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It’s been said that in a city, you’re 
never more than a few feet away 
from a rat. But these days it seems 
more likely that you’re never more 

than a few feet away from someone 
playing Candy Crush Saga. It is current-
ly the most popular game on Facebook. 
It has been downloaded and installed 
on phones, tablets, and computers more 
than half a billion times. Largely based 
on this success, its developer, Global 
King, listed recently on the New York 
Stock Exchange in an initial public offer-
ing valuing the company in the billions 
of dollars. That’s not bad for a simple 
game of swapping candies to form 
chains of three or more identical pieces. 

A big part of the appeal of Candy 
Crush for players is that there are com-
plex underpinnings to the seemingly 
simple puzzle. Surprisingly, the game 
holds a lot of interest for researchers 
as well: It offers insight into one of 
the most important open problems in 
mathematics, as well as into the secu-
rity of computer systems. 

In a recent proof, I demonstrated that 
Candy Crush is a mathematically hard 
puzzle to solve (the paper is available 
at http://arxiv.org/abs/1403.1911). To 
prove this point, I needed to call upon 
one of the most important and beauti-
ful concepts in the whole of computer 
science, the idea of a problem reduction. 
This idea maps one problem onto an-

other, or as computer scientists like to 
say, it reduces one problem into another. 
At its heart, this concept arises because 
computer code is versatile: You can use 
the same type of code to solve more 
than one problem, even if the variables 
differ. If the problem you started with 
was hard, then the problem you map 
onto must be at least as hard. The sec-
ond problem can’t be easier because 
you must be able to solve the first prob-
lem with a computer program that can 
solve the second problem. And if you 
can show the reverse, that the second 
problem can also be reduced to the first 
problem, then in some sense the two 
problems are equally as hard as each 
other, and take a similar time to solve.

Determining the difficulty of a prob-
lem is a fundamental tenet of mathemat-
ics. But it’s not a semantic point. If you 
can classify a problem by how hard it 
should be to solve, you know what kind 
of computing power to throw at it—and 
even if it’s worth trying to solve at all. In 
some ways, at least for mathematicians, 
looking at Candy Crush as a math prob-
lem can be as addictive as playing it. 

Hard Solutions, Easy Checks
In our analysis of Candy Crush, my col-
laborators and I started with the most 
famous class of computationally hard 
problems, called NP for “nondetermin-
istic polynomial time,” the “time” part of 
the term indicating how long these prob-
lems could take to solve. NP contains all 
the problems for which, if you give me 
a solution, I can quickly check that it is 
a correct answer, in a time that is just a 
polynomial function of the size of the 
problem. However, finding the solution 
in the first place appears to be computa-
tionally challenging. Many well-known 

math problems—such as determinig 
whether a complex logical formula can 
be satisfied, or whether a graph can be 
colored so that neighboring nodes have 
different colors—belong to this class of 
computationally hard problems. 

Beneath the NP class, in terms of 
complexity, we have the class P of com-
putationally “easy” problems. In this 
case, P stands just for polynomial. P 
contains problems such as sorting a 
list or finding a record in a database. 
The time it takes for an efficient com-
puter program to solve such problems 
is short, even in the worst case. Math-
ematically, the runtime of a problem in 
P is a polynomial that scales to the size 
of the problem. For example, one well-
known sorting algorithm, BubbleSort, 
repeatedly “bubbles” the next largest 
item to the top of the list like a competi-
tor in a potato race. This process takes a 
time that grows as the square of the size 
of the list to be sorted. Even if we dou-
bled the size of the list, the algorithm 
would take four times as long in the 
worst case. This worst case is when the 
list is in reverse order and every item 
must bubble past every smaller item. If 
the list is not in reverse order, the algo-
rithm will stop even more quickly. 

Above NP in complexity, we have 
problems that are extremely hard com-
putationally. There are even problems 
above NP for which our standard mod-
el of computation, the one that all our 
computers implement, is inadequate. 
For such problems, there is no computer 
program that is guaranteed to stop and 
return an answer. These examples fall in 
the so-called undecidable class of prob-
lems. This class includes such questions  
as deciding whether a computer pro-
gram will stop rather than run forever 
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in some loop, which computer scientists 
call the halting problem. Alan Turing, one 
of the fathers of computation, proved 
that the halting problem is undecidable. 
No computer program exists that can 
both decide whether another computer 
program halts and is itself guaranteed to 
halt, therefore making it a really, really 
hard computational problem. 

NP lies right at the boundary be-
tween easy and hard. Within NP, we 
have many challenging problems such 
as how to route trucks to deliver parcels, 
roster staff in a hospital, or schedule 
classes in a school. It turns out that win-
ning Candy Crush falls into this catego-
ry as well. Any one of these problems 
can be reduced to any of the others. In 
this sense, they’re all equally as hard.

Unfortunately, the best computer 
programs we have for problems in NP 
have a runtime that grows dramatically 
as we increase the size of the problem. 
On my desktop computer, I have a pro-
gram that takes a few hours to find the 
optimal routing for 10 trucks and to 
demonstrate that this solution was the 
best possible. But for 100 trucks, the 
same program would take more than 
the lifetime of the universe. Mathemati-
cally, the runtime of my program is an 
exponential of the size of the problem. 

And exponentials quickly grow 
very large, as exemplified in the clas-
sic fable where a vizier wins any prize 
he wants from a sultan, and asks for 
one grain of wheat on the first square 
of a chessboard, then to have it dou-
bled for each subsequent square. So 
there’s one grain of wheat on the first 
square, two on the second, four on the 
third, and so on. On the 64th and final 
square of the board, you would need 
18,446,744,073,709,551,615, or more than 
18 quintillion, grains of wheat. That’s 
approximately the amount of wheat pro-
duced worldwide in hundreds of years. 
Exponentials quickly sneak up on you. 

Although computer scientists widely 
agree with my statement that NP prob-
lems are on the boundary between 
easy and hard, for any specific problem 
there is no way to know for sure which 
side it lies on. The best computer pro-
grams we currently have take exponen-
tial time to solve problems in NP. But 
we don’t know if there’s some exotic 
algorithm out there waiting to be dis-
covered that will solve problems in NP 
efficiently, in polynomial time. (Math-
ematicians abbreviate this question as 
“Does P = NP?”) In fact, this is one of 
the most important, famous open prob-

lems in mathematics today. The Clay 
Mathematics Institute has even offered 
a $1 million prize for the answer to this 
question. The prize remains unclaimed 
since it was first offered in 2000. 

In the most recent poll on whether 
P = NP is true, 83 percent of computer 
scientists thought that P was not equal 
to NP. That is, they think there are no ef-
ficient algorithms for solving problems 
in NP and there never will be. Another 
poll of computer scientists was used to 
decide what to call problems that are as 
hard to solve as those in NP, whether or 
not they are in this class. The final name 
chosen was the rather prosaic NP-hard. 
But the poll did demonstrate a refresh-

ing and geeky sense of humor: Some al-
ternative write-ins were NP-impractical, 
NP-tricky, and NP-hard-ass. 

The idea of problem reduction is cen-
tral to the P = NP question. If we did find 
an algorithm that could solve any one 
of these problems in NP efficiently, then 
we also could solve all of the problems 
in NP efficiently. The world would be 
a very different place if this outcome 
ever happened. On the plus side, we’d 
be able to go about our lives with bet-
ter time management, optimally routing 
trucks, timetabling flights, and schedul-
ing staff to save money (and routinely 
winning at Candy Crush). However, we 
depend on other tasks, such as crack-

In this screen shot from Candy Crush Saga, a Color Bomb booster is obliterating all 
of the purple candies on the board. Part of the reason the game is so engaging is that 
it’s actually quite hard, mathematically speaking. (Image courtesy of Global King.)
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ing codes, to be computationally chal-
lenging so that our passwords and bank 
accounts stay secure. Computational 
complexity can be a blessing as well as a 
curse. We want to make it provably hard 
for hackers to compute how to decrypt 
messages. Equally, we need to be able to 
encrypt those messages easily. 

This example might remind you of 
the definition of NP: problems where 
it is easy to check answers but hard to 
find them. Cryptography is all about 
putting computational barriers in the 
way of the bad guys. If such barriers 
disappear, our modern world would 
be in big trouble. 

Behind the Game
To show that Candy Crush is a math-
ematically hard problem, we could re-
duce to it from any problem in NP. To 
make life simple, my colleagues and 
I started from the granddaddy of all 
problems in NP, finding a solution to 
a logical formula. This is called the sat-
isfiability problem. You will have solved 
such a problem if you ever tackled a 
logic puzzle. You have to decide which 
propositions to make true, and which 
to make false, to satisfy some set of 
logical formulae: The Englishman lives 
in the red house. The Spaniard owns 
the dog. The Norwegian lives next to 
the blue house. Should the proposition 
that the Spaniard owns the zebra be 
made true or false? 

To reduce a logic puzzle to a Candy 
Crush problem, we exploit the close 
connection between logic and electrical 
circuits. Any logical formula can simply 
be represented with an electrical circuit. 
Computers are, after all, just a large col-
lection of logic gates—ANDs, ORs, and 
NOTs—with wires connecting them to-
gether. So all we need to do is show that 
you could build an electrical circuit in a 
Candy Crush game. 

First off, we need a board on which 
to build the circuit. This board needs to 
be a neutral pattern of candies where 
the order of the candy types in rela-
tion to the others never changes (see 
figure at left). The candy patchwork 
resembles traffic lights: In even col-
umns, we alternate red jellybeans and 
yellow lemon drops, whereas in odd 
columns, we alternate orange lozenges 
and green gum pieces. With such a 
background, even if we move columns 
up or down, we will never create a 
chain of three identical candies.

Into this framework we insert the elec-
trical components, which are made of 
purple cluster candies. The clusters push 
aside the other candies, rather than over-
writing them. Connecting these clusters 
creates wires to carry signals around 
the circuit, and multiple wires can also 
be linked to make more complex con-
figurations as needed (see figure). If we 
place a purple cluster on the input to 
the wire at the left, we will create a chain 
of three purple clusters. This chain gets 
deleted, part of the basic premise of the 
game, which moves down the candies 
in the affected columns and propagates 
the signal along the wire. Eventually, a 
purple cluster will appear in the output 
on the right. A signal is thus transmitted 
across the board.
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To prove that Candy Crush is in a class of problems called NP, it can be turned into the equivalent 
of a logic puzzle that is also in this class, by devising a model electrical circuit made of candies. 
The first component needed is a base board that has a neutral pattern of candies (top left). A wire 
is made from purple clusters (middle left). A switch lets a user decide which wires to use (bottom 
left). The signal travels through the wire in a process kicked off by a starter input that creates three 
candies in a row, which in the game are always deleted (top right). The next cluster moves down 
(indicated by the arrow labeled flow direction), also creating a row of three (middle right). When this 
row deletes, a candy falls into the output slot, completing the transmission (bottom right).
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We also need switches that the user 
can set to decide which wires are active. 
These switches represent the choice of 
whether a proposition in our Boolean 
formula is set to true or false. The user 
can move the middle purple cluster ei-
ther up or down. This motion will set off 
a signal either to the left or to the right. 

Finally, we can build logic gates 
such as AND, OR, and NOT out of 
other purple clusters using these ba-
sic components. We then just have to 
connect switches to these logic gates 
with long enough wires and we have 
an electrical circuit that simulates our 
logical formula. The electrical circuit 
has one output bit that represents the 
truth of the logical formula. 

Puzzle Mapping
Expressed in terms of these electrical 
logic circuits, the puzzle in playing Can-
dy Crush is deciding which switches to 
set so that the logic gates fire appropri-
ately and the output bit is set to true. In 
this way, we reduce the problem of satis-
fying a logical formula to solving a Can-
dy Crush problem. And as satisfying 
a logical formula is a hard problem, so 
must be solving a Candy Crush board. 

You can also show the reverse. That 
is, you can reduce a Candy Crush prob-
lem to satisfying a logical formula. We 
simply need to write down a sequence 
of formulae that represent the play of 
a Candy Crush board. Essentially you 
find such a logical description of Candy 
Crush within any program that plays it. 

Hence, Candy Crush is no harder than 
any of the problems in NP, and the game 
is just as hard as solving all the other 
problems in NP. If we had an efficient 
way to play Candy Crush, we would 
have a provably efficient way to route 
trucks, roster staff, or schedule classes. 
Alternatively, if we had an efficient way 
to way to route trucks, roster staff, or 

schedule classes then we would have 
an efficient way to play Candy Crush. 
That’s the power of a problem reduction. 

The next time you fail to solve a Can-
dy Crush board in the given number of 
moves, you can console yourself with 
the knowledge that it was a mathemati-
cally hard problem to solve. Indeed, 
that trait may be part of what makes 
the game so addictive; if it were as easy 
to solve as tic-tac-toe, for instance, it 
wouldn’t be nearly as engaging. 

At the heart of all this is the funda-
mental and beautiful idea of problem 
reduction, which has allowed com-
puter scientists to simplify the maze 
of different computational problems 

into a smaller number of fundamen-
tal classes such as P and NP, which 
computer scientists call the complex-
ity zoo. Currently there are about 500 
problem classes in the zoo, including 
ones with exotic names such as Δ2P, 
LogFew, NEEE, and P-close. (In case 
you haven’t worked it out yet, com-
puter scientists love acronyms.)

In the unlikely event that P is shown 
to be equal to NP, the number of dis-
tinct classes in the complexity zoo 
drops sharply. Many classes that are 
thought to be different would in fact 
map to each other. On the other hand, 
if P is not equal to NP, as most com-
puter scientists believe, then the zoo 
rightly contains many distinct problem 
classes. In fact, the zoo continues to 
grow in size. Complexity zoologists 
have recently introduced new classes 
to describe the complexity of problems 
solved with quantum computers.

The idea of problem reduction of-
fers an intriguing possibility for Candy 
Crush addicts. Perhaps we can profit 
from the millions of hours humans 
spend solving Candy Crush problems? 
By exploiting the idea of a problem re-
duction, we could conceal some practi-
cal computational problems within these 
puzzles. Other computational problems 
benefit from such interactions: Every 
time you prove to a website that you’re 
a person and not a bot by solving a  
CAPTCHA (one of those ubiquitous dis-
torted images of a word or number that 
you have to type in) the answer helps 
Google digitize old books and news-
papers. Perhaps we should put Candy 
Crush puzzles to similar good uses.

Our studies of Candy Crush gave us 
deep respect for this seemingly innocu-
ous pastime. It actually offers insight 
into one of the most important open 
questions today in mathematics, and 
the implications of this question extend 
to many practical applications such as 
the encryption algorithms used to keep 
your bank account safe. You might like 
to explain this bigger picture to your 
boss the next time you are caught try-
ing to get just one more level. 

A scene from the TV series Elementary, a modern Sherlock Holmes adaptation, illustrates how NP 
problems have permeated pop culture well beyond Candy Crush. In the show, two mathematicians 
conceal their work on P = NP from rivals by doing calculations in UV markers, as discovered by 
Holmes (above) after their murder for their groundbreaking results. (Photograph courtesy of CBS.)

For relevant Web links, consult this 
 issue of American Scientist Online:

http://www.americanscientist.org/
issues/id.111/past.aspx

Computational 
complexity can be  
a blessing as well 

as a curse.


