Some Complexity and Correctness Results for
Proof Planning

Toby Walsh!

University of York, York, England. tw@cs.york.ac.uk

Abstract. We prove that determining if a valid proof plan exists is
undecidable in general, even if the meta-theory in which pre- and post-
conditions are checked is itself decidable. On a more positive note, we
prove that an iterative deepening proof planner is sound (only finds valid
proof plans) and complete (if it terminates signaling failure or fails to
terminate then no valid proof plan exists). We also show that a depth-
first proof planner is sound but not complete as there exist valid proof
plans that it will not find.

1 Introduction

In recent years, researchers have started to study planning from a more theoret-
ical perspective [Byl94,BN95]. The outcomes of this research programme include
complexity results about the difficulty of planning under various assumptions.
Whilst planning with operators using a first-order language is undecidable in
general, more tractable cases have been identified. For example, planning with
STRIPS operators restricted to a propositional language is PSPACE-complete.
It is therefore timely to consider how such results might be mapped onto proof
planning.

2 Formal background

Proof planning was introduced by Bundy in [Bun88] and implemented within
the CLAM system [BvHHS90]. A proof plan is a tree of methods. A proof plan
is valid iff each method within it is applicable and the leaf nodes are termin-
ating methods. We say that it is invalid otherwise. A method is applicable
iff it matches the current (sub)goal, and both its pre- and post-conditions hold.
The children of each applicable method inherit the output goals of their parent
method as input goals. A method is terminating iff it has no output goals.
Terminating methods can only occur at the leaf nodes. Associated with each
method is a tactic of the same name. The tactic attempts to build the object
level proof associated with the method. Tactics are not, however, guaranteed to
succeed.

We define PROOF PLAN EXISTENCE as the problem of determining if a valid
proof plan exists. We define PROOF PLAN VALIDITY as the problem of determ-
ining if a given proof plan is valid. Note that PROOF PLAN VALIDITY does

not necessarily imply that the goal is an object level theorem. The tactics as-
sociated with each method are not guaranteed to succeed. The complexity of
proof planning can therefore differ from the complexity of theorem proving in
the underlying object level logic.

Recently we have built a simple proof planner, called CLAM-Lite. Our aim
is to add proof planning capabilities to the Maple computer algebra system.
However, one positive side-effect is that we now have a simple enough proof
planner that we can start to reason about it formally. The depth-first proof
planner is given in Table 1 (other search strategies like iterative-deepening can
be defined in a similar fashion), and an example method in Table 2.

proof_plan(Goal, [Method|Plan]):-
apply (Method,Goal,Outputs),
map_proof_plan(Outputs,Plan).

apply (Method,Goal,Dutputs) : -
method (Method,Goal,Pre,Post,Outputs),
call_goals(Pre),
call_goals(Post).

map_proof_plan([],[]).

map_proof_plan([Output|Outputs], [Plan|Plans]):-
proof_plan(Output,Plan),
map_proof_plan(Outputs,Plans).

Table 1. The simple depth-first proof planner used within CLAM-Lite. Other search
strategies (e.g. breadth-first, and iterative deepening) are defined in a similar fashion.

method (equality(poly_expand,Al,B1),
==>A=B,
[polynomial (A),
polynomial(B)]
[normal_form(A,Al),
normal_form(B,B1)]
[H==>A1=B1]).

Table 2. An example method used within CLAM-Lite. A method has five slots: the
method (and tactic) name, the input goal, the pre-conditions, the post-conditions, and
the list of output goals. The method above proves equality of two polynomial terms by
expanding them out into a normal form. The input goal is a sequent with the set of
hypotheses on the left and the conclusion on the right.

3 Complexity results

We first prove that finding proof plans is, in general, undecidable.
Theorem 1. PROOF PLAN EXISTENCE is undecidable.

Proof. We construct a set of methods which simulate a Turing machine. We then
show that a proof plan is valid iff the Turing machine halts in the accept state.
Determining if a valid proof plan exists thus reduces to answering the halting
problem and is undecidable. Our initial goal is a triple containing the tape (which
can be represented by a list), the position of the head (which can be represented
by an integer), and the state of the Turing machine (which can be represented by
some finite alphabet). For each transition and state of the Turing machine, we
define a method. For example, consider a Turing machine which in state so reads
0 from the tape [y, replaces 0 by 1, moves the head to the right, and switches to
state s1. Corresponding to this transition, we define a method whose input is the
triple (lo, n, so). This method has a single precondition that the n-th element of
l is 0. The method’s post-conditions construct a new list {1 from Iy by replacing
the n-th element with 1. The output triple is then (I1,n+ 1, s1). All terminating
methods correspond to halt instructions which leave the Turing machine in the
accept state. Such methods return the empty output goal. A valid proof plan
is therefore a sequence of methods which end in a terminating method iff the
Turing machine halts in the accept state.

This is bad news but is perhaps to be expected as planning is undecidable
in general. However, the situation is worse than this theorem suggests as even
determining if a given proof plan is valid is undecidable. The problem is that
the meta-theory in which we check the pre- and post-conditions can itself be
undecidable.

Theorem 2. PROOF PLAN VALIDITY s undecidable.

Proof. We construct a single (terminating) method which is applicable iff a Tur-
ing machine halts in the accept state. The method takes as input the description
of a Turing machine and a tape. In our meta-theory, we define the semantics
for the execution of a Turing machine. The pre-condition of the method then
simply checks to see if the Turing machine halts in the accept state when given
the particular input tape.

These results are perhaps not too surprising since proof planning can be
applied to undecidable meta-theories. Can we obtain more useful results for some
special cases? For example, what if we restrict the meta-theory to, say, decidable
languages? Unsurprisingly, checking whether a given proof plan is valid is now
decidable.

Theorem 3. PROOF PLAN VALIDITY in a decidable meta-theory is itself decid-
able.

Proof. Determining if a method is applicable is decidable since testing if the
goal matches against the input slot is decidable, and since testing if the pre- and
post-conditions hold is itself decidable. A simple algorithm to recurse over the
structure of the proof plan, determining if each method is applicable therefore
decides validity.

Unfortunately, deciding if a valid proof plan exists remains undecidable even
if the meta-theory in which we are proof planning is itself decidable.

Theorem 4. PROOF PLAN EXISTENCE can be undecidable even if the associ-
ated meta-theory is decidable.

Proof. The meta-theory used by the set of methods constructed in the proof of
Theorem 1 is decidable.

What then of a more tractable case like a propositional meta-theory? As
in planning, the following results also apply to first-order theories with finite
quantification since all quantified terms can be expanded out to give a purely
propositional (and finite) language. Under such restrictions, proof planning has
more tractable complexity results.

Theorem 5. PROOF PLAN VALIDITY in a propositional meta-theory is coNP-
complete.

Proof. We show that determining if a proof plan is invalid, PROOF PLAN IN-
VALIDITY is NP-complete. Hence PROOF PLAN VALIDITY is coNP-complete.
Consider a proof plan that is invalid. Our polynomial witness is either a leaf
node that is not terminating or a method which is not applicable. A method is
not applicable iff its input does not match the current goal or its pre-conditions
and post-conditions do not hold'. The pre-conditions and post-conditions do
not hold if one of the pre- or post-conditions is invalid. That is, if their negation
is satisfiable. Hence, our polynomial witness is simply a truth assignment that
makes the negation of this pre- or post-condition satisfiable. PROOF PLAN IN-
VALIDITY is therefore in NP. To show it is NP-complete, we map SATISFIABILITY,
the satisfiability of a propositional formula ¢ into PROOF PLAN INVALIDITY as
follows. We construct a single terminating method which takes any input and has
a single pre-condition —p. If a proof plan containing this single method is invalid
then the pre-condition —¢p is not valid. That is, ¢ must be satisfiable. Hence we
have reduced SAT, which is NP-complete to PROOF PLAN INVALIDITY with a
propositional meta-theory.

Finding a valid proof plan is likely to remain intractable in the worst case
even when the meta-theory is propositional. Unfortunately, valid proof plans can
be exponentially long compared to the size of the input goal and the method
base.

! Post-conditions are always supposed to succeed but we do not need to insist upon
this for this proof.

Theorem 6. There exist problems in which the shortest valid proof plan is ex-
ponential in length despite the meta-theory in which we proof plan being propos-
itional.

Proof. In fact, we prove that there exist a polynomial number of methods and a
polynomial sized input goal for which the shortest valid proof plan is exponential
in length. These methods have empty pre- and post-conditions (all computation
is done by matching on the inputs and outputs). Alternatively we can place
propositional tautologies in the pre-condition slots of these methods. Consider a
tower of Hanoi problem with n disks and 3 pegs. Let L,, be the shortest plan to
move the n disks from one peg to another. Then I; =1 and L, = 2% L, + 1.
This has solution L,, = 2" — 1. We now encode this problem into proof planning.
The input goal is table([diskl,disk?2,...,diskn],[],[]) representing the
fact that all n disks are on the first peg. Their are O(n?) methods to move disks
between pegs. For example, to move disk1 from the 1st to the 2nd peg, there is
a single method:

method (move (pegl,peg2),
H==>table([diskl|Pegl] ,Peg2,Peg3),
1,0,
[H==>table(Pegl, [diskl|Peg2] ,Peg3)]).

As diskl1 is the smallest disk, it can be moved without constraint. For disk2 we
have methods for each of the possible disks it can be placed upon. For example,
there is a method to move disk2 from the 3rd peg onto disk5 on the 2nd peg:

method (move (peg3, peg2) ,
H==>table(Pegl, [disk5|Peg2], [disk2|Peg3]),
1,0,
[H==>table(Pegl, [disk2,disk5|Peg2] ,Peg3)1).

There are 6 possible directions we can move disks, n possible disks we can pick
up and at most n— 1 acceptable disks to place them upon. Hence there are O(n?)
methods in the method base.

4 Correctness results

We now turn to reasoning about proof planning as implemented within a system
like CLAM-Lite. Unfortunately the depth-first planner given in Table 1 is not
complete. Depth-first search can be trapped into an infinite descending chain
and so may fail to find a valid proof plan. We therefore also consider iterative
deepening and breadth-first proof planners as neither are trapped by infinite des-
cending chains. We first prove that there are three possible outcomes of applying
the depth-first, iterative deepening or breadth-first proof planners: success and
a proof plan is found; failure and the search space is exhausted before a proof
plan is returned; or non-termination.

Theorem 7. The depth-first, iterative deepening and breadth-first proof plan-
ners can stop with success, stop with failure, or fail to terminate.

Proof. Consider a single terminating method with no pre- or post-conditions,
and a goal that matches the input formula. All the proof planners immediately
apply this method and stop with success.

Consider a goal which does not match any of the input formulae of any of
the methods in the method base. All the proof planners immediately fail.

Consider two methods, both with no preconditions one of which transforms
the input goal A to B and the other which transforms the input goal B to A. All
the proof planners loop on the goal A, trying to build a plan which alternates
application of the two methods.

We next prove that the iterative deepening and breadth-first proof planners
are correct and complete. That is, if they return a proof plan then it is valid
(correctness) and if they terminate signaling failure or fail to halt then no valid
proof plan exists (completeness).

Theorem 8. If the iterative deepening or breadth-first proof planners terminate
returning a solution then the solution is a valid proof plan. If they terminate
signaling failure or fail to halt then no valid proof plan exists.

Proof. Correctness is, as is often the case, easier than completeness. The proof
of correctness uses induction on the depth of the proof plan. In the base case,
the single method applied is terminating. In the step case, we apply a (non-
terminating) method and appeal to the induction hypothesis for each of the
subgoals.

To prove completeness, suppose a valid proof plan exists. Then it has some
maximum depth k. We claim that the kth iteration of the iterative deepening
proof planner will find this proof plan. A similar argument can be given for
the breadth-first proof planner. Hence if the iterative deepening or breadth-first
proof planners fail to find a proof plan then no valid proof plan exists. Consider
the first method applied at the root of the proof plan. Now the kth iteration of
the iterative deepening proof planner examines all possible methods to apply to
the root in turn so will eventually select this method. As the proof plan is valid,
its pre- and post-conditions hold. Hence the method is successfully applied and
the appropriate subgoals constructed. A similar argument holds for subsequent
methods in the proof plan. Hence, the kth iteration of the iterative deepening
proof planner finds this proof plan.

We end by proving that the depth-first proof planner is sound but not com-
plete. A valid proof plan may exist but a depth-first proof planner can fail to
find it.

Theorem 9. If the depth-first proof planner terminates returning a solution
then the solution is a valid proof plan. If it terminates signaling failure then no
valid proof plan exists. However, if it fails to halt then a valid proof plan may or
may not exist.

Proof. The proof is similar to that for the iterative deepening and breadth-first
proof planners. The major difference is the proof of the last of the three results.
Consider three methods, all without pre- and post-conditions, the first of which
transforms the input goal A to B, the second which transforms the input goal B
to A, and the third which is terminating and applies to the input goal A. Suppose
the methods are listed in the method base in this order. Then the depth-first
proof planner will loop given the goal A, trying to build a plan which alternates
application of the first two methods. However, a valid proof plan exists which
simply applies the third method.

5 Related work

Chapman proved that planning is undecidable [Cha87]. Bylander subsequently
studied classes of planning problems which are more tractable [Byl94]. For ex-
ample, he proved that propositional STRIPS planning is PSPACE-complete. In-
terestingly, despite the fact that plans in propositional STRIPS planning can be
exponentially long, planning is still in PSPACE. As the size of states is bounded,
we can guess an intermediate state between our initial and goal states, and find
plans from the initial state to this intermediate state, and from the intermedi-
ate state to the goal state. Recursively applying this procedure, we can find a
plan using space that is just the logarithm of the plan length. Even more severe
restrictions are required to guarantee that planning is polynomial or even NP-
complete. For example, if the postconditions are only positive then propositional
STRIPS planning is monotonic and NP-complete.

6 Conclusions

We have proved that determining if a valid proof plan exists is undecidable in
general, even if the meta-theory in which pre- and post-conditions are checked
is itself decidable. Even with a propositional meta-theory, valid proof plans can
be exponentially long. On a more positive note, we have proved that an iterative
deepening proof planner is sound (only finds valid proof plans) and complete
(if it terminates signaling failure or fails to terminate then no valid proof plan
exists). We have also shown that the depth-first proof planner is sound but not
complete. A valid proof plan exists that the depth-first proof planner will fail to
find. This proof plan will be found by the iterative deepening or the breadth-first
proof planners.

Acknowledgments

The author is supported by an EPSRC advanced research fellowship. He is a
member of both the DReaM research group in Edinburgh and the APES cross-
university research group. He wishes to thank Axel Schairer for discussion about
these complexity results.

References

[BN95] C. Backstrom and B. Nebel. Complexity results for SAS+ planning. Com-
putational Intelligence, 11(4):625-655, 1995.

[Bun88] A. Bundy. The Use of Explicit Plans to Guide Inductive Proofs. In R. Luck
and R. Overbeek, editors, CADEY. Springer-Verlag, 1988. Longer version
available as DAI Research Paper No. 349, Dept. of Artificial Intelligence,
Edinburgh.

[BvHHS90] A. Bundy, F. van Harmelen, C. Horn, and A. Smaill. The Oyster-Clam
system. In M.E. Stickel, editor, 10th International Conference on Auto-
mated Deduction, pages 647-648. Springer-Verlag, 1990. Lecture Notes in
Artificial Intelligence No. 449.

[Byl94] T. Bylander. The computational complexity of propositional STRIPS plan-
ning. Artificial Intelligence, 69:165—-204, 1994.

[Cha87] D. Chapman. Planning for conjunctive goals. Artificial Intelligence,
32(3):333-377, 1987.

