
The Di�erence All-Di�erence Makes�Kostas Stergiou and Toby WalshDepartment of Computer ScienceUniversity of StrathclydeGlasgow, Scotlandfks,twg@cs.strath.ac.ukAbstractWe perform a comprehensive theoretical andexperimental analysis of the use of all-di�erentconstraints. We prove that generalized arc-consistency on such constraints lies betweenneighborhood inverse consistency and, under asimple restriction, path inverse consistency onthe binary representation of the problem. Bygeneralizing the arguments of Kondrak and vanBeek, we prove that a search algorithm thatmaintains generalized arc-consistency on all-di�erent constraints dominates a search algo-rithm that maintains arc-consistency on the bi-nary representation. Our experiments show thepractical value of achieving these high levels ofconsistency. For example, we can solve almostall benchmark quasigroup completion problemsup to order 25 with just a few branches ofsearch. These results demonstrate the bene�tsof using non-binary constraints like all-di�erentto identify structure in problems.1 IntroductionMany real-world problems involve all-di�erent con-straints. For example, every �xture for a sports teammust be on a di�erent date. Many of the constraint satis-faction toolkits therefore provide specialized algorithmsfor e�ciently representing and, in some case, reasoningabout all-di�erent constraints. Alternatively, we can ex-pand all-di�erent constraints into a quadratic number ofbinary not-equals constraints. However, it is less e�-cient to do this, and the translation loses some semanticinformation. The aim of this paper is to show the ben-e�ts of keeping with a non-binary representation. Weprove that we can achieve much higher levels of consis-tency in the non-binary representation compared to thebinary. We show experimentally that these high levelsof consistency can reduce search dramatically.�The authors are members of the APES research group,http://www.cs.strath.ac.uk/~apes. We thank our colleaguesin the group at the Universities of Strathclyde and Leeds,most especially Paul Shaw. The second author is supportedby EPSRC award GR/K/65706.

2 Formal backgroundA constraint satisfaction problem (Csp) is a triple(X;D;C). X is a set of variables. For each xi 2 X, Di isthe domain of the variable. Each k-ary constraint c 2 Cis de�ned over a set of variables (x1; : : :xk) by the subsetof the cartesian product D1 � : : :Dk which are consis-tent values. An all-di�erent constraint over (x1; : : :xk)allows the values D1 � : : :Dk � f(a1; : : :ak) j ai 2Di &8u; v:au 6= avg. A solution is an assignment of val-ues to variables that is consistent with all constraints.Many lesser levels of consistency have been de�ned forbinary constraint satisfaction problems (see [Debruyneand Bessi�ere, 1997] for references). A problem is (i; j)-consistent i� it has non-empty domains and any con-sistent instantiation of i variables can be extended toa consistent instantiation involving j additional vari-ables. A problem is arc-consistent (AC) i� it is (1; 1)-consistent. A problem is path-consistent (PC) i� it is(2; 1)-consistent. A problem is strong path-consistent i�it is (j; 1)-consistent for j � 2. A problem is path inverseconsistent (PIC) i� it is (1; 2)-consistent. A problem isneighborhood inverse consistent (NIC) i� any value fora variable can be extended to a consistent instantiationfor its immediate neighborhood. A problem is restrictedpath-consistent (RPC) i� it is arc-consistent and if avariable assigned to a value is consistent with just a sin-gle value for an adjoining variable then for any other vari-able there exists a value compatible with these instanti-ations. A problem is singleton arc-consistent (SAC) i�it has non-empty domains and for any instantiation of avariable, the problem can be made arc-consistent.Many of these de�nitions can be extended to non-binary constraints. For example, a (non-binary) Cspis generalized arc-consistent (GAC) i� for any variablein a constraint and value that it is assigned, there ex-ist compatible values for all the other variables in theconstraint [Mohr and Masini, 1988]. Regin gives an e�-cient algorithm for enforcing generalized arc-consistencyon a set of all-di�erent constraints [R�egin, 1994]. Wecan also maintain a level of consistency at every node ina search tree. For example, the MAC algorithm for bi-nary Csps maintains arc-consistency at each node in thesearch tree [Gaschnig, 1979]. As a second example, ona non-binary problem, we can maintain generalized arc-consistency (MGAC) at every node in the search tree.Following [Debruyne and Bessi�ere, 1997], we call aconsistency property A stronger than B (A � B) i� in



any problem in which A holds then B holds, and strictlystronger (A > B) i� it is stronger and there is at least oneproblem in which B holds but A does not. We call a localconsistency property A incomparable with B (A � B)i� A is not stronger than B nor vice versa. Finally, wecall a local consistency property A equivalent to B i� Aimplies B and vice versa. The following identities sum-marize results from [Debruyne and Bessi�ere, 1997] andelsewhere: strong PC > SAC > PIC > RPC > AC, NIC> PIC, NIC � SAC, and NIC � strong PC.3 Generalized arc-consistencyAll-di�erent constraints are \network decomposable"[Dechter, 1990] (abbreviated to decomposable in this pa-per) as they can be represented by binary constraints onthe same set of variables. In this section, we give sometheoretical results which identify the level of consistencyachieved by GAC on decomposable constraints like theall-di�erent constraint.In general, GAC on decomposable constraints mayonly achieve the same level of consistency as AC on thebinary representation. The problem is that decompos-able constraints can often be decomposed into smallerconstraints. For example, we can decompose an n-aryall-di�erent constraint into n(n�1)=2 binary all-di�erentconstraints, and enforcing GAC on these only achievesthe same level of consistency as AC on the binary repre-sentation. We can achieve higher levels of consistency ifwe prohibit too much decomposition of the non-binaryconstraints. For example, we can insist that the con-straints are triangle preserving. That is, we insist that,if there is a triangle of variables in the constraint graphof the binary representation, then these variables mustoccur together in a non-binary constraints. Binary con-straints can still occur in a triangle preserving set of con-straints, but only if they do not form part of a larger tri-angle. Under such a restriction, GAC is strictly strongerthan PIC, which itself is strictly stronger than AC.Theorem 1 On a triangle preserving set of decompos-able constraints GAC is strictly stronger than PIC onthe binary representation.Proof: Consider a triple of variables, xi, xj, xk and anyvalue for xi from its generalized arc-consistent domain.The proof divides into four case. In the �rst, xi and xjappear in one constraint, and xi and xk in another. Aseach of these constraints is arc-consistent, we can �nda value for xj consistent with xi, and for xk consistentwith xi. As the (non-binary) constraints are trianglepreserving, there is no direct constraint between xj andxk so the values for xj and xk are consistent with eachother. Hence, the binary representation of the problemis PIC. The other three cases follow a similar argument.To show that GAC is strictly stronger, consider an all-di�erent constraint on 4 variables each with domains ofsize 3. This problem is PIC but not GAC. �A corollary of this result is that GAC on a trian-gle preserving set of decomposable constraints is strictlystronger than RPC or AC on the binary representation.We can also put an upper bound on the level of consis-tency that GAC achieves.

Theorem 2 NIC on the binary representation is strictlystronger than GAC on a set of decomposable constraints.Proof: Consider any variable and value assignment.NIC ensures that we can assign consistent values to thevariable's neighbors. However, any (non-binary) con-straint including this variable has all its variables inthe neighborhood. Hence, the (non-binary) constraint isGAC. To prove strictness, consider a problem with �veall-di�erent constraints on fx1; x2; x3g, on fx1; x3; x4g,on fx1; x4; x5g, on fx1; x5; x6g, and on fx1; x6; x2g. inwhich x1 has the unitary domain f1g and every othervariable has the domain f2; 3g. This problem is GAC,but enforcing NIC. shows that it is insoluble. �Finally, GAC on decomposable constraints, is incom-parable to strong PC and SAC, even when restricted totriangle preserving sets of constraints.Theorem 3 On a triangle preserving set of decompos-able constraints, GAC is incomparable to strong PC andto SAC.Proof: Consider an all-di�erent constraint on 4 vari-ables, each with the same domain of size 3. The binaryrepresentation of the problem is strong PC and SAC, butenforcing GAC shows that it is insoluble.Consider the problem in the proof of Theorem 2 with�ve all-di�erent constraints. This problem is GAC, butenforcing strong PC or SAC shows that it is insoluble.� These results are summarized in Figure 1.
GACNIC

strong PC SAC

PIC RPC AC

incomparable

strictly strongerFigure 1: The consistency of GAC on a triangle preserv-ing set of decomposable constraints.4 Quasigroup problemsQuasigroup problems lend themselves to a non-binaryrepresentation using all-di�erent constraints. A quasi-group is a Latin square, a n by n multiplication table inwhich each entry appears once in every row and column.Quasigroups model a variety of practical problems liketournament scheduling and designing drug tests. Quasi-group completion, the problem of completing a partial�lled quasigroup, has been proposed as a constraint sat-isfaction benchmark [Gomes and Selman, 1997].An order n quasigroup completion problem can be rep-resented as a non-binary constraint satisfaction problemwith n2 variables, each with a domain of size n. Theconstraints are 2n all-di�erent constraints of size n, onefor each row and column, and any number of unitaryconstraints or preassignments. The special structure ofthese constraints allows us to prove some tighter results.Theorem 4 In quasigroup completion problems, GACis equivalent to NIC.



Proof: We need to show that GAC implies NIC. Theneighborhood of any variable in an order n quasigroupcompletion problem are the 2n�1 variables that appearin the 2 all-di�erent constraints that contain the vari-able. As these constraints are GAC, we can �nd consis-tent instantiations for each of the variables. In the bi-nary representation, none of these variables have a directconstraint with each other. Hence, this is a consistentinstantiation for the neighborhood. �GAC on quasigroup problems remains strictly strongerthan PIC and incomparable to strong PC and to SAC.Theorem 5 In quasigroup completion problems, GACis strictly stronger than PIC.Proof: By theorem 1, GAC is stronger than PIC. Toshow that it is strictly stronger, consider an order 4quasigroup, in which 3 diagonal elements have domainsf1g, and all the other elements (including the other di-agonal element) have domains f2; 3; 4g. This problem isPIC but is not GAC. �Theorem 6 In quasigroup completion problems, GACis incomparable to strong PC and to SAC.Proof: Consider the problem from the last proof. Thisproblem is strong PC and SAC but is not GAC.Consider an order 3 quasigroup. Let every elementhave a domain f1; 2; 3g except the top right which hasthe domain f1; 2g, the bottom left which has the domainf1; 3g and the bottom right which has the domain f2; 3g.This problem is GAC but enforcing strong PC or SACshows that it is insoluble. �What can we learn from these results? First, on quasi-group completion problems, we achieve the maximumlevel of consistency (viz. NIC) possible for a GAC pro-cedure on decomposable constraints. And second, weachieve this at very moderate cost. Regin's algorithmfor achieving GAC on a set of all-di�erent constraintshas a cost that is polynomial in n. By comparison, en-forcing NIC on binary constraints is exponential in thesize of the neighborhood (which is O(n) in this case).5 Maintaining GAC and ACWe now compare an algorithm that maintains GAC ondecomposable constraints over one that maintains ACon the binary representation. We say that algorithmA dominates algorithm B if when A visits a node thenB also visits the equivalent node in its search tree, andstrictly dominates if it dominates and there is one prob-lem on which it visits strictly fewer nodes. Using theprevious results, we can reduce our analysis to compar-ing algorithms that maintain NIC, PIC and AC. In fact,we do better than this and prove some general resultsabout algorithms that maintain any level of consistencystronger than FC in which we just �lter domains. Thiscovers algorithms that maintain NIC, PIC and AC, aswell those that maintain RPC and SAC. We shall useA-consistent and B-consistent to denote any two suchlevels of consistency.We assume throughout a static variable and value or-dering. We can then associate each node in the searchtree with the sequence of value assignments made. Wesay that a node (a1; : : : ; ai) is A-compatible with another

node (a1; : : : ; aj) where j < i, if enforcing A-consistencyat (a1; : : : ; aj) does not remove ai from the domain ofthe respective variable. First, we give a necessary andsu�cient condition for a node to be visited.Theorem 7 A node is visited by an algorithm thatmaintains A-consistency i� it is consistent, it is A-compatible with all its ancestors, and its parent can bemade A-consistent.Proof: ()) The proofs of the �rst and third conjunctsare similar to those in [Kondrak and van Beek, 1997].For the second, suppose that node (a1; : : : ; ai) is not A-compatible with one of its ancestors and it is visited. Let(a1; : : : ; aj), with j < i, be the shallowest of those ances-tors. Since (a1; : : : ; aj) is an ancestor of (a1; : : : ; ai), itis also visited. When we visit node (a1; : : : ; aj) and A-consistency is enforced, ai is pruned out from the domainof xi. Node (a1; : : : ; ai�1) cannot therefore be extendedto (a1; : : : ; ai). This is a contradiction.(() WLOG assume that node (a1; : : : ; ai�1) is theshallowest node that can be made A-consistent, its child(a1; : : : ; ai) is consistent and A-compatible with all itsancestors, but the child is not visited. Since (a1; : : : ; ai)is consistent and A-compatible with all its ancestors, aiis in the domain of xi. At node (a1; : : : ; ai�1), we donot annihilate any of the domains of future variablesbecause the node can be made A-consistent. The branchwill therefore be extended to the remaining values of thenext variable xi. One of these values is ai and thereforenode (a1; : : : ; ai) is visited. �This results lets us rank algorithms in the hierarchypresented in [Kondrak and van Beek, 1997].Theorem 8 If A-consistency is (strictly) stronger thanB-consistency then maintaining A-consistency (strictly)dominates maintaining B-consistency.Proof: All nodes visited by an algorithm that maintainsA-consistency, are A-consistent with all their ancestorsand have parents that can be made A-consistent. But asA-consistency is stronger than B-consistency, all thesenodes are B-consistent with all their ancestors and haveparents that can be madeB-consistent. Hence maintain-ing A-consistency dominates maintainingB-consistency.To show strictness, consider any problem that is B-consistent but is not A-consistent. �From this result, it follows that MGAC on decompos-able constraints strictly dominates MAC on the binaryrepresentation, and that MAC itself strictly dominatesFC. We can also prove the correctness of MGAC andMAC using the following general result.Theorem 9 Maintaining A-consistency is correct.Proof: Soundness is trivial as only consistent nodes arevisited. For completeness, consider WLOG the deepestnode k = (a1; : : : ; ai), i � 1 that is consistent, is notvisited, and its parent is visited. Since k is consistent,its parent is also consistent. When node (a1; : : : ; ai�1)is visited A-consistency is enforced, and since this nodeis consistent, there is no domain wipe-out. Therefore, kis visited. �6 Experimental resultsTo demonstrate the practical relevance of these theoret-ical results, we ran experiments in three domains.



6.1 Quasigroup completionGomes and Selman have proposed random quasigroupcompletion problems as a benchmark that combinessome of the best features of random and structured prob-lems [Gomes and Selman, 1997]. For these problems,there is a phase transition from a region where almost allproblems are soluble to a region where almost all prob-lems are insoluble as we vary the percentage of variablespreassigned. The solution cost peaks around the tran-sition, with approximately 42% of variables preassigned[Gomes and Selman, 1997].We encoded the problem in ILOG Solver, a C++constraint toolkit which includes Regin's algorithm formaintaining GAC on all-di�erent constraints. We usedthe Brelaz heuristic for variable selection (as in [Gomesand Selman, 1997]) and Geelen's promise heuristic forvalue ordering (as in [Meseguer and Walsh, 1998]).Gomes et al. observed that search costs to solve ran-dom quasigroup completion problems can be modeledby a \heavy-tailed" distribution [Gomes et al., 1997].We therefore focus on the higher percentiles. Table 1gives branches explored to complete an order 10 quasi-group with p% of entries preassigned, maintaining ei-ther AC on the binary representation or GAC on theall-di�erent constraints. We see a very signi�cant ad-vantage for MGAC over MAC. With a random valueordering, the worst case for MGAC was also 2 branches.p MAC MGAC100th 90th 100th 90th10 163 1 1 120 * 1 1 130 * 15 2 135 * 124 2 140 * 1726 2 142 * * 2 145 * * 2 148 * 2771 2 150 5692 1263 2 155 324 71 2 160 47 7 1 170 2 2 1 180 2 2 1 190 2 2 1 1Table 1: Percentiles in branches searched to completea quasigroup of order 10 using either MAC or MGAC.� means that the instance was abandoned after 10000branches. 100 problems were solved at each data point.Table 2 shows that, as we increase problem size, al-most all the problems remain trivial to solve. The onlyexception was a single order 25 problem with 42% ofits variables preassigned. Search was abandoned at thecutto� limit of 10,000 branches. Apart from this, allinstances were solved in less than 5 branches. This isa signi�cant improvement over the results of [Gomes etal., 1997] where, despite the use of random restarts toenhance performance, problems of order 25 were too ex-pensive to solve, especially at the phase transition.

p order 10 order 15 order 20 order 25100th 90th 100th 90th 100th 90th 100th 90th10 1 1 1 1 1 1 1 120 1 1 1 1 1 1 1 130 2 1 1 1 2 1 2 140 2 1 2 1 2 1 2 142 2 1 2 1 2 1 * 145 2 1 3 1 3 1 3 148 2 1 2 1 2 1 2 150 2 1 2 1 2 1 3 160 1 1 1 1 4 1 1 170 1 1 1 1 1 1 1 180 1 1 1 1 1 1 1 190 1 1 1 1 1 1 1 1Table 2: Percentiles in branches explored to completequasigroups of order 10, 15, 20 and 25 using MGAC.6.2 Quasigroup existenceA variety of automated reasoning programs have beenused to answer open questions in �nite mathematicsabout the existence of quasigroups with particular prop-erties [Fujita et al., 1993]. Is GAC useful on these prob-lems? We follow [Fujita et al., 1993] and look at the so-called QG3, QG4, QG5, QG6 and QG7 class of problems.For example, the QG5 problems concern the existence ofidempotent quasigroups (those in which a�a = a for eachelement a) in which (ba�b)b = a. For the de�nition of theother problems, see [Fujita et al., 1993]. In these prob-lems, the structure of the constraint graph is disturbedby additional non-binary constraints. These reduce thelevel of consistency achieved compared to quasigroupcompletion problems. Nevertheless, GAC signi�cantlyprunes the search space and reduces runtimes.To solve these problems, we again use the Solvertoolkit, maintaining either GAC on the all-di�erent con-straints, or AC on the binary representation, and the fail-�rst heuristic for variable ordering. To eliminate someof the symmetric models, as in [Fujita et al., 1993], weadded the constraint that a � n � a � 1 for every ele-ment a. Table 3 demonstrates the bene�ts of MGACover MAC. In QG3 and QG4, MAC explores twice asmany branches as MGAC, in QG5 the di�erence is or-ders of magnitude, whilst there is only a slight di�erencein QG6 and QG7. MGAC dominates MAC in terms ofCPU time as well as in terms of explored branches. Itwould be interesting to identify the features of QG5 thatgives MGAC such an advantage over MAC, and those ofQG6 and QG7 that lessen this advantage.We now compare our results with those of FINDER[Slaney, 1992], MACE [McCune, 1994], MGTP [Fujitaet al., 1993], SATO [Zhang and Stickel, 1994], and SEM[Zhang and Zhang, 1995]. Table 4 shows that Solver out-performs MGTP and FINDER by orders of magnitude,and explores less branches than SEM. SEM and SATOhave very sophisticated branching heuristics and com-plex rules for the elimination of symmetric models thatare far more powerful than the symmetry breaking con-straint we use [Zhang and Zhang, 1995]. It is thereforeimpressive that our simple Solver program is competitivewith well-developed systems like SEM and SATO.



Order QG3 QG4 QG5 QG6 QG7MAC MGAC MAC MGAC MAC MGAC MAC MGAC MAC MGAC6 7 4 6 4 0 0 0 0 6 47 64 48 59 42 5 3 5 2 67 398 1,511 821 1,227 707 15 10 9 3 415 3149 65,001 31,274 88,460 40,582 30 19 36 26 4,837 4,21110 - - - - 268 74 199 167 94,433 80,67711 - - - - 1,107 292 2,221 1,876 - -12 - - - - 6,832 910 42,248 34,741 - -13 - - - - >1,000,000 27,265 - 4,730,320 - -Table 3: Branches explored using MAC on the binary representation and MGAC on the all-di�erent constraints.Order Models BranchesMGTP FINDER MACE SATO SEM Solver (MGAC)7 3 9 3 4 5 6 38 1 34 13 8 8 11 109 0 239 46 14 11 29 1910 0 7,026 341 37 21 250 7411 5 51,904 1,728 112 43 1,231 29212 0 2,749,676 11,047 369 277 8,636 1,156Table 4: Number of branches explored and models found on QG5 problems by a variety of di�erent programs.To conclude, despite the addition of non-binary con-straints that disturb the structure of the constraintgraph, MGAC signi�cantly reduces search and runtimeson quasigroup existence problems. We conjecture thatthe performance of SEM and SATO could be improvedby the addition of a specialized procedure to maintainGAC on the all-di�erent constraints.6.3 Small-worlds problemsRecently, Watts and Strogatz have shown that graphsthat occur in many biological, social and man-made sys-tems are often neither completely regular nor completelyrandom, but have instead a \small world" topology inwhich nodes are highly clustered, whilst the path lengthbetween them is small [Watts and Strogatz, 1998]. Walshhas argued that such a topology can make search prob-lems hard since local decisions quickly propagate glob-ally [Walsh, 1998]. To construct graphs with such atopology, we start from the constraint graph of a struc-tured problem like a quasigroup and introduce random-ness by deleting edges at random from the binary rep-resentation. Deleting an edge at random breaks upan all-di�erent constraint on n variables into two all-di�erent constraints on n � 1 variables. For example,if x1; x2; x3 : : : ; xk are all-di�erent and remove the edgebetween x1 and x2 then we are left with all-di�erent con-straints on x1; x3 : : : ; xk and x2; x3 : : : ; xk.Figures 2 and 3 show percentiles in the number ofbranches explored and in CPU time to �nd the optimalcoloring of order 10 quasigroups in which we delete p%of edges from the binary representation. The hardestproblems had 5% of their edges removed. MGAC dom-inates MAC by orders of magnitude in the hard regionboth in terms of branches explored and CPU time. As pincreases, problems become very easy and both MGACand MAC quickly �nd a solution. MAC starts to out-

perform MGAC in terms of CPU time as the overheadof GAC on the large number of all-di�erent constraintsis greater.
1

10

100

1000

10000

100000

1e+06

1e+07

0 5 10 15 20 25 30 35 40

100th-MAC
90th-MAC

100th-MGAC
90th-MGAC

cutoffFigure 2: Percentiles in branches explored by MAC andMGAC to color small world problems generated from anorder 10 quasigroup.
0.1

1

10

100

1000

10000

0 5 10 15 20 25 30

100th-MAC
90th-MAC

100th-MGAC
90th-MGAC

cutoffFigure 3: Percentiles of CPU seconds used by MAC andMGAC to color small world problems generated from anorder 10 quasigroup.7 Related workGomes and Selman solved quasigroup completion prob-lems using the MAC algorithm and a binary represen-



tation [Gomes and Selman, 1997]. They found thata randomization and restart strategy could eliminatethe heavy-tailed behavior of the backtracking algorithm.However, there were still not able to consistently solvequasigroup completion problems of order 25 or larger.Meseguer and Walsh solved quasigroup completionproblems using a forward checking algorithm (FC) on thebinary representation [Meseguer and Walsh, 1998]. Theyfound that discrepancy and interleaved based searchmethods could also reduce, if not eliminate, the heavytail. However, their experiments were limited to quasi-groups of order 20 and less.Bacchus and van Beek have compared generalized FCon non-binary constraints with FC on the hidden vari-able and dual encodings into binary constraints [Bacchusand van Beek, 1998]. They show that a simple extensionof FC on the hidden variable encoding will dominategeneralized FC on the non-binary representation.8 ConclusionsWe have shown experimentally and theoretically thebene�ts of achieving generalized arc-consistency ondecomposable constraints like all-di�erent constraints.Generalized arc-consistency on such constraints lies be-tween neighborhood inverse consistency and, under asimple restriction, path inverse consistency on the bi-nary representation of the problem. On quasigroup com-pletion problems, generalized arc-consistency achievesneighborhood inverse consistency. By generalizing thearguments of [Kondrak and van Beek, 1997], we provedthat a search algorithm that maintains generalized arc-consistency on decomposable constraints dominates asearch algorithm that maintains arc-consistency on thebinary representation. Our generalization also provesthe correctness of the algorithms that maintain arc-consistency or generalized arc-consistency. Our exper-iments demonstrated the practical value of achievingthese high levels of consistency. For example, we solvedalmost all benchmark quasigroup completion problemsup to order 25 with just a few branches of search.On quasigroup existence problems, we are competitivewith the best programs, despite lacking their specializedbranching heuristics and symmetry breaking rules.What general lessons can be learnt from this study?First, it can be very bene�cial to identify structure in aproblem by means of a non-binary representation. Wecan use this structure to enforce higher levels of con-sistency than can be practical in a binary representa-tion. Second, theory can be motivated by experiment.We were led to attempt our theoretical analysis by theexceptionally good experimental results on quasigroupcompletion problems. And �nally, the all-di�erent con-straint really can make a big di�erence.References[Bacchus and van Beek, 1998] F. Bacchus and P. vanBeek. On the conversion between non-binary and bi-nary constraint satisfaction problems. In Proc. of 15thNational Conference on AI, pages 311{318. 1998.[Debruyne and Bessi�ere, 1997] R. Debruyne andC. Bessi�ere. Some practicable �ltering techniques for

the constraint satisfaction problem. In Proc. of the15th IJCAI, pages 412{417. 1997.[Dechter, 1990] R. Dechter. On the expressiveness ofnetworks with hidden variables. In Proc. of the 8thNational Conference on AI, pages 555{562. 1990.[Fujita et al., 1993] M. Fujita, J. Slaney, and F. Ben-nett. Automatic generation of some results in �nitealgebra. In Proc. of the 13th IJCAI, pages 52{57. 1993.[Gaschnig, 1979] J. Gaschnig. Performance measure-ment and analysis of certain search algorithms. Tech-nical report CMU-CS-79-124, Carnegie-Mellon Uni-versity, 1979. PhD thesis.[Gomes and Selman, 1997] C. Gomes and B. Selman.Problem structure in the presence of perturbations.In Proc. of the 14th National Conference on AI, pages221{226. 1997.[Gomes et al., 1997] C. Gomes, B. Selman, andN. Crato. Heavy-tailed distributions in combina-torial search. In G. Smolka, editor, Proc. of 3rdInt. Conf. on Principles and Practice of ConstraintProgramming (CP97), pages 121{135. 1997.[Kondrak and van Beek, 1997] G. Kondrak and P. vanBeek. A Theoretical Evaluation of Selected Back-tracking Algorithms. Arti�cial Intelligence, 89:365{387, 1997.[McCune, 1994] W. McCune. A Davis-Putnam Pro-gram and its Application to Finite First-Order ModelSearch: Quasigroup Existence Problems. TechnicalReport ANL/MCS-TM-194, Argonne National Labo-ratory, 1994.[Meseguer and Walsh, 1998] P. Meseguer and T. Walsh.Interleaved and discrepancy based search. In Proc. ofthe 13th ECAI. Wiley, 1998.[Mohr and Masini, 1988] R. Mohr and G. Masini. Goodold discrete relaxation. In Proc. of the 8th ECAI,pages 651{656, 1988.[R�egin, 1994] J-C. R�egin. A �ltering algorithm for con-straints of di�erence in CSPs. In Proc. of the 12thNational Conference on AI, pages 362{367. 1994.[Slaney, 1992] J. Slaney. FINDER, Finite Domain Enu-merator: Notes and Guide. Technical Report TR-ARP-1/92, Australian National University, 1992.[Walsh, 1998] T. Walsh. Search in a small world.Technical report APES-07-1998, 1998. available fromhttp://www.cs.strath.ac.uk/~apes/reports/apes-07-1998.ps.gz.[Watts and Strogatz, 1998] D.J. Watts and S.H. Stro-gatz. Collective dynamics of 'small-world' networks.Nature, 393:440{442, 1998.[Zhang and Stickel, 1994] H. Zhang and Stickel M. Im-plementing the Davis-Putnam Algorithm by Tries.Technical report, University of Iowa, 1994.[Zhang and Zhang, 1995] J. Zhang and H. Zhang. SEM:a System for EnumeratingModels. In Proc. of the 14thIJCAI, pages 298{303, 1995.


