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Adventures in Mathematical
Reasoning

Toby Walsh

Abstract “Mathematics is not a careful march down a well-cleared highway,
but a journey into a strange wilderness, where the explorers often get lost.
Rigour should be a signal to the historian that the maps have been made, and
the real explorers have gone elsewhere.”

W.S. Anglin, the Mathematical Intelligencer, 4 (4), 1982.

1 Introduction

In 19861, I moved to Edinburgh to start a Masters conversion course into
Artificial Intelligence after having studied mathematics at the University of
Cambridge. I had dreamed about working in AI for many years. So it was
my good fortune to fall into the gravitational attraction of Alan Bundy and
become a member of the DReaM group. Shortly after, I began a PhD under
Alan’s careful supervision2 [1, 2, 3].

I would now start to dream about getting computers to do mathematics.
It was perhaps not surprising that this was the orbit into which I fell. I
had always liked mathematics and now I could combine two of my passions:
Artificial Intelligence and mathematics.

I would stay in Edinburgh for most of the next dozen or so years, apart
from some enjoyable excursions to work at INRIA in Nancy and with Fausto
Giunchiglia at IRST in Trento. There was a lot to like about living and
working in Aulde Reekie. However, fresh challenges started to emerge and I
began to build up to an escape velocity. I took a research position in Glasgow
but stayed living in Edinburgh, visitng the DReaM group frequently. Then I
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1 How can it be that long ago?
2 I was lucky also to have one of Alan’s postdocs, Fausto Giunchiglia as a second supervisor.
We would work together closely for the next decade.
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moved to York, and finally a sling shot sent me past Cork to Sydney, Australia
where I remain today.

In due course, I would leave behind the work that I had done in Edinburgh
and explore other parts of Artificial Intelligence. However, this volume offers
me the chance to consider how those ripples might have had a small influence
on what followed. More importantly, it lets me thank Alan for his mentoring.
This summary is necessarily high level and will avoid going into many of the
technical details. I have a lot of ground to cover so it is impossible in this
limited space to go deeper.

2 Rippling

Alan was (and is) a neat AI researcher. One strategy he promoted was to
take some scruffy research and make it neat. He even gave it a name: under-
taking a “rational reconstruction” of some past research. In the late 1980s
[4], the DReaM group embarked on a project to rationally reconstruct the
rather scruffy inductive theorem proving techniques to be found in Boyer and
Moore’s NQTHM theorem prover [5]. Dieter Hutter in Karlsruhe was going
about a similar task developing the INKA prover [6] and soon became closely
involved with the efforts in Scotland.

Central to the inductive theorem proving heuristics in NQTHM were the
ideas of recursion analysis (picking an induction rule and variable), and then
rewriting the step case to match the induction hypothesis in a process that
became rationally reconstructed as an annotated form of rewriting called
“rippling” [7, 8]. Picking an appropriate induction rule and variable depends
on how you can simplify the resulting step case so the two ideas are closely
connected.

In the early 1990s, rippling ran into some annoying problems. In particular,
the annotations used by rippling to guide rewriting could become ill-formed,
and there was as yet no principled way to annotate terms in the first place.
Alan’s newest postdoc, David Basin and I set about fixing these problems. I
shall tell the story backwards as it makes for a more rational reconstruction
of the work.

2.1 A calculus for rippling

Rippling is a form of rewriting guided by special kinds of (meta-level) anno-
tation. Consider, for example, a proof that appending a list onto the empty
list leaves the list unchanged. In the step-case, the induction hypothesis is,

(append x nil) = x
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From this, we need to derive the induction conclusion,

(append (cons e x) nil) = (cons e x)

We can annotate the induction conclusion to highlight the differences between
it and the induction hypothesis,

(append (cons e x) nil) = (cons e x)

The square boxes are the “wavefronts”. The underlined parts are the “wave-
holes”. If we eliminate everything in the wavefronts but not in the waveholes,
we get the “skeleton” in which the induction conclusion matches exactly the
induction hypothesis.

To simplify the induction hypothesis, we will use a rewrite rule derived
from the recursive definition of append,

(append (cons a b) c) =def (cons a (append b c))

We can turn this into a rewrite rule annotated with wavefronts and waveholes,

(append (cons a b) c) ⇒ (cons a (append b c))

This is called a “wave rule”. It preserves the skeleton, (appendac) but moves
the wavefront, (consa . . .) up and hopefully out of the way. Applying this rule
to the left-hand side of the induction conclusion gives,

(cons e (append x nil)) = (cons e x)

We can now simplify the left-hand side using the induction hypothesis as the
rewrite rule,

(append x nil) ⇒ x

This rewriting step is called fertilization, and leaves the following equation,

(cons e x) = (cons e x)

The left-hand side of the rewritten induction conclusion now matches the
right-hand side. The step case therefore holds by the definition of equality.

Rewriting annotated terms in this way take us beyond the normal rewriting
of terms. David and I therefore formalized a calculus for describing such
annotated rewriting [9, 10]. We showed that this calculus had the following
four desirable properties.

Well-formedness: rewriting properly annotated terms with wave rules leaves
them properly annotated.
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Skeleton preservation: rewriting properly annotated terms with wave rules
preserves the skeleton.

Correctness: we can perform the corresponding derivation in the underlying
un-annotated theory. Annotation is thus merely guiding search.

Termination: given appropriate measures on annotated terms, we can guar-
antee rippling terminates. There are, for example, no loops.

We showed that different termination orderings can profitably used within
and outwith induction [11]. Such new orderings let us combine the highly
goal directed features of rippling with the flexibility and uniformity of more
conventional term rewriting. For instance, we proposed two new orderings
which allow unblocking, definition unfolding, and mutual recursion to be
added to rippling in a principled (and terminating) fashion.

2.2 Difference matching and unification

But where do the annotations come from in the first place? David and I gen-
eralized both (1-sided) matching and (2-sided) unification to annotate terms
appropriately. Difference matching extended first-order matching to make one
term, the pattern match another, the target by instantiating variables in the
target, as well as by hiding structure with wavefronts also in the target [12].
Difference unification extended unification to make two terms syntactically
equal by variable instantiation and by hiding structure with wavefronts in
both terms [13]. Difference unification is needed, for instance, to annotate
rewrite rules as wave rules.

A single difference match can be found in time linear in the size of the
target. If the pattern contains a variable, then set this to the target and
put everything else in the wavefront. If not, the pattern is ground and we can
simply descend through the term structure hiding any differences between the
pattern and the target in wavefronts. However, there can be exponentially
many difference matches in the size of the pattern in general so returning
all of them can take exponential time. In practice, though, there are usually
only a few successful difference matches and these can be found quickly.

Difference unification is more problematic computationally. Even if we
limit wavefronts to one term, deciding if two terms difference unify together
is NP-hard (Theorem 8 in [13]). Thus, supposing P 6= NP, we cannot in gen-
eral find even a single difference unifier in polynomial time. Looking again at
this result more than 25 years later, I would not leave the analysis there but
would look closer at the source of complexity. Difference unification hasn’t
proved too intractable in practice and we can likely argue why not. The re-
duction showing NP-hardness reduced a propositional satisfiability problem
in m clauses to difference unifying two m-ary functions. The functions being
difference unified in this proof therefore can have very great arity. I conjec-
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ture that difference unification is polynomial, more precisely fixed-parameter
tractable, when applied to terms of bounded arity.

An unexpected tale:

To find the difference unification with the least amount of an-
notation, we proposed a new generic AI search called left-first
search (LFS) [13]. Left branches of our search tree introduced an-
notations, whilst right branches matched terms. Left-first search
explored leaf nodes of this search tree in order of the number of
left branches taken. I presented the search method at IJCAI 1993.

Two years later, I was listening to an IJCAI 1995 conference talk
on a new search method called limited discrepancy search (LDS)
[14] when one of the authors put up a slide showing the order of
the leaf nodes explored by LDS. This appeared identical to that
of LFS, a slide I remember preparing two years before. At the
end of the talk, I therefore asked about the difference between
the two search methods. A colleague called it the “question from
hell” but my intention was just to understand how they differed.

Unbeknown to me, LDS was being patented, and it set off a chain
of unfortunate events. Lawyers had to rewrite the patent applica-
tion at some significant cost. I was asked to be an expert witness
in a patent dispute over LDS. And I was considered by the authors
of LDS to be a “trouble maker”.

Eventually it would blow over as there is a simple but crucial
difference. Our search trees were small and so LFS expanded them
in memory. LDS was intended for much larger search trees and
so, whilst it expanded leaf nodes in the same order as LFS, did
so in a lazy space efficient fashion by returning repeatedly to the
root node much like iterative deepening search. This adds just
a constant factor to the time asymptotically so is worth paying
when space is an issue.

Whilst difference unification was invented to deal with inductive proof, it
captures a deeper and more general idea used in mathematics. In [15], J.A.
Robinson presented a simple account of unification in terms of difference
reduction. He observed,

“Unifiers remove differences ... We repeatedly reduce the difference between the two
given expressions by applying to them an arbitrary reduction of the difference and
accumulate the product of these reductions. This process eventually halts when the
difference is no longer negotiable [reducible via an assignment], at which point the
outcome depends on whether the difference is empty or nonempty.”
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Difference unification can be seen as a direct extension of Robinson’s notion
of difference reduction: we reduce differences not just by variable assignment,
but also by term structure annotation. However, what makes this extended
notion of unification attractive, is that this annotation is precisely what is
required for rippling to remove this difference. And, as we see shortly, rippling
has found an useful role to play in a number of other proof areas.

3 Proof planning

An important idea explored within the DReaM group is the separation of logic
and control. Proof planning, developed originally for inductive proof [16],
brought together ideas of meta-level control explored in the earlier PRESS
project [17] with AI planning operators specified by pre- and post-conditions,
Theorem proving heuristics are described by general purpose proof planning
methods such as rippling and fertilization that are glued together using simple
AI search techniques like depth-first or best-first search. Since proof planning
was proving useful for inductive proof, I became keen to try to apply it
elsewhere.

3.1 Summing series

To explore the use of proof planning in general, and rippling in particular
outside of inductive proof, I chanced on the domain of summing series [18].
Inductive proofs can be used to verify identities about finite sums. But where
do these identities come from in the first place?

I developed a set of proof planning methods to solve such problems. To my
surprise, rippling proved to be key to many of these methods. I will illustrate
this with the Conjugate method. This method transforms a finite sum of
terms into the finite sum of some conjugate. The conjugate can be one of
several second order operations, e.g. the differential or integral of the original
term, or the mapping of a trigonometric series onto the real or imaginary
part of a complex series.

Consider, for example, find a closed form expression for,

n∑

i=0

(i + 1)xi

The Conjugate method transformed this into a simpler looking sum,

n∑

i=0

dxi+1

dx
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This now looks close to a known result, the closed form sum of a geometric
series,

n∑

i=0

xi =
xn+1 − 1

x− 1

Difference matching our simpler looking sum against the left-hand side of
this know result gives some wavefronts we need to remove out of the way by
rippling with wave rules,

n∑

i=0

dx
i+ 1

dx

Since the derivative of a sum is the sum of the derivatives, rippling gives,

d

∑
n

i=0
x
i+ 1

dx

Rippling with a wave rule derived from the definition of exponentiation then
expands the exponent,

d

∑
n

i=0
x.xi

dx

One final rewriting step uses rippling to move the constant term outside the
sum,

d x.

∑
n

i=0
xi

dx

The Fertilize method substitutes the closed form sum for the geometric
series,

d x.
x
n+1

−1

x−1

dx

Finally a Differentiate method then symbolically computes a closed form
answer by algebraically differentiating the quotient. The derivation is now
complete.

We subsequently looked at some other mathematical domains such as the-
orems about limits [19]. Rippling and proof planning again proved up to the
challenge.
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3.2 A divergence critic

Proof planning methods come with high expectations of success. Their failure
can therefore be a useful tool in patching proofs. I explored how the failure of
rippling can be used to suggest missing lemma needed to complete a proof by
means of a “divergence critic” [20, 21]. Other members of the DReaM group
have explored similar ideas in closely related settings (e.g. [22, 23]).

My divergence critic identified when a proof attempt is diverging by means
of difference matching. The critic then proposed lemmas and generalizations
of these lemmas to try to allow the proof to go through without divergence.
For example, when the prover failed to show inductively that (rev (rev x)) =
x, the critic proposed the key lemma, a missing wave rule needed to complete
the proof,

(rev (append X (cons Y nil)) ) = (cons Y (rev X)

In my view, such failure is something we still exploit too little in automat-
ing mathematical reasoning. As a mathematician, I spend most of my time
failing to prove conjectures. But those failures eventually often lead me to
find either a proof when the conjecture is true, or a counter-example when it
is false.

4 Mathematical discovery

Mathematics is more than just proving theorems. It’s also defining theories.
Inventing definitions. Conjecturing results. Finding counter-examples. Devel-
oping proof methods. And more. One of the pleasures of the DReaM group
was to witness and contribute to automating some of these other mathemat-
ical activities.

In 1996, Alan started to supervise a young and ambitious PhD student,
Simon Colton. I was lucky enough to help out. Simon wanted to build a
system to invent new theories. Doug Lenat had shown the possibility to do
this with AM and the followup Eurisko [24, 25]. Simon set out to rationally
reconstruct Lenat’s work in his HR program [26, 27, 28, 29]. This was named
appropriately after the famous double act, Hardy and Ramanujan. Actually,
HR wasn’t much of a rational reconstruction of AM other than to work on
the same problem as AM, and to use a two letter name like AM.

In a wonderful example of why PhD students shouldn’t listen to their
supervisors, I suggested to Simon to keep well away from number theory. I
reasoned that there had been thousands of years of attention to number the-
ory. New and automated mathematical discoveries were more likely therefore
to be found in some newer and little studied theory like that of Moufang
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loops. Fortunately, Simon ignored this advice and HR made a number of
discoveries in number theory. On the other hand, in a wonderful example of
why PhD students should listen to their supervisors, Simon wasn’t keen to
submit an update on his work to AAAI 2000. I persuaded him to do so, and
the paper won the Best Paper award.

5 The meta-level

One of the other rewards of working in the DReaM group was Alan’s attention
to the meta-level. This wasn’t just the meta-mathematical level, but the
meta-level of doing research. Alan thought long and hard about how we do
research, and how you could do it better. I still recommend the Researcher’s
Bible that Alan co-wrote to my PhD students whether they’re starting out, or
writing up their thesis [30]. And when I left Edinburgh, I “borrowed” many of
his techniques for doing research on my own: writing half formed ideas down
in internal notes, trying to think of questions to ask at every seminar, giving
informal talks on any interesting papers I’d seen at summer conferences, etc.

6 Conclusions

Out of interest, I downloaded one of Alan’s latest paper [31]. To my surprise
and pleasure, it repeats and expands on many of the ideas I’ve discussed
here. It applies rippling to a new domain, invariant preservation proofs. The
meta-level guidance rippling provides is used to build proof patches to recover
failed attempt and eventually finish the proofs. And the paper ends with an
appendix containing a formal definition of rippling, along the lines of the
calculus we presented 25 years ago. It feels just like yesterday. Thank you for
everything, Alan.
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