
Some Complexity and Correctness Results forProof PlanningToby Walsh1University of York, York, England. tw@cs.york.ac.ukAbstract. We prove that determining if a valid proof plan exists isundecidable in general, even if the meta-theory in which pre- and post-conditions are checked is itself decidable. On a more positive note, weprove that an iterative deepening proof planner is sound (only �nds validproof plans) and complete (if it terminates signaling failure or fails toterminate then no valid proof plan exists). We also show that a depth-�rst proof planner is sound but not complete as there exist valid proofplans that it will not �nd.1 IntroductionIn recent years, researchers have started to study planning from a more theoret-ical perspective [Byl94,BN95]. The outcomes of this research programme includecomplexity results about the di�culty of planning under various assumptions.Whilst planning with operators using a �rst-order language is undecidable ingeneral, more tractable cases have been identi�ed. For example, planning withSTRIPS operators restricted to a propositional language is PSPACE-complete.It is therefore timely to consider how such results might be mapped onto proofplanning.2 Formal backgroundProof planning was introduced by Bundy in [Bun88] and implemented withinthe CLAM system [BvHHS90]. A proof plan is a tree of methods. A proof planis valid i� each method within it is applicable and the leaf nodes are termin-ating methods. We say that it is invalid otherwise. A method is applicablei� it matches the current (sub)goal, and both its pre- and post-conditions hold.The children of each applicable method inherit the output goals of their parentmethod as input goals. A method is terminating i� it has no output goals.Terminating methods can only occur at the leaf nodes. Associated with eachmethod is a tactic of the same name. The tactic attempts to build the objectlevel proof associated with the method. Tactics are not, however, guaranteed tosucceed.We de�ne Proof Plan Existence as the problem of determining if a validproof plan exists. We de�ne Proof Plan Validity as the problem of determ-ining if a given proof plan is valid. Note that Proof Plan Validity does



2not necessarily imply that the goal is an object level theorem. The tactics as-sociated with each method are not guaranteed to succeed. The complexity ofproof planning can therefore di�er from the complexity of theorem proving inthe underlying object level logic.Recently we have built a simple proof planner, called CLAM-Lite. Our aimis to add proof planning capabilities to the Maple computer algebra system.However, one positive side-e�ect is that we now have a simple enough proofplanner that we can start to reason about it formally. The depth-�rst proofplanner is given in Table 1 (other search strategies like iterative-deepening canbe de�ned in a similar fashion), and an example method in Table 2.proof_plan(Goal,[Method|Plan]):-apply(Method,Goal,Outputs),map_proof_plan(Outputs,Plan).apply(Method,Goal,Outputs):-method(Method,Goal,Pre,Post,Outputs),call_goals(Pre),call_goals(Post).map_proof_plan([],[]).map_proof_plan([Output|Outputs],[Plan|Plans]):-proof_plan(Output,Plan),map_proof_plan(Outputs,Plans).Table 1. The simple depth-�rst proof planner used within CLAM-Lite. Other searchstrategies (e.g. breadth-�rst, and iterative deepening) are de�ned in a similar fashion.
method(equality(poly_expand,A1,B1),H==>A=B,[polynomial(A),polynomial(B)][normal_form(A,A1),normal_form(B,B1)][H==>A1=B1]).Table 2. An example method used within CLAM-Lite. A method has �ve slots: themethod (and tactic) name, the input goal, the pre-conditions, the post-conditions, andthe list of output goals. The method above proves equality of two polynomial terms byexpanding them out into a normal form. The input goal is a sequent with the set ofhypotheses on the left and the conclusion on the right.



33 Complexity resultsWe �rst prove that �nding proof plans is, in general, undecidable.Theorem 1. Proof Plan Existence is undecidable.Proof. We construct a set of methods which simulate a Turing machine. We thenshow that a proof plan is valid i� the Turing machine halts in the accept state.Determining if a valid proof plan exists thus reduces to answering the haltingproblem and is undecidable. Our initial goal is a triple containing the tape (whichcan be represented by a list), the position of the head (which can be representedby an integer), and the state of the Turing machine (which can be represented bysome �nite alphabet). For each transition and state of the Turing machine, wede�ne a method. For example, consider a Turing machine which in state s0 reads0 from the tape l0, replaces 0 by 1, moves the head to the right, and switches tostate s1. Corresponding to this transition, we de�ne a method whose input is thetriple hl0; n; s0i. This method has a single precondition that the n-th element ofl is 0. The method's post-conditions construct a new list l1 from l0 by replacingthe n-th element with 1. The output triple is then hl1; n+1; s1i. All terminatingmethods correspond to halt instructions which leave the Turing machine in theaccept state. Such methods return the empty output goal. A valid proof planis therefore a sequence of methods which end in a terminating method i� theTuring machine halts in the accept state.This is bad news but is perhaps to be expected as planning is undecidablein general. However, the situation is worse than this theorem suggests as evendetermining if a given proof plan is valid is undecidable. The problem is thatthe meta-theory in which we check the pre- and post-conditions can itself beundecidable.Theorem 2. Proof Plan Validity is undecidable.Proof. We construct a single (terminating) method which is applicable i� a Tur-ing machine halts in the accept state. The method takes as input the descriptionof a Turing machine and a tape. In our meta-theory, we de�ne the semanticsfor the execution of a Turing machine. The pre-condition of the method thensimply checks to see if the Turing machine halts in the accept state when giventhe particular input tape.These results are perhaps not too surprising since proof planning can beapplied to undecidable meta-theories. Can we obtain more useful results for somespecial cases? For example, what if we restrict the meta-theory to, say, decidablelanguages? Unsurprisingly, checking whether a given proof plan is valid is nowdecidable.Theorem 3. Proof Plan Validity in a decidable meta-theory is itself decid-able.



4Proof. Determining if a method is applicable is decidable since testing if thegoal matches against the input slot is decidable, and since testing if the pre- andpost-conditions hold is itself decidable. A simple algorithm to recurse over thestructure of the proof plan, determining if each method is applicable thereforedecides validity.Unfortunately, deciding if a valid proof plan exists remains undecidable evenif the meta-theory in which we are proof planning is itself decidable.Theorem 4. Proof Plan Existence can be undecidable even if the associ-ated meta-theory is decidable.Proof. The meta-theory used by the set of methods constructed in the proof ofTheorem 1 is decidable.What then of a more tractable case like a propositional meta-theory? Asin planning, the following results also apply to �rst-order theories with �nitequanti�cation since all quanti�ed terms can be expanded out to give a purelypropositional (and �nite) language. Under such restrictions, proof planning hasmore tractable complexity results.Theorem 5. Proof Plan Validity in a propositional meta-theory is coNP-complete.Proof. We show that determining if a proof plan is invalid, Proof Plan In-validity is NP-complete. Hence Proof Plan Validity is coNP-complete.Consider a proof plan that is invalid. Our polynomial witness is either a leafnode that is not terminating or a method which is not applicable. A method isnot applicable i� its input does not match the current goal or its pre-conditionsand post-conditions do not hold1. The pre-conditions and post-conditions donot hold if one of the pre- or post-conditions is invalid. That is, if their negationis satis�able. Hence, our polynomial witness is simply a truth assignment thatmakes the negation of this pre- or post-condition satis�able. Proof Plan In-validity is therefore in NP. To show it is NP-complete, we map Satisfiability,the satis�ability of a propositional formula ' into Proof Plan Invalidity asfollows. We construct a single terminating method which takes any input and hasa single pre-condition :'. If a proof plan containing this single method is invalidthen the pre-condition :' is not valid. That is, ' must be satis�able. Hence wehave reduced SAT, which is NP-complete to Proof Plan Invalidity with apropositional meta-theory.Finding a valid proof plan is likely to remain intractable in the worst caseeven when the meta-theory is propositional. Unfortunately, valid proof plans canbe exponentially long compared to the size of the input goal and the methodbase.1 Post-conditions are always supposed to succeed but we do not need to insist uponthis for this proof.



5Theorem 6. There exist problems in which the shortest valid proof plan is ex-ponential in length despite the meta-theory in which we proof plan being propos-itional.Proof. In fact, we prove that there exist a polynomial number of methods and apolynomial sized input goal for which the shortest valid proof plan is exponentialin length. These methods have empty pre- and post-conditions (all computationis done by matching on the inputs and outputs). Alternatively we can placepropositional tautologies in the pre-condition slots of these methods. Consider atower of Hanoi problem with n disks and 3 pegs. Let Ln be the shortest plan tomove the n disks from one peg to another. Then L1 = 1 and Ln = 2 �Ln�1+1.This has solution Ln = 2n�1. We now encode this problem into proof planning.The input goal is table([disk1,disk2,...,diskn],[],[]) representing thefact that all n disks are on the �rst peg. Their are O(n2) methods to move disksbetween pegs. For example, to move disk1 from the 1st to the 2nd peg, there isa single method:method(move(peg1,peg2),H==>table([disk1|Peg1],Peg2,Peg3),[],[],[H==>table(Peg1,[disk1|Peg2],Peg3)]).As disk1 is the smallest disk, it can be moved without constraint. For disk2 wehave methods for each of the possible disks it can be placed upon. For example,there is a method to move disk2 from the 3rd peg onto disk5 on the 2nd peg:method(move(peg3,peg2),H==>table(Peg1,[disk5|Peg2],[disk2|Peg3]),[],[],[H==>table(Peg1,[disk2,disk5|Peg2],Peg3)]).There are 6 possible directions we can move disks, n possible disks we can pickup and at most n�1 acceptable disks to place them upon. Hence there are O(n2)methods in the method base.4 Correctness resultsWe now turn to reasoning about proof planning as implemented within a systemlike CLAM-Lite. Unfortunately the depth-�rst planner given in Table 1 is notcomplete. Depth-�rst search can be trapped into an in�nite descending chainand so may fail to �nd a valid proof plan. We therefore also consider iterativedeepening and breadth-�rst proof planners as neither are trapped by in�nite des-cending chains. We �rst prove that there are three possible outcomes of applyingthe depth-�rst, iterative deepening or breadth-�rst proof planners: success anda proof plan is found; failure and the search space is exhausted before a proofplan is returned; or non-termination.



6Theorem 7. The depth-�rst, iterative deepening and breadth-�rst proof plan-ners can stop with success, stop with failure, or fail to terminate.Proof. Consider a single terminating method with no pre- or post-conditions,and a goal that matches the input formula. All the proof planners immediatelyapply this method and stop with success.Consider a goal which does not match any of the input formulae of any ofthe methods in the method base. All the proof planners immediately fail.Consider two methods, both with no preconditions one of which transformsthe input goal A to B and the other which transforms the input goal B to A. Allthe proof planners loop on the goal A, trying to build a plan which alternatesapplication of the two methods.We next prove that the iterative deepening and breadth-�rst proof plannersare correct and complete. That is, if they return a proof plan then it is valid(correctness) and if they terminate signaling failure or fail to halt then no validproof plan exists (completeness).Theorem 8. If the iterative deepening or breadth-�rst proof planners terminatereturning a solution then the solution is a valid proof plan. If they terminatesignaling failure or fail to halt then no valid proof plan exists.Proof. Correctness is, as is often the case, easier than completeness. The proofof correctness uses induction on the depth of the proof plan. In the base case,the single method applied is terminating. In the step case, we apply a (non-terminating) method and appeal to the induction hypothesis for each of thesubgoals.To prove completeness, suppose a valid proof plan exists. Then it has somemaximum depth k. We claim that the kth iteration of the iterative deepeningproof planner will �nd this proof plan. A similar argument can be given forthe breadth-�rst proof planner. Hence if the iterative deepening or breadth-�rstproof planners fail to �nd a proof plan then no valid proof plan exists. Considerthe �rst method applied at the root of the proof plan. Now the kth iteration ofthe iterative deepening proof planner examines all possible methods to apply tothe root in turn so will eventually select this method. As the proof plan is valid,its pre- and post-conditions hold. Hence the method is successfully applied andthe appropriate subgoals constructed. A similar argument holds for subsequentmethods in the proof plan. Hence, the kth iteration of the iterative deepeningproof planner �nds this proof plan.We end by proving that the depth-�rst proof planner is sound but not com-plete. A valid proof plan may exist but a depth-�rst proof planner can fail to�nd it.Theorem 9. If the depth-�rst proof planner terminates returning a solutionthen the solution is a valid proof plan. If it terminates signaling failure then novalid proof plan exists. However, if it fails to halt then a valid proof plan may ormay not exist.



7Proof. The proof is similar to that for the iterative deepening and breadth-�rstproof planners. The major di�erence is the proof of the last of the three results.Consider three methods, all without pre- and post-conditions, the �rst of whichtransforms the input goal A to B, the second which transforms the input goal Bto A, and the third which is terminating and applies to the input goal A. Supposethe methods are listed in the method base in this order. Then the depth-�rstproof planner will loop given the goal A, trying to build a plan which alternatesapplication of the �rst two methods. However, a valid proof plan exists whichsimply applies the third method.5 Related workChapman proved that planning is undecidable [Cha87]. Bylander subsequentlystudied classes of planning problems which are more tractable [Byl94]. For ex-ample, he proved that propositional STRIPS planning is PSPACE-complete. In-terestingly, despite the fact that plans in propositional STRIPS planning can beexponentially long, planning is still in PSPACE. As the size of states is bounded,we can guess an intermediate state between our initial and goal states, and �ndplans from the initial state to this intermediate state, and from the intermedi-ate state to the goal state. Recursively applying this procedure, we can �nd aplan using space that is just the logarithm of the plan length. Even more severerestrictions are required to guarantee that planning is polynomial or even NP-complete. For example, if the postconditions are only positive then propositionalSTRIPS planning is monotonic and NP-complete.6 ConclusionsWe have proved that determining if a valid proof plan exists is undecidable ingeneral, even if the meta-theory in which pre- and post-conditions are checkedis itself decidable. Even with a propositional meta-theory, valid proof plans canbe exponentially long. On a more positive note, we have proved that an iterativedeepening proof planner is sound (only �nds valid proof plans) and complete(if it terminates signaling failure or fails to terminate then no valid proof planexists). We have also shown that the depth-�rst proof planner is sound but notcomplete. A valid proof plan exists that the depth-�rst proof planner will fail to�nd. This proof plan will be found by the iterative deepening or the breadth-�rstproof planners.AcknowledgmentsThe author is supported by an EPSRC advanced research fellowship. He is amember of both the DReaM research group in Edinburgh and the APES cross-university research group. He wishes to thank Axel Schairer for discussion aboutthese complexity results.



8References[BN95] C. Backstr�om and B. Nebel. Complexity results for SAS+ planning. Com-putational Intelligence, 11(4):625{655, 1995.[Bun88] A. Bundy. The Use of Explicit Plans to Guide Inductive Proofs. In R. Luckand R. Overbeek, editors, CADE9. Springer-Verlag, 1988. Longer versionavailable as DAI Research Paper No. 349, Dept. of Arti�cial Intelligence,Edinburgh.[BvHHS90] A. Bundy, F. van Harmelen, C. Horn, and A. Smaill. The Oyster-Clamsystem. In M.E. Stickel, editor, 10th International Conference on Auto-mated Deduction, pages 647{648. Springer-Verlag, 1990. Lecture Notes inArti�cial Intelligence No. 449.[Byl94] T. Bylander. The computational complexity of propositional STRIPS plan-ning. Arti�cial Intelligence, 69:165{204, 1994.[Cha87] D. Chapman. Planning for conjunctive goals. Arti�cial Intelligence,32(3):333{377, 1987.


