prove for some (like n = 7) that no perfect
straints, AG naively takesD(n*) time. However, by taking ru_Ier exists. Table 2 shows that MGAGSs very competitive
advantage of the functional nature of channelling constsai W'th. MAC.. Indeegl, MGAC’ has.the smallest runtimes. We
we can reduce this 10 (n?) using the AC-5 algorithm divan conjecture that this is dug to C|rcula_r Golomb rulers being
Hentenryclet al, 1992. AC., also naively take§)(n?) time ~ More constrained than all-interval series.
as there ar@)(n?) binary not-equals constraints. However, MAC MAC . T MGAC
we can take advantage of the special nature of a binary not- 207'; 9% 5\3
equals constraint to reduce this@n?) with careful imple- 1658 667 356
mentation as each not-equals constraint needs to be made AC 15773| 5148 2499
just once. Asymptotic analysis thus offers no great suegris 166424| 43261 19901
we proved that GAG —+ AC, — AC.. and this is reflected in
theirO(n*), O(n?), O(n?) respective costs.

© o~

Table 2: Branches to compute all orderperfect circular
. . Golomb rulers.

8 Experimental comparison

On Langford’s problem, a permutation problem from ;
CSPLib, Smith found that MAC on the channelling and other8'3 ) Quasigroups . o
problem constraints is often the most competitive model forAchlioptas et al have proposed completing a partial filled
finding all solutions[Smith, 2000. MAC. (which takes duasigroup as a challenging benchmark for SAT and CSP al-
O(n?) time at each node in the search tree if carefully imple-gorithms[Achlioptaset al, 200d. This can be modeled as
mented) explores a similar number of branches to the mor@ multiple permutation problem consisting i intersect-
powerful MGAG, (which takesO(n*) time at each node in ing permutation constraints. A complexity peak is observed
the search tree). This suggests that MAE carefully im- ~ when approximately 40% of the entries in the quasigroup are
plemented, may offer a good tradeoff between the amount dplaced by “holes”. Table 3 shows the increase in problem
constraint propagation and the amount of search requird. F difficulty with n. Median behavior for MACis competitive
finding single solutions, Smith’s results are somewhat conWith MGACy. However, mean performance is not due to a
fused by the accuracy of the heuristic. She predicts thaethe few expensive outliers. A randomization and restart sjrate
results will transfer over to other permutation problems. T reduces the size of this heavy-tailed distribution.

confirm this, we ran experiments in three other domains using

the Sicstus finite domain constraint library. 9 Extensions

8.1 All-interval series 9.1 Injective mappings

Hoos has proposed the all-interval series problem from-musiin many problems, variables may be constrained to take
cal composition as a challenging benchmark for CSPLib. Thainique values, but we have more values than variables. That
ais(n) problem is to find a permutation of the numbers 1 tois, we are looking for an injective mapping from the variable

n, such that the differences between adjacent numbers formo the values. For example, an optimal 5-tick Golomb ruler



median mean channelling constraints will pay off on problems which re-
n | MAC. | MAC. | MGACy MAC . MAC. | MGACy | quire large amounts of search, or lead to thrashing behavior
5 1 1 1 1 1 1| They also show that redundant modeling opens the door to
10 1 1 1 1.03 1.00| 1.01| interesting value ordering heuristics.
15 3 1 1 7.17 1171 1.10|  As mentioned before, Smith studied a number of differ-
20 | 23313 7 4| 312554|  21.76| 12.49| ent models for Langford’s problem, a permutation problem in
25 - | 249 53 - | 8782.41 579.7| cSPLib[Smith, 2000. This was the starting point for much
30 -1 5812] 398 - | 2371418 19375 of this research. Smith argues that channelling consgraint

) make primal not-equals constraints redundant. She also ob-
Table 3: Median and mean branches to complete 100 arder seryes that MAC on the model of Langford’s problem using
quasigroup problems with 40% holes. channelling constraints explores more branches than MGAC
on the model using a primal all-different constraint, anel th
has ticks at the marks 0, 1, 4, 9, and 11. The 10 inter-tick dissame number of branches as MAC on the model using chan-
tances are all different but do not form a permutation as theelling and primal not-equals constraints. Smith also show

distance 6 is absent. Finding a 5-tick Golomb ruler of lengththe benefits of being able to branch on dual variables.

11 can be modeled as a permutation problem by introducing

an additional 11th variable to take on the missing value 6. In ]

general, we can model an injective mapping from a domainll ~Conclusions

of n elements into an image of elements«{ < m) as a )

permutation problem by introducing — n new primal vari- ~ We have performed an extensive study of models of permu-
ables. We can then post channelling constraints between ttation problems proposed by Smith[@mith, 2000 with all-

m primal variables aneh dual variables. Most of our results different constraints, channelling constraints and ruptegs
about permutation problems map over to such problems wit§onstraints. To compare models, we defined a measure of
little or no modification. For example, AC on the channelling constraint tightness parameterized by the level of locat co
constraints of such a problem is tighter than AC on the primafistency being enforced. We used this to prove that, with

not-equals constraints. respect to arc-consistency, a single primal all-differeort-
straint is tighter than channelling constraints, but tHere
9.2 Bijective channelling constraints nelling constraints are tighter than primal not-equals-con

straints. Both these gaps can lead to an exponential reducti

I((:a?rwasn?heailr;nge(r:r%r:;stgﬁlcl)rxs f(;tengnsqifu:::gr; zxgﬁelrecﬁsesk%f pr;%b'p search cost. For lower levels of local consistency (dat t
P P : P, y aintained by forward checking), channelling constraiats

eling decision (acco_rdlng t[Hentenrycket_aI., 1999 for a main tighter than primal not-equals constraints. However,

of variables. one set for the teams and one for the ame?or certain higher levels of local consistency like patheirse

: ST . . 9 ﬁonsistency, channelling constraints are incomparahpeito
with bijective channelling constraints between them. CoNnal not-equals constraints. On SAT encodings of permuta-
sider a set of channelling constraints betweeprimal vari- 00 b hlems, we proved that the performance of the Davis

ﬁ‘blgs’u H;il ‘t"t)”d m w:ls‘;ar'ﬁt;tefﬁ‘g (z\;\/rléhb?egg\t/en%:?ﬁ:att- Putnam algorithm is sandwiched between that of the MAC
y €q m). y y J and FC algorithms.

ples{{(z1,...,xpn),{d; ..., dn)) made from assignments sat- X . .
isfying the channelling constraints define a bijectivetieta Experimental results on three different permutation prob-
Note that, despite the existence of a bijectionandd,; may lems confirmed tha}t MAC on channelling constraints outper-
not have the same cardinalities as their domain sizes can B8Med MAC on primal not-equals constraints, and could be
different. As in permutation problems, these quickly propa competitive with maintaining GAC on a primal all-different
gate values between the primal and dual variables and vic pnstraint. However, on more consjramed pr(.)ble.m.s, the ad-
versa. Not all channelling constraints are bijective. Theditional constraint propagation provided by maintainind@s
Golomb ruler provides an interesting example. The differ-ON the primal all-different constraint was beneficial. We be
ence equations used [Smithet al, 2004, d;; = |x — ] lieve that these results will aid users of constraints toosleo
Bl y Uij — [ J : :
can be seen as channelling constraints linking the inigigky & model for a permutation problem, and a local consistency

ables with the auxiliary variables. However, they are net bi ProPerty to enforce on it. They also illustrate a methodol-
jective. For instance, both; = 2, z» = 4 andz, = 3, ©09Y: @S well as a measure of constraint tightness, that can be

T2 = 5 map ontad;; = 2. gzﬁjatiﬂ Scompare different constraint models in other prable

10 Related work

Chen et al. studied modeling and solving thrgueens prob-

lem, and a nurse rostering problem using channelling conThe author is an EPSRC advanced research fellow. He
straints and “redundant models” (simultaneous primal andhanks the other members of the APES research group
dual models)Chenget al, 1999. They show that chan- (http://apes.cs.strath.ac.uk/), especially BarbarattSrfor
nelling constraints increase the amount of constraint @rop helpful discussions, and Carla Gomes and her colleagues for
gation. They conjecture that the overheads associated witbroviding code to generate quasigroups with holes.
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