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Abstract

Symmetry is an important feature in constraint pro-
gramming. Whilst there has been considerable
progress in dealing with symmetry in constraint sat-
isfaction problems, there has been less attention to
symmetry in constraint optimization problems. In
this paper, we propose some general methods for
dealing with symmetry in constraint optimization
problems.

1 Introduction

Many search problems contain symmetries. Symmetry oc-
curs naturally in many problems (e.g. if we have identical
machines to schedule, or identical jobs to process). Symme-
try can also be introduced when we model a problem. Unfor-
tunately, symmetries increases the size of the search space.
We must take into account symmetry or we will waste much
time visiting symmetric solutions, as well as those parts of
the search tree which are symmetric to already visited states.
Sophisticated methods have been developed in constraint sat-
isfaction problems to eliminate symmetry either statically by
the addition of symmetry breaking constraints [Puget, 1993;
Crawford et al., 1996; Aloul et al., 2002; Flener et al., 2002;
Aloul et al., 2003; Law and Lee, 2004; Puget, 2005; 2006;
Walsh, 2006] or dynamically by modifying the search method
to avoid symmetric states [Gent and Smith, 2000; Fahle et al.,
2001; Roney-Dougal et al., 2004; Hentenryck et al., 2003].
In this paper, we outline methods to extend such symmetry
breaking methods to work in the context of constraint opti-
mization.

2 Formal Background

A constraint satisfaction problem consists of a set of n vari-
ables, each with a domain of m possible values, and a set
of constraints specifying allowed combinations of values for
given subsets of variables. A solution of a constraint satis-
faction problem is an assignment of a value to each variable
satisfying the constraints. We will use upper case letters like
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X; and B; for variables and lower case letters like dj, for do-
main values. Without loss of generality, we can assume all
variables take values from the same universal domain of val-
ues (and unary constraints are used to restrict these domains
as appropriate).

A constraint optimization problem is a constraint satisfac-
tion problem with an additional objective function f. A so-
lution of a constraint optimization problem is a complete as-
signment that satisfies the constraints (a feasible assignment)
that minimizes or maximizes the objective function as appro-
priate. In the rest of this paper, we shall consider just min-
imization as any maximization problem can be turned into
a minimization problem by negating the objective function
f. To solve such a constraint optimization problem, we con-
sider branch and bound style methods that solve a sequence
of constraint satisfaction problems with tightening bounds on
the objective function.

3 Symmetry in Satisfaction

Symmetry occurs in many constraint satisfaction problems.
A variable symmetry of a constraint satisfaction problem is a
permutation of the variables that preserves solutions. More
formally, a variable symmetry is a bijection o on the indices
of variables such that if X; = dy,...,X,, = d, is a so-
lution then X;(1) = di,..., X5y = dy is also. For ex-
ample, suppose we wish to assign times (values) to exams
(variables) in an exam scheduling problem and we have two
exams taken by the same students. As we can interchange
these two exams, the problem has a variable symmetry. A
value symmetry of a constraint satisfaction problem, on the
other hand, is a permutation of the values that preserves so-
lutions. More formally, a value symmetry is a bijection 6 on
the values such that if X; = dy,...,X,, = d, is a solution
then Xy = 6(dy), ..., X,, = 6(d,) is also. For example, sup-
pose we wish to assign colours (values) to nodes (variables)
in a graph colouring problem. Value symmetry permits us to
interchange any two colours uniformly throughout a colour-
ing. We can further distinguish between solution symmetries
which preserve solutions, and constraint symmetries which
are those solution symmetries that also preserve the set of
constraints [Cohen et al., 2006]. As similar results hold for
both, we will consider here just solution symmetries.

The set of symmetries of a constraint satisfaction or opti-
mization problem form a group under composition. In this



work, we place no restrictions on the type of group. In partic-
ular, we are not restricted to products of the symmetry group,
S,. However, we do assume that the symmetries are known
in advance. For instance, if we are coloring a graph and use a
straight forward model with variables for nodes and values for
colors, we know that the values are fully interchangeable. A
number of methods have been developed to find symmetries
in a constraint satisfaction problem automatically. It would
be interesting to adapt these methods to finding symmetries
in constraint optimization problems automatically.

Symmetries are problematic as they increase the size of the
search space. For instance, if we have m interchangeable val-
ues, symmetry increases the size of the search space by a fac-
tor of m!. One simple and common mechanism to deal with
symmetry in constraint satisfaction problems is to add con-
straints which eliminate symmetric solutions [Puget, 1993].
Suppose we have a set X of variable symmetries. We can
eliminate all symmetric solutions due to these symmetries by
posting “lex leader” constraints which ensure that the solu-
tion is ordered lexicographically before any of its symmetries
[Crawford er al., 1996]. More precisely, we post:

[Xla ceey Xn] <lex [Xa(l)v R Xa(n)]

For each 0 € ¥ where X to X, is a given fixed ordering on
the variables. Similar lex leader constraints can be posted to
eliminate value symmetries, as well as symmetries which act
simultaneously on variables and values [Puget, 2006; Walsh,
2006].

4 Variable Symmetry in Optimization

We now lift both the definition of symmetry and the idea of
eliminating symmetries by posting lex leader constraints to
constraint optimization problems. We define a variable sym-
metry of a constraint optimization problem as a bijection o
on the indices of the variables that preserves feasibility. Note
that such a symmetry may not preserve the value of the objec-
tive function. For example, consider the constraint optimiza-
tion on two integer variables with constraints 0 < X; < 4,
0 < Xo <4, X;5 + Xy < 6 and the objective function
—2.X7 — Xo. Then X; and X5 are symmetric. Given any
assignment that is feasible (e.g. X; = 1 and Xo = 3), we
can swap X; and X5 and construct another feasible assign-
ment (in this case, X; = 3 and X5 = 1). The objective
function does not have this symmetry as the value of the ob-
jective changes (from -5 to -7) under this mapping. One ap-
pealing feature of this definition of symmetry of a constraint
optimization problem is that we can use any of the existing
methods for finding symmetries that have been developed for
constraint satisfaction problems.

We cannot break variable symmetry in constraint opti-
mization using exactly the same static symmetry breaking
methods as in constraint satisfaction. Returning to our run-
ning example, suppose we post the lex leader constraint:
[X1, X2] <iex [X2,X1]. This gives a new constraint opti-
mization problem with solution -9, whilst the original con-
straint optimization problem had a solution of -10. The added
symmetry breaking constraint conflicts with minimizing the
objective. Fortunately, we only need a small modification to

the lex leader method to ensure that the symmetry breaking
constraints do not conflict. To eliminate symmetric solutions
from a constraint optimization problem, we can post a sym-
metry breaking constraint for each variable symmetry which
ensures:

[f(Xh ~-~7Xn)7X17 7Xn] Slex

[f(Xa(l)a [EEE) X(T(n))7 X(T(l)? [EES) Xa(n)}

Such generalized lex leader constraints limit search to
those assignments within each symmetry class to those with
the smallest objective value, and between those with an
equally small objective, to those that are lexicographically
least. Note that if f is constant, this degenerates to the lex
leader constraint used to break symmetry in constraint satis-
faction problems (as would be expected). We can therefore
use generalized lex leader constraints within a branch and
bound algorithm to find the optimal solution. To propagate
such generalized lex leader constraints, we propose the fol-
lowing simple encoding which introduces Boolean variables,
B; to record where the sequence is lex ordered:

F(X o X0) € F Xy Xoim)
F(X1re o X0) = (X Xotm)
B; V(X < X,())
BiV(X; < Xou)) = Bin

(

Note that, since f(X1,...,X,) < f(Xo1),- s Xom))s
we could simply have posted f(Xi,...,X,) =
f(Xo(1),-+-, Xom)) = —B1. However, such an equal-
ity is typically more difficult to propagate.  For in-
stance, if f is linear, it is NP-hard to enforce GAC on
f(X1,...,Xn) = f(Xoq)s--.» Xo(n)), but polynomial to
enforce GAC on f(X1,...,X,) > f(Xs1),.-+s Xom)). In
addition, we can get more pruning by using a more general
hypothesis. We now consider this generalized lex leader
method for three common classes of objective functions.

-B

4.1 Symmetry-invariant Objective

Consider a constraint optimization problem with variable
symmetry in which the objective function is invariant to sym-
metry. That is, f(X1,...,X,) = f(Xsa),..., Xom)) for
every symmetry o. Then, the generalized lex leader con-
straints simplify to the previous lex leader constraints:

[Xla .. 7Xn] Slex [Xa(l)a .. on'(n)]

4.2 Linear Objective

Consider a constraint optimization problem with variable
symmetry in which the objective function is linear. That is,
f(z1,....X,) = >, a;.X;. Then, we post:

n

Z(ai — ag(i)).Xi <0

<.
—

(ai - aa(l))XZ Z 0 = —\Bl
1

B; Vv (X; < Xo0))

B; Vv (X7 < Xa(i)) =

i

Bit1



Returning to our running example, we get:

X2 <Xy
X2 Z X1 = ﬁBl
V(X1 < Xa)
V(X1 <Xs) = By
B1 V(X2 < X))
BV (Xs<Xi) = By

These symmetry breaking constraints reduce the 22 feasible
solutions down to the optimal solution (X; = 4, X5 = 2 with
objective value -10) and 9 other feasible solutions, each repre-
sentative of an equivalence class of solutions with a different
objective value.

4.3 Value-based Objective

Consider a constraint optimization problem with variable
symmetry in which the objective function is just a function of
the set or multi-set of values used by the feasible assignment.
One such objective is > ., g(X;) where g(X) represents the
cost of using the value X. A second example is the objective
which counts the number of values used, [{X; | 1 < i < n}|.
Such objective functions are invariant to variable symmetries:
f(X1,...,Xn) = f(Xoa1),---s Xo(n)). In such cases, the
generalized lex leader method returns the simple lex leader
constraint:

[Xla ceey Xn] <lex [Xa(l)v sy Xa(n)]

S Value Symmetry in Optimization

In a similar fashion, we define a value symmetry of a con-
straint optimization problem as a bijection 6 on values that
preserves feasibility. Again, such a symmetry may not pre-
serve the value of the objective function. For example, con-
sider again the constraint optimization problem on two inte-
ger variables with constraints 0 < X; < 4,0 < Xy < 4,
X1 + X5 < 6 and the objective function —2.X; — X5. The
values 1 and 2 are symmetric. Given any assignment that is
feasible (e.g. X1 = 1 and X» = 3), we can swap 1 and 2 and
construct another feasible assignment (in this case, X; = 2
and Xy = 3). The objective function does not have this sym-
metry as the value of the objective changes (from -5 to -7)
under this mapping.

As with variable symmetries, we cannot use the same static
symmetry breaking methods in constraint optimization as in
constraint satisfaction. Returning to our running example,
suppose we post the lex leader constraint: [X;, X5] <1ex
[0(X1),0(X2)] where 0(1) = 2, 0(2) = 1 and 0(i) =
otherwise. This gives a new constraint optimization problem
with solution -9, whilst the original constraint optimization
problem had a solution of -10. The added symmetry breaking
constraint again conflicts with minimizing the objective. We
can, however, modify the lex leader method to ensure that
the symmetry breaking constraints do not conflict with the
objective function. To eliminate symmetric solutions from
a constraint optimization problem, we can post a symmetry
breaking constraint for each value symmetry which ensures:

[.f(Xla"'7Xn)aX17"'7Xn] Slex

Again, this limits search to those assignments within each
symmetry class with the smallest objective value, and be-
tween those with an equally small objective, to those that
are lexicographically least. To propagate such generalized lex
leader constraints, we propose the following simple encoding
which introduces Boolean variables, B; to record where the
sequence is lex ordered:

f(Xq, X)) < F(0(X), ..., 0(Xy5))
f(Xla"'7X) (( 1)7 (Xn)) = B
Vv (Xi <9(Xz))
(X <9(X7,)) = Bi+1

Returning to our running example, these symmetry break-
ing constraints reduce the 22 feasible solutions down to the
optimal solution (X; = 4, X5 = 2 with objective value -
10) and 13 other feasible solutions. They eliminate, for in-
stance, the feasible assignment X; = 1, Xo = 0 as this
has an objective value of -2 which is larger than the objec-
tive value of -4 corresponding to the symmetric assignment
X, =2, X5 = 0. By contrast, the usual lex leader constraint,
[X1, X2] <jex [0(X1),0(X2)] would eliminate X; = 2,
X9 = 0 in favour of the symmetric and lexicographically
smaller assignment X; = 1, X5 = 0.

6 Generator symmetries

One difficulty with the generalized lex leader method is that
the set of symmetries, 3 can be exponentially large in gen-
eral. For instance, if we have m interchangeable values,
then X contains m! symmetries. To deal with large number
of symmetries in propositional satisfiability problems, Aloul
et al. suggest we might break only a subset of the sym-
metries [Aloul ef al., 2002]. For example, we might only
break those symmetries which are generators of the symme-
try group. This idea lifts immediately to symmetries in con-
straint optimization problems. We can post generalized lex
leader constraints corresponding to just a subset of the sym-
metries. In the case of interchangeable values, we have shown
that posting just those symmetry breaking constraints corre-
sponding to the generators which swap neighbouring values
is enough to eliminate all symmetric solutions.

7 Variable and Value Symmetry

If a constraint optimization problem contains both variable
and value symmetries, the symmetry breaking constraints for
the variable and value symmetries can be combined. Note
that each symmetry breaking constraint has to order the vari-
ables within an assignment in the same way. Symmetries
can also act simultaneously on both the variables and val-
ues. Consider, for instance, a standard model of the n-queens
problem with a variable, X; representing the position of the
queen along the ith row. The rotational symmetry of the
chessboard maps a solution with X; = j onto a solution with
X; = n — i+ 1. We can adapt the generalized lex leader
method to deal with such symmetries in a straight forward
way.



We define a variable/value symmetry of a constraint op-
timization problem as a bijection ¢ on variable assignments
that preserves feasibility. For example, in the n-queens prob-

lem, the variable assignment X; = j maps onto X; =
n—1i+ 1. Let o(Xy,...,X,) be the mapping of the com-
plete assignment X, ..., X,, by the variable/value symmetry

o. Then, we can break symmetry by posting the generalized
lex leader constraints:

[f(Xq,...
[f(o(Xy, .., X)), (X, .0, X))

For each o in the set of symmetries, where X; to X, is some
fixed order on the variables.

7Xn)aX17 7Xn] Slex

8 Case Studies

To illustrate these methods for breaking symmetry in con-
straint optimization, we present two case studies.

8.1 Bin packing

Consider a simple model of bin packing problems where we
have a decision variable for each item, and the value taken
is the number of the bin into which the item is packed. The
goal is to minimize the number of values used. If all bins are
the same size, then we can swap the items in any two bins.
Hence, we have a value symmetry in which values are in-
terchangeable. The objective function counts the number of
values used. This is invariant to the symmetry of interchang-
ing values. Hence, the generalized lex leader constraints sim-
ply ensures that we construct the assignment which is lex-
icographically least. In [Walsh, 2006], I prove that this is
equivalent to the global PRECEDENCE constraint.

Suppose we have two items of the same size. Then we
can swap the two items in any packing. This corresponds to
a variable symmetry which interchanges the corresponding
two decision variables. The objective function is invariant to
this type of variable symmetry. The generalized lex leader
constraints therefore again ensures that we construct the as-
signment which is lexicographically least. In [Flener et al.,
20061, it is shown that this can be ensured using lexicograph-
ical ordering constraints on the “signatures” of interchange-
able values. All such variable and value symmetry in a bin
packing optimization problem can therefore be broken using
existing methods.

8.2 Car sequencing

We consider an optimization version of car sequencing
(prob001 in CSPLib) in which each car has a due date, and the
objective is to minimize the sum of the tardiness. Production
capacity constraints remain the same (e.g. only 1 in 2 cars
at any point along the production line can have the sun roof
option). A simple model of this problem has a decision vari-
able for each position on the production line, and the value
taken is the car being produced. Suppose we have two cars,
7 and k with the same options. Without loss of generality,
suppose that car j is due before car k where j < k. This
gives a value symmetry since we can interchange the corre-
sponding two values and preserve feasibility of the solution.

However, the objective function is not, in general, invariant to
this symmetry.

Consider the generalized lex leader constraints correspond-
ing to this value symmetry. There are three cases. In the first
case, both cars are produced before j’s due date. Then the ob-
jective function is invariant to symmetry. Hence, the general-
ized lex leader constraints ensures that we find the assignment
which is lexicographically smaller than its symmetry. That is,
the assignment where j is used before k. In the second case,
both cars are produced after k’s due date. The objective func-
tion is again invariant to symmetry, and the generalized lex
leader constraints ensures that we find the assignment which
is lexicographically smaller than its symmetry. That is, the
assignment where j is used before k. In the third case, at
least one car is produced between j and k’s due dates. There
are three subcases. In the first, both cars are produced be-
tween j and k’s due dates. Here, the generalized lex leader
constraints ensures that we find the assignment whose objec-
tive value is less than its symmetry. This requires j to be used
before k. The other two subcases are similar. In each, the
value j must be used before k. Thus, in every case, the gen-
eralized lex leader constraints ensure that the value j must be
used before k. This implied constraint breaks the symmetry
of these interchangeable values.

9 Dynamic Methods

Another way to deal with symmetry is to adapt the search
method to avoid exploring symmetric branches. For instance,
after exploring a branch, the Symmetry Breaking During
Search method (SBDS) adds a symmetry breaking constraint
to avoid visiting any branches which are symmetric [Gent and
Smith, 2000]. More precisely, suppose the current partial as-
signment is A and extending this with the variable assignment
X, = j results in backtracking, then we can add the implied
constraint, (A) = —o(X; = j) where o is any symmetry
not already broken by A.

The advantage of such a method is that is does not con-
flict with the branching heuristic. Static symmetry breaking
constraints, on the other hand, eliminate particular symmetric
solutions, and these might be the precise solutions which the
branching heuristic is directing the backtrack search proce-
dure towards. To adapt SBDS to deal with symmetries in con-
straint optimization, we observe that we only want to elimi-
nate those symmetric states with an equal or higher objective
value!. Hence, suppose the current partial assignment is A
and extending this with the variable assignment X; = j re-
sults in backtracking, then we can add the implied constraint,
(0(A) A fi(o(A)) = fu(A)) = —o(X; = j) where fi
and f,; are lower and upper bounds on the objective function
respectively, and o is some symmetry not already broken by

Another way to adapt the search method is Symmetry
Breaking by Dominance Detection (SBDD) [Fahle er al.,
2001]. In SBDD, check is performed at each node to see if it
is symmetric to one already explored. The key idea in SBDD
is the definition of dominance. In constraint satisfaction prob-
lems, a node in the search tree is dominated by another iff the

'Recall that we consider just minimization problems.



variable assignments of the second are symmetric to a subset
of the first. SBDD uses a dominance test to ensure only un-
dominated nodes are explored. This definition of dominance
needs to be weakened for constraint optimization as we may
want to visit symmetric nodes provided they have a smaller
objective value. More precisely, in constraint optimization, a
node in the search tree is dominated by another iff the vari-
able assignments of the second are symmetric to a subset of
the first and a lower bound on the objective value for the first
is greater than or equal to an upper bound on the objective
value for the second. With this weakened definition of dom-
inance, SBDD can then be used in branch and bound style
algorithms.

10 Related Work

Puget proved that symmetric solutions can be eliminated
from constraint satisfaction problems by the addition of suit-
able constraints [Puget, 1993]. Crawford er al. presented
the first general method for constructing variable symme-
try breaking constraints within constraint satisfaction prob-
lems [Crawford et al., 1996]. Petrie and Smith adapted this
method to value symmetries by posting a lexicographical or-
dering constraint for each value symmetry [Petrie and Smith,
2003]. Puget and Walsh independently proposed propagators
for such value symmetry breaking constraints [Puget, 2006;
Walsh, 2006]. Aloul et al. have adapted such symme-
try breaking methods to Boolean optimization [Aloul et al.,
2005]. When the constraints and objective function have sim-
ilar sets of symmetries, they statically break symmetries in
the intersection of these two sets. When the intersection of
these two sets of symmetries is small, they use a dynamic
method to break symmetries of any infeasible assignments
that are discovered. This permits any symmetry of the con-
straints to be used.

Within branch and bound and dynamic programming algo-
rithms, dominance relations are often used to prune symmet-
ric search states. Let S be the set of search states (typically,
partial assignments), and f(s) for s € S be the minimum
cost feasible solution that is an extension of s. A dominance
relation, < is a partial ordering® over search states satisfying
s; < s; implies f(s;) < f(s;). Thus, if we have already
expanded s;, we can prune s;. The formal definition of dom-
inance relation given in [Kohler and Steiglitz, 1974] also in-
cludes consistency with the lower-bound function (namely,
s; < s; implies L(s;) < L(s;) where L(s) is a lower
bound on the cost of any feasible solution beneath s). Ibaraki
proved conditions under which a stronger dominance relation
is guaranteed to give a smaller branch-and-bound search tree
[Ibaraki, 1977]. Finally, Yu and Wah used machine learning
techniques to propose new dominance relations for 0/1 knap-
sack, scheduling and related problems [Yu and Wah, 1988].

One way to use dominance relations is to keep track of
some or all previous states and only explore new states that
are not dominated. Dominance relations are thus a gener-
alization of lower-bound pruning. Another way to us dom-
inance relations is to construct constraints that prune domi-

%A partial order is transitive, reflexive (s < s) and antisymmetric
(si < sjand s; < s; implies s; = sj).

nated search states [Prestwich and Beck, 2004]. Let S,; be
some subset of dominated states. That is, s € Sy implies
there exists s; € .S such that s; < s;. We need a constraint
C such that C(s) holds iff s € S4. However, there is no gen-
eral method to construct such constraints. Such dominance
constraints can, however, do more pruning than the symme-
try breaking constraints proposed here. They can prune all
feasible states with an equivalence class of assignments if the
minimum value of the objective function in this equivalence
class is larger than the value taken by some other feasible as-
signment.

11 Conclusion and Future Work

We have shown how the lex leader method for symmetry
breaking can be adapted to work with constraint optimiza-
tion problems. The key idea is to post symmetry breaking
constraints which eliminate within each equivalence class of
assignments, all but those assignments with the best objec-
tive value, and between those assignments with the best ob-
jective value, the single assignment which is lex ordered the
least. There are many directions for future research. First,
we should consider special classes of symmetries like inter-
changeable values, or row and column symmetries, where
symmetry breaking may be more tractable. Second, we might
identify other situations where the generalized lex leader con-
straints can be simplified. Third, we should consider how
these generalized lex leader constraints interact with the prob-
lem constraints. For instance, how do they interact with an
all-different constraint over the decision variables? Fourth,
we might develop specialized propagators for reasoning about
the symmetries of the objective function. Fifth, we should test
how these methods work in practice on constraint optimiza-
tion problems.
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