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Abstract

Like the well known 2+� -SAT problem,the 2+� -COL prob-
lem smoothly interpolatesbetweenP and NP by mixing
together the polynomial 2-coloring problem and the NP-
complete3-coloringproblem.As with 2+� -SAT, thepolyno-
mial subproblemcandominatethe problem’s solubility and
thesearchcomplexity. The2+� -COL problemclasshas,how-
ever, at leastoneverysignificantdifferenceover the2+� -SAT
problemclass. 2-SAT and 3-SAT (and thus 2+� -SAT) have
sharptransitionsin satisfiability. On the otherhand, 3-COL
hasa sharptransitionin solubility but 2-COL hasa smooth
transition. In the 2+� -COL problem,we thereforeobserve
phasetransitionbehavior in which thereappearto be both
smoothandsharpregions. We alsoshow how this problem
classcanhelpto understandalgorithmbehavior by consider-
ing searchtrajectoriesthroughthephasespace.

Introduction
Phasetransitionbehavior hasgiven new insight into what
makes NP-complete problems hard to solve (Cheeseman,
Kanefsky, & Taylor 1991; Mitchell, Selman,& Levesque
1992; Gomes& Selman1997; Walsh1999). Someof the
most interestingphase transition resultshave come from
the 2+� -SAT problem classintroducedin (Monassonet al.
1999). This mixestogetherthe polynomial 2-SAT andthe
NP-complete3-SAT problem. This letsusexplore in detail
the interfacebetweenP andNP. Surprisingly, the polyno-
mial 2-SAT subproblemdominatesthesatisfiabilityandcost
to solve 2+� -SAT problemsup to �������	� (Monassonet al.
1998; Achlioptaset al. 2001). This is despitetheproblem
beingNP-completefor any fixed ��

� . Given the insight
that 2+� -SAT hasprovided into computational complexity
andalgorithm performance, wedecided to lookmoredeeply
into the interfacebetweenP andNP by meansof five new
problemclasses(Walsh2002). Here,we look in moredetail
at theresultsof thefirst of theseinvestigations,the2+� -COL
phasetransition. First, however, we review resultsconcern-
ing the2+� -SAT problem class.

2+� -SAT
A random � -SAT problem in � variableshas � clausesof
length � drawn uniformly at random. A sharptransitionin
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satisfiabilityhasbeenprovedfor random 2-SAT at �������
�
(Chvatal & Reed1992; Goerdt 1992), andconjectured for
random3-SAT at ����������� � (Mitchell, Selman,& Levesque
1992). Associatedwith this transitionis a rapidincreasein
problemdifficulty. The random 2-SAT transitionis contin-
uous asthebackbone(thefractionof variables takingfixed
values)increasessmoothly. On theotherhand, therandom
3-SAT transitionis discontinuousasthebackbonejumpsin
sizeat thephaseboundary(Monassonet al. 1998).

To studythis in moredetail,Monassonet al. introduced
the 2+� -SAT problem class(Monassonet al. 1999). This
interpolatessmoothlyfrom the polynomial 2-SAT problem
to the NP-complete 3-SAT problem. A random 2+� -SAT
problem in � variableshas � clauses,a fraction � �"!#�%$ of
which are2-SAT clauses,anda fraction � of which are3-
SAT clauses.Thisgivespure2-SAT problemsfor �&��� , and
pure 3-SAT problemsfor �'�(� . For any fixed �)

� , the
2+� -SAT problemclassis NP-completesincetheembedded
3-SAT subproblemcanbemadesufficiently largeto encode
other NP-completeproblemswithin it.

By considering the satisfiabilityof the embedded2-SAT
subproblemandby assumingthattherandom 3-SAT transi-
tion is at ���*�+���,� � , we canbound thelocationtherandom
2+� -SAT transitionto:

�.- �
� -0/21435� �

�6!&�87 ��� �9$

Surprisingly, theupperbound is tight for �:-)�9�	� (Achliop-
tas et al. 2001). That is, the 2-SAT subproblem alone
determinessatisfiability up to �;�<�9�=� . Asymptotically,
the3-SAT clausesdo not determine if problemsaresatisfi-
able,eventhoughthey determinetheworst-casecomplexity.
Several otherphenomenaoccur at �>�?�9�=� reflectingthis
change from a 2-SAT like transitionto a 3-SAT like tran-
sition. For example, the transitionshifts from continuous
to discontinuousasthe backbonejumps in size(Monasson
et al. 1998). In addition, the averagecost to solve prob-
lems appears to increasefrom polynomial to exponential
both for completeand local searchalgorithms (Monasson
et al. 1998; Singer, Gent,& Smaill 2000). Random2+� -
SAT problem thuslook like polynomial2-SAT problemsup
to �&�@�9�	� andNP-complete3-SAT problemsfor �:
����	� .

The2+� -SAT problem classhelpsusunderstandtheper-
formanceof theDLL algorithm for solving3-SAT (Cocco&
Monasson2001). At eachbranch point in its backtracking



searchtree,theDLL algorithm hasa mixtureof 2-SAT and
3-SA

A
T clauses.We canthusview eachbranchasa trajec-

tory in the 2+� -SAT phasespace.For satisfiableproblems
solvedwithoutbacktracking (i.e. ���*�CB�� ), trajectoriesstay
within thesatisfiablepartof thephasespace.For satisfiable
problemsthatrequire backtracking(i.e. �2B�������B���� � ), tra-
jectoriescrossthephaseboundaryseparatingthesatisfiable
from theunsatisfiablephase.Thelengthof thetrajectoryin
theunsatisfiablephasegives a goodestimateof theamount
of backtrackingneeded to solve the problem. Finally, for
unsatisfiableproblems,trajectoriesstaywithin the unsatis-
fiable part of the phasespace.The lengthof the trajectory
againgivesa good estimateof the amount of backtracking
neededto solve theproblem.

2+� -COL
A random � -COL problemconsistsof � vertices,eachwith �
possiblecolors,andD edgesdrawnuniformly andatrandom.
Like � -SAT, � -COL is NP-complete for ��EF� but polyno-
mial for �#�;� . To interpolatesmoothlyfrom P to NP, we
introducetherandom 2+� -COL problemclassin which ran-
dom graphs have a fraction �G�H!��I$ of their verticeswith
2 colors,anda fraction � with 3 colors. Note that the ver-
ticeswith 2 colorsarefixedat thestartandcannot bechosen
freely. In addition,the2 color verticesall have thesame2
colorsavailable.Like2+� -SAT, the2+� -COL problemclass
is NP-completefor any fixed �:
�� .

2+� -COL hasonemajordifferenceto 2+� -SAT. Whilst 2-
SAT, 3-SAT and3-COL all havesharptransitions,2-COL has
asmoothtransition(Achlioptas1999). Theprobability thata
randomgraphis 2-colorableis boundedawayfrom1 assoon
as the average degree is boundedaway from 0, anddrops
gradually as the average degree is increased, only hitting
0 with the emergenceof the giant component (andan odd
lengthcycle). Hence2-colorability doesnot drop sharply
around a particular averagedegree(asin 3-colorability) but
over aninterval thatis approximately: �2B�D*�*�JBK���=� .

Phase transition
In Figure1, we seehow therandom 2+� -COL phasetransi-
tion variesasweincrease� and � . At �L�@�M� N , the2+� -COL
transitionappears to sharpensignificantly. In Figure2, we
look morecloselyat �O�P��� N . For ���Q�M� N , thereis a re-
gionupto around D	�����R�=� N in whichthetransitionappears
smoothandlike thatof 2-COL. Thenatureof thetransition
thenappearsto changeto asharp3-COL liketransition,with
theprobability of colorability dropping rapidly from around
90%to 0%. We thusappear to have bothsmooth andsharp
regions.

Achlioptas definesthe locationof the colorability phase
transitionasthepointwheregraphscannolonger alwaysbe
colored. We define S*TVU%W as the largest ratio D	��� at which
100%of problemsarecolorable:

S TXUIW �)YXZM[]\ D
�

^�_ 1`/a9bced [MfVg=hi� 2+� -colorable$j�k�	l
From(Achlioptas 1999), S9Tm�n� and �=� o9�	��BRSqpLBr�s�t�=�=� .
For any fixed �'B;� , a random 2+� -COL problem contains
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Figure1: Probabilitythat2+� -COL problemis colorable(y-
axis)against D	��� (x-axis). Plotsarefor � =0 (leftmost), 0.2,
0.4, 0.6,0.8and1.0(rightmost)for 100,200and300vertex
graphs(increasingsharpness).
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Figure2: Probabilitythat2+� -COL problemis colorable(y-
axis)againstD	�*� (x-axis) for �0�u��� N . Plotsarefor � =50,
100, 150, 200and250vertex graphs.



a 2-COL subproblemthatgrows in sizewith � andhasav-
eragev degreeboundedaway from 0. This subproblemhasa
probability of being2-colorablethat asymptotically is less
than1. Hence,therandom 2+� -COL problemhasa proba-
bility of being2+� -colorable thatasymptotically is alsoless
than1, and S*TXUIWe�)� for all �:B@� .

We candefinea dual parameter w TVU%W , which is thesmall-
estratio D	�*� atwhich0%of problemsarecolorable:

wsTXUIWe�O143sxy\ D
�

^�_ 14/a=bced [MfVg=hi� 2+� -colorable$j���sl
Sincecolorability is amonotonicproperty(adding edgescan
only ever turn a colorable graph into anuncolorablegraph),
w TXU%W EuS TVU%W . Note that S TXU%W marksthe startof the phase
transitionwhilst w TVU%W marksits end. Thestartstaysfixedat
SzTVU%W&�n� for all �'B
� andjumps discontinuously to w{p at
�&��� . Theendappearstobehavemoresmoothly, increasing
smoothly aswe increase� . From(Achlioptas1999), w T �|
T , and �9� o��	��B(wMpOB}�M� �9�=� . For a sharptransitionlike
3-coloring, w%p8��Szp . As with 2+� -SAT:

w~T.-'w~TVU%WH-�/21`35��wsp 7
w T

�6!&� $

In Figure 3, we have estimatedexperimentally the lo-
cation of w�TXUIW by analysingdata for graphs with up to
300verticesandcomparedtheobservedexperimentalloca-
tion of the (endof the)phasetransitionwith theupper and
lower bounds. As with 2+� -SAT, the upper bound (which
looksjust at the2-COL subproblem)appearsto betight for
�:B'��� N .
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Figure 3: The location of the end of the 2+� -COL phase
transition,w�TVU%W (y-axis)against� (x-axis) for �:�R� to 1 in
stepsof 1/10.

Search cost
The cost of 2+� -coloring also increasesaround �u���M� N .
To solve2+� -COL problems,we encode theminto SAT and
usezchaff, which is currently the fastestDLL procedure.
Our resultsarethusalgorithm dependentandshouldbere-
peatedwith othersolvers. Note that theencodings of 2+� -
COL problemsinto SAT give 2+� -SAT problems (but does

not sampleuniformly as the 3-clausesare only ever posi-
tive). In Figure4, we seethatthereis achangein thesearch
costaround �����M� N where we appearto move from poly-
nomial to exponentialsearchcost.This is despite2+� -COL
being NP-complete for all fixedandnon-zero � . However,
thisis perhapsnotsosurprisingasupto �&�@�M� N , thepolyno-
mial 2-COL subproblemaloneappears to determine asymp-
totically if theproblemis colorable. Beyondthis point, the
NP-complete3-COL subproblemcontributesto whetherthe
problemis colorable or not.
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Figure 4: 95% percentile in the searchcost to solve 2+� -
COL problems at the phase boundary (y-axis logscale)
against number of vertices(x-axis). Plotsarefor � =0 to 1
in stepsof 1/10(increasinghardness)

Search trajectories
2+� -COL canbeusedin a similar way to 2+� -SAT to study
3-coloring algorithms. At eachbranchingdecisionin a col-
oring algorithm, someverticeshave threecolorsavailable,
whilst others only have two. If any vertex hasonly a single
color available,we arenot at a branching point aswe can
commit to this color andsimplify the problem. The algo-
rithm thushasa sequenceof 2+� -COL problemsto solve.
Under a numberof differentbranching heuristics,it canbe
shown that thesesubproblemssampleuniformly from the
random 2+� -COL problem class. We can therefore view
eachbranch in thealgorithm’s searchtreeasa trajectoryin
the 2+� -COL phasespace. In Figure 5, we plot a number
of trajectoriesfor 3-coloring graphswith Brelaz’salgorithm
(Brelaz1979).

The trajectories arequalitatively very similar to thoseof
the DLL algorithmin the 2+� -SAT phasespace(Cocco&
Monasson2001). For D	����-��9� � , problems are solved
without backtracking. Trajectories tracean arc that stays
within the‘colorable’ partof thephasespace.On theother
hand, thealgorithm backtracks for problemswith D*�*��EK� .
For graphs with D	���K�(� , the trajectory startsin the ‘col-
orable’ part of the phasespaceand crossesover into the
‘uncolorable’ part of the phasespace.The algorithmthen
backtrackstill we returnto the‘colorable’ partof thephase
space.This sortof knowledgemight beusedbothto model
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Figure5: Trajectories in the2+� -COL phasespacefor Bre-
laz’s graph coloring algorithm on 3-COL problems with
�>�P�9�=� and D*�*� from 1 to 4. The crossedline gives the
experimentalobserved valuesof w{TXUIW . The region marked
‘uncolorable’ is wheregraphs areasymptotically not 2+� -
colorable, whilst the region marked ‘colorable’ is where
graphs areasymptotically sometimes2+� -colorable.

algorithms and to improve them. For example, we could
develop a randomizationandrestartstrategy (Gomes,Sel-
man, & Kautz 1998) which restartswhen we estimateto
havebranchedinto aninsoluble partof thephasespace.

Other variants
2+� -COL
In theproblemsstudiedsofar, the2-colorablenodesalways
have the sametwo colors. We could,however, look at the
related2+� -COL problem in which the 2-colorable nodes
haveanytwo of thethreecolorsavailableto the3-colorable
nodes. Thesetwo colors are chosenat random and fixed
before searchbegins. We obtainedsimilar resultswith this
variant of the 2+� -COL problem. However, the shift from
a smooth2-COL like transitionto a sharp3-COL like tran-
sition now appears to occursomewhere around �r���M� o=�
(comparedto �:�k�M� N previously). In additionto thetransi-
tion becoming sharp,(median) problem difficulty increases
rapidly at the2+� -colorability transitionfor ��EF��� o9� . We
observea largepeakin problemdifficulty around D	���:���s�t�
for ��EO�M� o=� .

2COL2SAT
We alsostudieda problemclasswhich interpolatesbetween
asmoothandasharptransitionwhereboththeproblemsare
polynomial. A 2-COL problem canbe encoded as a con-
straint satisfaction problemon 0/1 variables in which the
constraints are all disequalities. On the other hand, a 2-
SAT problem canalsobe encoded asa constraintsatisfac-
tion problem on 0/1 variables in which the constraints are
all clauses.We cantherefore interpolatebetweenthesetwo
problem classesmerely by changing thetypeof constraints
betweenthe 0/1 variables from disequalitiesto clauses.In

2COL2SAT, we generatea constraint satisfaction problem
in � 0/1 variables in which a fraction � ��!��%$ of the D con-
straintsaredisequalities,anda fraction � areclauses.This
maps betweenthesmooth2-COL transitionandthesharp2-
SAT transition.At all times,however, theproblem remains
polynomial. The phasetransitionshifts to larger D*�*� as �
increases.This is to beexpectedasdisequalities areroughly
twice asconstraining asclauses.For �#B@�OB�� , the tran-
sition appears to have bothsmoothandsharpregions. This
supportsthepictureseenwith 2+� -COL wherewe alsohad
transitions with bothsmoothandsharpregions. This prob-
lem classalsodemonstratesthat thechange from a smooth
to a sharptransitionalonein not thecauseof a changefrom
P (polynomial) type average caseproblem difficulty to NP
typeaveragecaseproblemdifficulty.

Conclusions
We have studiedin moredetail theinterfacebetweenP and
NP by means of the 2+� -COL problem. This smoothlyin-
terpolatesbetweenthepolymomial2-coloring problemand
the NP-complete 3-coloring problem. The behavior of the
2+� -COL problem appearsto be dominatedby the embed-
dedpolynomial2-COL subproblemup to �'�;��� N . 3-COL
hasa sharptransitionin solubility but 2-COL hasa smooth
transition. In the2+� -COL problem,we observephasetran-
sitionbehavior for ��BO�M� N in which thereappearto beboth
smooth andsharpregions.

What important lessonscan be learnt from this study?
First, it appearsthat we canhave transitionswith areboth
smooth andsharp. Problemslike 2+� -COL let us studyin
detailhow transitions sharpenandthelargeimpactthis has
on searchcost.Second, problem classeslike thesecanhelp
usunderstandalgorithmbehavior. For instance,wecanview
Brelaz’s3-coloring algorithm assearching trajectoriesin the
2+� -COL phasespace.Andfinally, giventheinsightsgained
from studyingthe interfacebetweenP andNP, it is maybe
worth looking at the interfacebetweenothercomplexities
classes.For example, we might studytheinterfacebetween
NPandPSpace.
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