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Abstract. We identify strategy proof mechanisms for facility lo-
cation that simultaneously approximate well both the maximum dis-
tance from the nearest facility and the minimum utility of any agent.
Somewhat surprisingly, while the deterministic MEDIAN and the
randomized ENDORAV mechanisms perform optimally with respect
to approximating the maximum distance, neither perform optimally
with respect to approximating the minimum utility. With determin-
istic mechanisms for locating a single facility, we prove that the
MIDORNEAREST mechanism is optimal with respect to approximat-
ing both the maximum distance and the minimum utility. By compar-
ison, the MEDIAN mechanism has an unbounded approximation ra-
tio for approximating the minimum utility. With randomized mecha-
nisms for locating a single facility, we construct the first mechanism
that is optimal with respect to approximating the minimum utility.
For deterministic and randomized mechanisms locating two or more
facilities, we identify strategy proof mechanisms that are within a
constant factor of optimal with respect to both objectives.

1 Introduction

In many mechanism design problems, a fundamental tension exists
between truthfulness and optimality [22, 15, 14]. Returning the op-
timal solution can give agents an incentive to mis-report in order to
influence the outcome in their favour. For example, when scheduling
independent tasks on unrelated parallel machines, no mechanism can
both be strategy proof and minimize the make-span [19, 6]. One re-
sponse to this tension is to keep strategy proofness but return approx-
imate instead of optimal solutions. For example, for the paradigmatic
social choice problem of locating a facility on a line, Procaccia and
Tennholtz [20] prove that the MEDIAN mechanism, which locates
the facility at the median agent, is strategy proof and 2-approximates
the optimal maximum distance any agent needs to travel, and that
no deterministic and strategy proof mechanism can provide a bet-
ter approximation. Many other researchers have since subsequently
explored how well strategy proof mechanisms can approximate the
optimality of the total or maximum distance agents travel in more
complex settings such as with more facilities, other metrics (e.g. cir-
cles and Euclidean space), and constraints such as capacity limits on
the number of agents served by a facility.

In a recent survey of mechanism design for facility location prob-
lems, this setup – strategy proof mechanisms which approximate well
the distance that agents travel – has been so frequently explored that
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Chan et al, [4] called it the “classic setting” for approximate mecha-
nism design. Approximability results in this classic setting have iden-
tified strategy proof mechanisms for locating one or more facilities
which approximate well the distances agents travel to be served. For
example, the unique deterministic and strategy proof mechanism for
locating two facilities on the line with a bounded approximation ratio
for either the optimal maximum or total distance is the ENDPOINT

mechanism, and no deterministic and strategy proof mechanism has
a bounded approximation ratio for three or more facilities [10].

In more complex metrics than the line, the picture for strategy
proof mechanisms with good approximation performance is bleaker.
Even on a simple star metric, there exists no deterministic and strat-
egy proof mechanism with a bounded approximation ratio for two
facilities and just three agents [10]. One of our contributions is to
show that it is premature to suppose that strategy proofness and good
approximation ratios are often incompatible for the facility loca-
tion problem. If we change the objective from optimizing distances
travelled to the utility of agents, good approximation ratios can be
achieved without sacrificing strategy proofness.

One main contribution, however, addresses a fundamental short-
coming of the classic setting. Maximizing the distance of agents from
the nearest facility focuses on problems where agents are close to fa-
cilities and distances are small. To achieve good approximation ra-
tios, a mechanism must return high quality solutions on such prob-
lems. This ignores problems which are arguably more challenging
where some agents are necessarily some distance from the nearest
facility. We therefore propose extending the classic setting to over-
come this shortcoming. In particular, we initiate the study of egali-
tarian facility location where we look to approximate well both the
maximum distance and the minimum utility.

Our more extended analysis considers both high quality solutions
where all distances are small and utilities are large, as well as low
quality solutions where some distances are large and utilities are
small. Note that Han, Jerrett, and Anshelevic [12] have previously
studied mechanisms for facility location that simultaneously approx-
imate well multiple objectives. However, their work is limited to
exploring multiple distance based objectives (e.g. approximating si-
multaneously both the maximum and sum of distances). It does not
consider, as we do, utility based objectives such as the minimum util-
ity. Their study therefore suffers from the limitations identified here
that approximating distance based objectives alone focuses on set-
tings where distances are small, and ignores challenging instances
where distances are necessarily large.
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1.1 Results Overview

We provide a comprehensive account of strategy proof mechanisms
for egalitarian facility location that optimize multiple objectives si-
multaneously. In particular, our results identify deterministic and ran-
domized strategy proof mechanisms with good approximation ratios
with respect to both the objectives of minimizing the maximum dis-
tance and maximizing the minimum utility. Our results demonstrate
that the landscape of strategy proof mechanisms with good approxi-
mation ratios is more complex than that identified when considering
just a single objective of distance. For a single facility, our results are
optimal. For multiple facilities, our results are asymptotically tight
and within a constant factor of optimal.

Surprisingly, with respect to the worst off agent, neither the de-
terministic MEDIAN nor the randomized ENDORAV mechanisms al-
ways perform well. For locating a single facility with a deterministic
mechanism, we prove that the MIDORNEAREST mechanism is op-
timal with respect to optimizing both maximum distance and min-
imum utility. By comparison, the MEDIAN mechanism has an un-
bounded approximation ratio of the optimal minimum utility. We also
close an open problem by showing that the MIDORNEAREST is op-
timal with respect to minimum happiness, a closely related objective
to minimum utility. For locating a single facility with a randomized
mechanism, we construct the first known mechanism that is optimal
with respect to approximating the minimum utility.

2 Optimizing egalitarian welfare

The egalitarian or Rawlsian rule picks the outcome maximizing the
minimum utility of any agent. To define utility in the facility location
problem, we assume agents and facilities are on a finite interval and
not the infinite real line. We suppose the interval this is [0, 1] but
it could be [a, b] if we normalise by b − a. Supposing agents and
facilities lie on a finite interval is interesting for multiple reasons. In
practice, agents and facilities are often limited to a finite region due
to physical constraints or to limit misreports. When locating electric
charging stations in a a warehouse, robots and the charging stations
might have to be in the warehouse. When locating warehouses in
a distribution network, we might be limited to major intersections.
When locating a school, we might have to be within the boundaries
of the town. When locating ferry stops on a river, the stops must be
locations on the river. And when setting a thermostat in a classroom,
the temperature must be within the limits of the boiler. There are thus
many settings where agents are limited to a finite interval. Restricting
agents to a finite interval also limits how much agents can misreport
their location to influence the outcome. A finite interval has been
used in several other recent studies (e.g. [2, 16, 17, 13]).

Utilities have previously been used in other closely related settings
such as obnoxious facility location where they are a natural way to
model such problems (e.g. [5]). In mixed and hybrid problems where
certain facilities may be obnoxious to some or all agents, utilities
again provide a more consistent modelling tool (e.g. [7]). Utilities
have also been studied in operation research when the focus is typi-
cally on goals such as optimisation and robustness rather than mecha-
nism design. For example, they are naturally used in multi-objective
problems where we combine distance goals with other (utility) ob-
jectives. When we consider both distances and utilities, you might
be concerned that our analysis will now put too much importance on
instances where some agents are far away from any facility and have
small utility. To achieve good approximation ratios, don’t we now
have to ensure that such agents have an utility close to the optimal

minimum utility? Have we not just exchanged one problem (approx-
imating distances close to zero) with another (approximating utilities
close to zero)? And won’t this mean that when distances are large
and utilities small, a small change in the location of the facility has
an outsized influence on the approximation ratio?

This is not the case. In fact, the opposite is true. Such concerns
are an issue when considering distances but not when considering
utilities. With distances, the optimal facility location can result in
maximum distances that are small or even zero. To achieve good ap-
proximation ratios, we must approximate such instances well (and
this means that good, even bounded, approximation ratios of the op-
timal maximum distance are sometimes hard to achieve). With util-
ities, on the other hand, optimal minimum utilities are never small.
Indeed, for any facility location problem, the minimum utility of any
agent given an optimal facility location is at least 1/2. Therefore op-
timal minimum utilities are never close to zero and, as we will show,
approximation ratios are not dominated by the challenge of approxi-
mating well small utility values.

3 Facility location problem
In a facility location problem, we need to decide where to locate
one or more facilities to serve a set of agents. We consider n agents
located at x1 to xn with xi ∈ [0, 1]. Without loss of generality, we
suppose x1 ≤ . . . ≤ xn. A deterministic mechanism f locates the
m facilities at y1 to ym. Formally, f(⟨x1, . . . , xn⟩) = ⟨y1, . . . , ym⟩.
Agents are served by the nearest facility. A randomized mechanism
returns a lottery over such deterministic outcomes. We let di be the
distance of agent i to their nearest facility: di = minj |xi − yj |. As
in [2], since agents and facilities are on the interval [0, 1], we define
ui, the utility of agent i as 1−di. With randomized mechanisms, we
consider the expected value of distances and utilities.

A simple fairness property is anonymity. A mechanism is anony-
mous iff permuting the order of the agents does not change the
outcome. Formally f is anonymous iff for any permutation σ, we
have f(⟨xσ(1), . . . , xσ(n)⟩) = f(⟨x1, . . . , xn⟩). Another impor-
tant property is resistance to manipulation. A mechanism is strat-
egy proof iff no agent can mis-report her location and reduce her
(expected) distance to the nearest facility. Formally f is strategy
proof iff for any agent i, it is not the case that there exists x′

i with
minyj∈f(⟨x1,...,xn⟩[x′

i/xi])
|xi − yj | < di where [x′

i/xi] substitutes
x′
i for xi in the vector input ⟨x1, . . . , xn⟩. We will consider how

well strategy proof mechanisms approximate objectives like the op-
timal maximum distance or minimum utility. A mechanism has an
approximation ratio ρ for a maximization (minimization) objective
iff the objective it returns is at least 1/ρ (at most ρ) times the optimal.

We consider a number of anonymous and strategy proof mecha-
nisms. Many are based on the median function median(z1, . . . , zp)
which returns zi where |{j|zj < zi}| < ⌈p/2⌉ and |{j|zj > zi}| ≤
⌊p/2⌋. For example, the GENMEDIAN mechanism locates a facility
at median(x1, . . . , xn, z1, . . . , zn−1) where the n − 1 parameters
z1 to zn−1 represent “phantom” agents. A classic result about vot-
ing rules due to Moulin shows that this mechanism is strategy proof
[18]. The LEFTMOST (RIGHTMOST) mechanism is an instance of
GENMEDIAN with parameters zi = 0 (zi = 1 for i ∈ [1, n), locat-
ing the facility at the leftmost (rightmost) agent. The MEDIAN mech-
anism is an instance of GENMEDIAN with parameters zi = 0 for
i ≤ ⌊n/2⌋ and 1 otherwise, locating the facility at the median agent.
The MIDORNEAREST mechanism is an instance of GENMEDIAN

with parameters zi = 1/2 for i ∈ [1, n). It locates the facility either
at 1/2 if x1 ≤ 1/2 ≤ xn, otherwise at the agent nearest to 1/2.



An interesting class of GENMEDIAN mechanisms is the class of
PERCENTILE mechanisms which, given parameter p, locate the facil-
ity at x1+⌊p(n−1)⌋ (see, for instance, [21]). Any PERCENTILE mech-
anism is an instance of GENMEDIAN with parameters zi = 0 or 1.
The LEFTMOST mechanism is a PERCENTILE mechanism with p =
0, while the MEDIAN mechanism is an instance with p = 1/2. The
PERCENTILE mechanism extends to two or more facilities in the ob-
vious way. For instance, given parameter p1 and p2, the PERCENTILE

mechanism locates one facility at x1+⌊p1(n−1)⌋ and the second at
x1+⌊p2(n−1)⌋. The ENDPOINT mechanism is a PERCENTILE mech-
anism with p1 = 0 and p2 = 1, locating facilities at the leftmost and
rightmost agents. We denote a PERCENTILE mechanism for three or
more facilities as an ENDPOINT mechanism iff the parameters in-
clude 0 and 1.

We propose two new mechanisms for locating two facilities that
can be viewed as cousins of the MIDORNEAREST mechanism for lo-
cating a single facility. The THIRDORNEAREST mechanism mecha-
nism locates one facility at 1/3 if x1 < 1/3 and x1 otherwise, and
the other facility at 2/3 if xn > 2/3 and xn otherwise. Similarly
the QUARTERORNEAREST mechanism locates one facility at 1/4 if
x1 < 1/4 and x1 otherwise, and the other facility at 3/4 if xn > 3/4
and xn otherwise.

We also consider randomized mechanisms that return a lottery
over solutions. For a single facility, the randomized ENDORAV

mechanism selects the leftmost agent with probability 1/4, the mid-
point between the leftmost and rightmost agent with probability 1/2,
and the rightmost agent otherwise (i.e. with probability 1/4). This
is strategy proof [20]. For two facilities, the ENDSORAV mecha-
nism (named “Mechanism 2” in [20]) works as follows. Let mid =
(x1 + xn)/2, l = maxi{i | xi ≤ mid}, r = mini{i | xi ≥ mid},
∆ = max(xl−x1, xn−xr). Then the mechanism constructs the fol-
lowing probability distribution of facility locations: x1 and xn with
probability 1/2, x1+∆ and xn−∆ with probability 1/6, and x1+∆/2
and xn − ∆/2 otherwise (i.e. with probability 1/3). This gives a solu-
tion with a maximum distance of 5∆/6 in expectation compared to an
optimal of ∆/2. This mechanism is strategy proof.

Finally, for any number m of facilities, the randomized
EQUALCOST mechanism [9] has three steps. In the first step, it com-
putes an optimal covering of all agent locations with m disjoint inter-
vals [αi, αi + p] which minimizes the interval length p. WLOG we
assume that αi < αi+1. In the second step, it constructs a random
bit uniformly z ∈ [0, 1]. In the third and final step, it places a facility
at αi + zp for i odd, and αi +(1− z)p for i even. The EQUALCOST

mechanism is strategy proof and has a bounded approximation ra-
tio for the maximum distance for any number of facilities. We recall
that a bounded approximation ratio cannot be achieved with any de-
terministic mechanism and three or more facilities.

4 Classic setting

Starting with Procaccia and Tennholtz [20], studies of strategy proof
mechanisms for facility location have mostly focused on the “clas-
sic setting” of approximating the total and maximum distance. For
example, Ferraioli, Serafino and Ventre [8] consider what verifica-
tion conditions can be applied to reports of agents to ensure good
approximation bounds on facility location problems. However, their
analysis is limited to total and maximum distance. As a second ex-
ample, Aziz et al. [1] and Walsh [24] consider the impact of capacity
constraints on the design of strategy proof mechanism for facility
location but again limit their analysis to the “classic setting” of ap-
proximating the total and maximum distance. As a third example,

Golomb and Tzamos [11] identify tight additive approximation guar-
antees for maximum and total distance when locating a single facility
on the line, and almost tight additive approximation guarantees with
multiple facilities.

For a single facility, the MEDIAN mechanism returns the optimal
total distance, and 2-approximates the maximum distance, and no
other deterministic and strategy proof mechanism can do better [20].
For two facilities, the ENDPOINT mechanism is the only determin-
istic and strategy proof mechanism with a bounded approximation
ratio for the total or maximum distance [10]. For three or more facil-
ities, no deterministic and strategy proof mechanism has a bounded
approximation ratio for the total or maximum distance [10]. Ran-
domized mechanisms can do better. For instance, the randomized
EQUALCOST mechanism is strategy proof and has an approxima-
tion ratio of 2 for maximum distance, and of n for total distance with
any number of facilities [9].

Aziz et al. [3] consider utilities in facility location problems, iden-
tifying the unique strategy proof mechanism that satisfies unanimity
and proportional fairness. Their focus is on fairness objectives like
proportionality while our focus is on egalitarian solutions. Walsh [23]
has also looked at optimizing the minimum utility for facility loca-
tion, but on a different and more specialized problem where facilities
are limited in their location (e.g. facilities must be located at discrete
integer points). Unlike here, this study does not identify mechanisms
that optimize well both the maximum distance and the minimum util-
ity. Results on approximation ratios in [23] also do not apply here as
the space of mechanisms when facilities are limited in their location
is smaller. We also study here classes of mechanisms not considered
in [23] such as randomized mechanisms.

While our results are limited to the 1-d setting, they are interesting
for a wide variety of reasons. The 1-d problem models several real
world settings such as locating power stations along a river or distri-
bution warehouses along a highway. There are also non-geographical
settings that can be viewed as 1-d problems (e.g. choosing the tem-
perature for a classroom, or selecting a committee of people with
different political views). In addition, we can use the 1-d problem
to solve more complex problems (e.g. decomposing the 2-d rectilin-
ear problem into a pair of 1-d problems). Finally, the 1-d problem is
the starting point to consider more complex metrics (e.g., trees and
networks) and provides bounds on solutions for these more complex
settings (e.g. lower bounds on the 1-d setting map onto the 2-d prob-
lem).

5 Deterministic mechanisms
We begin our study of strategy proof mechanisms that approximate
well both the maximum distance and minimum utility of any agent
with deterministic and strategy proof mechanisms.

5.1 Single facility

Procaccia and Tennenholtz [20] prove that any PERCENTILE mech-
anism (such as MEDIAN or LEFTMOST) 2-approximates the optimal
maximum distance, and no deterministic and strategy proof mech-
anism can do better. In fact, it is not difficult to show that any
GENMEDIAN mechanism (not just any PERCENTILE mechanism) 2-
approximates the optimal maximum distance. PERCENTILE mecha-
nisms do not perform as well at approximating the optimal minimum
utility. Indeed, their approximation ratio of the optimal minimum
utility is unbounded. To see this, consider a PERCENTILE mecha-
nism on a problem with one agent at 0, and another agent at 1. We



can, however, identify mechanisms that do better. In particular, the
MIDORNEAREST mechanism is optimal with respect to approximat-
ing both the maximum distance and the minimum utility.

Theorem 1. The MIDORNEAREST mechanism 3/2-approximates
the optimal minimum utility, and 2-approximates the optimal max-
imum distance. No deterministic and strategy proof mechanism has
smaller approximation ratios for either objective.

Proof. The MIDORNEAREST mechanism is a GENMEDIAN mech-
anism so, like all GENMEDIAN mechanisms, 2-approximates the
optimal maximum distance. To compute the approximation ratio
of the minimum utility, we consider three cases. In the first case,
x1 ≤ 1/2 ≤ xn and the facility is located at 1/2. We suppose
1−xn ≤ x1. The case 1−xn > x1 is symmetric. The minimum util-
ity is 3/2−xn units, compared to an optimal of 1− (xn − x1)/2 units.
The approximation ratio is therefore (1 − (xn − x1)/2)/(3/2 − xn).
The worst case for this ratio is when x1 = 1/2 and xn = 1, and
the approximation ratio is 3/2. In the second case, xn < 1/2. The
minimum utility is 1 − (xn − x1) units. The optimal minimum
utility is 1 − (xn − x1)/2 units. Define f(z) = 1 − z/1 − 2z where
z = xn − xi/2. For z ∈ [0, 1/4], f(z) takes a maximum of 3/2 at
z = 1/4, corresponding to xn = 1/2 and x1 = 0. The approxima-
tion ratio is therefore 3/2 at best. The third case, with x1 > 1/2 is
symmetric.

To show that no deterministic and strategy proof mechanism has
a smaller approximation ratio for the minimum utility, suppose such
a mechanism exists. Consider two agents at x1 = 0 and x2 = 1.
Suppose the facility is located at 1/2+ ϵ for ϵ ≥ 0. The case of ϵ < 0
is dual. Suppose the second agent reports x2 = 1/2 + ϵ. The optimal
minimum utility is 3/4− ϵ/2 units. To achieve an approximation ratio
of less than 3/2, the minimum utility must be greater than 1/2 − ϵ/3
units. The facility must therefore be in [0, 1/2 + ϵ/3). Therefore if
agents are at x1 = 0 and x2 = 1/2 + ϵ, the second agent has an
incentive to mis-report their location as x2 = 1.

Our results for a single facility are summarized in Table 1. The
MIDORNEAREST mechanism stands out as achieving the best ap-
proximation ratios possible. Note that these ratios are optimal as
they match the lower bounds on the approximation ratio that can be
achieved by deterministic mechanisms that are strategy proof.

mechanism
measure maximum

distance
minimum

utility
lower bound 2 3/23/23/2

MIDORNEAREST 222 3/23/23/2
MEDIAN 2 ∞∞∞

PERCENTILE 2 ∞∞∞

Table 1: Summary of approximation ratios achieved by different strat-
egy proof and deterministic mechanisms for the single facility loca-
tion problem. Bold for results proved here.

5.2 Two facilities

With a single facility, no PERCENTILE mechanism bounds the ap-
proximation ratio of the optimal minimum utility. With two facilities,
PERCENTILE mechanisms do slightly better. In particular, an unique
PERCENTILE mechanism has a bounded approximation ratio of the
optimal maximum distance or minimum utility.

Theorem 2. The only PERCENTILE mechanism for locating two fa-
cilities with bounded approximation ratio of the optimal minimum
utility is the ENDPOINT mechanism which 3/2-approximates it.

Proof. Consider k agents at 0 and n − k at 1 with k < n. The so-
lution with optimal minimum utility has facilities at 0 and 1, with a
minimum utility of 1 unit. The only PERCENTILE mechanism that
guarantees for any n and k that facilities are always located at 0
and at 1, and so have a minimum utility that is not zero units, is
the ENDPOINT mechanism. With this mechanism, the worst case for
the approximation ratio occurs when agents are at 0, 1/2 and 1, and
the ratio is 3/2.

Recall that the only deterministic and strategy proof mechanism
for two facilities with a bounded approximation ratio for the optimal
maximum distance is the ENDPOINT mechanism [10]. Surprisingly,
there are multiple deterministic and strategy proof mechanisms be-
sides the ENDPOINT mechanism that bound the approximation ratio
for the optimal minimum utility. There are even mechanisms with
better ratios than the ENDPOINT mechanism.

Theorem 3. When locating two facilities, the THIRDORNEAREST

mechanism 3/2-approximates the optimal minimum utility. The
QUARTERORNEAREST mechanism 4/3-approximates the optimal
minimum utility.

Proof. The worst case has agents at 0 and 1 when the
optimal minimum utility is 1. The THIRDORNEAREST and
QUARTERORNEAREST mechanisms return solutions with minimum
utility 2/3, and 3/4 respectively, giving approximation ratios of 3/2
and 4/3 respectively.

Finally, we provide a lower bound on the best possible ratio for
approximating the minimum utility.

Theorem 4. Any deterministic and strategy proof mechanism for two
facilities has an approximation ratio of the optimal minimum utility
of at least 10/9.

Proof. By contradiction. Suppose there exists a strategy proof mech-
anism with a smaller approximation ratio. Consider agents at 1/6, 1/3
and 1. The optimal solution locates facilities at 1/4 and in the inter-
val [11/12, 1]. To meet the approximation ratio, the leftmost facility
must be in the interval [1/6, 41/120). There are two cases. In the first
case, the leftmost facility is in the interval [1/4, 41/120). Suppose the
agent at 1/6 mis-reports their location as 0. The optimal solution now
locates facilities at 1/6 and in the interval [5/6, 1]. To meet the approx-
imation ratio, the leftmost facility must be in the interval (1/12, 1/4).
This puts it closer to the agent at 1/6 than previously. Hence, the
agent at 1/6 has an incentive to misreport their location as 0. In the
second case, the leftmost facility is in the interval [1/6, 1/4). Suppose
the agent at 1/3 mis-reports their location as 1/2. The optimal solu-
tion now locates facilities at 1/3 and in the interval [5/6, 1]. To meet
the approximation ratio, the leftmost facility must be in the inter-
val (1/4, 5/12). This puts it closer to the agent at 1/3 than previously.
Hence, the agent at 1/3 has an incentive to misreport their location as
1/2.

Results about the performance guarantees achieved by strategy proof
mechanisms for locating two facilities on the line are summarized in
Table 2. No mechanism dominates.

5.3 Three or more facilities

With a single facility, no PERCENTILE mechanism bounds the ap-
proximation ratio of the optimal minimum utility. With two facili-
ties, there is an unique PERCENTILE mechanism with a bounded ap-
proximation ratio of the optimal minimum utility. With three or more



mechanism
measure maximum

distance
minimum

utility
lower bound 2 10/910/910/9

ENDPOINT 2 3/23/23/2
PERCENTILE, ¬ENDPOINT ∞ ∞∞∞

THIRDORNEAREST ∞ 3/23/23/2
QUARTERORNEAREST ∞ 4/34/34/3

Table 2: Summary of approximation ratios achieved by different strat-
egy proof and deterministic mechanisms for the two facility location
problem. Bold for results proved here.

facilities, a family of PERCENTILE mechanisms have a bounded ap-
proximation ratio of the optimal minimum utility. Specifically, any
ENDPOINT mechanism which locates one facility at the leftmost
agent, another at the rightmost agent, and other facilities at these or
other percentiles has a bounded approximation ratio.

Theorem 5. With three or more facilities, PERCENTILE mechanisms
that are not ENDPOINT mechanisms have an unbounded approxima-
tion ratio of the optimal minimum utility, while ENDPOINT mecha-
nisms 2-approximate the optimal minimum utility.

Proof. Consider k agents at 0 and n−k at 1 with k ≤ n. The solution
with optimal minimum utility has facilities at 0 and 1, with a mini-
mum utility of 1 unit. The only PERCENTILE mechanisms that guar-
antee for any n and k facilities are at both 0 and 1, and thus a min-
imum utility that is not zero units, are ENDPOINT mechanisms. Let
p be the smallest non-zero parameter of such an ENDPOINT mech-
anism, and n = ⌈2/p⌉. Suppose there is one agent at 0, another at
1/2 and n agents at 1. The optimal minimum utility is 1 unit but the
mechanism returns a solution with minimum utility of 1/2 unit. The
approximation ratio is therefore 2.

Finally, we give a lower bound on the approximation ratio.

Theorem 6. Any deterministic and strategy proof mechanism for m
facilities (m ≥ 2) has an approximation ratio of the optimal mini-
mum utility of at least 8m−1

8m−2
.

Proof. Suppose there exists a mechanism with a smaller ratio α.
Consider agents at 0, 1/m, . . . 1. The solution with optimal minimum
utility puts one facility at the midpoint between two agents. We sup-
pose this is at 1/2m. The other cases are similar. To meet the ap-
proximation ratio, the mechanism must locate the leftmost facility at
b ∈ (1/4m, 3/4m). Consider what happens if the agent at 1/m reports
their location as b. We argue that, to meet the approximation ratio,
the facility must be located strictly to the left of b. The most prob-
lematic case is when b = 1/4m. Then the optimal minimum utility
puts the leftmost facility at 1/8m with an optimal minimum utility of
8m−1
8m

. To meet the approximation ratio, the mechanism must locate
the facility so that the minimum utility is greater than 8m−1

8m
8m−2
8m−1

(which is 4m−1
4m

). This puts the facility at some location to the left of
1/4m, which itself is to the left of b. Thus if agents are at 0, b and 1
then it pays for the agent located at b to mis-report their location as
1/m.

6 Randomized mechanisms

Randomization is often a simple and attractive device to achieve bet-
ter approximation ratios in expectation.

6.1 Single facility

In the classic setting of minimizing the maximum distance, the ran-
domized ENDORAV mechanism stands out. This is strategy proof
and 3/2-approximates the optimal maximum distance in expectation
(Theorem 3.3 in [20]). This beats the 2-approximation lower bound
for deterministic mechanisms. Indeed, it is optimal as no randomized
and strategy proof can do better than an approximation ratio for the
maximum distance of 3/2 in expectation (Theorem 3.4 in [20]).

In terms of optimizing the minimum utility, the ENDORAV mecha-
nism performs less well, only 2-approximating the optimal minimum
utility ex ante. This is not even as good as some deterministic mech-
anisms ex post. In particular, the deterministic MIDORNEAREST

mechanism 3/2-approximates the optimal minimum utility ex post,
and this is the best possible approximation ratio for deterministic
mechanisms. With respect to minimum utility, the ex post perfor-
mance of MIDORNEAREST therefore beats the ex ante performance
of the ENDORAV mechanism significantly. The ex ante performance
of the ENDORAV mechanism is also, as we show next, far from the
best that randomized and strategy proof mechanisms can achieve.

Theorem 7. The ENDORAV mechanism 2-approximates the optimal
minimum utility in expectation.

Proof. Without loss of generality, we shift agents to left so x1 = 0
and xn = z. The optimal minimum utility is 1 − z/2. The expected
minimum utility of the solution returned by the ENDORAV mecha-
nism is 1/4(1 − z) + 1/2(1 − z/2) + 1/4(1 − z). That is 1 − 3z/4.
The approximation ratio α = (1− z/2)/(1− 3z/4) = 4−2z

4−3z
. For

z ∈ [0, 1], this takes the maximum value of 2 at z = 1.

We next show that there do exist randomized mechanisms that
perform better than any deterministic mechanism at maximizing
the minimum utility. By considering carefully how the ENDORAV

mechanism can perform poorly, we design a new randomized mech-
anism that is optimal with respect to approximating the minimum
utility. The essential problem with the ENDORAV mechanism is
that it can place the facility close to 0 which gives low utility
when an agent is close to 1 (and vice versa). We therefore mod-
ify the ENDORAV mechanism to avoid this. The ENDORAVTRUNC

mechanism works as follows. If x1 is the leftmost agent and xn

is the rightmost agent, then let y = max(1/3,min(x1, 2/3)) and
z = max(1/3,min(2/3, xn)). If y = z = 1/3 then we locate the facil-
ity using RIGHTMOST (i.e at xn). If y = z = 2/3 then we locate the
facility using LEFTMOST (i.e. at x1). Otherwise we locate the facil-
ity using ENDORAV applied to y and z (i.e. at y with probability 1/4,
at (y + z)/2 with probability 1/2 and z otherwise). We now prove this
new three part randomized mechanism is strategy proof and achieves
the best possible approximation ratio of the optimal minimum utility.

Theorem 8. The ENDORAVTRUNC mechanism is strategy proof,
4/3-approximates the optimal minimum utility and 2-approximates
the optimal maximum distance in expectation.

Proof. Strategy proofness of the ENDORAVTRUNC mechanism fol-
lows from strategy proofness of LEFTMOST when all agents are to
left of 1/3, RIGHTMOST when all agents are to right of 2/3, and
ENDORAV otherwise, with the additional observations that truncat-
ing reduces the ability of agents to misreport (e.g. reporting less than
1/3 is the same as reporting 1/3), and that misreporting which moves
between one of these three regimes is never advantageous.

To determine the approximation ratio of the minimum utility, there
are seven cases to consider. In the first case y = z = 1/3. The worst



subcase has x1 = 0, xn = 1/3 and an approximation ratio of 5/4. In
the second case y = z = 2/3. This case is dual to the first case. In
the third case, y = 1/3, z = 2/3 and x1 ≤ 1 − xn. The expected
minimum utility of the returned solution is 1/2 + x1. This compares
to an optimal of 1 − 1/2(xn − x1). The approximation ratio is a
maximum when x1 = 0 and xn = 2/3. In this situation, the op-
timal minimum utility is 2/3 while the expected minimum utility of
the solution returned by the mechanism is 1/2. This corresponds to an
approximation ratio of 4/3. In the fourth case, y = 1/3, z = 2/3 and
x1 > 1− xn. This is dual to the third case. In the fifth case, y ≥ 1/3
and z = 2/3. The expected minimum utility of the returned solution
is 4/3−xn+y/2. This compares to an optimal of 1− (xn − x1)/2. The
approximation ratio is a maximum when x1 = 1/3 and xn = 1. In
this situation, the optimal minimum utility is 2/3 while the expected
minimum utility of the solution returned by the mechanism is 1/2.
This corresponds to an approximation ratio of 4/3. In the sixth case,
y = 1/3 and z ≤ 2/3. This is dual to the fifth case. In the seventh and
final case, y > 1/3 and z < 2/3. In this situation, the optimal mini-
mum utility is 1−(z − y)/2 while the expected minimum utility of the
solution returned by the mechanism is 1− 3(z − y)/4. The worst case
is when y ; 1/3, z ; 2/3 and the approximation ratio approaches
10/9 from below. Over the seven cases, the worst approximation ratio
achieved by the mechanism is 4/3.

To determine the approximation ratio of the maximum distance,
there are again seven cases to consider. In the first case y = z = 1/3.
The worst subcase has x1 = 0, xn = 1/3 and an approximation
ratio of 2. In the second case y = z = 2/3. This case is dual to the
first case. In the third case, y = 1/3, z = 2/3 and x1 ≤ 1 − xn.
The expected maximum distance of the returned solution is 1/2−x1.
This compares to an optimal of 1/2(xn − x1). The approximation
ratio is a maximum when x1 = 0 and xn = 2/3. In this situation, the
optimal maximum distance is 1/3 while the expected minimum utility
of the solution returned by the mechanism is 1/2. This corresponds
to an approximation ratio of 3/2. In the fourth case, y = 1/3, z =
2/3 and x1 > 1 − xn. This is dual to the third case. In the fifth
case, y ≥ 1/3 and z = 2/3. The expected maximum distance of the
returned solution is xn − y/2 − 1/3. This compares to an optimal of
(xn − x1)/2. The approximation ratio is a maximum when x1 = 1/3
and xn = 1. In this situation, the optimal maximum distance is 1/3
while the expected maximum distance of the solution returned by the
mechanism is 1/2. This corresponds to an approximation ratio of 3/2.
In the sixth case, y = 1/3 and z ≤ 2/3. This is dual to the fifth case. In
the seventh and final case, y > 1/3 and z < 2/3. In this situation, the
optimal maximum distance is (z − y)/2 while the expected maximum
distance of the solution returned by the mechanism is 3(z − y)/4. This
corresponds to an approximation ratio of 3/2. Over the seven cases,
the worst approximation ratio achieved by the mechanism is 2.

We next show that the approximation ratio of the minimum utility
achieved by ENDORAVTRUNC is optimal, being the best possible
for a randomized and strategy proof mechanism.

Theorem 9. No randomized and strategy proof mechanism for a sin-
gle facility can do better than 4/3-approximate the minimum utility in
expectation.

Proof. To determine the lower bound on the approximation ratio
of the optimal minimum utility, we consider just the leftmost and
rightmost agents as these alone determine the minimum utility of an
agent. Suppose the leftmost agent is at 1/3 and the rightmost is at 2/3.
By Lemma 3.6 in [20], one of the agents is at least an expected dis-
tance of 1/6 from the facility. Suppose this is the agent at 2/3. There

is a dual argument if it is the agent at 1/3. Suppose we now shift the
agent at 2/3 to 1. By strategy proofness, the expected distance of the
facility from 2/3 must remain at least 1/6. By Lemma 3.5 in [20], as
the agents are at a distance of 2/3 apart, the expected maximum dis-
tance of an agent from a facility is therefore at least 1/6 + (2/3)/2,
which is 1/2. The expected minimum utility then is 1− 1/2, which is
1/2. This compares to an optimal minimum utility of 2/3, giving an
approximation ratio of (2/3)/(1/2) or 4/3.

6.2 Two facilities

The best performing randomized and strategy proof mechanism for
locating two facilities currently known is the ENDSORAV mecha-
nism (named “Mechanism 2” in [20]. This 5/3-approximates the op-
timal maximum distance in expectation. This is only slightly greater
than the 3/2 lower bound known for any randomized and strategy
proof mechanism (Corollary 4.6 in [20]). This mechanism also per-
forms well at optimizing the minimum utility.

Theorem 10. When locating two facilities, the ENDSORAV mecha-
nism 9/7-approximates the minimum utility in expectation.

Proof. ENDSORAV works as follows. Let mid = (x1 + xn)/2, l =
maxi{i | xi ≤ mid}, r = mini{i | xi ≥ mid}, ∆ = max(xl −
x1, xn − xr). Then the mechanism constructs the following prob-
ability distribution of facility locations: x1 and xn with probability
1/2, x1 + ∆ and xn − ∆ with probability 1/6, and x1 + ∆/2 and
xn − ∆/2 otherwise (i.e. with probability 1/3). By a pigeonhole ar-
gument, ∆ ∈ [0, 1/2]. The optimal minimum utility is 1− ∆/2. With
probability 1/3, the mechanism outputs a solution with minimum util-
ity 1 − ∆/2. With probability 2/3, the mechanism outputs a solution
with minimum utility 1−∆. The expected minimum utility therefore
is 1 − 5∆/6. The approximation ratio is (1 − ∆/2)/(1 − 5∆/6). This
is 6−3∆

6−5∆
. For ∆ ∈ [0, 1/2], this has a maximum value of 9/7 when

∆ = 1/2.

Finally, we provide a lower bound on the best possible approxima-
tion ratio achievable in expectation.

Theorem 11. No randomized and strategy proof mechanism for two
facilities can do better than 10/9-approximate the minimum utility in
expectation.

Proof. Suppose we have agents at 1/6, 1/3, and 1. To meet the ap-
proximation bound, one facility is likely close to agents at 1/6 and
1/3, while the other is likely close to the agent at 1. By Lemma 3.6 in
[20], one of the two leftmost agents is at least an expected distance of
1/12 from the leftmost facility. Suppose this is the agent at 1/6. There
is a dual argument if it is the agent at 1/3. Suppose we now shift the
agent at 1/6 to 0. By strategy proofness, the expected distance of the
leftmost facility from 1/6 must remain at least 1/12. By Lemma 3.5 in
[20], as the agents are at a distance of 1/3 apart, the expected maxi-
mum distance of an agent from this facility is at least 1/12 + (1/3)/2,
which is 1/4. The expected minimum utility then is 3/4. This com-
pares to an optimal minimum utility of 5/6, giving an approximation
ratio of (5/6)/(3/4) or 10/9.

6.3 Three or more facilities

When locating three or more facilities, the randomized EQUALCOST

mechanism stands out as it is strategy proof and achieves an approx-
imation ratio of 2 for the optimal maximum distance [9]. Determin-
istic mechanisms, by comparison, do not have a bounded approxi-



mation ratio of the optimal maximum distance for three or more fa-
cilities. Recall that EQUALCOST work as follows: it computes an
optimal covering of all agent locations with m disjoint intervals
[αi, αi + p] that minimize p and that fit within [0, 1], then gener-
ates a random bit z ∈ {0, 1} uniformly, and locates the ith facility at
αi + zp for i odd and αi + (1− z)p for i even.

Theorem 12. With m facilities (m ≥ 2), the EQUALCOST mecha-
nism 2m−1

2m−2
-approximates the minimum utility. With a single facility,

the ratio is unbounded.

Proof. For m ≥ 2, EQUALCOST computes an optimal covering of
all agent locations with m disjoint intervals of length l. By a pigeon-
hole argument, l ∈ [0, 1/m]. The worst performance of EQUALCOST

is when agents are at the interval endpoints. The optimal minimum
utility is 1 − l/2 compared to the expected minimum utility of the
solution returned by EQUALCOST of 1 − l. This gives an approxi-
mation ratio of 2−l

2−2l
. For l ∈ [0, 1/m], this takes a maximum value

of 2m−1
2m−2

. For m = 1, the worst case has x1 = 0 and xn = 1. The
optimal solution puts the facility at 1/2, with a minimum utility of 1/2.
However, the EQUALCOST returns a lottery over solutions, each of
which has a minimum utility of zero units. The approximation ratio
is therefore unbounded.

Similar to ENDORAVTRUNC, we could modify EQUALCOST for
a single facility so that the facility is never placed in [0, 1/3) or (2/3, 1]
but truncated to lie in [1/3, 2/3]. This would improve the approxima-
tion ratio of the optimal minimum utility to 4/3.

Our results for different randomized mechanisms are summarized
in Table 3. For a single facility, ENDORAV and ENDORAVTRUNC

are incomparable, both dominating EQUALCOST. For two facilities,
ENDSORAV dominates EQUALCOST. And for three or more facili-
ties, EQUALCOST performs well on both objectives.

mechanism
measure maximum

distance
minimum

utility
m = 1

lower bound 3/2 4/34/34/3
ENDORAV 3/2 222

ENDORAVTRUNC 222 4/34/34/3
EQUALCOST 2 ∞∞∞

m = 2
lower bound 3/2 10/910/910/9
ENDSORAV 5/3 9/79/79/7
EQUALCOST 2 3/23/23/2

m > 2

EQUALCOST 2 2m−1
2m−2
2m−1
2m−2
2m−1
2m−2

Table 3: Summary of approximation ratios achieved by different ran-
domized mechanisms for the m facility location problem. Bold for
results proved here

7 Happiness objective
Closely related (but different) to this work is [16, 17]. They define
the “happiness” of agent i as hi = 1 − di/dimax where dimax is the
maximum possible distance agent i can travel. Compare this to util-
ities where ui = 1 − di. With agents and facilities constrained to
[0, 1] (both here and in their work), dimax = max(xi, 1− xi).

Mei et al. [17] consider strategy proof mechanisms maximiz-
ing the minimum happiness, limiting their analysis to determinis-
tic mechanisms locating a single facility. Their normalization of dis-
tances changes the approximation ratios that can be achieved. They

prove that the mechanism locating the facility at the midpoint of the
interval 2-approximates the optimal minimum happiness, and that no
deterministic and strategy proof mechanism has an approximation
ratio better than 4/3. They observe,

“Note that there is a big gap between the upper bound 2 and
the lower bound 4/3. It is worth figuring out a tighter bound.”
[17]

We now close this gap by proving that the MIDORNEAREST mech-
anism achieves this lower bound.

Theorem 13. The MIDORNEAREST mechanism is a 4/3-
approximation of the optimal minimum happiness.

Proof. There are three cases. In the first, x1 ≤ 1/2 ≤ xn and the
mechanism locates the facility at 1/2. Algebraic reasoning shows that
the approximation ratio takes a maximum value of 4/3 when x1 =
1/2 and xn = 1, or x1 = 0 and xn = 1/2. In both subcases, the
minimum happiness is 1/2 unit compared to an optimal of 2/3 unit.
In the second case, xn ≤ 1/2. Algebraic reasoning again shows that
the approximation ratio takes a maximum value of 4/3 for x1 = 0
and xn = 1/2. The third case, with x1 > 1/2 is symmetric to the
second.

Recall that the MIDORNEAREST mechanism 3/2-approximates
the optimal minimum utility. This demonstrates that approximation
ratios for happiness and utility are different. Surprisingly then the
MIDORNEAREST mechanism is optimal with respect to approximat-
ing maximum distance, minimum utility and minimum happiness.

8 Conclusions

We have explored the landscape of strategy proof mechanisms for
egalitarian facility location. Our major novelty is to consider whether
mechanisms approximate well both the optimal maximum distance
and the optimal minimum utility. We identified several strategy proof
mechanisms with optimal approximation ratios with respect to the
two objectives. Somewhat surprisingly, with respect to the worst
off agent, neither the deterministic MEDIAN nor the randomized
ENDORAV mechanisms always perform well, despite performing
well with respect to just the maximum distance.

For deterministic mechanisms, we proved that the
MIDORNEAREST mechanism matches the optimal approxima-
tion ratio of the MEDIAN mechanism for the objective of maximum
distance, but offers a better and optimal approximation ratio for the
objective of minimum utility. We also closed an open problem from
Mei et al. [17] by proving that the MIDORNEAREST mechanism
has an optimal approximation ratio for maximizing the minimum
happiness, a closely related objective to minimum utility.

For randomized mechanisms, we proved that the ENDORAV

mechanism, which has previously been shown to be optimal with
respect to minimizing the maximum distance, is not optimal with re-
spect to maximizing minimum utility. By considering carefully how
it can perform poorly, we proposed a new three part randomized
mechanism that is optimal with respect to approximating the mini-
mum utility. Our results for one facility are optimal, providing upper
and lower bounds on approximation ratios that match. For multiple
facilities, our results are asymptotically tight, providing bounds that
are within a constant factor. Our result uncover a richer landscape of
strategy proof mechanisms with good approximation ratios than was
uncovered in the “classic” setting when considering just distances.
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