Symmetry Breaking with Set Variables

Toby Walsh NICTA and UNSW

Variables

• Finite domain variables

- Italy ∈ {red,blue,green}
- Square[1,2] ∈ {white, black, empty}
- Set variables
 - Group[2,3] \subseteq {player1, player2, .., player8}
 - |Group[2,3]| = 4
 - Group[2,3] \cap Group[3,3] = {}

Set variables

- Explicit domain
 - But exponential number of subsets!
- Upper and lower bound
 - $\{\} \subseteq \text{Group}[2,3] \subseteq \{\text{player}1, \text{player}2, ..., player8}$
 - Cannot represent disjunctive choice like S={1,2} or S={2,3}

Set variables

Characteristic function
X[i] = 1 iff i ∈ S and 0 otherwise
Essentially equivalent to bound representation

Set variables

 More exotic representations Cardinality and bounds Length lex bounds • First order by cardinality and then, within each length, a lex ordering • $\{1,2,3\} \leq_{\text{lex}} S \leq_{\text{lex}} \{1,2,6\}$

Local consistency

Bound consistency

- Upper bound are values in a solution
- Lower bound are values occur in all solutions
- Equivalent to BC (GAC) on characteristic function representation

Why use set vars?

Eliminate symmetry in a problem

- Set has no order!
- X[i,j,k]=I iff golfer k plays in group i on week j
- S[i,j] = set of golfers playing in group i on week j

Why use set vars?

Eliminates (some) symmetry in a problem

- Still may have symmetry between set variables
 - S[i,j] has symmetry as rows (groups) and cols (weeks) are symmetric
- Still may have symmetry between values
 - Players (values) are interchangeable

Symmetry and Set Vars

- Finite domain variables
 - Symmetry is bijection, σ on assignments
 - $\sigma(X[1]=4) \Rightarrow X[8]=3$
- Set variables
 - Symmetry is bijection, σ on membership constraints
 - $\sigma(\text{player} | \in \text{Group}[3, 1]) \Rightarrow \text{player} 3 \in \text{Group}[1, 5]$
 - $\sigma(\text{nursel} \in \text{Shift}[\text{mon}]) \Rightarrow \text{nurse3} \in \text{Shift}[\text{tu}]$

Symmetry and Set Vars

- Set variables
 - Symmetry is bijection, σ on membership constraints
 - Preserves solutions/constraints
- Symmetry can act on
 - Set variables alone
 - Values taken by set variables alone
 - Or both

Set variable symmetry

• Wreath value interchangeability

- Group[i,j] is ith group in jth week
 - Weeks interchangeable
 - Given week, groups interchangeable

Set value symmetry

• Value interchangeability

Group[i,j] is ith group in jth week
Players within group interchangeable
Uniformly swap player3 with player4

Symmetry breaking

- General method for variable symmetries on finite domain vars [Crawford, Ginsberg, Luks and Roy KR96]
 - Look for lexicographically least assignment
 - $(Z[I], Z[2], ...) \leq_{lex} (Z[\sigma(I)], Z[\sigma(2)], ...)$

reversal symmetry:
 (X[1],X[2],...,X[n-1],X[n]) ≤lex
 (X[n],X[n-1],...,X[2],X[1])

Adding constraints

- Same method works with value and variable/ value symmetries for finite domain vars [VValsh CP06]
 - Look for lex least assignment
 - For value symmetries:
 (Z[I],Z[2],...) ≤_{lex} (σ(Z[I]),σ(Z[I]),...)
 - Simple propagator for this global constraint based on a ternary decomposition

Symmetry breaking

 Same method works for set variables Look for lexicographically least assignment • $(S[1],S[2],...) \leq_{lex} (S[\sigma(1)],S[\sigma(2)],...)$ • But how do we order two set variables? So we can lift this to lex ordering on sequence of set vars

Ordering sets

Need any total order on sets
Subset is only a partial ordering
Multiset ordering

{1,2,3} <mset {1,2,4}
{1,2,3} <mset {4}

Multiset ordering

• SI <mset S2 iff

- SI can be obtained from S2 by replacing one or more values with any number of smaller values
- Equivalent to lex ordering characteristic functions of sets
 - Suggests how to build a propagator!

Multiset ordering

- MI <_{mset} M2 iff
 - MI can be obtained from M2 by replacing one or more values with any number of occurrences of smaller values
 - Equivalent to lex ordering occurrence vectors for multi-sets
 - $\{1, 1, 1, 2, 4, 4, 4, 4\} <_{mset} \{4, 4, 5\}$

Multiset ordering constraint

- To propagate constraint SI <_{mset} S2
 Channel into characteristic function
 i ∈ S iff Xi=I (and 0 otherwise)
 - Post lex ordering constraint on 0/1 vars making up characteristic function

Consider {2}⊆SI⊆{2,4}, {I}⊆S2⊆{1,3},
 SI <_{mset} S2

Lifting multiset ordering constraint

• To break symmetry, post LEX LEADER:

- $(S[1],S[2],...) \leq_{lex} (S[\sigma(1)],S[\sigma(2)],...)$
- Where ≤_{lex} is lifting of multiset ordering on sets to ordering on sequences of sets
- How do we do such a lifting?
 - Adapt \leq_{lex} propagator
 - Simple encoding based on definition of ≤lex

Lifting multiset ordering constraint

- Suppose (S[1],S[2],...) \leq_{lex} (T[1],T[2],...)
 - Where S[i] and T[j] are set vars
- Introduce sequence of Booleans
 - B[i]=0 if not lex ordered up to the ith element of the sequence
 - B[i+1] iff (B[i] or S[i] <_{mset} T[i])
 - B[i]=0 implies $S[i] \leq_{mset} T[i]$

Breaking symmetry with set vars

- Look for lexicographically least assignment
 - $(S[1],S[2],...) \leq_{lex} (S[\sigma(1)],S[\sigma(2)],...)$
- Consider reversal symmetry
 - $(S[1],S[2],...) \leq_{lex} (S[n],S[n-1],...)$
- As before, may be exponential number of such constraints
 - Look for special classes of symmetry where we can do better

Interchangeable set vars

- LEX LEADER constraints imply multiset ordering on set variables
 - $S[I] \leq_{mset} S[2] \leq_{mset} ... \leq_{mset} S[n]$
 - Simple way to break all symmetry!
 - Consider $\{2\} \subseteq S[1] \subseteq \{2,4\}, \{1\} \subseteq S[2] \subseteq \{1,3\}, \{\} \subseteq S[3] \subseteq \{1,4\}$

Interchangeable set vars

- Symmetry breaking equivalent to row symmetry on 2d 0/1 matrix
 - Lex order rows
 - Lex chain prunes all symmetric values
 - Consider again
 - $\{2\} \subseteq S[1] \subseteq \{2,4\}, \{1\} \subseteq S[2] \subseteq \{1,3\}, \{\} \subseteq S[3] \subseteq \{1,4\}$

Interchangeable set vals

- Symmetry breaking equivalent to col symmetry on 2d 0/1 matrix
 - Lex order cols (nb no row sum=1 as with finite domain vars with val sym!)
 - Lex chain prunes all symmetric values
 - Consider $\{I\} \subseteq S[I] \subseteq \{I,2,3\}, S[2] = \{2\}$
 - Equivalent to value precedence [Law & Lee CP04]

Value precedence for set variables

• How do we distinguish apart values?

- One value occurs in a set on its own with the other value
- Value precedence ensures that:
 - i occurs on its own first before j for all i<j [Law & Lee CP04]
 - Consider $\{I\}\subseteq S[I]\subseteq \{I,2,3\}, S[2]=\{2\}$

Interchangeable set variables & values

- Symmetry breaking equivalent to row & col symmetry on 2d 0/1 matrix
 - NP-hard to break all symmetry
 - Lex order row & cols breaks most symmetry
 - Effective in practice

Conclusions

- Set variables help deal with symmetry
 - No order within a set
- We can break symmetry in problems containing set variables
 - In much the same way as finite domain variables
 - Look for LEX LEADER
- Special types of symmetry can do better

