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Abstract

A general rule of thumb is to tackle the hardest
part of a search problem first. Many heuristics
therefore try to branch on the most constrained
variable. To test their effectiveness at this, we
measure the constrainedness of a problem dur-
ing search. We run experiments in several differ-
ent domains, using both random and non-random
problems. In each case, we observe a constrained-
ness “knife-edge” in which critically constrained
problems tend to remain critically constrained.
We show that this knife-edge is predicted by a
theoretical lower-bound calculation. We also ob-
serve a very simple scaling with problem size
for various properties measured during search in-
cluding the ratio of clauses to variables, and the
average clause size. Finally, we use this picture of
search to propose some branching heuristics for
propositional satisfiability.

Introduction

Empirical studies of search procedures usually focus on
statistics like the run-time or the total number of nodes
visited. It can also be productive to use the computer
as a “microscope” | looking closely at the running of the
search procedure. To illustrate this approach, we mea-
sure the constrainedness of problems during search. A
general purpose heuristic in many domains is to branch
on the most constrained variable. For example, in
graph coloring, the Brelaz heuristic colors a node with
the fewest available colors, tie-breaking on the num-
ber of uncolored neighbours (Brelaz 1979). How effec-
tive are heuristics at identifying the most constrained
variable? How constrained are the resulting subprob-
lems? To answer such questions, we measured the con-
strainedness of problems during search in several dif-
ferent domains using both random and non-random
problems.

We obtained similar results with a wide variety of
algorithms and heuristics. In each case, we observed
a constrainedness “knife-edge”.  Under-constrained
problems tend to become less constrained as search
deepens, over-constrained problems tend to become
more constrained, but critically constrained problems

from the region inbetween tend to remain critically
constrained. We also observe a simple scaling with
problem size for various properties measured during
search including the ratio of clauses to variables, and
the average clause size. The existence of a con-
strainedness knife-edge helps to explain the hardness
of problems from the phase transition. It also suggests
some branching heuristics for propositional satisfiabil-
ity. Similar microscopic studies that look closely inside
search may be useful in other domains.

Constrainedness within satisfiability

There has been considerable interest recently in en-
coding problems into satisfiability and solving them
either with local search procedures like GSAT (Selman,
Levesque, & Mitchell 1992) or with the Davis-Putnam
decision procedure (Bayardo & Schrag 1997). We
therefore began our experiments by looking at how the
constrainedness of satisfiability problems varies during
search. The constrainedness of a satisfiability problem
depends on several factors including the clause length
(longer clauses are less constraining than shorter ones)
and the number of clauses mentioning a variable (in-
creasing the number of clauses makes the variable more
constrained). We decided therefore to measure both
the ratio of clauses to variables; and the average clause
length during search for the popular random 3-sAT
problem class (Mitchell, Selman, & Levesque 1992).

We use the Davis-Putnam procedure with unit prop-
agation but no pure literal deletion. We branch with
Mowm’s heuristic, picking the literal that occurs most
often in the minimal size clauses. Depth is measured
by the number of assignments. Similar results are
obtained when depth is measured by the number of
branch points, and with other branching heuristics in-
cluding random branching. In each experiment, we
simply follow the heuristic down the first branch, aver-
aging over 1000 different problems. To reduce variance,
we use the same ensemble of problems in all experi-
ments. We adopt the convention that initial param-
eters are in capital italics and that values measured
during search are in lower case italics.
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Figure 1: Ratio of clauses to variables, {/n on the
heuristic branch against the depth.

In Figure 1, we plot the ratio of clauses to variables
down the heuristic branch for random 3-SAT problems
from the middle of the phase transition with an initial
clause to variable ratio, L/N = 4.3. As search pro-
gresses, this ratio drops approximately linearly. How-
ever, it drops less rapidly for larger problems. Since
not all heuristic branches extend to large depths, there
is some noise at the end of each graph. Other exper-
iments show that the rate of decay of I/n increases
as we increase the initial ratio of clauses to variables,
L/N. In Figure 2, we rescale the xz-axis linearly with
problem size, N. This rescaling shows that the gradi-
ent of {/n is inversely proportional to N. Such a simple
scaling result is very unexpected. It may be useful in
a theoretical analysis of the Davis Putnam procedure.
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Figure 2: Ratio of clauses to variables, {/n on the
heuristic branch against the fractional depth.

As the ratio of clauses to variables drops during
search, we might expect that problems become less
constrained. However, the average clause length also
decreases as search deepens, tightening the constraints
on variables. In Figure 3, we show that, just like the
ratio of clauses to variables, the average clause length

is invariant if depths are scaled linearly with problem
size, N. This simple scaling result may also be useful in
a theoretical analysis of the Davis Putnam procedure.
Other experiments show that the average clause length
decreases as we decrease the initial ratio of clauses to
variables, L/N. Which of these two factors wins? Does
the decrease in clause size tighten the constrainedness
faster than the decrease in the ratio of clauses to vari-
ables loosens 1t7 To answer such questions, we need a
more precise measure of constrainedness.
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Figure 3: Average clause length, m on the heuristic
branch against the fractional depth.

An approximate theory

(Gent et al. 1996) proposes an approximate theory for
estimating the constrainedness of an ensemble of prob-
lems. This theory focuses on just two factors: the size
of the problems, and the expected number of solutions.
Problems which are large but which have a small num-
ber of solutions tend to be over-constrained. On the
other hand, problems which are small but which have a
large number of solutions tend to be under-constrained.
Whilst this theory ignores important factors like prob-
lem structure and symmetries, its predictions are often
surprisingly accurate. For instance, the theory predicts
the location of a phase transition in number partition-
ing with just a 4% error (Gent & Walsh 1996).

If each problem in an ensemble has a state space with
2V states, of which (Sol) are expected to be solutions,
then the constrainedness, x of the ensemble is defined

by,

log, ({Sol))
Ko=qef 1= =

This parameter lies within the interval [0,00). If
£ = 0, problems in the ensemble are completely
under-constrained and every state is a solution. If
K = 00, problems in the ensemble are completely over-
constrained and no states are solutions. If kK < 1, prob-
lems are under-constrained and are typically soluble. If



Kk > 1, problems are over-constrained and are typically
soluble. Around x & 1, there tends to be a phase tran-
sition as problems can be both soluble and insoluble.
The hardest problems to solve often occur around such
transitions (Cheeseman, Kanefsky, & Taylor 1991).

Constrainedness knife-edge

We can use this definition of constrainedness to de-
termine whether the decrease in average clause size
outweighs the decrease in the ratio of clauses to vari-
ables. To estimate x during search, we assume that
the current subproblem is taken from an ensemble in
which problems have the same number of clauses, the
same number of variables, and the same distribution of
clause lengths. If there are I; clauses of length ¢, then
as each clause of length i rules out the fraction (1— ;)
of the 2" possible truth assignments,

n 1 l;
(Sol) ~ 2 .H(1_§)
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Note that for a random 3-SAT problem, x is directly
proportional to L/N, the ratio of clauses to variables.

In Figure 4, we plot the estimated constrainedness
down the heuristic branch for random 3-SAT problems.
For L/N < 4.3, problems are under-constrained and
soluble. As search progresses, x decreases as problems
become more under-constrained and obviously soluble.
For L/N > 4.3, problems are over-constrained and in-
soluble. As search progresses, x increases as problems
become more over-constrained and obviously insoluble.
At L/N a2 4.3 problems are on the knife-edge between
solubility and insolubility. As search progresses, « is
roughly constant. Each successive branching decision
gives a subproblem which has the same constrainedness
as the original problem, neither more obviously satis-
fiable, nor more obviously unsatisfiable. Only deep in
search does k eventually break one way or the other.

As with the ratio of clauses to variables, and the av-
erage clause length, graphs of the constrainedness dur-
ing search coincide if depths are scaled linearly with
problem size, N. We have also observed similar knife-
edge behaviour with a random heuristic, and with
an anti-heuristic (that is, one which always branch-
ing against the heuristic) except that values of x are
slightly greater.

Figure 4 suggests an interesting analogy with sta-
tistical mechanics. At the phase boundary in physical
systems, problems tend to be “self-similar”. That is,
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Figure 4: The estimated constrainedness, x down the
heuristic branch for random 3-SAT problems with 100
variables and varying initial ratio of clauses to variable.

they look similar at every length scale. At the phase
boundary in computational systems, problems also dis-
play a form of self-similarity. Branching decisions give
subproblems that look neither more or less constrained.
This helps to explain why such problems are difficult
to solve. Branching decisions tell us very little about
the problem, giving subproblems that are neither more
obviously soluble nor more obviously insoluble. We
will often have to search to a large depth either for a
solution or for a refutation. By comparison, branch-
ing on an over-constrained problem gives a subproblem
that is often even more constrained and hopefully eas-
ier to show insoluble, whilst branching on an under-
constrained problem gives a subproblem that is ofen
even less constrained and hopefully easier to solve.

Lower bound on constrainedness

When we branch into a subproblem, the number of so-
lutions remaining cannot increase. The expected num-
ber of solutions, (Sol) cannot therefore increase. This
provides a lower bound on « that is a good qualitative
estimate for how the constrainedness actually varies
during search. Let k; be the value of x at depth i.
Then,

| logy((S01))

Ko = N
Hence,
log,({Sol)) = N(1— ko)
Thus,
log, ((Sol))
P> 1o Rl
R Z N —1
o 1 N(l — K?o)
o N —1
NK?Q —1

N —1



We can improve this bound slightly by noting that &
is bounded below by zero. Hence,

Nlﬁ?o—i

)

ki > max(0,

In Figure 5, we plot this bound on & for random 3-SAT
problems with 100 variables and varying initial ratio of
clauses to variable, L/N. We see that the behaviour of
% during search observed in Figure 4 is similar to that
predicted by the bound.
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Figure 5: Lower-bound on the constrainedness, x down
a branch for random 3-sAT problems with 100 variables
and varying initial ratio of clauses to variable.

Non-random problems

The existence of a constrainedness knife-edge helps to
explain the difficulty of solving random problems at
the phase transition in solubility. Branching decisions
give subproblems which are neither more obviously sol-
uble or insoluble. We are forced therefore to search
to a large depth either for a solution or for a refu-
tation. Phase transition behaviour has also been ob-
served in problems which are not purely random. For
instance, (Gent & Walsh 1995) identifies phase transi-
tion behaviour in traveling salesperson problems using
real geographical data, in graph coloring problems de-
rived from university exam time-tables, and in Boolean
induction and synthesis problem. As a fourth exam-
ple, (Gomes & Selman 1997) demonstrate phase tran-
sition behaviour in the quasi-group completion prob-
lem. Does the existence of a constrainedness knife-edge
help to explain the difficulty of solving problems at the
phase boundary in such non-random problems?

To answer this question, we ran some experiments
with graph coloring problems from the DIMACS
benchmark library. We used the register allocation
problems as these are based on real code. To color the
graphs, we use a forward checking algorithm with the
Brelaz heuristic to pick the next node to color (Brelaz

1979), and Geelen’s promise heuristic to choose one of
the m possible colors (Geelen 1992). To estimate &,
we assume that the graph is drawn from an ensemble
in which graphs have the same number of nodes, the
same available colors, and the same number of edges as
in the current subproblem. If V' is the set of uncolored
nodes, F is the set of edges between uncolored nodes,
and m; is the set of colors remaining for node ¢ then
there are [[; - |mi| possible colorings of the nodes, and
each edge (i, j) € E rules out |m; Nm;| of the |m;|.|m;|
pairs of colors between nodes, ¢ and j. Thus,

N = logz(H|mi|) = Zlog2(|mi|)
iEV i€V
|m; N my|
(Soly ~ [Jlmdl JI 0- T+
oy (i [m; . |my]
i i,j)eE
Hence,
m;Om;
- _ZumeElogz(l—4||mz|.|mj||)

ZiEV 10g2(|mi|)

In Figure 6, we plot the estimated constrainedness
down the heuristic branch for a typical register al-
location problem. Despite the fact that this plot is
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Figure 6: Estimated constrainedness down the heuris-
tic branch for a typical register allocation problem from
the DIMACS library using a forward checking algo-
rithm. The problem instance (“zeroin.i.1.col”) has 211
nodes, 4100 edges, and needs m = 49 colors. For
m < 48, the estimate for £ becomes infinite before the
end of search as the problem becomes arc inconsistent.

for a single problem instance, we observe a “knife-
edge”. With less than 49 colors, the problem is
over-constrained and insoluble. As search progresses,
the constrainedness increases rapidly. Each branch-
ing decision results in a subproblem that is more ob-
viously insoluble. With more than 49 colors, the
problem is under-constrained and soluble. As search
progresses, the constrainedness only increases slightly.



Each branching decision gives a subproblem that is of
similar constrainedness and difficulty to solve. Simi-
lar behaviour is seen with the other register allocation
problems in the DIMACS library.

Constrainedness within optimization

Phase transition behaviour is not restricted to decision
problems like propositional satisfiability. Certain op-
timization problems like number partitioning and the
traveling salesperson problem also exhibit phase tran-
sitions (Gent & Walsh 1996; Zhang & Korf 1996). Do
we observe a constrainedness knife-edge when solving
such optimization problems?

To explore this question, we ran some experiments
with the CKK optimization procedure for number par-
titioning (Korf 1995). Given a bag of N number, we
wish to find a partition into two bags that minimizes A,
the difference between the sum of the two bag. (Gent
& Walsh 1996) shows that for partitioning n numbers
drawn uniformly at random from (0,(], x & log2(l)/n.
To estimate & during search, we assume that the num-
bers left are taken from such an ensemble and that
their size, [ is twice the sample average. In Figure 7,
we plot this estimate for the constrainedness during
search. For comparison, we also plot the lower bound
on k using the same scales. We again observe a con-
strainedness knife-edge. Although there is not a tran-
sition between soluble and insoluble problems (since
there is always an optimal partition), there is now a
transition between optimization problems with perfect
partitions (that is, in which A < 1) and those without,
and verifying the optimality of a partition with A > 1
can be costly.

Constrainedness as a heuristic

Knowledge about the existence of a constrainedness
knife-edge may help us design more effective search
procedures. For instance, for soluble problems, it sug-
gests that we should try to get off the knife-edge as
quickly as possible by branching into the subproblem
that is as under-constrained as possible. That is, as
suggested in (Gent et al. 1996), we should branch into
the subproblem that minimizes k. To test this thesis,
we implemented a branching heuristic for the Davis-
Putnam procedure that branches on the literal which
gives the subproblem with smallest x. In Table 1, we
show that this heuristic performs well on hard and sat-
isfiable random 3-SAT problems.

For insoluble problems, the existence of a con-
strainedness knife-edge suggests that we should branch
into the sub-problem that is as over-constrained as pos-
sible. That is, we should branch into the subprob-
lem that maximizes k. Initial experiments suggest
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Figure 7: The constrainedness, x down the heuristic
branch for number partitioning problems with N =
30 numbers, and varying L. (A) estimated k. (B)
theoretical lower-bound to same scale.

that this heuristic is effective on hard and unsatis-
fiable random 3-SAT problems. For instance, for 50
variable unsatisfiable problems at L/N = 4.3, the me-
dian nodes searched using this heuristic is 2,575 com-
pared to 3,331 nodes for MoM’s heuristic, and 7,419
nodes for the heuristic that minimizes k. On the other
hand, maximizing & is less effective on hard and sat-
isfiable problems. For 50 variable satisfiable problems
at L/N = 4.3, the median nodes searched when maxi-
mizing & is 1,487 compared to 164 nodes with MoMm’s
heuristic, and 104 nodes with the heuristic that mini-
mizes k. An adaptive heuristic that switches between
minimizing and maximizing & depending on an esti-
mate of the solubility of the problem may therefore
offer good performance.

Related work

Most theoretical studies of the Davis-Putnam pro-
cedure have used the easier constant probability
model. One notable exception is (Yugami 1995) which
computes the average-case complexity of the Davis-
Putnam procedure for the random 3-SAT problem class.
Freeman has studied experimentally the running of the



N | MowMm | Kappa
25 11 1
50 164 104
75 1129 580
100 | 3903 1174

Table 1: Median nodes searched by the Davis-Putnam
procedure for satisfiable random 3-SAT problems at
L/N = 4.3, branching either with MoM’s heuristic,
or to minimize the constrainedness (KAPPA).

Davis-Putnam procedure on random 3-SAT problems
(Freeman 1996). Unlike here, where the focus is on the
heuristic branch, Freeman computes averages across all
branches in the search tree. He identifies an “unit cas-
cade”, a depth in the search tree where unit propaga-
tion greatly simplifies the problem. The ineffectiveness
of unit propagation above this depth helps to explain
the hardness of problems at the phase transition.
Gent and Walsh have studied experimentally the
running of local search procedures for satisfiability
(Gent & Walsh 1993). They show that various proper-
ties like the percentage of clauses satisfied, and the
number of variables offered to flip are invariant if
depths are scaled linearly with problem size. This mir-
rors the result here on the scaling of the constrained-
ness, the ratio of clauses to variables and the average
clause size. Such simple scaling results may be useful
in the theoretical analysis of these search procedures.

Conclusions

We have measured how the constrainedness of prob-
lems varies during search in several different prob-
lem domains: both decision problems like proposi-
tional satisfiability and graph coloring, and optimiza-
tion problems like number partitioning. Our experi-
ments have used both random and non-random prob-
lems. In each case, we observed a constrainedness
“knife-edge” in which critically constrained problems
tended to remain critically constrained. The existence
of a constrainedness knife-edge helps to explain the
hardness of problems from the phase transition. We
have shown that a lower-bound calculation predicts
this knife-edge theoretically. We have also observed
a very simple scaling with problem size for various
properties measured during search like the constrained-
ness, the ratio of clauses to variables, and the average
clause size. Finally, we have used the existence of a
constrainedness knife-edge to propose some branching
heuristics for propositional satisfiability. We conjec-
ture that similar microscopic studies that look closely
inside search may be useful in other domains.
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