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Abstract

We perform an extensive study of several differ-
ent models of permutation problems proposed by
Smith in [Smith, 2000]. We first define a mea-
sure of constraint tightness parameterized by the
level of local consistency being enforced. We then
compare the constraint tightness in these different
models with respect to a large number of local con-
sistency properties including arc-consistency, (re-
stricted) path-consistency, path inverse consistency,
singleton arc-consistency and bounds consistency.
We also compare the constraint tightness in SAT
encodings of these permutation problems. These
results will aid users of constraints to choose a
model for a permutation problem, and a local con-
sistency property to enforce upon it. They also il-
lustrate a methodology, as well as a measure of con-
straint tightness, that can be used to compare differ-
ent constraint models.

1 Introduction
In modeling a constraint satisfaction problem, we often have
a choice as to what to make the variables, and what to make
the values. For example, in an exam timetabling problem,
the variables could be the exams, and the values could be the
times. Alternatively, the variables could be the times, andthe
values could be the exams. This choice is especially difficult
in permutation problems. In an empirical study of Langford’s
problem, Smith proposes a number of different models of per-
mutation problems[Smith, 2000] which we study in detail
here. In a permutation problem, we have as many values as
variables, and each variable takes an unique value. We can
therefore easily swap variables for values. Many assignment,
scheduling and routing problems are permutation problems.
For example, sports tournament scheduling can be modeled
as finding a permutation of the games to fit into the available
slots, whilst the traveling saleperson problem can be modeled
as finding a permutation of the cities.

2 Formal background
A constraint satisfaction problem(CSP) consists of a set of
variables, each with a finite domain of values, and a set of
constraints. Each constraint is a relation defining the allowed
values for a given subset of variables. A solution to a CSP

is an assignment of values to variables that is consistent with
all constraints. Many lesser levels of consistency have been
defined for binary constraints (see[Debruyne and Bessière,
1997] for references). A problem is(i; j)-consistentiff it
has non-empty domains and any consistent instantiation ofi variables can be consistently extended toj additional vari-
ables[Freuder, 1985]. A problem isarc-consistent(AC) iff
it is (1; 1)-consistent. A problem ispath-consistent(PC) iff
it is (2; 1)-consistent. A problem isstrong path-consistent
(ACPC) iff it is AC and PC. A problem ispath inverse con-
sistent(PIC) iff it is (1; 2)-consistent. A problem isrestricted
path-consistent(RPC) iff it is AC and if a value assigned to
a variable is consistent with just one value for an adjoining
variable then for any other variable there exists a compatible
value. A problem issingleton arc-consistent(SAC) iff it has
non-empty domains and for any instantiation of a variable,
the resulting subproblem can be made AC. For non-binary
constraints, there has been much less work on different lev-
els of local consistency. One exception is generalized arc-
consistent. A problem isgeneralized arc-consistent(GAC)
iff for any value for a variable in a (non-binary) constraint,
there exist compatible values for all the other variables inthe
constraint[Mohr and Masini, 1988]. For ordered domains, a
problem isbounds consistent(BC) iff it has non-empty do-
mains and the minimum and maximum values for any vari-
able in a (binary or non-binary) constraint can be extended to
satisfy the constraint[Hentenrycket al., 1998].

Following[Debruyne and Bessière, 1997], we say that a lo-
cal consistency propertyA is as strong as a local consistency
propertyB (writtenA  B) iff in any problem in whichA
hold thenB holds,A is stronger thanB (writtenA ! B) iffA  B but notB  A, A is incomparable withB (writtenA 
 B) iff neitherA  B norB  A, andA is equivalent
to B (written A $ B) iff both A  B andB  A. The
following summarizes results from[Debruyne and Bessière,
1997] and elsewhere: ACPC! SAC! PIC! RPC! AC! BC.

Many algorithms enforce a local consistency property dur-
ing search. For example, theforward checkingalgorithm
(FC) maintains a restricted form of AC that ensures that cur-
rent and future variables are AC. FC has been generalized to
non-binary constraints[Bessièreet al., 1999]. nFC0 makes
everyk-ary constraint withk � 1 variables instantiated AC.
nFC1 applies (one pass of) AC to each constraint or constraint
projection involving the current and exactly one future vari-
able. nFC2 applies (one pass of) GAC to each constraint in-



volving the current and at least one future variable. Three
other generalizations of FC to non-binary constraints, nFC3
to nFC5 degenerate to nFC2 on the single non-binary con-
straint describing a permutation, so are not considered here.
Finally, the maintaining arc-consistencyalgorithm (MAC)
maintains AC during search, whilst MGAC maintains GAC.

3 Permutation problems

A permutation problemis a constraint satisfaction problem
with the same number of variables as values, in which each
variable takes an unique value. We also considermultiple per-
mutation problemsin which the variables divide into a num-
ber of (possibly overlapping) sets, each of which is a permu-
tation problem. Smith has proposed a number of different
models for permutation problems[Smith, 2000]. The pri-
mal not-equals model has not-equals constraints between the
variables in each permutation. Theprimal all-different model
has an all-different constraint between the variables in each
permutation. In adual model, we swop variables for values.
Primal and dualmodels have primal and dual variables, and
channelling constraintslinking them of the form:xi = j iffdj = i wherexi is a primal variable anddj is a dual vari-
able. Primal and dual models can also have not-equals and
all-different constraints on the primal and/or dual variables.
There will, of course, typically be other constraints whichde-
pend on the nature of the permutation problem. For exam-
ple, in the all-interval series problem from CSPLib, the vari-
ables and the differences between neighboring variables are
both permutations. In what follows, we do not consider di-
rectly the contribution of such additional constraints to prun-
ing. However, the ease with which we can specify and reason
with these additional constraints may have a large impact on
our choice of the primal, dual or primal and dual models.

We use the following subscripts: “6=” for the primal not-
equals constraints, “
” for channelling constraints, “6=
” for
the primal not-equals and channelling constraints, “6=
 6=” for
the primal not-equals, dual not-equals and channelling con-
straints, “8” for the primal all-different constraint, “8
” for
the primal all-different and channelling constraints, and“8
8”
for the primal all-different, dual all-different and channeling
constraints. For example, SAC6=
 is SAC applied to the pri-
mal not-equals and channelling constraints.

4 Constraint tightness

To compare how different models of permutation problems
prune the search tree, we define a new measure of constraint
tightness. Our definition assumes constraints are defined over
the same variables and values or, as in the case of primal and
dual models, variables and values which are bijectively re-
lated. An interesting extension would be to compare two sets
of constraints up to permutation of their variables and values.
Our definition of constraint tightness is strongly influenced by
the way local consistency properties are compared[Debruyne
and Bessière, 1997]. Indeed, the definition is parameterized
by a local consistency property since, as we show later, the
amount of pruning provided by a set of constraints can de-
pend upon the level of local consistency being enforced. This

measure of constraint tightness would also be useful in a num-
ber of other applications (e.g. reasoning about the value of
implied constraints).

We say that a set of constraintsA is as tight asa setB
with respect to�-consistency (written�A  �B) iff, given
any domains for their variables, ifA is �-consistent thenB
is also�-consistent. Note that tightness is over all possible
domains for the variables. It thus measures the possible prun-
ing of domains during search as variables are instantiated and
domains pruned (possibly by other constraints in the prob-
lem). We say that a set of constraintsA is tighter than a setB wrt �-consistency (written�A ! �B) iff �A  �B but
not �B  �A, A is incomparableto B wrt �-consistency
(written�A
�B) iff neither�A  �B nor�B  �A, andA is equivalentto B wrt �-consistency (written�A $ �B)
iff both �A  �B and�B  �A. We can easily gener-
alize these definitions to compare�-consistency onA with�-consistency onB. This definition of constraint tightness
has some nice monotonicity and fixed-point properties which
we will use extensively throughout this paper.

Theorem 1 (monotonicity and fixed-point)

1. ACA[B  ACA  ACA\B
2. ACA ! ACB impliesACA[B $ ACA
Similar monotonicity and fixed-point results hold for BC,

RPC, PIC, SAC, ACPC, and GAC. We also extend these defi-
nitions to compare constraint tightness wrt search algorithms
like MAC that maintain some local consistency. For exam-
ple, we say thatA is as tight asB wrt algorithmX (writtenXA  XB) iff, given any fixed variable and value odering
and any domains for their variables,X visits no more nodes
onA than onB, whilstA is tighter thanB wrt algorithmX
(writtenXA ! XB) iff XA  XB but notXB  XA. Sim-
ilar monotonicity and fixed-point results can be given for FC,
MAC and MGAC. Finally, we writeXA ) XB if XA ! XB
and there is a problem on whichX visits exponentially fewer
branches withA thanB.

5 Theoretical comparison

In an experimental study of Langford’s problem, a simple per-
mutation problem from CSPLib, Smith observes that chan-
nelling constraints remove the need for the primal not-equals
constraints[Smith, 2000]. She also observes that MAC ap-
plied to a model of Langford’s problem with channelling
constraints explores more branches than MGAC applied to
a model with a primal all-different constraint. We show that
these results do not extend to algorithms that maintain higher
levels of local consistency like PIC We also prove that the
differences can lead to exponential reductions in runtime.

5.1 Arc-consistency

We first prove that, with repsect to arc-consistency, chan-
nelling constraints are tighter than the primal not-equalscon-
straints, but less tight than the primal all-different constraint.



Theorem 2 On a permutation problem:

GAC8
8l
GAC8! AC6=
6=$ AC6=
$ AC
! AC6=l
GAC8

Proof: We give proofs for the most important identities.
Other results follow quickly, often using transitivity, and the
monotonicity and fixed-point theorems.

To show GAC8 ! AC
, consider a permutation problem
whose primal all-different constraint is GAC. Suppose the
channelling constraint betweenxi anddj was not AC. Then
eitherxi is set toj anddj hasi eliminated from its domain,
or dj is set toi andxi hasj eliminated from its domain.
But neither of these two cases is possible by the construction
of the primal and dual model. Hence the channelling con-
straints are all AC. To show strictness, consider a 5 variable
permutation problem in whichx1 = x2 = x3 = f1; 2g andx4 = x5 = f3; 4; 5g. This is AC
 but not GAC8.

To show AC
 ! AC6=, suppose that the channelling con-
straints are AC. Consider a not-equals constraint,xi 6= xj
(i 6= j) that is not AC. Now,xi andxj must have the same
singleton domain,fkg. Consider the channelling constraint
betweenxi anddk. The only AC value fordk is i. Simi-
larly, the only AC value fordk in the channelling constraint
betweenxj anddk is j. But i 6= j. Hence,dk has no AC
values. This is a contradiction as the channelling constraints
are AC. Hence all not-equals constraints are AC. To show
strictness, consider a 3 variable permutation problem withx1 = x2 = f1; 2g andx3 = f1; 2; 3g. This is AC6= but is
not AC
.

To show AC6=
6=$AC
, by monotonicity, AC6=
6= AC
.
To show the reverse, consider a permutation problem which
is AC
 but not AC6=
6=. Then there exists at least one not-
equals constraints that is not AC. Without loss of generality,
let this be on two dual variables (a symmetric argument can be
made for two primal variables). So both the associated (dual)
variables, call themdi anddj must have the same unitary
domain, sayk. Hence, the domain of the primal variablexk
includesi andj. Consider the channelling constraint betweenxk anddi. Now this is not AC as the valuexk = j has no
support. This is a contradiction.

To show GAC8
8 $ GAC8, consider a permutation prob-
lem that is GAC8. For every possible assignment of a value
to a variable, there exist a consistent extension to the other
variables,x1 = dx1 ; : : : xn = dxn with xi 6= xj for all i 6= j.
As this is a permutation, this corresponds to the assignment
of unique variables to values. Hence, the corresponding dual
all-different constraint is GAC. Finally, the channellingcon-
straints are trivially AC. QED.

5.2 Maintaining arc-consistency
These results can be lifted to algorithms that maintain (gen-
eralized) arc-consistency during search. Indeed, the gapsbe-
tween the primal all-different and the channelling constraints,
and between the channelling constraints and the primal not-
equals constraints can be exponentially large. Recall thatwe
write XA ) XB iff XA ! XB and there is a problem on

which algorithmX visits exponentially fewer branches withA thanB. Note that GAC8 and AC are both polynomial to
enforce so an exponential reduction in branches translatesto
an exponential reduction in runtime.

Theorem 3 On a permutation problem:

MGAC8) MAC6=
6=$ MAC6=
$ MAC
) MAC6=
Proof: We give proofs for the most important identities.
Other results follow immediately from the last theorem.

To show GMAC8 ) MAC
, consider an + 3 variable
permutation problem withxi = f1; : : : ; ng for i � n + 1
andxn+2 = xn+3 = fn + 1; n + 2; n + 3g. Then, given a
lexicographical variable ordering, GMAC8 immediately fails,
whilst MAC
 takesn! branches.

To show MAC
 ) MAC 6=, consider an + 2 variable per-
mutation problem withx1 = f1; 2g, andxi = f3; : : : ; n+2g
for i � 2. Then, given a lexicographical variable ordering,
MAC
 takes 2 branches to show insolubility, whist MAC6=
takes2:(n� 1)! branches. QED.

5.3 Forward checking
Maintaining (generalized) arc-consistency on large permuta-
tion problems can be expensive. We may therefore cons-
ing using a more restricted local consistency property like
forward checking. For example, the Choco finite-domain
toolkit in Claire uses just nFC0 on all-different constraints.
The channelling constraint remain tighter than the primal not-
equals constraints wrt FC.

Theorem 4 On a permutation problem:

nFC28! FC6=
6= $ FC6=
$ FC
 ! FC6= ! nFC08"
nFC28 ! nFC18

Proof: We again prove the most important identities. Other
results follow quickly, often by means of the transitivity,and
the monotonicity and fixed-point theorems.

[Gentet al., 2000] proves FC6= implies nFC08. To show
strictness on permutation problems (as opposed to the more
general class of decomposable constraints studied in[Gentet
al., 2000]), consider again a 5 variable permutation problem
with x1 = x2 = x3 = x4 = f1; 2; 3g andx5 = f4; 5g
Irrespective of the variable and value ordering, FC shows the
problem is unsatisfiable in at most 12 branches. nFC0 by
comparison takes at least 18 branches.

To show FC
! FC6=, consider assigning the valuej to the
primal variablexi. FC6= removesj from the domain of all
other primal variables. FC
 instantiates the dual variabledj
with the valuei, and then removesi from the domain of all
other primal variables. Hence, FC
 prunes all the values that
FC6= does. To show strictness, consider a 4 variable permuta-
tion problem withx1 = f1; 2g andx2 = x3 = x4 = f3; 4g.
Given a lexicographical variable and numerical value order-
ing, FC6= shows the problem is unsatisfiable in 4 branches.
FC6= by comparison takes just 2 branches.

[Gentet al., 2000] proves nFC18 implies FC6=. To show
the reverse, consider assigning the valuej to the primal vari-
ablexi. FC6= removesj from the domain of all primal vari-
ables exceptxi. However, nFC18 also removesj from the



domain of all primal variables exceptxi since each occurs in
a binary not-equals constraint withxi obtained by projecting
out the all-different constraint. Hence, nFC18$ FC6=.

To show nFC28 ! FC6=
6=, consider instantiating the pri-
mal variablexi with the valuej. FC6=
6= removesj from the
domain of all primal variables exceptxi, i from the domain
of all dual variables exceptdj , instantiatedj with the valuei, and then removei from the domain of all dual variables
exceptdj . nFC28 also removesj from the domain of all pri-
mal variables exceptxi. The only possible difference is if one
of the other dual variables, saydl has a domain wipeout. If
this happens,xi has one value in its domain,l that is in the
domain of no other primal variable. Enforcing GAC immedi-
ately detects thatxi cannot take the valuej, and must instead
take the valuek. Hence nFC28 has a domain wipeout when-
ever FC6=
6= does. To show strictness, consider a 7 variable
permutation problem withx1 = x2 = x3 = x4 = f1; 2; 3g
andx5 = x6 = x7 = f4; 5; 6; 7g Irrespective of the variable
and value ordering, FC6=
6= takes at least 6 branches to show
the problem is unsatisfiable. nFC28 by comparison takes no
more than 4 branches.

[Bessièreet al., 1999] proves nFC28 implies nFC18. To
show strictness on permutation problems, consider a 5 vari-
able permutation problem withx1 = x2 = x3 = x4 =f1; 2; 3g andx5 = f4; 5g Irrespective of the variable and
value ordering, nFC1 shows the problem is unsatisfiable in
at least 6 branches. nFC2 by comparison takes no more than
3 branches. QED.

5.4 Bounds consistency
Another common method to reduce costs is to enforce just
bounds consistency. For example,[Régin and Rueher, 2000]
use bounds consistency rather than arc-consistency to effi-
ciently prune a global constraint involving a sum of variables
and a set of inequalities. As a second example, some of the
experiments on permutation problems in[Smith, 2000] used
bounds consistency on certain of the constraints. With bounds
consistency on permutation problems, we obtain a very simi-
lar ordering of the models as with arc-consistency.

Theorem 5 On a permutation problem:

BC8 ! BC6=
6= $ BC6=
$ BC
 ! BC6=  AC6=#
AC6=

Proof: To show BC
 ! BC6=, consider a permutation prob-
lem which is BC
 but one of the primal not-equals constraints
is not BC. Then, it would involve two variables,xi andxj
both with identical interval domains,[k; k℄. Enforcing BC on
the channelling constraint betweenxi anddk would reducedk to the domain[i; i℄. Enforcing BC on the channelling con-
straint betweenxj anddk would then cause a domian wipe-
out. But this contradicts the channelling constraints being
BC. Hence, all the primal not-equals constraints must be BC.
To show strictness. consider a 3 variable permutation prob-
lem withx1 = x2 = [1; 2℄ andx3 = [1; 3℄. This is BC6= but
not BC
.

To show BC8  BC6=
6=, consider a permutation probem
which is BC8. Suppose we assign a boundary valuej to a
primal variable,xi (or equivalently, a boundary valuei to a

dual variable,dj). As the all-different constraint is BC, this
can be extended to all the other primal variables using each
of the values once. This gives us a consistent assignment for
any other primal or dual variable. Hence, it is BC6=
6=. To
show strictness, consider a 5 variable permutation problem
with x1 = x2 = x3 = [1; 2℄ andx4 = x5 = [3; 5℄. This is
BC6=
6= but not BC8.

To show BC
  AC6=, consider a permutation problem
which is BC
 but not AC6=. Then they must be one constraint,xi 6= xj with xi andxj having the same singleton domain,fkg. But, if this is the case, enforcing BC on the channelling
constraint betweenxi anddk and betweenxj anddk would
prove that the problem is unsatisfiable. Hence, it is AC6=. To
show strictness, consider a 3 variable permutation problem
with x1 = x2 = [1; 2℄ andx3 = [1; 3℄. This is AC6= but not
BC
. QED.

5.5 Restricted path consistency
Debruyne and Bessière have shown that RPC is a promising
filtering technique above AC[Debruyne and Bessière, 1997].
It prunes many of the PIC values at little extra cost to AC. Sur-
prisingly, channelling constraints are incomparable to the pri-
mal not-equals constraints wrt RPC. Channelling constraints
can increase the amount of propagation (for example, when a
dual variable has only one value left in its domain). However,
RPC is hindered by the bipartite constraint graph between pri-
mal and dual variables. Additional not-equals constraintson
primal and/or dual variables can therefore help propagation.

Theorem 6 On a permutation problem;

GAC8! RPC6=
6=! RPC6=
! RPC
 
 RPC6= 
 AC

Proof: To show RPC
 
 RPC6=, consider a 4 variable per-
mutation problem withx1 = x2 = x3 = f1; 2; 3g andx4 = f1; 2; 3; 4g. This is RPC6= but not RPC
. For the re-
verse direction, consider a 5 variable permutation problem
with x1 = x2 = x3 = f1; 2g andx4 = x5 = f3; 4; 5g. This
is RPC
 but not RPC6=.

To show RPC6=
! RPC
, consider again the last example.
This is RPC
 but not RPC6=
.

To show RPC6=
6= ! RPC6=
, consider a 6 variable per-
mutation problem withx1 = x2 = f1; 2; 3; 4; 5; 6g andx3 = x4 = x5 = x6 = f4; 5; 6g. This is RPC6=
 but not
RPC6=
6=.

To show GAC8 ! RPC6=
6=, consider a permutation prob-
lem which is GAC8. Suppose we assign a valuej to a primal
variable,xi (or equivalently, a valuei to a dual variable,dj ).
As the all-different constraint is GAC, this can be extended
to all the other primal variables using up all the other val-
ues. This gives us a consistent assignment for any two other
primal or dual variables. Hence, the problem is PIC6=
6= and
thus RPC6=
6=. To show strictness, consider a 7 variable per-
mutation problem withx1 = x2 = x3 = x4 = f1; 2; 3g andx5 = x6 = x7 = f4; 5; 6; 7g. This is RPC6=
6= but not GAC8.

To show AC
 
 RPC6=, consider a 4 variable permuta-
tion problem withx1 = x2 = x3 = f1; 2; 3g andx4 =f1; 2; 3; 4g. This is RPC6= but not AC
. For the reverse
direction, consider a 5 variable permutation problem withx1 = x2 = x3 = f1; 2g andx4 = x5 = f3; 4; 5g. This
is AC
 but not RPC6=. QED.



5.6 Path inverse consistency
The incomparability of channelling constraints and primal
not-equals constraints remains when we move up the local
consistency hierarchy from RPC to PIC.

Theorem 7 On a permutation problem:

GAC8! PIC6=
6=! PIC6=
! PIC
 
 PIC6= 
 AC

Proof: To show PIC
 
 PIC6=, consider a 4 variable per-
mutation problem withx1 = x2 = x3 = f1; 2; 3g andx4 = f1; 2; 3; 4g. This is PIC6= but not PIC
. Enforcing
PIC on the channelling constraints reducesx4 to the single-
ton domainf4g. For the reverse direction, consider a 5 vari-
able permutation problem withx1 = x2 = x3 = f1; 2g andx4 = x5 = f3; 4; 5g. This is PIC
 but not PIC6=.

To show PIC6=
! PIC
, consider a 5 variable permutation
problem withx1 = x2 = x3 = f1; 2g andx4 = x5 =f3; 4; 5g. This is PIC
 but not PIC6=
.

To show PIC6=
6= ! PIC6=
, consider a 6 variable per-
mutation problem withx1 = x2 = f1; 2; 3; 4; 5; 6g andx3 = x4 = x5 = x6 = f4; 5; 6g. This is PIC6=
 but not
PIC6=
6=.

To show GAC8 ! PIC6=
6=, consider a permutation prob-
lem in which the all-different constraint is GAC. Suppose
we assign a valuej to a primal variable,xi (or equivalently,
a valuei to a dual variable,dj). As the all-different con-
straint is GAC, this can be extended to all the other pri-
mal variables using up all the other values. This gives us
a consistent assignment for any two other primal or dual
variables. Hence, the not-equals and channelling constraints
are PIC. To show strictness, consider a 7 variable permuta-
tion problem withx1 = x2 = x3 = x4 = f1; 2; 3g andx5 = x6 = x7 = f4; 5; 6; 7g. This is PIC6=
6= but not GAC8.

To show PIC6= 
 AC
, consider a 4 variable permuta-
tion problem withx1 = x2 = x3 = f1; 2; 3g andx4 =f1; 2; 3; 4g. This is PIC6= but not AC
. Enforcing AC on
the channelling constraints reducesx4 to the singleton do-
main f4g. For the reverse direction, consider a 5 variable
permutation problem withx1 = x2 = x3 = f1; 2g andx4 = x5 = f3; 4; 5g. This is AC
 but not PIC6=. QED.

5.7 Singleton arc-consistency
Debruyne and Bessière also showed that SAC is a promis-
ing filtering technique above both AC, RPC and PIC, prun-
ing many values for its CPU time[Debruyne and Bessière,
1997]. Prosser et al. reported promising experimental results
with SAC on quasigroup problems, a multiple permutation
problem[Prosseret al., 2000]. Interestingly, as with AC (but
unlike RPC and PIC which lie between AC and SAC), chan-
nelling constraints are tighter than the primal not-equalscon-
straints wrt SAC.

Theorem 8 On a permutation problem:

GAC8! SAC6=
6=$ SAC6=
$ SAC
! SAC6= 
 AC

Proof: To show SAC
 ! SAC6=, consider a permutation
problem that is SAC
 and any possible instantiation for a pri-
mal variablexi. Suppose that the primal not-equals model of
the resulting problem cannot be made AC. Then there must
exist two other primal variables, sayxj andxk which have

at most one other value. Consider the dual variable asso-
ciated with this value. Then under this instantiation of the
primal variablexi, enforcing AC on the channelling con-
straint between the primal variablexi and the dual variable,
and between the dual variable andxj andxk results in a do-
main wipeout on the dual variable. Hence the problem is
not SAC
. This is a contradiction. The primal not-equals
model can therefore be made AC following the instantia-
tion of xi. That is, the problem is SAC6=. To show strict-
ness, consider a 5 variable permutation problem with domainx1 = x2 = x3 = x4 = f0; 1; 2g andx5 = f3; 4g. This is
SAC6= but not SAC
.

To show GAC8 ! SAC
, consider a permutation prob-
lem that is GAC8. Consider any possible instantiation for
a primal variable. This can be consistently extended to all
variables in the primal model. But this means that it can
be consistently extended to all variables in the primal and
dual model, satisfying any (combination of) permutation or
channelling constraints. As the channelling constraints are
satisfiable, they can be made AC. Consider any possible in-
stantiation for a dual variable. By a similar argument, taking
the appropriate instantiation for the associated primal vari-
able, the resulting problem can be made AC. Hence, given
any possible instantiation for a primal or dual variable, the
channelling constraints can be made AC. That is, the problem
is SAC
, To show strictness, consider a 7 variable permuta-
tion problem withx1 = x2 = x3 = x4 = f0; 1; 2g andx5 = x6 = x7 = f3; 4; 5; 6g. This SAC
 but is not GAC8.

To show SAC6= 
 AC
, consider a four variable permu-
tation problem in whichx1 to x3 have thef1; 2; 3g andx4
has the domainf0; 1; 2; 3g. This is SAC6= but not AC
. For
the reverse, consider a 4 variable permutation problem withx1 = x2 = f0; 1g andx3 = x4 = f0; 2; 3g. This is AC
 but
not SAC6=. QED.

5.8 Strong path-consistency
Adding primal or dual not-equals constraints to channelling
constraints does not help AC or SAC. The following result
shows that their addition does not help higher levels of local
consistency like strong path-consistency (ACPC).

Theorem 9 On a permutation problem:

GAC8 
 ACPC6=
6= $ ACPC6=
 $ ACPC
 ! ACPC6= 
 AC

Proof: To show ACPC
 ! ACPC6=, consider some chan-
nelling constraints that are ACPC. Now AC
 ! AC6=, so we
just need to show PC
 ! PC6=. Consider a consistent pair
of values,l andm for a pair of primal variables,xi andxj .
Take any third primal variable,xk . As the constraint betweendl, dm andxk is PC, we can find a value forxk consistent
with the channelling constraints. But this also satisfies the
not-equals constraint between primal variables. Hence, the
problem is PC6=. To show strictness, consider a 4 variable
permutation problem withx1 = x2 = x3 = x4 = f1; 2; 3g.
This is ACPC6= but not ACPC
.

To show ACPC6=
6= $ ACPC6=
 $ ACPC
, we recall that
AC6=
$ AC6=
$ AC
. Hence we need just show that PC6=
$ PC6=
$ PC
. Consider a permutation problem. Enforcing
PC on the channelling constraints alone infers both the primal



and the dual not-equals constraints. Hence, PC6=
$ PC6=
$
PC
.

To show GAC8 
 ACPC6=
6=, consider a 6 variable per-
mutation problem withx1 = x2 = x3 = x4 = f1; 2; 3g,
andx5 = x6 = f4; 5; 6g. This is ACPC6=
6= but not GAC8.
For the reverse direction, consider a 3 variable permutation
problem with the additional binary constrainteven(x1+x3).
Enforcing GAC8. prunes the tox1 = x3 = f1; 3g, andx2 = f2g. However, these domains are not ACPC6=
6=. En-
forcing ACPC tightens the constraint betweenx1 andx3 from
not-equals tox1 = 1; x3 = 3 or x1 = 3; x3 = 1.

To show ACPC6= 
 AC
, consider a 5 variable permuta-
tion problem withx1 = x2 = x3 = f1; 2g, andx4 = x5 =f3; 4; 5g. This is AC
 but not ACPC6=. For the reverse direc-
tion, consider again the 4 variable permutation problem withx1 = x2 = x3 = x4 = f1; 2; 3g. This is ACPC6= but not
AC
. QED.

5.9 Multiple permutation problems
These results extend to multiple permutation problems under
a simple restriction that the problem istriangle preserving
[Stergiou and Walsh, 1999] (that is, any triangle of not-equals
constraints in the primal not-equals moel covers variables
in the same permutation). For example, all-diff(x1; x2; x4),
all-diff(x1; x3; x5), and all-diff(x2; x3; x6) are not triangle
preserving asx1, x2 andx3 occur in a triangle but are not
in the same permutation. The following theorem collects to-
gether and generalizes many of the previous results.

Theorem 10 On a multiple permutation problem:

GAC8 
 ACPC6=
6= $ ACPC6=
 $ ACPC
 ! ACPC6= 
 AC
# # # #
GAC8!SAC6=
6= $ SAC6=
 $ SAC
 ! SAC6= 
 AC
# # # #
GAC8!PIC6=
6= ! PIC6=
 ! PIC
 
 PIC6= 
 AC
# # # #
GAC8!RPC6=
6= ! RPC6=
 ! RPC
 
 RPC6= 
 AC
# # # #
GAC8!AC6=
6= $ AC6=
 $ AC
 ! AC6=  BC
# # # # #
BC8 !BC6=
6= $ BC6=
 $ BC
 ! BC6=
Proof: The proofs lift in a straight forward manner from
the single permutation case. Local consistencies like ACPC,
SAC, PIC and RPC consider triples of variables. If these
are linked together, we use the fact that the probem is tri-
angle preserving and a permutation is therefore defined over
them. If these are not linked together, we can decompose
the argument into AC on pairs of variables. Without trian-
gle preservation, GAC8, may only achieve as high a level
of consistency as AC6=. For example, consider again the
non-triangle preserving constraints in the last paragraph. Ifx1 = x2 = x3 = f1; 2g andx4 = x5 = x6 = f1; 2; 3g then
the problem is GAC8, but it is not RPC6=, and hence neither
PIC6=, SAC6= nor ACPC6=. QED.

6 SAT models
Another solution strategy is to encode permutation problems
into SAT and use a fast Davis-Putnam (DP) or local search

procedure. For example,[Bejar and Manya, 2000] report
promising results for propositional encodings of round robin
problems, which include permutation constraints. We con-
sider just “direct” encodings into SAT (see[Walsh, 2000] for
more details). We have a Boolean variableXij which istrue
iff the primal variablexi takes the valuej. In the primal SAT
model, there aren clauses to ensure that each primal vari-
able takes at least one value,O(n3) clauses to ensure that no
primal variable gets two values, andO(n3) clauses to ensure
that no two primal variables take the same value. Interestingly
the channelling SAT model has the same number of Boolean
variables as the primal SAT model (as we can useXij to rep-
resent both thejth value of the primal variablexi andtheith
value for the dual variabledj), and justn additional clauses
to ensure each dual variable takes a value. TheO(n3) clauses
to ensure that no dual variable gets two values are equiva-
lent to the clauses that ensure no two primal variables get the
same value. The following result show that DP can be placed
between MAC and FC on these different models.

Theorem 11 On a permutation problem:

MGAC8! MAC6=
6=$ MAC6=
$ MAC
! MAC6=# # # #
MGAC8! DP6=
6= $ DP6=
 $ DP
 ! DP6=# # l l
MGAC8! FC6=
6= $ FC6=
 $ FC
 ! FC6=
Proof: DP6= $ FC6= is a special case of Theorem 14 in
[Walsh, 2000], whilst MAC6= ! FC6= is a special case of
Theorem 15.

To show DP
 $ FC
 suppose unit propagation sets a lit-
eral l. There are four cases. In the first case, a clause of the
formXi1_ : : :_Xin has been reduced to an unit. That is, we
have one value left for a primal variable. A fail first heuris-
tic in FC picks this one remaining value to instantiate. In the
second case, a clause of the form:Xij _ :Xik for j 6= k
has been reduced to an unit. This ensures that no primal vari-
able gets two values. The FC algorithm trivially never tries
two simultaneous values for a primal variable. In the third
case, a clause of the form:Xij _ :Xkj for i 6= k has been
reduced to an unit. This ensures that no dual variable gets
two values. Again, the FC algorithm trivially never tries two
simultaneous values for a dual variable. In the fourth case,X1j _ : : :_Xnj has been reduced to an unit. That is, we have
one value left for a dual variable. A fail first heuristic in FC
picks this one remaining value to instantiate. Hence, givena
suitable branching heuristic, the FC algorithm tracks the DP
algorithm. To show the reverse, suppose forward checking
removes a value. There are two cases. In the first case, the
valuei is removed from a dual variabledj due to some chan-
nelling constraint. This means that there is a primal variablexk which has been set to some valuel 6= j. Unit propaga-
tion on:Xkl _ :Xkj setsXkj to false. Unit propagation on:Xij _:Xkj then setsXij to false as required. In the second
case, the valuei is removed from a dual variabledj , again
due to some channelling constraint. The proof is now dual to
the first case.

To show MAC
 ! DP
, we use MAC! FC and FC
 $
DP
. To show strictness, consider a permutation problem in
three variables with additional binary constraints that rule out



the same value for all three primal variables. Enforcing AC
on the channelling constraints immediately causes a domain
wipeout on the dual variable associated with this value. As
their are no unit constraints, DP does not immediately solve
the problem.

To show DP
 ! DP6=, we note that the channelling SAT
model constrains more clauses. Hence, it dominates the pri-
mal SAT model. To show strictness, consider a four variable
permutation problem with three additional binary constraints
that if x1 = 1 thenx2 = 2, x3 = 2 andx4 = 2 are all
ruled out. Consider branching onx1 = 1. Unit propagation
on both models setsX12, X22, X32, X42, X21, X31 andX41
to false. On the channelling SAT model, unit propagation
against the clauseX12 _X22 _X32 _X42 then generates an
empty clause. By comparison, unit propagation on the primal
SAT model does no more work. QED.

7 Asymptotic comparison
The previous results tell us nothing about the relative cost
of achieving these local consistencies. Asymptotic analysis
adds detail to the results. Regin’s algorithm achieves GAC8
in O(n4) [Régin, 1994]. AC on binary constraints can be
achieved inO(ed2) wheree is the number of constraints andd is their domain size. As there areO(n2) channelling con-
straints, AC
 naively takesO(n4) time. However, by taking
advantage of the functional nature of channelling constraints,
we can reduce this toO(n3) using the AC-5 algorithm of[van
Hentenrycket al., 1992]. AC6= also naively takesO(n4) time
as there areO(n2) binary not-equals constraints. However,
we can take advantage of the special nature of a binary not-
equals constraint to reduce this toO(n2) with careful imple-
mentation as each not-equals constraint needs to be made AC
just once. Asymptotic analysis thus offers no great surprises:
we proved that GAC8! AC
! AC6= and this is reflected in
theirO(n4), O(n3), O(n2) respective costs.

8 Experimental comparison
On Langford’s problem, a permutation problem from
CSPLib, Smith found that MAC on the channelling and other
problem constraints is often the most competitive model for
finding all solutions[Smith, 2000]. MAC
 (which takesO(n2) time at each node in the search tree if carefully imple-
mented) explores a similar number of branches to the more
powerful MGAC8 (which takesO(n4) time at each node in
the search tree). This suggests that MAC
, if carefully im-
plemented, may offer a good tradeoff between the amount of
constraint propagation and the amount of search required. For
finding single solutions, Smith’s results are somewhat con-
fused by the accuracy of the heuristic. She predicts that these
results will transfer over to other permutation problems. To
confirm this, we ran experiments in three other domains using
the Sicstus finite domain constraint library.

8.1 All-interval series
Hoos has proposed the all-interval series problem from musi-
cal composition as a challenging benchmark for CSPLib. Theais(n) problem is to find a permutation of the numbers 1 ton, such that the differences between adjacent numbers form

a permutation from 1 ton � 1. Whilst polynomial solutions
to ais(n) exist, it remains difficult to compute all solutions.
As on Langford’s problem[Smith, 2000], MAC
 visits only
a few more branches than MGAC8. Efficiently implemented,
MAC
 is therefore the quickest solution method.n MAC 6= MAC
 MGAC8

6 135 34 34
7 569 153 152
8 2608 627 626
9 12137 2493 2482

10 60588 10552 10476
11 318961 47548 47052

Table 1: Branches to compute all solutions toais(n).
8.2 Circular Golomb rulers
A perfect circular Golomb ruler consists ofn marks arranged
on the circumference of a circle of lengthn(n� 1) such that
the distances between any pair of marks, in either direction
along the circumference, form a permutation. Again polyno-
mial solutions exist for certainn, but it is difficult to compute
all solutions or prove for somen (like n = 7) that no perfect
ruler exists. Table 2 shows that MGAC8 is very competitive
with MAC
. Indeed, MGAC8 has the smallest runtimes. We
conjecture that this is due to circular Golomb rulers being
more constrained than all-interval series.n MAC 6= MAC
 MGAC8

6 202 93 53
7 1658 667 356
8 15773 5148 2499
9 166424 43261 19901

Table 2: Branches to compute all ordern perfect circular
Golomb rulers.

8.3 Quasigroups
Achlioptas et al have proposed completing a partial filled
quasigroup as a challenging benchmark for SAT and CSP al-
gorithms[Achlioptaset al., 2000]. This can be modeled as
a multiple permutation problem consisting of2n intersect-
ing permutation constraints. A complexity peak is observed
when approximately 40% of the entries in the quasigroup are
replaced by “holes”. Table 3 shows the increase in problem
difficulty with n. Median behavior for MAC
 is competitive
with MGAC8. However, mean performance is not due to a
few expensive outliers. A randomization and restart strategy
reduces the size of this heavy-tailed distribution.

9 Extensions
9.1 Injective mappings
In many problems, variables may be constrained to take
unique values, but we have more values than variables. That
is, we are looking for an injective mapping from the variables
to the values. For example, an optimal 5-tick Golomb ruler



median meann MAC 6= MAC
 MGAC8 MAC 6= MAC
 MGAC8
5 1 1 1 1 1 1

10 1 1 1 1.03 1.00 1.01
15 3 1 1 7.17 1.17 1.10
20 23313 7 4 312554 21.76 12.49
25 - 249 53 - 8782.4 579.7
30 - 5812 398 - 2371418 19375

Table 3: Median and mean branches to complete 100 ordern
quasigroup problems with 40% holes.

has ticks at the marks 0, 1, 4, 9, and 11. The 10 inter-tick dis-
tances are all different but do not form a permutation as the
distance 6 is absent. Finding a 5-tick Golomb ruler of length
11 can be modeled as a permutation problem by introducing
an additional 11th variable to take on the missing value 6. In
general, we can model an injective mapping from a domain
of n elements into an image ofm elements (n � m) as a
permutation problem by introducingm� n new primal vari-
ables. We can then post channelling constraints between them primal variables andm dual variables. Most of our results
about permutation problems map over to such problems with
little or no modification. For example, AC on the channelling
constraints of such a problem is tighter than AC on the primal
not-equals constraints.

9.2 Bijective channelling constraints
Channelling constraints are useful in a wider class of prob-
lems than permutation problems. For example, the key mod-
eling decision (according to[Hentenrycket al., 1999]) for a
tournament scheduling problem was to introduce two types
of variables, one set for the teams and one for the games,
with bijective channelling constraints between them. Con-
sider a set of channelling constraints betweenn primal vari-
ables,xi and m dual variables,dj (with n not necessar-
ily equal tom). We say that they are bijective iff the tu-
pleshhx1; : : : ; xni; hd1 : : : ; dmiimade from assignments sat-
isfying the channelling constraints define a bijective relation.
Note that, despite the existence of a bijection,xi anddj may
not have the same cardinalities as their domain sizes can be
different. As in permutation problems, these quickly propa-
gate values between the primal and dual variables and vice
versa. Not all channelling constraints are bijective. The
Golomb ruler provides an interesting example. The differ-
ence equations used in[Smithet al., 2000], dij = jxi � xj j
can be seen as channelling constraints linking the initial vari-
ables with the auxiliary variables. However, they are not bi-
jective. For instance, bothx1 = 2, x2 = 4 andx1 = 3,x2 = 5 map ontod12 = 2.

10 Related work
Chen et al. studied modeling and solving then-queens prob-
lem, and a nurse rostering problem using channelling con-
straints and “redundant models” (simultaneous primal and
dual models)[Chenget al., 1999]. They show that chan-
nelling constraints increase the amount of constraint propa-
gation. They conjecture that the overheads associated with

channelling constraints will pay off on problems which re-
quire large amounts of search, or lead to thrashing behavior.
They also show that redundant modeling opens the door to
interesting value ordering heuristics.

As mentioned before, Smith studied a number of differ-
ent models for Langford’s problem, a permutation problem in
CSPLib[Smith, 2000]. This was the starting point for much
of this research. Smith argues that channelling constraints
make primal not-equals constraints redundant. She also ob-
serves that MAC on the model of Langford’s problem using
channelling constraints explores more branches than MGAC
on the model using a primal all-different constraint, and the
same number of branches as MAC on the model using chan-
nelling and primal not-equals constraints. Smith also shows
the benefits of being able to branch on dual variables.

11 Conclusions

We have performed an extensive study of models of permu-
tation problems proposed by Smith in[Smith, 2000] with all-
different constraints, channelling constraints and not-equals
constraints. To compare models, we defined a measure of
constraint tightness parameterized by the level of local con-
sistency being enforced. We used this to prove that, with
respect to arc-consistency, a single primal all-differentcon-
straint is tighter than channelling constraints, but that chan-
nelling constraints are tighter than primal not-equals con-
straints. Both these gaps can lead to an exponential reduction
in search cost. For lower levels of local consistency (e.g. that
maintained by forward checking), channelling constraintsre-
main tighter than primal not-equals constraints. However,
for certain higher levels of local consistency like path inverse
consistency, channelling constraints are incomparable topri-
mal not-equals constraints. On SAT encodings of permuta-
tion problems, we proved that the performance of the Davis
Putnam algorithm is sandwiched between that of the MAC
and FC algorithms.

Experimental results on three different permutation prob-
lems confirmed that MAC on channelling constraints outper-
formed MAC on primal not-equals constraints, and could be
competitive with maintaining GAC on a primal all-different
constraint. However, on more constrained problems, the ad-
ditional constraint propagation provided by maintaining GAC
on the primal all-different constraint was beneficial. We be-
lieve that these results will aid users of constraints to choose
a model for a permutation problem, and a local consistency
property to enforce on it. They also illustrate a methodol-
ogy, as well as a measure of constraint tightness, that can be
used to compare different constraint models in other problem
domains.
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