
Proof Planning in MapleToby Walsh1University of York, York, England. tw@cs.york.ac.ukAbstract. We are building a system that helps us mix proof with com-putation. On the one hand, theorem proving tools are often good athelping us construct proofs but poor at doing algebraic computationswithin these proofs. On the other hand, computer algebra systems aregood at doing algebraic computations but usually lack the ability toconstruct proofs. To tackle this problem, we are adding theorem provingcapabilities to the computer algebra system Maple. To make the systemeasy to extend and to apply to new domains, we have built a simple\proof planning" shell, called CLAM-Lite in which the proof methodsare declaratively and explicitly represented. To test the system, we havedeveloped some simple methods for reasoning inductively about summa-tion.1 IntroductionA variety of tools have been developed to assist mathematicians, scientists andengineers \do" mathematics. For example, computer algebra systems performcomplex and sometimes tedious computations, whilst theorem provers �nd proofsto theorems. Surprisingly, there are very few systems that allow you to do bothproof and computation, even though mathematics in practice often involves bothactivities. For instance, we might prove that a series is absolutely convergentbefore computing its limit by rearranging the order of terms. Alternatively, ourfailure to compute a limit might suggest attempting to prove that the seriesdiverges.Three possible architectures have been proposed to build tools that do bothproof and computation. First, we might add proving capabilities to an existingcomputer algebra system. Second, we might add computer algebra capabilitiesto an existing theorem prover. Or third, we might provide an interface to linkan existing computer algebra system with an existing theorem prover. There aretechnical arguments in favour and against the three approaches. For example,if we are worried about correctness, we might have a preference for the secondapproach. There is, however, a forceful non-technical argument. There are manyusers of computer algebra systems but relatively few users of theorem provers.We are therefore adding proving capabilities to an existing computer algebrasystem.



22 Proof planningOne of our aims is to see if current theorem proving techniques, speci�callyBundy's \proof planning" approach [Bun91], can be successfully embedded withinanother system. Proof planning has been under development for several yearsnow. It is therefore timely to consider how well it works outside of its initialapplication domain, inductive proof. Proof planning has often been associatedwith \rippling" [BSvH+93], a powerful heuristic for guiding search in inductiveproof. However, proof planning is a technology that can in theory be appliedto any mathematical domain (and not just that of reasoning about recursivefunctions using inductive proof). How well does proof planning work in otherdomains? Can we invent proof methods like rippling which provide strong searchcontrol in other mathematical domains?Proof planning o�ers several potential advantages over other theorem provingtechniques. First, the search control is cleanly separated from the logic. It istherefore often relatively easy to extend proof methods without compromisingsoundness. Indeed, the typical way of working with a system like CLAM is tomodify and extend the existing proof methods. This is not possible in systemslike the Boyer-Moore prover. Users can only propose intermediate lemmas whichthey hope will guide the prover in the right direction. At times, this can be afrustrating experience as the inbuilt heuristics may resist attempts to be leadin a di�erent direction. Second, proof planning o�ers a high level meta-logic inwhich proof strategies can often be easily expressed. For example, we are ableto discuss such concepts as \recursive argument position" and \blocked wave-front". We can even reason with this meta-logic to derive properties of our proofmethods.A proof planner builds a proof plan, and the execution of this proof planconstructs a \proof object". In the long term, we aim to o�er a variety of di�er-ent proof objects including proofs written in plain text, in LATEX, and in HTML.However, our initial implementation currently only supports plain text proofs.An even more ambitious longer term project would be to support tactics whichexpand proofs down to the object level. At present, we aim to write out a suf-�ciently detailed proof that the user is convinced of its correctness. As some ofthe proof \steps" involve calls to Maple's simpli�cation routines, it would be aconsiderable challenge to expand these proofs out to the level of the individualinference steps.3 Computer algebraJust as we allowed non-technical reasons to guide the design of the system archi-tecture (i.e. a proof planner built on top of an existing computer algebra system),we allowed non-technical reasons to guide the choice of the particular computeralgebra system used. Maple has a large user base within our university and in-deed within universities as a whole. We therefore chose to build our proof planneron top of Maple. However, we could easily have chosen one of the other rival



3computer algebra systems like Mathematica or AXIOM. Indeed, a system likeMathematica might have been an easier choice since it arguably provides bettersupport for pattern matching and rewriting than Maple. However, many of thelessons learnt in adding proof planning capabilities to Maple will map across ontoother computer algebra systems. To enable a proof planner to be rapidly builton top of Maple, we decided to prototype the proof planning shell in Prolog. Itwas a simple matter to provide an interface so Maple could call Prolog (and viceversa). In the longer term, it may prove better to have the proof planning shellimplemented directly in Maple's procedural language. However, one advantageof writing the proof planner in Prolog is that we should be able to interface itto other computer algebra systems. A second advantage is that we can easilywrite the method pre- and post-conditions in a declarative and logical form thatcan then be immediately executed (see Table 2 for an example). So far, we haveadded three new commands to Maple: prove, assumption, noassumptions. The�rst command tries to prove the given theorem from a set of assumptions, thesecond command adds a new assumption to the set of assumptions, and the thirdcreates an empty set of assumptions. These commands are discussed in furtherdetail in the following sections.4 CLAM-LiteWe interfaced Maple to a cut-down version of the CLAM proof planner calledCLAM-Lite. A proof planner takes a goal to prove, and selects a method froma database of methods which matches this goal. The proof planner checks thatthe pre-conditions of the method (which are a sequence of statements in a meta-logic) hold. If the pre-conditions hold then the proof planner executes the post-conditions (which are also a sequence of statements in the meta-logic). Thisconstructs the output goal or goals. Table 1 gives the code for the simple depth-�rst proof planner in CLAM-Lite. We are in the process of adding other proofplanners which explore the search space using alternative strategies like breadth-�rst, best-�rst, and limited-discrepancy search. Methods are stored as 5-tuples1:a name slot (which is also the tactic name), the input goal (which is patternmatched against), the list of pre-conditions, the list of post-conditions, and thelist of output goals. An example method is given in Table 2.One positive side-e�ect of this project is that we now have a simple enoughproof planner that we can start to reason about it formally. For example, we haveproved that determining if a valid proof plan exists can be undecidable even if themeta-theory in which pre- and post-conditions are checked is itself decidable. Ona more positive note, we have proved that an iterative deepening proof planneris sound (only �nds valid proof plans) and complete (if it terminates signalingfailure or fails to terminate then no valid proof plan exists). We have also shownthat the depth-�rst proof planner is sound but not complete. A valid proof plan1 In CLAM, they are 6-tuples. However, since one slot contains the method name andanother contains the tactic name which is always identical, we avoid this redundancy.



4proof_plan(Goal,[Method|Plan]):-apply(Method,Goal,Outputs),map_proof_plan(Outputs,Plan).apply(Method,Goal,Outputs):-method(Method,Goal,Pre,Post,Outputs),call_goals(Pre),call_goals(Post).map_proof_plan([],[]).map_proof_plan([Output|Outputs],[Plan|Plans]):-proof_plan(Output,Plan),map_proof_plan(Outputs,Plans).Table 1. The simple depth-�rst proof planner used within CLAM-Lite. Other searchstrategies (e.g. breadth-�rst, and iterative deepening) are de�ned in a similar fashion.method(equality(poly_expand,A1,B1),H==>A=B,[polynomial(A),polynomial(B)][normal_form(A,A1),normal_form(B,B1)][H==>A1=B1]).Table 2. An example method used within CLAM-Lite. A method has �ve slots: themethod (and tactic) name, the input goal, the pre-conditions, the post-conditions, andthe list of output goals. The method above proves equality of two polynomial terms byexpanding them out into a normal form. The input goal is a sequent with the set ofhypotheses on the left and the conclusion on the right.exists that the depth-�rst proof planner will fail to �nd. This proof plan will befound by the iterative deepening or the breadth-�rst proof planners.5 Some examplesTo illustrate the potential applications of proof planning within Maple, we imple-mented a small number of simple methods. In our future work, we aim to extendgreatly the number and the functionality of these methods. The speed and easewith which these methods were implemented o�ers promise in this direction.The �rst domain we considered was summation. Computer algebra systems likeMaple containing complex routines like Gosper's algorithm for �nding closedforms for summations. It would be di�cult to prove that (the implementationsof) such algorithms was correct. By comparison, we may only need a simpleinductive proof to verify that a given closed form is indeed correct. In previous



5work, we had used proof planning to �nd close form sums [WNB92]. Here, wefocus instead on proving such sums correct.We wrote two methods: summation which sets up the base and step caseswhen given a sum to prove and equality which proves the resulting equalityproblems using Maple's simplify and expand functions. The associated tacticswrite out a natural language proof. Table 3 is a script of an example session withMaple. This example (the sum of the �rst n integers) was used as the develop-ment set for writing the two proof methods. We then tested these methods onthe dozen problems listed in [WNB92]. The results are summarized in Table 4.Maple found a closed form sum for all but one of these examples. Despite theirsimplicity, our proof methods were able to prove that eight out of the twelveclosed form sums were correct. Interestingly, all the failures appear to be onproblems on which rippling [BSvH+93,BW96] is likely to complete the proof.With a little more e�ort, we anticipate that the 75% success rate on this test setcould be raised to 100%. Let us repeat, however, that there is still a considerabledistance to obtain proofs at the level of individual inference steps.6 Related workThe Theorema project [BJK+97] is extending the Mathematica computer al-gebra system with theorem proving capabilities. The system consists of a col-lection of special purpose provers. These include a prover for induction overthe natural numbers, and another for induction over lists. The Analytica prover[BCZ96] also adds theorem proving capabilities to the Mathematica computeralgebra system. The system is able to prove some complex theorems in analysisabout sums and limits, as well as some simple inductive theorems. In both theTheorema and Analytica projects, the prover's heuristics are hard-wired into thecode. This has several disadvantages. For example, it is di�cult to separate thesearch control from other issues like logical correctness. It would also be di�-cult to extend the provers or to apply them to new domains. One of the mainnovelties of this project is that we explicitly represent the prover's heuristics bymeans of the proof planning methodology. Such an approach gives a system thatwe believe will be easy to extend and to apply to new domains.Proof planning has been used in two di�erent theorem proving systems. TheCLAM proof planner developed in Edinburgh controls search in the Oyster proofchecker [BvHHS90]. CLAM has also been linked to the HOL theorem prover[BSBG98]. Whilst much of the development of CLAM has been for inductiveproof [BSvH+93], several other domains have been explored including the sum-mation of �nite series [WNB92]. The di�culty of manipulating algebraic expres-sions within a theorem prover was identi�ed as one of the main limitations inCLAM's ability to sum series [Fre92]. In this project, CLAM-Lite has the fullbene�t of Maple's abilities to perform algebraic manipulation. Prior to CLAM,the PRESS system used a meta-level representation of proof methods to solvealgebraic equations [BW81]. Despite the lack of a planner to put the methodstogether, PRESS was competitive with computer algebra systems of its era.



6 |\^/| Maple V Release 5 (WMI Campus Wide License)._|\| |/|_. Copyright (c) 1981-1997 by Waterloo Maple Inc. All rights\ MAPLE / reserved. Maple and Maple V are registered trademarks of<____ ____> Waterloo Maple Inc.| Type ? for help.> Thm:= Sum(i,i=0..n)=sum(i,i=0..n);n-----\ 2Thm := ) i = 1/2 (n + 1) - 1/2 n - 1/2/-----i = 0> prove(Thm);The proof uses induction on i.In the base case, n = 0 and we need to prove:sum(i,i=0..0) = 1/2*(0+1)^2-1/2*0-1/2This simplifies to:0 = 0In the step case, we assume:sum(i,i=0..n) = 1/2*(n+1)^2-1/2*n-1/2And try to prove:sum(i,i=0..n+1) = 1/2*(n+2)^2-1/2*n-1= sum(i,i=0..n) + n+1Using the induction hypothesis, we must prove:1/2*(n+2)^2-1/2*n-1 = 1/2*(n+1)^2-1/2*n-1/2 + n+1Consider the first subgoal.This is an equality axiom.Consider the second subgoal.On the lhs, 1/2*(n+2)^2-1/2*n-1 simplifies to 1/2*n^2+3/2*n+1 leaving:1/2*n^2+3/2*n+1 = 1/2*(n+1)^2-1/2*n-1/2+(n+1)On the rhs, 1/2*(n+1)^2-1/2*n-1/2+(n+1) simplifies to 1/2*n^2+3/2*n+1 leaving:1/2*n^2+3/2*n+1 = 1/2*n^2+3/2*n+1This is an equality axiom. QED>Table 3. An example of proof planning within Maple. This is the �rst problem from[WNB92]. Sum is Maple's unevaluated summation operator, sum is the evaluated sum-mation operator, and 0..n is the (integer) interval from 0 to n.



7No Problem Closed form Proved correctfound by Maple by CLAM-Lite1 P i p p2 P i2 p p3 P i+ i2 p p4 Pai p p5 P i:ai p p6 P(i+ 1):ai p p7 P 1i:(i+1) p p8 PFi � �9 P sin(i:�) p p10 P cos(i:�) p �11 P�m + ii � p �12 P�s(i)s(m)� p �Table 4. Some example results. All sums are for i from 0 to n (except problem 7 whichis from 1 to n), Fi is the ith Fibonacci number and �nm� is the binomial coe�cient. pindicates success, whilst � denotes failure.The 
 system developed in Saarbr�ucken also implements proof planning,but in this case for a a higher order natural deduction style logic [HKK+94].The SAPPER system provides an interface between this theorem prover and asimple home-grown computer algebra system for polynomial manipulation anddi�erentiation [KKS96]. The computer algebra system outputs a verbose de-rivation which is used by SAPPER to construct a proof plan for the theoremprover. Rather than provide an interface between a proof planner and a speciallywritten computer algebra system, we are embedding a proof planner on top ofan existing computer algebra system. We also use the computer algebra systemto communicate with the user. Many people have learnt to use the interface tocomputer algebra systems like Maple. It is therefore desirable to tap into thisknowledge and expertise.NAG Ltd (who market the AXIOM computer algebra system) and St An-drews and Bath Universities are using formal speci�cation and theorem provingtechniques in the development of computer algebra systems [DKLM98]. Theiraim is to improve the robustness and reliability of the computer algebra sys-tem. We largely ignore issues about the correctness of the computer algebrasystem, and focus instead on extending the system's abilities to reason aboutmathematical objects.7 ConclusionsWe have described a simple proof planning shell, CLAM-Lite which has beenbuilt on top of the Maple computer algebra system. This system allows us toexplore how proof and computation can be mixed together. To test the proto-type system, we developed some simple methods for reasoning inductively about



8summation. Tactics associated with these methods output a natural languageproof. The system was quick to prototype, and the methods even quicker towrite.There are several directions that our future work will follow. For example, weintend to develop more powerful proof methods for reasoning about sums. Wealso intend to look at some other domains like reasoning about limits, continuity,etc. Many questions remain for the longer term. For example, can we expandthese \proofs" out to the level of individual inference rules? Can we developbetter natural language proofs? At present, the system has little knowledge aboutthe narrative structure of proofs and merely outputs isolated sentences. Finally,are methods useful for planning computations as well as for planning proofs?References[BCZ96] A. Bauer, E. Clarke, and X. Zhao. Analytica: an experiment in combiningtheorem proving and symbolic computation. In Proceedings of the Inter-national Conference on Arti�cial Intelligence and Symbolic Computation,AISMC-3, 1996.[BJK+97] B. Buchberger, T. Jebelean, F. Kriftner, M. Marin, E. Tomuta, andD. Vasaru. A survey of the Theorema project. In Proceedings of the Inter-national Symposium on Symbolic and Algebraic Computation, ISSAC'97,1997.[BSBG98] R. Boulton, K. Slind, A. Bundy, and M. Gordon. An interface betweenClam and HOL. In Proceedings of the 11th International Conference onTheorem Proving in Higher Order Logics. Springer Verlag, Lecture Notesin Computer Science, 1998.[BSvH+93] A. Bundy, A. Stevens, F. van Harmelen, A. Ireland, and A. Smaill. Rip-pling: A heuristic for guiding inductive proofs. Arti�cial Intelligence,62:185{253, 1993. Also available from Edinburgh as DAI Research PaperNo. 567.[Bun91] A. Bundy. A science of reasoning. In J-L. Lassez and G. Plotkin, editors,Computational Logic: Essays in Honor of Alan Robinson, pages 178{198.MIT Press, 1991. Also available from Edinburgh as DAI Research Paper445.[BvHHS90] A. Bundy, F. van Harmelen, C. Horn, and A. Smaill. The Oyster-Clamsystem. In M.E. Stickel, editor, 10th International Conference on Auto-mated Deduction, pages 647{648. Springer-Verlag, 1990. Lecture Notes inArti�cial Intelligence No. 449.[BW81] A. Bundy and B. Welham. Using meta-level inference for selective applic-ation of multiple rewrite rules in algebraic manipulation. Arti�cial Intel-ligence, 16(2):189{212, 1981. Also available as DAI Research Paper 121,Dept. Arti�cial Intelligence, Edinburgh.[BW96] D. Basin and T. Walsh. A calculus for and termination of rippling. Journalof Automated Reasoning, 16(1{2):147{180, 1996.[DKLM98] M. Dunstan, T. Kelsey, S. Linton, and U. Martin. Lightweight formalmethods for computer algebra systems. In Proceedings of the InternationalSymposium on Symbolic and Algebraic Computation, ISSAC'98, 1998.[Fre92] N. Free. Summing series using proof plans. Master's thesis, Dept. of Arti-�cial Intelligence, University of Edinburgh, 1992.



9[HKK+94] Xiaorong Huang, Manfred Kerber, Michael Kohlhase, Erica Melis, Dan Ne-smith, J�orn Richts, and J�org Siekmann. 
-MKRP: A proof developmentenvironment. In Alan Bundy, editor, Automated Deduction | CADE-12,Proceedings of the 12th International Conference on Automated Deduc-tion, pages 788{792, Nancy, France, 1994. Springer-Verlag, Berlin, Ger-many. LNAI 814.[KKS96] Manfred Kerber, Michael Kohlhase, and Volker Sorge. Integrating com-puter algebra with proof planning. In Jacques Calmet and Carla Limo-gelli, editors, Design and Implementation of Symbolic Computation Sys-tems, DISCO'96, number 1128 in LNCS, pages 204{215, Karlsruhe, Ger-many, 1996. Springer Verlag.[WNB92] T. Walsh, A. Nunes, and A. Bundy. The use of proof plans to sum series.In D. Kapur, editor, 11th Conference on Automated Deduction, pages 325{339. Springer Verlag, 1992. Lecture Notes in Computer Science No. 607.Also available from Edinburgh as DAI Research Paper 563.


