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Abstract. Constraint models contain a number of common patterns.
For example, many constraint models involve an array of decision vari-
ables with symmetric rows and/or columns. By documenting such con-
straint patterns, we can share modelling expertise. Constraint solvers can
also be extended to exploit such patterns. For example, we can develop
specialized methods like the global lexicographical ordering constraint
for breaking such row and column symmetry.

1 Introduction

Many patterns occur in constraint programs. In this paper, I argue that we need
to identify, formalize and document these patterns in a similar way to the design
patterns identified by the software engineering community. The result will be a
systematic and comprehensive methodology for modelling an informal problem.
Such a methodology will permit us to tackle the modelling “bottleneck” that
hinders the uptake of constraint programming. This is an ambitious project -
modelling is not a task which lends itself to a piecemeal approach as even the
smallest modelling decision can have far reaching consequences. However, we
have made some progress and I describe some of the more interesting constraint
patterns which have already been identified. I also discuss the different ways
that we can exploit such patterns. For example, one way to exploit common
constraint patterns is to extend the constraint language.

2 Design patterns

Patterns are an approach to design that started in architecture [1], which has
since spread to many other areas including software engineering [2]. A pattern
describes not only the context of a problem and its solution, but also the ratio-
nale behind the solution. Patterns are a valuable mechanism for describing best
practice and good design. Patterns therefore have a useful role to play in software
engineering. Designing software is hard. Designing good software is even harder.
Fortunately, well engineered code exhibits many common patterns that support
extensibility, modularity, and performance. By documenting these patterns, we
can support and encourage good software engineering.

I can illustrate this by means of an analogy. Consider how you could become
an America’s Cup match racing helmsman. First, you learn the sailing rules



(e.g. a boat on starboard tack has right of way over a boat on port). Then
you learn the basic principles of racing (e.g. when you have the lead, you cover
tack to protect that lead). Finally, you study past match races to learn the
winning patterns of others (e.g. on a downwind leg, an expert helmsan in a
trailing boat often rides an approaching gust, blankets the leading boat’s sail,
and overtakes on the windward side). Becoming an expert software engineer is
little different. First, you learn the rules (e.g. algorithms, and data structures).
Then you learn the basic principles (e.g. data abstraction helps code be modular
and extensible). Finally, you study expert software engineers to learn valuable
patterns (e.g. a good software engineer will often construct iterator methods
so that elements of an aggregate object can be accessed without exposing the
underlying representation).

Patterns are, by their very nature, not formal objects. They are therefore usu-
ally documented in natural language. A pattern descriptions typically includes
the following category headings (as well as others that may be more domain
specific).

Pattern Name: A meaningful name for the pattern.

Context: The circumstances in which the problem the pattern solves occurs.

Problem: The specific problem that is solved.

Forces: The often opposing considerations that must be taken into account
when choosing a solution.

Solution: The proposed solution to the problem.

Example: An example of the problem and its resolution using the proposed
solution.

Fig. 1. The typical categories used in specifying a pattern.

3 Constraint patterns

Why should we identify and document patterns in constraint programming?
Constraint programming is programming and so many of the usual software en-
gineering issues arise. However, constraint programming is also about modelling.
There are many recurring patterns in good constraint models. These patterns
cannot usually be precisely specified as there are many conflicting interactions
in a complex problem. Patterns therefore seem a good vehicle for explicitly cap-
turing the knowledge of expert modellers.

What benefits do constraint patterns bring? First, they help tackle the mod-
elling “bottleneck”. A library of patterns would be a valuable resource for passing
on modelling expertise to neophyte constraint programmers. Second, constraint
toolkits can be extended to support commonly occurring patterns. As I argue in
Section 4.2, a constraint pattern can motivate the development of a new global



constraint or language feature. Third, a longer term goal would be pattern au-
tomation. For example, in Sections 4.4 and 4.5, I discuss how we are trying to
automate some common constraint patterns.

What drawbacks do constraint patterns have? First, it is hard work to iden-
tify and document good patterns. It requires the efforts of a whole community,
not just of one individual. Second, patterns do not eliminate all the art of con-
straint modelling. Many problems also contain an unique feature or an unique
combination of features which necessitates a special solution technique that will
not be not of a pattern library. Third, patterns are not executable. However, as
I argued above, we can look to automate aspects of them.

4 Some examples

To illustrate what a constraint pattern is, and how it can be useful, I will look
at four examples from my own and other people’s research.

4.1 Matrix models

Before I describe the first pattern, I want to define the context for a number
of common constraint patterns. A matriz model is a constraint program with
one or more matrices of decision variables. For example, a natural model of a
sports scheduling problem has a 2-d matrix of decision variables, each of which
is assigned a value corresponding to the game played in a given week and period
[3]. In this case, the matrix is obvious in the solution to the problem: we need
a table of fixtures. However, as we demonstrate in [4,5], many problems that
are less obviously defined in terms of matrices can be efficiently represented and
effectively solved using a matrix model. Sometimes, the matrix model contains
multiple matrices of variables. Channelling constraints are then used to link the
different matrices together [6-8].

As an example, consider the matrix model given in [4] for the steel mill
slab design problem [9]. We have a number of orders, each with a particular
weight and colour, to assign to slabs. Slabs come in a number of different sizes.
We want to assign orders to slabs and sizes to slabs so that the total weight of
orders assigned to a slab does not exceed the slab capacity, and so that each slab
contains at most p colours (usually 2). A 2-d matrix of 0/1 decision variables
represents which orders are assigned to which slabs. A second matrix of 0/1
decision variables is used to post the colour constraints. Channelling constraints
are used to connect this to the order matrix.

In [5], we demonstrated the prevalence of matrix models by surveying the
first 31 models in CSPLib. At least 27 of these had natural matrix models, most
of them already published. Matrix models are a very natural way to represent
relations (e.g. the relation between orders and slabs in the steel mill slab design
problem). Matrix models are also a natural way to represent functions (e.g. the
function mapping exams to times in an exam timetabling problem). Finally,
matrix models are a natural way to represent partitions (e.g. the partitioning
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Fig. 2. Matrix model for the steel mill slab design problem (taken from [4])

of nodes in a graph colouring problem into different colour classes). Another
indication of the prevalence of matrix models is the common use of 2-dimension
matrices of decision variables in integer linear programming.

4.2 Row and column symmetry

A common pattern in matrix models is row and column symmetry. For example,
the order matrix in the steel mill problem has partial row symmetry since slabs
of the same size are indistinguishable and partial column symmetry since orders
of the same size and colour are also indistinguishable. We can swap any two slabs
of the same size, and any two orders of the same size and colour and obtain an
essentially equivalent solution. As a second example, consider generating Bal-
anced Incomplete Block Designs or BIBDs (prob028 in CSPLib). A matrix
model for this problem uses a 2-d matrix of 0/1 variables, with constraints on the
sum of each row and each column, and on the scalar product between rows. This
matrix model has complete row and column symmetry since we can permute the
rows and columns freely without affecting any of the constraints.

Symmetry in constraint programs is problematic. It increases the search space
dramatically. Row and column symmetry is especially problematic as it occurs
often and there is a lot of it. For example, an n by m BIBD has n!m! row and



column symmetries. Even if are only interested in finding one solution, we may
explore many failed and symmetrically equivalent branches. When proving opti-
mality, this can be especially painful. An effective way to break such symmetry
is by posting constraints that lexicographically order the rows and columns [10].
We call this double lex ordering the matrix. As long as we order the rows
and columns in the same direction, (i.e. the rows and columns must both be
lexicographically increasing, or must both be lexicographically decreasing), this
will leave a solution if one exists. Unfortunately, it does not break all symmetry.
Multiple, symmetric solutions can be left after double lex ordering the matrix.
Indeed, a paper in this volume [11] proposes an additional ordering constraint,
the all perms constraint, which can be effectively posted on the rows or columns
to eliminate some (but still not all) of the remaining symmetry. To support dou-
ble lex and all perms ordering constraints, we have developed efficient linear
time constraint propagation algorithms [12,11]. This illustrates how constraint
solvers can be extended to support commonly occurring patterns like a global
symmetry-breaking constraint. Techniques to eliminate all symmetries exist [13—
15], but they appear to be more expensive than they are worth for dealing with
row and column symmetries. The symmetries eliminated by double lex ordering
and all perms ordering appear to offer a good compromise.

Pattern Name: MatrixSymmetry

Context: A matrix model containing an array of decision variables
with (partial) row and column symmetry.

Problem: Eliminating (much of) that symmetry.

Forces: Eliminating all symmetry can be too expensive.
Eliminating no symmetry can leave too much search.

Solution: Post lex ordering constraints on rows and/or cols.
If supported, post all-perms constraints on rows or cols.

Example: Balanced Incomplete Block Design generation.

Fig. 3. Constraint pattern for MatrixSymmetry

An alternative to double lex ordering is to post lexicographical ordering con-
straints on the rows, and multiset ordering constraints on the columns (or vice
versa). We have also developed an efficient constraint propagation algorithm for
multiset ordering constraints [16]. This volume also contains a paper showing
how we can effectively post during search just those symmetry breaking con-
straints that are not yet broken by the current assignment [17]. These examples
illustrate how the solution proposed to a constraint pattern may depend on what
is available in our particular solver. Constraint patterns also need to apply to
a range of problems. For example, double lex ordering can be applied even to
problems like the steel mill slab design problem with partial row and column
symmetry. In this case, we just order lexicographically those subsets of rows or
columns which are indistinguishable.



4.3 Dwual models

The next pattern is documented in a number of papers (e.g. [18,7,19]) as well
as ILOG’s Solver 5.3 User’s manual (Volume II). A constraint program defines a
set of decision variables, each with an associated domain of values, and a set of
constraints defining allowed values for subsets of these variables. The efficiency
of a constraint program depends on a good choice for the decision variables, and
a careful modelling of the constraints on these variables. Unfortunately, there
is often considerable choice even in what to make the variables, and what to
make the values. For example, in an exam timetabling problem, the variables
could be the exams, and the values could be the times. However, we could take
an alternative or dual viewpoint in which the variables are the times, and the
values are the exams.

The choice of variables and values is especially evident in permutation prob-
lems. In a permutation problem, we have as many values as variables, and each
variable takes an unique value. We can therefore easily exchange variables for
values. Indeed, it is often beneficial to have both sets of variables with chan-
nelling constraints between the primal (or original) model and the dual [18,7,
19]. Many assignment, scheduling and routing problems are permutation prob-
lems. For example, sports tournament scheduling can be modelled as finding a
permutation of the games to fit into the time slots, or a permutation of the time
slots to fit into the games.

Pattern Name: DualModelling

Context: An informal problem specification.
Problem: Choosing between a primal and an alternative dual viewpoint.
Forces: Certain constraints can be easier to post on primal.

Certain constraints can propagate better in primal.
Certain constraints can be easier to post on dual.
Certain constraints can propagate better in dual.

Solution: Consider having a combined model with channelling between
the primal and dual variables.
Example: Balanced Academic Curriculum Problem.

Fig. 4. Constraint pattern for DualModelling

An alternative or dual viewpoint can be beneficial for a number of reasons.
First, we can get different amounts of propagation in a primal, dual or a com-
bined model [7,19]. Second, certain constraints may be more easily stated (and
propagated) on a dual model. If others are more easily stated (and propagated)
on the primal, we can decide to use a combined model. Third, branching on
the dual variables can be useful. For example, in a permutation problem, dual
variables correspond to primal values. Therefore a variable ordering heuristic
on dual variables is essentially a value ordering heuristic on the primal model.



Variable ordering heuristics like fail first tend to be cheap and effective. On the
other hand, value ordering heuristics tend to be neither. Variable ordering on
the dual therefore can be an effective means to get value ordering on the primal.

As a concrete example, consider the Balanced Academic Curriculum Problem
(prob030 in CSPLib) [20]. The objective is to assign time slots to courses. A
natural matrix model is a 2-d array of 0/1 decision variables indicating if a
course is given in a particular time slot. Most of the constraints are easy to
post using this array of variables (e.g. the constraint that a limited number of
courses occur in any time slot is simply a row sum constraint). However, one
type of constraint is not easy to post on this array of variables. This is the
course prerequisite constraint: every course must occur after all its prerequisites.
An easy way to post this constraint is to take an alternative dual viewpoint
with a 1-d array of finite-domain variables. Each variable here takes as its value
the time slot for a particular course. A prerequisite constraint is now simply
ordering constraints between the course variable and each of the course variables
associated with its prerequisites. The other constraints are not as easily specified
on this 1-d array. It is therefore beneficial to have both arrays and to channel
between them [20].

4.4 Auxiliary variables

The next pattern is documented in [21,22]. A common method for improving a
basic constraint model is to introduce auxiliary variables. Such variables permit
propagation to occur between constraints with structure in common. Consider,
for example, the problem of finding optimal Golomb rulers (prob006 in CSPLib).
A Golomb ruler is a set of m integer valued ticks, such that the distance between
any pair of ticks is different from the distance between any other pair. The
objective is to find the optimal or shortest such ruler. Such rulers have practical
applications in radio astronomy.

A natural model for the Golomb ruler problem has a finite-domain variable,
X for each tick, and this is assigned the position of the tick on the ruler. To break
symmetry between the ticks, we can post constraints of the form X; < Xj for
i < j. To ensure that all inter-tick distances are distinct, we can post quaternary
constraints of the form: | X; — X;| # | X — Xi|. Each such constraint computes
two inter-tick differences, and each of these differences appears in a quadratic
number of other constraints. A better model introduces auxiliary variables for
these differences, D;; and ternary constraints of the form: D;; = | X; — Xj|

Introducing auxiliary variables can be advantageous for several reasons. For
example, we can get more propagation through the domains of these auxiliary
variables. As a second example, we may be able to post simpler constraints on
the auxiliary variables. In the case of the Golomb ruler problem, we can replace
the large number of quaternary constraints by a single all-different constraint
on the auxiliary variables. We can then use an efficient algorithm for enforcing
GAC or BC on such a constraint [23,24]. In [22], we show that modelling the
Golomb ruler with such auxiliary variables increases the amount of constraint
propagation and reduces runtimes significantly. More recently, we have developed



methods for automatically introducing such auxiliary variables into a constraint
model [25,26].

Pattern Name: AuxiliaryVars

Context: A basic model in which two or more constraints repeat expressions.
Problem: Insufficient propagation between these constraints.

Forces: Overhead of introducing additional variables.

Solution: Introduce auxiliary variables for the repeated expressions.
Example: Golomb ruler problem.

Fig. 5. Constraint pattern for AuxiliaryVars

4.5 Implied constraints

The next pattern is also described in a number of papers (e.g. [27,22]), as well as
ILOG’s Solver 5.3 User’s manual (Volume II). A common method for improving a
basic constraint model is to introduce implied constraints. These are constraints
which are not logically necessary but which may reduce search. Consider again
the problem of finding optimal Golomb rulers. In the last section, we argued
for the introduction of auxiliary variables for the inter-tick differences, ternary
constraints of the form D;; = |X; — X;| and an all-different constraint over D;;.
By transitivity, as X; < Xj for ¢ < j, we can infer that D;; < D;, for any
7 < k. This implied constraint is not logically necessary. We obtain the same set
of solutions with or without it. However, as shown in [22], its inclusion in the
model (along with other implied constraints) reduces search and saves runtime.

Not all implied constraints are useful. Constraint propagation on an implied
constraint that is very immediate may do no more pruning than constraint propa-
gation on a basic model. In addition, even if an implied constraint reduces search,
it adds overhead to the constraint propagation. In [22], we outline two basic cri-
teria for deciding which implied constraints to add. First, implied constraints
either should have specialized, efficient and effective constraint propagation al-
gorithms or should be of small arity. This limits the overheads of adding the
implied constraint and helps ensure it will propagate. Second, circumstances in
which an implied constraint leads to pruning should be obvious and frequent.
The hope is that the implied constraint will reduce search sufficiently to justify
the overhead.

One way to develop useful implied constraints is to study the search process.
Suppose the constraint solver explores an “obviously” futile part of the search
tree. The partial assignments considered by the solver cannot be extended to a
complete solution, but they satisfy the constraints in the model. Our challenge
then is to identify an implied constraint that would have pruned this branch
immediately. We are currently developing methods for inferring useful implied



constraints automatically [25,26]. For example, one of our methods identifies a
clique of not-equals constraints (e.g. the constraints D;; # Dy in the Golomb
ruler problem) and replaces them by an all-different constraint. Another method
performs Gaussian-like elimination (e.g. if we introduce an auxiliary variable for
a repeated expression, this method eliminates the repeated expression in favour
of the auxiliary variable).

Pattern Name: ImpliedConstraints

Context: A basic constraint model.

Problem: Search going down obviously futile branches.

Forces: Overhead of introducing additional constraints.
Applicability of the new implied constraints.

Solution: Introduce implied constraints that prune such branches.

Example: Golomb ruler problem.

Fig. 6. Constraint pattern for ImpliedConstraints

5 Related work

Unfortunately, constraint patterns are rarely described in a general way that
permits their immediate use in other applications. One exception is a paper by
Martin Green and David Cohen [28] that identifies a constraint pattern which
is useful for modelling a range of assignment problems. The pattern occurs,
for example, in the problem of assigning radio frequencies to pilots in a model
aircraft tournament. In a straightforward model, in which the pilots are the
variables and the values assigned to these variables are the radio frequencies,
pilots assigned the same frequency are symmetric. We can therefore swap any
two pilots assigned the same frequency and obtain a symmetric solution. To
eliminate such symmetries, Green and Cohen propose an alternative viewpoint
similar to the swapping of values for variables.

Hans Schlenker and Georg Ringwelski use a design pattern in POOC [29],
a platform for object-oriented constraint programming. POOC provides Java
wrappers around commercial and academic constraint solvers. Different con-
straint solvers can thus be easily compared. In addition, Java programmers can
rapidly experiment with constraint solving. The wrappers are designed using the
object factory design pattern. This defines an interface for creating an object,
whilst allowing subclasses to decide which class to instantiate.

6 Conclusions and Future Work

I have argued that we need to identify, formalize and document patterns in
constraint models in a similar way to the patterns identified by the software



engineering community. A library of such patterns will help tackle the mod-
elling “bottleneck” that hinders the uptake of constraint programming. I have
described some of the more interesting constraint patterns which have already
been identified. I also discussed the different ways that we can exploit such pat-
terns. For example, one way to exploit common constraint patterns is to extend
the constraint language.

IdentifyActors

DistinguishPrefs
SPECIFY

DualModelling
MODEL

CONSTRAINT PATTERNS AuxiliaryVars

ImpliedConstraints
REFINE

SurrogateObjective
SOLVE

Fig. 7. A sketch of a possible constraint pattern taxonomy

There are a number of important directions to follow. First, more patterns
need to be collected. As I argued before, this requires the efforts of the whole
community, not just of one individual. Second, the patterns outlined here need
more detail and generality. Third, the patterns need to be organized into a
pattern taxonomy so that they can be accessed easily. See Figure 7 for a possible
start to such a taxonomy. Fourth, we need to collect these patterns into a pattern
library. I believe such a library would be a significant asset to the constraint
programming community. A first attempt at such a library is taking shape at
4c.ucc.ie/patterns/.
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