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Abstract

Uncertainty arises in preference aggregation in several ways.
There may, for example, be uncertainty in the votes or the
voting rule. Such uncertainty can introduce computational
complexity in determining which candidate or candidates can
or must win the election. In this paper, we survey recent work
in this area and give some new results. We argue, for exam-
ple, that the set of possible winners can be computationally
harder to compute than the necessary winner. As a second ex-
ample, we show that, even if the unknown votes are assumed
to be single-peaked, it remains computationally hard to com-
pute the possible and necessary winners, or to manipulate the
election.

Introduction

A common mechanism for aggregating preferences is to ap-
ply a voting rule. Each agent expresses a preference or-
dering over a set of candidates, and an election is held to
compute the winner. Going back to at least the Marquis
de Condorcet in 1785, and continuing with Arrow, Sen,
Gibbard, Satterthwaite and others from the 1950s onwards,
social choice theory has identified fundamental issues that
arise in running such elections. For instance, Arrow’s fa-
mous impossibility theorem shows that there is no fair way
to run such an election if we have more than two candi-
dates. More recently, researchers have started to consider
computational issues surrounding such elections. For exam-
ple, it has been shown that it can be computationally difficult
to manipulate an election (Bartholdi, Tovey, & Trick 1989;
Bartholdi & Orlin 1991).

One important consideration is the impact of uncertainty
on voting. One source of uncertainty is in the votes. For
example, during preference elicitation, not all voters may
have expressed their preferences. Even if all voters have ex-
pressed their preferences, a new candidates might be intro-
duced. To deal with such situations, Konczak and Lang con-
sidered how to reason about voting when preferences are in-
completely specified (Konczak & Lang 2005). For instance,
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how do we compute if a certain candidate can still win? Can
we compute when to stop eliciting preferences? Another
source of uncertainty is in the voting rule itself. For ex-
ample, uncertainty may be deliberately introduced into the
voting rule to make manipulation computationally difficult
(Conitzer & Sandholm 2002a). There are other forms of un-
certainty which we shall not consider here. For example,
preferences may be certain but the state of the world uncer-
tain (Gajdos et al. 2006). As a second example, we may
have a probabilistic model of the user’s preference that is
used to direct preference elicitation (Boutilier 2002).

In this paper, we consider how uncertainty in votes and
voting rules impacts upon the computation of who wins. We
will survey some recent work in this area, as well as giving
some new results. We will argue, for example, that it can be
computationally harder to compute who can win as opposed
to who must win. Some of the results described here were
first mentioned in (Konczak & Lang 2005; Pini et al. 2007;
Lang et al. 2007). However, all theorems and proofs appear
for the first time.

Voting rules

A profile is a set of n total orders over m candidates. A vot-
ing rule is a function mapping a profile onto one candidate,
the winner. We shall normally assume that any rule takes
polynomial time to apply. We let N (i, j) be the number of
voters preferring ¢ to j. We shall consider some of the most
common voting rules on profiles. To reduce the impact of
ties, we will assume an odd number of voters (or total weight
of votes). In the case of a tie, the winner is chosen at random
between the tied candidates unless otherwise indicated.

Scoring rules: (wq,...,wy) is a vector of weights, the ith
candidate in a total order scores w;, and the winner is the
candidate with highest total score. The plurality rule has
the weight vector (1,0, ..., 0), the vefo rule has the vector
(1,1,...,1,0), whilst the Borda rule has the vector (m —
1,m-—2,...,0).

Cup: The winner is the result of a series of pairwise major-
ity elections between candidates.

Copeland (aka tournament): The candidate with the
highest Copeland score wins. The Copeland score of
candidate i is >, (N(4,j) > 3) — (N(i,7) < 5).
The Copeland winner is the candidate that wins the most



pairwise elections. In the second order Copeland rule, if
there is a tie, the winner is the candidate whose defeated
competitors have the largest sum of Copeland scores.

Simpson (aka maximin): The candidate with the highest
maximin score wins. The maximin score of candidate ¢
is min;«; N (4, 7). The Simpson winner is the candidate
whose worst performance in pairwise elections is best.

Plurality with runoff: If one candidate has a majority, they
win. Otherwise everyone but the two candidates with the
most votes are eliminated and the winner is chosen us-
ing the majority rule. A variation of this (used in the
French National Assembly) is to eliminate all candidates
with less than a given threshold and then run a plurality
election.

STV: This rule requires up to m — 1 rounds. In each round,
the candidate with the least number of voters ranking
them first is eliminated until one of the remaining can-
didates has a majority.

We also consider some other common voting rules in
which votes are not give by a total preference ordering but
by some sort of score.

Approval: Each voter labels candidates as approved or not.
The candidate with the most number of votes wins.

Range: Each voter gives a score from a given range to each
candidate. The candidate with the highest total score
wins. Approval voting is an example of range voting
where only scores of 0 or 1 are allowed.

Cumulative: Voters have a number of points to distribute
between candidates. The candidate with the highest total
score wins.

All these rules can be easily modified to work with
weighted votes. A vote of integer weight k can be viewed
as k voters who vote identically. Finally, a Condorcet win-
ner is a candidate who beats all others in pairwise elections.
Not all elections have a Condorcet winner.

Incomplete profiles

The first form of uncertainty we consider is when the votes
are incompletely specified. For example, during preference
elicitation, we may have only an incomplete profile. An in-
complete profile is one in which some of the votes are in-
complete orders. To reason about such a situation, Konczak
and Lang define the possible winners (candidates that are
winners in at least one completion of the profile) and the
necessary winner (a candidate that wins in all completions)
(Konczak & Lang 2005). We will let POSSIBLEWINNERS
be the problem of deciding if a given set of candidates is
the set of possible winners, and NECESSARY WINNER be
the problem of deciding if a given candidate is the neces-
sary winner. Similarly POSSIBLECONDORCETWINNERS is
the problem of deciding if a set of candidates are Condorcet
winners in at least one completion of the profile, and NEC-
ESSARYCONDORCETWINNER is the problem of deciding if
a candidate is the Condorcet winner in all completions (Kon-
czak & Lang 2005). Konczak and Lang argue that possible
and necessary winners can be used to terminate preference

elicitation. When the possible winners narrows down and
equals the necessary winner, preference elicitation can stop.
In (Pini ef al. 2007), we show that possible and necessary
winners can also direct preference elicitation. We need just
resolve the ordering between candidates who are possible
winners and can ignore candidates who are outside this set.

Weighted votes

As in (Conitzer & Sandholm 2002a), we will consider both
weighted and unweighted votes. Although human elections
are often unweighted, the addition of weights makes voting
schemes more general. Weighted voting systems are used in
a number of real-world settings like shareholder meetings,
and elected assemblies. Weights are useful in multiagent
systems where we have different types of agents. Weights
are also interesting from a computational perspective. First,
weights can increase computational complexity. For exam-
ple, computing the possible winners for the Borda rule is
polynomial with unweighted votes (Konczak & Lang 2005),
but NP-hard with weighted votes (Pini et al. 2007). Sec-
ond, as we argue in detail later, the weighted case informs us
about the unweighted case when we have probabilistic infor-
mation about the votes. For instance, if computing possible
winners is NP-hard with weighted votes, then it is NP-hard
to compute the probability of winning when there is uncer-
tainty about how the unweighted votes have been cast. A
similar argument has been advanced for considering manip-
ulation with weighted votes (Conitzer & Sandholm 2002a).

Computing Possible and Necessary Winners

We first consider the computational complexity of com-
puting possible and necessary winners. Our analysis is
along two dimensions: weighted or unweighted votes, and
a bounded or unbounded number of candidates.

Unweighted votes

If the number of candidates is bounded, there are only a
polynomial number of effectively different votes. We can
thus enumerate and evaluate all different votes in polynomial
time. Hence computing POSSIBLEWINNERS and NECES-
SARYWINNER are both polynomial. A similar argument is
made to show that manipulation by a coalition is polyno-
mial when the number of candidates is bounded (Conitzer &
Sandholm 2002a; Conitzer, Lang, & Sandholm 2003).

Suppose now that the number of candidates is not nec-
essarily bounded. Konczak and Lang observed that, in this
case, POSSIBLEWINNERS is in NP and NECESSARY WIN-
NER is in coNP (Konczak & Lang 2005). They also showed
that for any scoring rule, POSSIBLEWINNERS and NECES-
SARYWINNER are polynomial to compute. Finally, they
proved that possible and necessary Condorcet winners are
polynomial to compute. In (Pini ef al. 2007), we proved that
POSSIBLEWINNERS for STV is NP-complete whilst NEC-
ESSARYWINNER is coNP-complete. In fact, we proved it
was even NP-hard to approximate the set of possible winner
to within some constant factor in size.

We now argue that POSSIBLEWINNERS can be harder to
compute than NECESSARY WINNER (assuming P # N P).



Theorem 1 Deciding POSSIBLEWINNERS for the second
order Copeland rule with unweighted votes and an un-
bounded number of candidates is NP-complete, but NEC-
ESSARY WINNER is polynomial.

Proof: Consider CONSTRUCTIVEMANIPULATION, the
problem of deciding if a final vote can be cast to make a
given candidate win. This is NP-hard for the second order
Copeland rule (Bartholdi, Tovey, & Trick 1989). As Pos-
SIBLEWINNERS is a more general problem, it also is NP-
hard. On the other hand, consider the following algorithm
for computing if a is the necessary winner under the second
order Copeland rule. For every other candidate b, we com-
plete the profile so that b is as high as possible, and a is as
low as possible in each vote, and other candidates are in any
ordering. Then a is the necessary winner iff @ wins each of
these elections. Since there are at most m — 1 such com-
pletions to consider, this takes polynomial time to compute.
o

Finally, it is not hard to see that POSSIBLEWINNERS
and NECESSARY WINNER are polynomial for the Approval,
Range and Cumulative rules.

Weighted votes

In (Pini et al. 2007), we argued that for the Borda, Copeland,
Simpson and STV rules, computing POSSIBLEWINNERS
with weighted votes is NP-hard. This was based on the NP-
hardness of constructive manipulation for these rules with
weighted votes (Conitzer & Sandholm 2002a). We now give
a more precise result where we bound the number of can-
didates, and also consider the computational complexity of
computing the necessary winner when votes are weighted
but the number of candidates is bounded.

Theorem 2 For 3 or more candidates and weighted votes,
POSSIBLEWINNERS is NP-complete, and NECESSARY-
WINNER is coNP-complete.

Proof: Immediate from the proofs that both constructive
and destructive manipulation of STV and plurality with
runoff are NP-hard for 3 or more candidates (Conitzer 2006).
o

In fact, POSSIBLEWINNERS for weighted votes is NP-
complete with 3 or more candidates for Borda, veto, STV
and plurality with runoff, and with 4 or more candidates for
Copeland and Simpson. Note that POSSIBLEWINNERS is
NP-complete for Borda with weighted votes and 3 or more
candidates, but polynomial for unweighted votes even with
an unbounded number of candidates.

Probabilistic information

Another form of uncertainty is when we have a probability
distribution over the votes (Conitzer & Sandholm 2002a).
We first show that the weighted case informs us about the un-
weighted case when we have probabilistic information about
the votes. Given a probability distribution over the votes, a
number 7 € [0, 1] and a candidate, EVALUATION is the prob-
lem of deciding if the probability of the candidate winning
is strictly greater than r (Conitzer & Sandholm 2002a).

Theorem 3 POSSIBLEWINNERS is NP-complete for a vot-
ing rule on weighted votes implies EVALUATION with un-
weighted votes is also NP-complete.

Proof: We reduce POSSIBLEWINNERS to EVALUATION.
Each agent of weight k is replaced by k agents of weight
1 whose votes are perfectly correlated. We then construct
a joint probability distribution over the votes so that each
completion is drawn with the correct frequency. We set r =
0. EVALUATION then decides POSSIBLEWINNERS. ¢

Dually, if EVALUATION with unweighted votes is polyno-
mial for a particular voting rule then POSSIBLEWINNERS is
also polynomial even with weighted votes. Note that these
results hold even if we bound the number of candidates.
Note also that such implications do not reverse.

Theorem 4 For the approval rule, EVALUATION is NP-
complete, but POSSIBLEWINNERS on weighted votes is
polynomial.

Proof: Theorem 84 in (Conitzer 2006) shows that EVALU-
ATION for weighted votes is NP-hard for the approval rule.
Theorem 85 in (Conitzer 2006) shows EVALUATION for
weighted votes is NP-hard implies EVALUATION for un-
weighted votes is also NP-hard. For POSSIBLEWINNERS,
we just assume that all unknown votes are in favour of the
candidate. ¢

Single peaked preferences

An interesting special case is when preferences are single
peaked. That is, candidates can be placed in a left to right
order and a voter’s preference for a candidate decreases with
distance from their peak. Single peaked preferences are
interesting from several perspectives. First, single peaked
preferences are likely to occur in a number of domains. For
example, if you are buying a house, you might have an op-
timal price in mind and your preference for a house de-
creases as the distance from this price increases. Second,
single peaked preferences are easy to elicit. For instance,
we might simply ask you for your optimal house price. As
a second example, Conitzer gives a strategy for eliciting any
single peaked preference ordering with a linear number of
pairwise ranking questions (Conitzer 2007). Third, single
peaked preferences are easy to aggregate. In particular, there
is always a Condorcet winner (the median candidate who
beats all others in pairwise comparisons) (Black 1948).
Suppose we assume that agents’ preferences will be single
peaked. Does this make it easier to decide if elicitation can
be terminated? We might, for example, stop eliciting pref-
erences if a candidate is already guaranteed to be the Con-
dorcet winner. We suppose we know in advance the order-
ing of the candidates which make agents’ preferences single
peaked. For instance, if the feature is price in dollars, we
might expect preferences to be single peaked over the stan-
dard ordering of integers. However, an interesting extension
is when this ordering is not known. Given a total order-
ing of candidates, an incomplete profile, weights for each
agent and a candidate, NECESSARY CONDORCETWINNER
for single peaked profiles is the problem of deciding if the
candidate is the Condorcet winner in all completions of the



incomplete profile which are single peaked with respect to
the given ordering. POSSIBLECONDORCETWINNERS for
single peaked profiles is the problem of deciding if the can-
didate is the Condorcet winner in at least one completion of
the incomplete profile which is single peaked with respect to
the given ordering.

Theorem S NECESSARYCONDORCETWINNER and POS-
SIBLECONDORCETWINNERS for single peaked profiles are
polynomial to decide.

Proof: We assume candidates lie on a left-right scale. For
each agent, there is a leftmost and rightmost peak candidate
consistent with their declared preferences. The profile can
be completed so that any candidate between this leftmost
and rightmost candidate is the peak of the agent’s prefer-
ence. We take the leftmost peak candidate for each agent
and compute the median candidate for this completion. Sim-
ilarly, we take the rightmost peak candidate for each agent
and compute the median candidate for this completion. If
the two completions have the same median candidates, this
is necessarily the Condorcet winner. A possible Condorcet
winner is any candidate between these two median candi-
dates. ¢

Even though we are assuming agents’ preferences are sin-
gle peaked, there are a number of reasons why we might not
use the Condorcet winner. First, the Condorcet winner does
not take into account the agents’ intensity of preferences.
Second, we may not know each agent’s most preferred out-
come. For example, many web search mechanisms permit
users to specify just an approved range of prices (e.g. upper
and lower bound on price). In such a situation, it might be
more appropriate to use approval voting (which is not Con-
dorcet consistent) to aggregate the possibly single peaked
preferences. Third, we might prefer voting systems which
are not Condorcet consistent but which have other desirable
properties. For example, we might want to take into account
voters’ lower ranked candidates using a method like Borda.
Fourth, we might have hard constraints as well as prefer-
ences. As aresult, the Condorcet winner might be infeasible.
We might therefore consider a voting system which gives a
total ranking over all candidates so that we can combine it
with constraint solving.

Given a total ordering of candidates, an incomplete pro-
file, and a candidate, POSSIBLEWINNERS for single peaked
profiles is the problem of deciding if the candidate is the
winner of the election in at least one completion of the
incomplete profile which is single peaked with respect to
the given ordering. NECESSARY WINNER for single peaked
profiles is the problem of deciding if the candidate is the
winner in all completions of the incomplete profile which
are single peaked with respect to the given ordering.

Theorem 6 For 3 or more candidates and weighted votes,
POSSIBLEWINNERS for single peaked profiles is NP-
complete for STV.

Proof: Reduction from number partition. Suppose we have
a bag of n numbers, {a;} where >_" | a; = 2k. The 3 can-
didates are a, b and c. Agents’ preferences are single peaked
when candidates are ordered alphabetically. We construct

an incomplete profile as follows. One agent with weight
6k — 1 votes b > ¢ > a, a second agent with weight 4k
votes @ > b > ¢, and a third agent also with weight 4% votes
¢ > b > a. There are n other agents, each with a weight 2a;
and unspecified preferences. Suppose there is a perfect par-
tition. Then, we can have 2k weight of votes putting a at the
peak, and the other 2k weight of votes putting c at the peak.
In this case, the STV rule eliminates b in the first round (as b
has just 6k — 1 weight of votes, and the other two candidates
have 6k), and then elects c. Hence, there is a completion in
which b is a winner if there is a perfect partition. Suppose
there is not a perfect partition. Then either a, b or ¢ will re-
ceive less than 2k weight of votes from the final n agents.
In the first case, a is eliminated by the first round of STV
and b goes on to win. In the second case, either a or c is
eliminated by the first round. If a is eliminated, b then wins.
If ¢ is eliminated, b also wins. Finally, in the third case, ¢
is eliminated and b wins. Hence c is a winner iff there is a
perfect partition. ¢

Theorem 7 For 3 or more candidates and weighted votes,
NECESSARYWINNER for single peaked profiles is coNP-
complete for STV.

Proof: We consider the complement problem, is there a sin-
gle peaked completion in which the candidate does not win?
We use the same reduction from number partitioning used in
the last proof. There is a single peaked completion in which
b is not a winner iff there is a perfect partition. ¢

Note that plurality with runoff for 3 candidates is equiv-
alent to STV. It follows therefore that POSSIBLEWINNERS
and NECESSARY WINNER for single peaked profiles are NP-
hard for plurality with runoff.

Manipulation

Uncertainty is a factor when we consider how to manip-
ulate a vote. In this situation, computational complex-
ity may be desirable as a barrier to manipulation. For
example, both the second order Copeland rule and STV
are NP-hard to manipulate if the number of candidates
and voters is unbounded (Bartholdi, Tovey, & Trick 1989;
Bartholdi & Orlin 1991). In fact, STV is NP-hard to ma-
nipulate even if the number of candidates is bounded pro-
vided the voters are weighted (Conitzer & Sandholm 2002a).
Here, we show that such results continue to hold when votes
are single peaked.

Given a subset of single peaked votes, weights for each
agent and a candidate, CONSTRUCTIVEMANIPULATION for
single peaked profiles is the problem of deciding if the re-
maining agents can cast single peaked votes so that the can-
didate wins the election. DESTRUCTIVEMANIPULATION
for single peaked profiles is the problem of deciding if the
remaining agents can cast single peaked votes so that the
candidate does not win the election. Note we assume the or-
dering of candidates determining single peakedness is given.
However, it would also be interesting to consider when this
is not fixed in advance.

Theorem 8 For 3 or more candidates and weighted votes,
CONSTRUCTIVEMANIPULATION and DESTRUCTIVEMA -
NIPULATION for single peaked profiles are NP-hard for STV.



Proof: We use the same reduction from number partitioning
used in the last two proofs. ¢

Again, it immediately follows that CONSTRUCTIVEMA-
NIPULATION and DESTRUCTIVEMANIPULATION for sin-
gle peaked profiles are NP-hard for plurality with runoff.

Multiple elections

Agents may be expressing preferences over several related
issues. For example, suppose agents are deciding their posi-
tion with respect to three topical issues. For simplicity, we
will consider three agents and three binary issues. The is-
sues are: is global warming happening, does this have catas-
trophic consequences, and should we act now. A position on
the three issues can be expressed as a triple. For instance, N
Y Y represents that global warming is not happening, global
warming would have catastrophic consequences, and that we
do need to act now. The agents’ preferences over the three
issues are as follows:

Agentl Agent2 Agent3

1 YYY YNN NYN
2 YNN YYY NYY
3 NYN NNN NNN
4 NNN NYN NNY
5 YNY YNY YNY
6 NYY NYY YYY
7 NNY NNY YNN
8 YYN YYN YYN

All agents believe that if global warming is happening and
this is causing catastrophic consequences, we must act now.
Therefore they all place Y Y N last in their preference rank-
ings. As there are an exponential number of outcomes, it
may be unrealistic for agents to provide such complete rank-
ings when voting. One possibility is for the agents just to
declare their most preferred outcomes. As issues are binary,
we can apply the majority rule to each issue. In this case,
this gives Y Y N. Unfortunately, this is everyone’s least
favourite option. Lacy and Niou show that such “paradox-
ical” results are a consequence of the agents’ preferences
not being separable (Lacy & Niou 2000). We can define the
possible and necessary winners for such an election. Both
are polynomial to compute. Even though there can be an
exponential number of possible winners, the set of possible
winners can always be represented in linear space as the is-
sues are decided independently. For example, if Agentl and
Agent2 have voted, but Agent3 has not, the possible winners
are Y* *,

One way around such paradoxical results is to vote se-
quentially, issue by issue. Suppose the agents vote sin-
cerely (that is, declaring their most preferred option at each
point consistent with the current decisions). Here, the agents
would decide Y for global warming, then N for catastrophic
consequences (as both Agent2 and Agent3 prefer this given
Y for global warming), and then N for acting now. Lacy and
Niou prove that if agents vote sincerely, such sequential vot-
ing will not return an outcome dominated by all others (Lacy
& Niou 2000). However, such sequential voting does not
necessarily return the Condorcet winner. Here, for example,

it does not return the Condorcet winner, Y Y Y. This out-
come beats all others in pairwise elections. We can define
possible and necessary winners for such sequential voting.
However, it is not at all obvious if the possible or necessary
winners of such a sequential vote can be computed in poly-
nomial time, nor even if the set of possible winners can be
represented in polynomial space.

Related work

To deal with uncertainty in the votes, Konczak and Lang
introduced the notions of possible and necessary winners
(Konczak & Lang 2005). They proved that for any scoring
rule, possible and necessary winners are polynomial to com-
pute, as are possible and necessary Condorcet winners. They
also argue that when computing possible/necessary winners
is polynomial, so is constructive/destructive manipulation.
In (Pini et al. 2007), we proved that possible and necessary
winners are NP-hard to compute for STV, and NP-hard even
to approximate.

Conitzer, Lang and Sandholm have studied the compu-
tational complexity of manipulating an election (Conitzer
& Sandholm 2002a; Conitzer, Lang, & Sandholm 2003;
Conitzer 2006). They proved that constructive manipula-
tion of Borda, veto, STV, plurality with runoff, Copeland
and Simpson are all NP-hard for weighted votes with a small
(bounded) number of candidates. Similarly, they proved that
destructive manipulation of STV and plurality with runoff
are NP-hard for weighted votes with a small (bounded) num-
ber of candidates. Finally, they proved that deciding when
elicitation can be terminated is NP-hard for STV but poly-
nomial for many other rules, whilst deciding which votes to
elicit is NP-hard for approval, Borda, Copeland and Simp-
son (Conitzer & Sandholm 2002b).

Another source of uncertainty can be in the voting rule
itself. For instance, we have considered uncertainty in the
application of the Cup rule (Lang et al. 2007). This rule per-
forms a series of pairwise majority elections between candi-
dates. The order of these elections, the so-called agenda,
may not be fixed or known to the voters. We can again intro-
duce upper and lower bounds on who can/must win depend-
ing on whether the candidate wins in at least one agenda or
in all possible agendas.

Conclusion

Uncertainty arises in preference aggregation in several ways.
There may, for example, be uncertainty in the votes or the
voting rule. Such uncertainty can introduce computational
complexity in determining which candidate or candidates
can or must win the election. In this paper, we have sur-
veyed some recent work in this area, and given some new
results. We argued, for example, that the set of possible win-
ners can be computationally harder to compute than the nec-
essary winner. As a second example, we have shown that,
even if the unknown votes are assumed to be single-peaked,
it may remain computationally hard to compute the possible
and necessary winners, or to manipulate the election.

Other forms of uncertainty have yet to be studied in de-
tail. For instance, there may be uncertainty in the weight



vector used by a scoring rule. The Chair may want to ma-
nipulate the election by collecting all the votes and then de-
ciding on the weights in such a way that ensures that their
preferred candidate wins. As a second example, the Chair
may want to hinder strategic voting by not announcing the
weights in advance or by choosing weights randomly. Pos-
sible and necessary winners can be defined in a similar way
as before to reason about such a situation.

Many open questions remain. For example, what is the
complexity of manipulating an election by adding, deleting
or partitioning candidates, or by adding, deleting or parti-
tioning voters when preferences are guaranteed to be single
peaked? What is the complexity of computing possible and
necessary winners, or of constructive and destructive manip-
ulation for other voting rules like Borda when profiles are
single peaked? Finally, what is the complexity of comput-
ing the possible and necessary winners when the candidates
(or the voters) can be partitioned?
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