The Difference All-Difference Makes*

Kostas Stergiou and Toby Walsh
Department of Computer Science
University of Strathclyde
Glasgow, Scotland
{ks,tw}Ocs.strath.ac.uk

Abstract

We perform a comprehensive theoretical and
experimental analysis of the use of all-different
constraints. We prove that generalized arc-
consistency on such constraints lies between
neighborhood inverse consistency and, under a
simple restriction, path inverse consistency on
the binary representation of the problem. By
generalizing the arguments of Kondrak and van
Beek, we prove that a search algorithm that
maintains generalized arc-consistency on all-
different constraints dominates a search algo-
rithm that maintains arc-consistency on the bi-
nary representation. Our experiments show the
practical value of achieving these high levels of
consistency. For example, we can solve almost
all benchmark quasigroup completion problems
up to order 25 with just a few branches of
search. These results demonstrate the benefits
of using non-binary constraints like all-different
to 1dentify structure in problems.

1 Introduction

Many real-world problems involve all-different con-
straints. For example, every fixture for a sports team
must be on a different date. Many of the constraint satis-
faction toolkits therefore provide specialized algorithms
for efficiently representing and, in some case, reasoning
about all-different constraints. Alternatively, we can ex-
pand all-different constraints into a quadratic number of
binary not-equals constraints. However, it is less effi-
cient to do this, and the translation loses some semantic
information. The aim of this paper is to show the ben-
efits of keeping with a non-binary representation. We
prove that we can achieve much higher levels of consis-
tency in the non-binary representation compared to the
binary. We show experimentally that these high levels
of consistency can reduce search dramatically.

*The authors are members of the APES research group,
http://www.cs.strath.ac.uk/ apes. We thank our colleagues
in the group at the Universities of Strathclyde and Leeds,
most especially Paul Shaw. The second author is supported

by EPSRC award GR/K/65706.

2 Formal background

A constraint satisfaction problem (CsP) is a triple
(X, D, (). X is aset of variables. For each z; € X, D is
the domain of the variable. Each k-ary constraint ¢ € ('
is defined over a set of variables (#1,...2y) by the subset
of the cartesian product D x ...Dj; which are consis-
tent values. An all-different constraint over (z1,...xx)
allows the values Dy x ...Dy — {(a1,...ax) | a; €
D; &Vu,v.a, # a,}. A solution is an assignment of val-
ues to variables that is consistent with all constraints.
Many lesser levels of consistency have been defined for
binary constraint satisfaction problems (see [Debruyne
and Bessiere, 1997] for references). A problem is (3, j)-
consistent iff it has non-empty domains and any con-
sistent instantiation of ¢ variables can be extended to
a consistent instantiation involving j additional vari-
ables. A problem is arc-consistent (AC) iff it is (1, 1)-
consistent. A problem is path-consistent (PC) iff it is
(2, 1)-consistent. A problem is strong path-consistent iff
it is (j, 1)-consistent for j < 2. A problem is path inverse
consistent (PIC) iff it is (1, 2)-consistent. A problem is
neighborhood inverse consistent (NIC) iff any value for
a variable can be extended to a consistent instantiation
for its immediate neighborhood. A problem is restricted
path-consistent (RPC) iff it is arc-consistent and if a
variable assigned to a value is consistent with just a sin-
gle value for an adjoining variable then for any other vari-
able there exists a value compatible with these instanti-
ations. A problem is singleton arc-consistent (SAC) iff
it has non-empty domains and for any instantiation of a
variable, the problem can be made arc-consistent.
Many of these definitions can be extended to non-
binary constraints. For example, a (non-binary) Csp
is generalized arc-consistent (GAC) iff for any variable
in a constraint and value that it is assigned, there ex-
ist compatible values for all the other variables in the
constraint [Mohr and Masini, 1988]. Regin gives an effi-
cient algorithm for enforcing generalized arc-consistency
on a set of all-different constraints [Régin, 1994]. We
can also maintain a level of consistency at every node in
a search tree. For example, the MAC algorithm for bi-
nary CsPs maintains arc-consistency at each node in the
search tree [Gaschnig, 1979]. As a second example, on
a non-binary problem, we can maintain generalized arc-
consistency (MGAC) at every node in the search tree.
Following [Debruyne and Bessieére, 1997], we call a
consistency property A stronger than B (A > B) iff in

consistency property A incomparable with B (A ~ B)
iff A is not stronger than B nor vice versa. Finally, we
call a local consistency property A equivalent to B iff A
implies B and vice versa. The following identities sum-
marize results from [Debruyne and Bessiere, 1997] and
elsewhere: strong PC > SAC > PIC > RPC > AC, NIC
> PIC, NIC ~ SAC, and NIC ~ strong PC.

3 Generalized arc-consistency

All-different constraints are “network decomposable”
[Dechter, 1990] (abbreviated to decomposable in this pa-
per) as they can be represented by binary constraints on
the same set of variables. In this section, we give some
theoretical results which identify the level of consistency
achieved by GAC on decomposable constraints like the
all-different constraint.

In general, GAC on decomposable constraints may
only achieve the same level of consistency as AC on the
binary representation. The problem is that decompos-
able constraints can often be decomposed into smaller
constraints. For example, we can decompose an n-ary
all-different constraint into n(n—1)/2 binary all-different
constraints, and enforcing GAC on these only achieves
the same level of consistency as AC on the binary repre-
sentation. We can achieve higher levels of consistency if
we prohibit too much decomposition of the non-binary
constraints. For example, we can insist that the con-
straints are triangle preserving. That is, we insist that,
if there 1s a triangle of variables in the constraint graph
of the binary representation, then these variables must
occur together in a non-binary constraints. Binary con-
straints can still occur in a triangle preserving set of con-
straints, but only if they do not form part of a larger tri-
angle. Under such a restriction, GAC is strictly stronger
than PIC, which itself is strictly stronger than AC.

Theorem 1 On a triangle preserving set of decompos-
able constraints GAC is strictly stronger than PIC on
the binary representation.

Proof: Consider a triple of variables, z;, z;,) and any
value for z; from its generalized arc-consistent domain.
The proof divides into four case. In the first, z; and z;
appear in one constraint, and x; and zj in another. As
each of these constraints is arc-consistent, we can find
a value for x; consistent with z;, and for z; consistent
with 2;. As the (non-binary) constraints are triangle
preserving, there is no direct constraint between z; and
zj so the values for z; and x; are consistent with each
other. Hence, the binary representation of the problem
is PIC. The other three cases follow a similar argument.
To show that GAC is strictly stronger, consider an all-
different constraint on 4 variables each with domains of
size 3. This problem is PIC but not GAC. O

A corollary of this result is that GAC on a trian-
gle preserving set of decomposable constraints is strictly
stronger than RPC or AC on the binary representation.
We can also put an upper bound on the level of consis-
tency that GAC achieves.

171001, volisldel ally vVallablce 4l valuc assIgHIICHL.
NIC ensures that we can assign consistent values to the
variable’s neighbors. However, any (non-binary) con-
straint including this variable has all its variables in
the neighborhood. Hence, the (non-binary) constraint is
GAC. To prove strictness, consider a problem with five
all-different constraints on {1, s, 23}, on {@1, 23, 24},
on {xy, x4, x5}, on {&1, 25,26}, and on {1, zs, x2}. in
which #; has the unitary domain {1} and every other
variable has the domain {2,3}. This problem is GAC,
but enforcing NIC. shows that it is insoluble. O

Finally, GAC on decomposable constraints, is incom-
parable to strong PC and SAC, even when restricted to
triangle preserving sets of constraints.

Theorem 3 On a triangle preserving set of decompos-
able constraints, GAC is incomparable to strong PC and

to SAC.

Proof: Consider an all-different constraint on 4 vari-
ables, each with the same domain of size 3. The binary
representation of the problem is strong PC and SAC, but
enforcing GAC shows that it is insoluble.

Consider the problem in the proof of Theorem 2 with
five all-different constraints. This problem is GAC, but
enforcing strong PC or SAC shows that it is insoluble.
O

These results are summarized in Figure 1.

1~ -

NI\C E—— S;‘-AC \

PIC —= RPC— AC

|
< |
|
7 >
strong PC—= SAC/
-~ - incomparable
— gtrictly stronger

Figure 1: The consistency of GAC on a triangle preserv-
ing set of decomposable constraints.

4 Quasigroup problems

Quasigroup problems lend themselves to a non-binary
representation using all-different constraints. A quasi-
group is a Latin square, a n by n multiplication table in
which each entry appears once in every row and column.
Quasigroups model a variety of practical problems like
tournament scheduling and designing drug tests. Quasi-
group completion, the problem of completing a partial
filled quasigroup, has been proposed as a constraint sat-
isfaction benchmark [Gomes and Selman, 1997].

An order n quasigroup completion problem can be rep-
resented as a non-binary constraint satisfaction problem
with n? variables, cach with a domain of size n. The
constraints are 2n all-different constraints of size n, one
for each row and column, and any number of unitary
constraints or preassignments. The special structure of
these constraints allows us to prove some tighter results.

Theorem 4 In quasigroup completion problems, GAC
15 equivalent to NIC.

+ 4

in the 2 all-different constraints that contain the vari-
able. As these constraints are GAC, we can find consis-
tent instantiations for each of the variables. In the bi-
nary representation, none of these variables have a direct
constraint with each other. Hence, this is a consistent
instantiation for the neighborhood. O

GAC on quasigroup problems remains strictly stronger
than PIC and incomparable to strong PC and to SAC.

Theorem 5 In quasigroup completion problems, GAC
15 strictly stronger than PIC.

Proof: By theorem 1, GAC is stronger than PIC. To
show that it is strictly stronger, consider an order 4
quasigroup, in which 3 diagonal elements have domains
{1}, and all the other elements (including the other di-
agonal element) have domains {2,3,4}. This problem is

PIC but 1s not GAC. O

Theorem 6 In quasigroup completion problems, GAC
15 wncomparable to strong PC and to SAC.

Proof: Consider the problem from the last proof. This
problem is strong PC and SAC but is not GAC.

Consider an order 3 quasigroup. Let every element
have a domain {1,2,3} except the top right which has
the domain {1, 2}, the bottom left which has the domain
{1, 3} and the bottom right which has the domain {2, 3}.
This problem is GAC but enforcing strong PC or SAC
shows that it is insoluble. O

What can we learn from these results? First, on quasi-
group completion problems, we achieve the maximum
level of consistency (viz. NIC) possible for a GAC pro-
cedure on decomposable constraints. And second, we
achieve this at very moderate cost. Regin’s algorithm
for achieving GAC on a set of all-different constraints
has a cost that is polynomial in n. By comparison, en-
forcing NIC on binary constraints is exponential in the
size of the neighborhood (which is O(n) in this case).

5 Maintaining GAC and AC

We now compare an algorithm that maintains GAC on
decomposable constraints over one that maintains AC
on the binary representation. We say that algorithm
A dominates algorithm B if when A visits a node then
B also visits the equivalent node in its search tree, and
strictly dominates if it dominates and there is one prob-
lem on which it visits strictly fewer nodes. Using the
previous results, we can reduce our analysis to compar-
ing algorithms that maintain NIC, PIC and AC. In fact,
we do better than this and prove some general results
about algorithms that maintain any level of consistency
stronger than FC in which we just filter domains. This
covers algorithms that maintain NIC, PIC and AC, as
well those that maintain RPC and SAC. We shall use
A-consistent and B-consistent to denote any two such
levels of consistency.

We assume throughout a static variable and value or-
dering. We can then associate each node in the search
tree with the sequence of value assignments made. We
say that anode (ay, ..., a;) is A-compatible with another

sufﬁcieﬁt condition for a node/to bg visited.

Theorem 7 A node s wisited by an algorithm that
maintains A-consistency iff it is consistent, it is A-
compatible with all its ancestors, and its parent can be
made A-consistent.

Proof: (=) The proofs of the first and third conjuncts
are similar to those in [Kondrak and van Beek, 1997].
For the second, suppose that node (ay, ..., q;) is not A-
compatible with one of its ancestors and it is visited. Let
(a1,...,a;), with j < ¢, be the shallowest of those ances-
tors. Since (ai,...,a;) is an ancestor of (a1,...,q;), it
is also visited. When we visit node (a1,...,q;) and A-
consistency is enforced, a; 1s pruned out from the domain
of 2;. Node (aq,...,a;_1) cannot therefore be extended
to (a1, ...,a;). This is a contradiction.

(<) WLOG assume that node (aj,...,a;—1) is the
shallowest node that can be made A-consistent, 1ts child
(ay,...,a;) is consistent and A-compatible with all its
ancestors, but the child is not visited. Since (ay, ..., a;)
is consistent and A-compatible with all 1ts ancestors, a;
is in the domain of #;. At node (ai,...,a;_1), we do
not annihilate any of the domains of future variables
because the node can be made A-consistent. The branch
will therefore be extended to the remaining values of the
next variable x;. One of these values is a; and therefore
node (ay,...,a;) is visited. O

This results lets us rank algorithms in the hierarchy
presented in [Kondrak and van Beek, 1997].

Theorem 8 If A-consistency is (strictly) stronger than
B-consistency then maintaining A-consistency (strictly)
dominates maintaining B-consistency.

Proof: All nodes visited by an algorithm that maintains
A-consistency, are A-consistent with all their ancestors
and have parents that can be made A-consistent. But as
A-consistency 1s stronger than B-consistency, all these
nodes are B-consistent with all their ancestors and have
parents that can be made B-consistent. Hence maintain-
ing A-consistency dominates maintaining B-consistency.
To show strictness, consider any problem that is B-
consistent but is not A-consistent. O

From this result, it follows that MGAC on decompos-
able constraints strictly dominates MAC on the binary
representation, and that MAC itself strictly dominates
FC. We can also prove the correctness of MGAC and
MAC using the following general result.
Theorem 9 Maintaining A-consistency s correct.
Proof: Soundness is trivial as only consistent nodes are
visited. For completeness, consider WLOG the deepest
node k = (ai,...,q;), ¢ > 1 that is consistent, is not
visited, and its parent is visited. Since k is consistent,
its parent is also consistent. When node (ay,...,a;_1)
1s visited A-consistency is enforced, and since this node
1s consistent, there is no domain wipe-out. Therefore, &k
1s visited. O

6 Experimental results

To demonstrate the practical relevance of these theoret-
ical results, we ran experiments in three domains.

completion problems as a benchmark that combines
some of the best features of random and structured prob-
lems [Gomes and Selman, 1997]. For these problems,
there is a phase transition from a region where almost all
problems are soluble to a region where almost all prob-
lems are insoluble as we vary the percentage of variables
preassigned. The solution cost peaks around the tran-
sition, with approximately 42% of variables preassigned

[Gomes and Selman, 1997].
We encoded the problem in ILOG Solver, a C++

constraint toolkit which includes Regin’s algorithm for
maintaining GAC on all-different constraints. We used
the Brelaz heuristic for variable selection (as in [Gomes
and Selman, 1997]) and Geelen’s promise heuristic for
value ordering (as in [Meseguer and Walsh, 1998]).
Gomes et al. observed that search costs to solve ran-
dom quasigroup completion problems can be modeled
by a “heavy-tailed” distribution [Gomes et al., 1997].
We therefore focus on the higher percentiles. Table 1
gives branches explored to complete an order 10 quasi-
group with p% of entries preassigned, maintaining ei-
ther AC on the binary representation or GAC on the
all-different constraints. We see a very significant ad-
vantage for MGAC over MAC. With a random value
ordering, the worst case for MGAC was also 2 branches.

b MAC MGAC
100th 90th | 100th 90th
0] 163 1 T T
0 * T T T
30 F 15 2 T
35| F 124 | 2 1
0 * 1726 2 T
2 * % 2 T
a5 * % 2 T
- * 2| 2 T
50 | 5692 1263 | 2 T
55| 324 71 2 T
60| 47 7 T T
0 2 2 T T
80| 2 2 T T
90 | 2 2 T T

Table 1: Percentiles in branches searched to complete
a quasigroup of order 10 using either MAC or MGAC.
* means that the instance was abandoned after 10000
branches. 100 problems were solved at each data point.

Table 2 shows that, as we increase problem size, al-
most all the problems remain trivial to solve. The only
exception was a single order 25 problem with 42% of
its variables preassigned. Search was abandoned at the
cuttoff limit of 10,000 branches. Apart from this, all
instances were solved in less than b branches. This is
a significant improvement over the results of [Gomes et
al., 1997) where, despite the use of random restarts to
enhance performance, problems of order 25 were too ex-
pensive to solve, especially at the phase transition.

200 1 1 1 1 1 1 1 1
300 2 1 1 1 2 1 2 1
40| 2 1 2 1 2 1 2 1
42 2 1 2 1 2 1 * 1
45| 2 1 3 1 3 1 3 1
481 2 1 2 1 2 1 2 1
50| 2 1 2 1 2 1 3 1
60| 1 1 1 1 4 1 1 1
70 1 1 1 1 1 1 1 1
80 1 1 1 1 1 1 1 1
90| 1 1 1 1 1 1 1 1

Table 2: Percentiles in branches explored to complete
quasigroups of order 10, 15, 20 and 25 using MGAC.

6.2 Quasigroup existence

A variety of automated reasoning programs have been
used to answer open questions in finite mathematics
about the existence of quasigroups with particular prop-
erties [Fujita ef al., 1993]. Is GAC useful on these prob-
lems? We follow [Fujita et al., 1993] and look at the so-
called QG3, QG4, QGH, QG6 and QGT class of problems.
For example, the QGH problems concern the existence of
idempotent quasigroups (those in which a-a = a for each
element @) in which (ba-b)b = a. For the definition of the
other problems, see [Fujita et al., 1993]. In these prob-
lems, the structure of the constraint graph is disturbed
by additional non-binary constraints. These reduce the
level of consistency achieved compared to quasigroup
completion problems. Nevertheless, GAC significantly
prunes the search space and reduces runtimes.

To solve these problems, we again use the Solver
toolkit, maintaining either GAC on the all-different con-
straints, or AC on the binary representation, and the fail-
first heuristic for variable ordering. To eliminate some
of the symmetric models, as in [Fujita et al., 1993], we
added the constraint that a - n > a — 1 for every ele-
ment a. Table 3 demonstrates the benefits of MGAC
over MAC. In QG3 and QG4, MAC explores twice as
many branches as MGAC, in QGbH the difference is or-
ders of magnitude, whilst there is only a slight difference
in QG6 and QG7. MGAC dominates MAC in terms of
CPU time as well as in terms of explored branches. It
would be interesting to identify the features of QG5 that
gives MGAC such an advantage over MAC, and those of
QG6 and QGT that lessen this advantage.

We now compare our results with those of FINDER
[Slaney, 1992], MACE [McCune, 1994], MGTP [Fujita
et al., 1993], SATO [Zhang and Stickel, 1994], and SEM
[Zhang and Zhang, 1995]. Table 4 shows that Solver out-
performs MGTP and FINDER, by orders of magnitude,
and explores less branches than SEM. SEM and SATO
have very sophisticated branching heuristics and com-
plex rules for the elimination of symmetric models that
are far more powerful than the symmetry breaking con-
straint we use [Zhang and Zhang, 1995]. It is therefore
impressive that our simple Solver program is competitive
with well-developed systems like SEM and SATO.

7 64 48 59 42 3 5 2 67 39
g T511 821 | 1,227 707 10 9 3 15 314
9 | 65,000 31,274 | 88,460 40,582 19 36 26 1837 4211
10 - - - - iz 199 167 94,433 80,677
i) 5 5 5 5 292 | 2,221 1.876 - -
2 - - - - 6,832 910 | 42,248 34,741 - -

13 - - - - >T1,000,000 27,265 - 1,730,320 | - -

Table 3: Branches explored using MAC on the binary representation and MGAC on the all-different constraints.

Order | Models Branches
MGTP FINDER MACE SATO SEM Solver (MGAC)

7 3 9 3 4 5 6 3

8 1 34 13 8 8 11 10

9 0 239 46 14 11 29 19

10 0 7,026 341 37 21 250 74

11 5 51,904 1,728 112 43 1,231 292

12 0 2,749,676 11,047 369 277 8,636 1,156

Table 4: Number of branches explored and models found on QGb5 problems by a variety of different programs.

To conclude, despite the addition of non-binary con-
straints that disturb the structure of the constraint
graph, MGAC significantly reduces search and runtimes
on quasigroup existence problems. We conjecture that
the performance of SEM and SATO could be improved
by the addition of a specialized procedure to maintain
GAC on the all-different constraints.

6.3 Small-worlds problems

Recently, Watts and Strogatz have shown that graphs
that occur in many biological, social and man-made sys-
tems are often neither completely regular nor completely
random, but have instead a “small world” topology in
which nodes are highly clustered, whilst the path length
between them is small [Watts and Strogatz, 1998]. Walsh
has argued that such a topology can make search prob-
lems hard since local decisions quickly propagate glob-
ally [Walsh, 1998]. To construct graphs with such a
topology, we start from the constraint graph of a struc-
tured problem like a quasigroup and introduce random-
ness by deleting edges at random from the binary rep-
resentation. Deleting an edge at random breaks up
an all-different constraint on n variables into two all-
different constraints on n — 1 variables. For example,
if @1, 22, 23.. .,z are all-different and remove the edge
between z; and x» then we are left with all-different con-
straints on x1,23...,2; and xo, x3..., 2.

Figures 2 and 3 show percentiles in the number of
branches explored and in CPU time to find the optimal
coloring of order 10 quasigroups in which we delete p%
of edges from the binary representation. The hardest
problems had 5% of their edges removed. MGAC dom-
inates MAC by orders of magnitude in the hard region
both in terms of branches explored and CPU time. As p
increases, problems become very easy and both MGAC
and MAC quickly find a solution. MAC starts to out-

perform MGAC in terms of CPU time as the overhead
of GAC on the large number of all-different constraints
is greater.

1e+07 ¢

T T T T T T

100th-MAC —-—

90th-MAC -+-- 3
100th-MGAC -&--
90th-MGAC *-- o
cutoff ----

1e+06 |
100000 F [

10000 £ ;% %

1000 F |/
100 Ff;

10 [

L % L g ! L

051015;025;03540
Figure 2: Percentiles in branches explored by MAC and
MGAC to color small world problems generated from an
order 10 quasigroup.

10000 T T T T T

100th-MAC —+—
90th-MAC -+-- o
100th-MGAC -8--
90th-MGAC -
cutoff ---- 4

1000
100 |
w0F [/

L e
f P

1 1 1 1

0 5 10 15 20 25 30
Figure 3: Percentiles of CPU seconds used by MAC and
MGAC to color small world problems generated from an
order 10 quasigroup.

0.1

7 Related work

Gomes and Selman solved quasigroup completion prob-
lems using the MAC algorithm and a binary represen-

However, there were still not able to consistently solve
quasigroup completion problems of order 25 or larger.

Meseguer and Walsh solved quasigroup completion
problems using a forward checking algorithm (FC) on the
binary representation [Meseguer and Walsh, 1998]. They
found that discrepancy and interleaved based search
methods could also reduce, if not eliminate, the heavy
tail. However, their experiments were limited to quasi-
groups of order 20 and less.

Bacchus and van Beek have compared generalized FC
on non-binary constraints with FC on the hidden vari-
able and dual encodings into binary constraints [Bacchus
and van Beek, 1998]. They show that a simple extension
of FC on the hidden variable encoding will dominate
generalized FC on the non-binary representation.

8 Conclusions

We have shown experimentally and theoretically the
benefits of achieving generalized arc-consistency on
decomposable constraints like all-different constraints.
Generalized arc-consistency on such constraints lies be-
tween neighborhood inverse consistency and, under a
simple restriction, path inverse consistency on the bi-
nary representation of the problem. On quasigroup com-
pletion problems, generalized arc-consistency achieves
neighborhood inverse consistency. By generalizing the
arguments of [Kondrak and van Beek, 1997], we proved
that a search algorithm that maintains generalized arc-
consistency on decomposable constraints dominates a
search algorithm that maintains arc-consistency on the
binary representation. Our generalization also proves
the correctness of the algorithms that maintain arc-
consistency or generalized arc-consistency. Our exper-
iments demonstrated the practical value of achieving
these high levels of consistency. For example, we solved
almost all benchmark quasigroup completion problems
up to order 25 with just a few branches of search.
On quasigroup existence problems, we are competitive
with the best programs, despite lacking their specialized
branching heuristics and symmetry breaking rules.

What general lessons can be learnt from this study?
First, it can be very beneficial to identify structure in a
problem by means of a non-binary representation. We
can use this structure to enforce higher levels of con-
sistency than can be practical in a binary representa-
tion. Second, theory can be motivated by experiment.
We were led to attempt our theoretical analysis by the
exceptionally good experimental results on quasigroup
completion problems. And finally, the all-different con-
straint really can make a big difference.

References

[Bacchus and van Beek, 1998] F. Bacchus and P. van
Beek. On the conversion between non-binary and bi-
nary constraint satisfaction problems. In Proc. of 15th
National Conference on Al pages 311-318. 1998.

[Debruyne and Bessiere, 1997] R. Debruyne and
C. Bessiére. Some practicable filtering techniques for

S T T e T ST e

networks with hidden variables. In Proc. of the 8th
National Conference on Al pages 555-562. 1990.

[Fujita et al., 1993] M. Fujita, J. Slaney, and F. Ben-
nett. Automatic generation of some results in finite
algebra. In Proc. of the 13th IJCAI pages 52-57.1993.

[Gaschnig, 1979] J. Gaschnig. Performance measure-
ment and analysis of certain search algorithms. Tech-
nical report CMU-CS-79-124, Carnegie-Mellon Uni-
versity, 1979. PhD thesis.

[Gomes and Selman, 1997] C. Gomes and B. Selman.
Problem structure in the presence of perturbations.
In Proc. of the 14th National Conference on Al pages
221-226. 1997.

[Gomes et al., 1997) C. Gomes, B. Selman, and
N. Crato. Heavy-tailed distributions in combina-
torial search. In G. Smolka, editor, Proc. of 3rd
Int. Conf. on Principles and Practice of Constraint
Programming (CP97), pages 121-135. 1997.

[Kondrak and van Beek, 1997] G. Kondrak and P. van
Beek. A Theoretical Evaluation of Selected Back-
tracking Algorithms. Artificial Intelligence, 89:365—
387, 1997.

[McCune, 1994] W. McCune. A Davis-Putnam Pro-
gram and its Application to Finite First-Order Model
Search: Quasigroup Existence Problems. Technical
Report ANL/MCS-TM-194, Argonne National Labo-
ratory, 1994.

[Meseguer and Walsh, 1998] P. Meseguer and T. Walsh.
Interleaved and discrepancy based search. In Proc. of
the 13th ECAI Wiley, 1998.

[Mohr and Masini, 1988] R. Mohr and G. Masini. Good
old discrete relaxation. In Proc. of the §th ECAI
pages 651-656, 1988.

[Régin, 1994] J-C. Régin. A filtering algorithm for con-
straints of difference in CSPs. In Proc. of the 12th
National Conference on Al pages 362-367. 1994.

[Slaney, 1992] J. Slaney. FINDER, Finite Domain Enu-
merator: Notes and Guide. Technical Report TR-
ARP-1/92, Australian National University, 1992.

[Walsh, 1998] T. Walsh. Search in a small world.
Technical report APES-07-1998, 1998. available from
http://www.cs.strath.ac.uk/"apes/reports/
apes-07-1998.ps.gz.

[Watts and Strogatz, 1998] D.J. Watts and S.H. Stro-
gatz. Collective dynamics of ’small-world’ networks.
Nature, 393:440-442, 1998.

[Zhang and Stickel, 1994] H. Zhang and Stickel M. Im-
plementing the Davis-Putnam Algorithm by Tries.
Technical report, University of lowa, 1994.

[Zhang and Zhang, 1995] J. Zhang and H. Zhang. SEM:
a System for Enumerating Models. In Proc. of the 1th
IJCAI pages 298-303, 1995.

i e

