
Inverse Consistencies for Non-binary Constraints
Kostas Stergiou1 and Toby Walsh2

Abstract. We present a detailed study of two inverse consistencies
for non-binary constraints: relational path inverse consistency (rel
PIC) and pairwise inverse consistency (PWIC). These are stronger
than generalized arc consistency (GAC), even though they also only
prune domain values. We propose algorithms to achieve rel PIC and
PWIC, that have a time complexity better than the previous generic
algorithm for inverse consistencies. One of our algorithms for PWIC
has a complexity comparable to that for GAC despite doing more
pruning. Our experiments demonstrate that inverse consistencies can
be more efficient than GAC on a range of non-binary problems.

1 INTRODUCTION
Local consistency techniques are of great importance in constraint
programming. They prune values from the domain of variables and
terminate branches of the search tree, saving much fruitless explo-
ration of the search tree. Local consistency techniques that only filter
domains like (generalized) arc consistency (GAC) tend to be more
practical than those that alter the structure of the constraint graph
or the constraints’ relations (e.g. path consistency). For binary con-
straints, many domain filtering consistencies have been proposed and
evaluated, including inverse and singleton consistencies [8, 6, 13].
The situation is very different for non-binary constraints. A number
of consistencies that are stronger than GAC have been developed,
including relational consistency [12] and pairwise consistency [9].
However, these are typically not domain filtering.

We study here two promising domain filtering techniques for non-
binary constraints: relational path inverse consistency (rel PIC) and,
the stronger, pairwise inverse consistency (PWIC). Relational consis-
tencies [12] have rarely been used in practice as most are not domain
filtering, and have high time complexities. Pairwise consistency [9]
(also called inter-consistency [10]) has also rarely been used as it is
not domain filtering and the algorithm proposed in [9] has a high time
complexity and requires all constraints to be extensional. Rel PIC
and PWIC are local consistency techniques that do not suffer from
these problems. They are domain filtering and are not prohibitively
expensive to enforce. Our theoretical analysis reveals some surprises.
For example, when restricted to binary constraints, rel PIC does not
reduce to the variable based definition of path inverse consistency.

We propose algorithms to enforce rel PIC and PWIC that can be
applied to constraints intentionally or extensionally specified. Their
time complexity is better than the complexity of the generic algo-
rithm for inverse consistencies given in [13]. The time complexity
of the second algorithm for PWIC is O(e2k2dk) where e is the
number of constraints, k is the maximum arity and d is the max-
imum domain size. This is significantly lower than the complex-
ity of the generic algorithm, and is comparable to the complexity

1 Department of Information & Communication Systems Engineering Uni-
versity of the Aegean, Greece.

2 National ICT Australia & University of New South Wales, Australia.

of standard GAC algorithms, like GAC-Schema (O(ekdk)) [3] and
GAC2001/3.1 (O(ek2dk)) [5]. However, this improvement comes
at a cost as the space required is exponential in the number of
shared variables. Experimental results demonstrate that it is feasi-
ble to maintain rel PIC and PWIC during search, and they can be
more cost-effective than GAC on certain problems.

2 BACKGROUND
A Constraint Satisfaction Problem (CSP) is defined as a tuple
(X, D, C) where: X is a set of n variables, D is a set of do-
mains, and C is a set of e constraints. Each constraint ci is a
pair (var(ci), rel(ci)), where var(ci) = {xj1 , . . . , xjk

} is an or-
dered subset of X , and rel(ci) is a subset of the Cartesian product
D(xj1)x . . . xD(xjk

). A tuple τ ∈ rel(ci) is valid iff none of the
values in the tuple has been removed from the domain of the cor-
responding variable. Any two constraints ci and cj intersect iff the
set var(ci)∩ var(cj) of variables involved in both constraints is not
empty. We assume that the number of variables that any two con-
straints have in common (denoted by f) is uniform. This assumption
is made to simplify the description and complexity analysis of the
algorithms, and can be easily lifted.

The assignment of value a to variable xi is denoted by (xi, a).
The set of variables over which a tuple τ is defined is var(τ). For
any subset var′ of var(τ), τ [var′] is the sub-tuple of τ that in-
cludes only assignments to the variables in var′. Any two tuples τ

and τ ′ of rel(ci) can be lexicographically ordered. In this ordering,
τ <l τ ′ iff there a exists a subset {x1, . . . , xj} of var(ci) such that
τ [x1, . . . , xj] = τ ′[x1, . . . , xj] and τ [xj+1] <l τ ′[xj+1]. An as-
signment τ is consistent iff for all constraints ci, where var(ci) ⊆
var(τ), τ [var(ci)] ∈ rel(ci). A solution is a consistent assignment
to all variables. A value a ∈ D(xj) is consistent with a constraint ci,
where xj ∈ var(ci), iff ∃τ ∈ rel(ci) such that τ [xj] = a and τ is
valid. In this case, we say that τ is a GAC-support of a in ci. A con-
straint ci is Generalized Arc Consistent (GAC) iff ∀ xj ∈ var(ci),
∀ a ∈ D(xj), there exists a GAC-support for a in ci. A problem is
GAC iff domains are non-empty and all constraints are GAC.

A binary problem is (i, j) consistent iff it has non-empty domains
and any consistent instantiation of i variables can be extended to a
consistent instantiation involving j additional variables [7]. A prob-
lem is strong (i, j)-consistent iff it is (k, j) consistent for all k ≤ i.
A problem is arc consistent (AC) iff it is (1, 1)-consistent. A problem
is (strong) path consistent (PC) iff it is (strong) (2, 1)-consistent. A
problem is (strong) m-consistent iff it is (strong) (m, 1)-consistent.
A problem is path inverse consistent (PIC) iff it is (1, 2)-consistent.

A problem is relationally arc consistent (rel AC) iff any consistent
instantiation for all but one of the variables in a constraint can be
extended to the final variable so as to satisfy the constraint [12]. A
problem is strongly relationally arc consistent (strong rel AC) iff any
consistent instantiation of a subset of the variables in a constraint

can be extended to all the variables in the constraint. A problem is
relationally (i, m)-consistent iff any consistent instantiation for i of
the variables in a set of m constraints can be extended to all the
variables in the set. We can construct singleton versions of all the re-
lational consistencies in a straightforward manner [6]. For example,
a problem is relationally singleton arc consistent (rel SAC) iff it has
non-empty domains and for any instantiation of a variable, the result-
ing subproblem can be made relationally AC. A problem is pairwise
consistent (PWC) iff it has non-empty relations and any consistent
tuple in a constraint c can be consistently extended to any other con-
straint that intersects with c [9]. As shown in [9], applying PWC to a
non-binary CSP is equivalent to applying AC to the dual encoding.

Following [6], we call a consistency property A stronger than B iff
in any problem in which A holds then B holds, and strictly stronger
(written A→ B) iff it is stronger and there is at least one problem in
which B holds but A does not. We call a local consistency property A

incomparable with B (written A⊗B) iff A is not stronger than B nor
vice versa. Finally, we call a local consistency property A equivalent
to B (written A↔ B) iff A is stronger than B and vice versa.

3 INVERSE CONSISTENCIES

In practice, most strong local consistency techniques have prohibitive
space and time complexities. One way around this problem is to use
inverse consistencies [8]. These require limited space as they only
prune domains. When an inverse local consistency is enforced, it re-
moves from the domain of a variable the values that cannot be consis-
tently extended to some additional variables. For example, when en-
forcing PIC we remove values that cannot be consistently extended to
any set of two other variables. By analogy with the definition of PIC,
relational (1, 2) consistency is called relational path inverse consis-
tency (rel PIC). We also define pairwise inverse consistency (PWIC),
an inverse version of PWC. A value a ∈ D(xj) is PWIC iff ∀ con-
straints ci, where xj ∈ var(ci), ∃τ ∈ rel(ci) such that τ [xj] = a

and τ is valid and ∀cl, s.t. var(ci) ∩ var(cl) 6= ∅, ∃τ
′ ∈ rel(cl),

s.t. τ [var(ci) ∩ var(cj)] = τ ′[var(ci) ∩ var(cj)] and τ ′ is valid.
In this case we say that τ ′ is a PW-support of τ . A constraint ci is
PWIC iff ∀ xj ∈ var(ci), ∀ a ∈ D(xj), a is PWIC. A problem is
PWIC iff domains are non-empty and all constraints are PWIC.

We first compare rel PIC and PWIC with GAC, the most popular
local consistency for non-binary constraints.

Theorem 1 PWIC → rel PIC → GAC

Proof: By definition, PWIC is stronger than rel PIC which is stronger
than GAC. To show strictness, consider: alldiff(x1, x2, x3) and x1 =
x2. If domains are {0, 1, 2} then the problem is GAC but is not rel
PIC. Now consider a constraint c1 over variables x1, x2, x3 and two
other constraints c2 and c3 involving x2 and x3 (and other variables).
Assume that value 0 of x1 can be extended to tuples (0, 0, 0) and
(0, 1, 1) in c1 but only the first tuple can be extended to a consis-
tent tuple in c2, while only the second tuple can be extended to a
consistent tuple in c3. The problem is rel PIC but not PWIC. 2

Not surprisingly, when all constraints intersect on at most one vari-
able, PWIC and rel PIC collapse down to GAC.

Theorem 2 On constraints that intersect on at most one variable:
PWIC↔ rel PIC↔ GAC

Proof: Suppose that the constraints intersect on at most one variable
and are GAC. Consider an assignment for a variable and the set of
constraints involving this variable. Take one of these constraints. As
this is GAC, we can find a satisfying tuple including this assignment.

Consider all the intersecting constraints and the value of the inter-
section variable in our tuple. As all these constraints are GAC, we
can extend the tuple to satisfy them. Hence, we can extend any as-
signment to a tuple that can be extended to satisfy all intersecting
constraints. The problem is thus PWIC (and hence rel PIC). 2

When restricted to binary constraints, PWIC collapses down to rel
PIC. We might expect rel PIC to reduce to the corresponding variable
based definition. Surprisingly, this is not the case.

Theorem 3 On binary constraints:
PWIC ↔ rel PIC → rel AC

↑ l
PIC → AC

Proof: We first show PWIC↔ rel PIC. Since binary constraints in-
tersect on at most one variable unless they involve the same two vari-
ables, consider such a case with two variables x1, x2, where all con-
straints are rel PIC. Take any two constraints. Since the constraints
are rel PIC, any instantiation (x1, a) can be extended to an instan-
tiation (x2, b) that satisfies both constraints. Since this holds for all
pairs of constraints that involve x1 and x2, these instantiations are
consistent with all such constraints. Therefore, the problem is PWIC.

To show PIC→ rel PIC, consider the constraints: x1 6= x2, x1 6=
x3 and x2 6= x3. If all variables are 0/1 then the problem is rel PIC
but not PIC. The other relations follow in a straightforward way. 2

Non-binary constraints can sometimes be decomposed into binary
constraints on the same variables. For example, an all-different con-
straint can be decomposed into binary not-equals constraints. On
such constraints, we can directly compare relational consistencies
with binary consistencies on the decomposition.

Theorem 4 On decomposable non-binary constraints:
strong PC
⊗ ⊗

PWIC → rel PIC → AC
⊗ ⊗ ⊗ ⊗

SAC PIC SAC PIC

Proof: To show rel PIC → AC on the decomposition, consider a
problem that is rel PIC. Given any two constraints, any instantia-
tion for a variable can be extended to all the variables in the two
constraints. Hence, it can be extended to at least one other variable.
Thus, the decomposition is AC. To show strictness, consider the con-
straints: alldiff(x1, x2, x3) and x3 = x4. If all variables are 0/1, then
the problem is not rel PIC but its decomposition is AC.

To show the other relationships, consider the constraints:
alldiff(x1, x2, x3, x4) and x4 = x5. If domains are {0, 1, 2}, then
the problem is not rel PIC (and hence not PWIC). However, its de-
composition is strong PC (and thus SAC and PIC). For the reverse,
consider the constraints: x1 6= x2, x1 6= x3, and x2 6= x3. If all
variables are 0/1, then the problem is rel PIC and PWIC, but its de-
composition is not PIC (and hence not SAC nor strong PC). 2

One way to deal with non-binary constraints is to encode them into
binary ones, and apply binary techniques (as for example in [1]). We
now position rel PIC and PWIC with respect to other relational con-
sistencies and consistencies enforced in the hidden variable and dual
encodings of a non-binary problem. Each result has the precondition
that the non-binary constraints are GAC so that the hidden variable
or dual encoding is node consistent (and not trivially unsatisfiable).

Theorem 5 On (non-binary) constraints which are GAC:
SAChidden → PIChidden ↔ AChidden
↓ ↑

rel SAC → rel PIC ⊗ (strong) rel AC
↑ ↑ ⊗

SACdual → PICdual → ACdual (PWC) ↔ PWIC

Proof: Due to space limitations we only give proofs of ACdual ↔
PWIC, PICdual→ rel PIC and rel PIC ⊗ (strong) rel AC.

To compare PWIC to ACdual (and PWC), we only consider the
values that are pruned by these consistencies. For ACdual (and
PWC), which delete tuples from constraints, this can be done if GAC
is applied as a second step. In this case, a value is deleted iff all the
tuples in some dual variable x, that include that value, are deleted.
A tuple is deleted iff it has no support in some other dual variable
(i.e. it is not pairwise consistent). In the non-binary problem, PWIC
deletes the same values because it finds that all their extensions (i.e.
tuples) in the constraint corresponding to x are not pairwise consis-
tent. Therefore PWIC achieves the same pruning as ACdual.

To show PICdual → rel PIC, consider a problem whose dual en-
coding is PIC. Take any pair of constraints. There are two cases. In
the first case, the two constraints are disjoint. As each constraint is
GAC, we can extend any assignment for a variable in one of the con-
straints to satisfy all the variables in both constraints. In the second
case, the two constraints overlap. As each constraint is GAC, we can
extend any assignment for a variable in one of the constraints to sat-
isfy all the variables in the constraint. As the dual encoding is PIC,
we can extend this assignment for the dual variable associated with
this constraint, to the dual variable associated with the second con-
straint, and any other third dual variable. That is, we can extend the
assignment to satisfy all the variable in both the constraints. In both
cases, the problem is rel PIC. To show strictness, consider the con-
straints: x1 6= x2, x1 6= x3 and x2 6= x3. If all variables are 0/1 then
the dual encoding is not PIC, whilst the original problem is rel PIC.

To show rel PIC ⊗ (strong) rel AC, consider the constraints:
alldiff(x1, x2, x3) and x1 = x2. If domains are {0, 1, 2} then the
problem is (strong) rel AC but is not rel PIC. For the reverse, con-
sider alldiff(x1, x2, x3). If domains are {0, 1, 2}, then the problem
is not (strong) rel AC, but it is rel PIC. 2

One surprise here is that rel PIC is incomparable to (strong) rel AC
whilst the binary local consistency PIC is strictly stronger than AC.

4 ALGORITHMS FOR PWIC

The generic AC-7 based algorithm for inverse local consistencies
proposed in [13] can easily be adapted to enforce rel PIC. How-
ever, adapting the generic algorithm to enforce PWIC is more in-
volved. The time and space complexities of this algorithm for rel PIC
are O(e2kd2k) and O(e2k2d) respectively, while for PWIC a naive
adaptation would result in a very inefficient algorithm, in terms of
time complexity. The time complexity of the PWC algorithm given
in [9] is O(e2kd2k). This algorithm enforces PWC by applying AC
in the dual encoding of the problem. Since PWC does not prune
values from domains but instead deletes tuples from constraint re-
lations, domains can be pruned if GAC is applied as a second step
[9]. Apart from its high time complexity, this pruning method also
suffers from a high space complexity, since constraints need to be ex-
tensionally represented. The time complexity of PWC can be reduced
to O(e3dk) if the algorithm of [11] for AC in the dual encoding is
used. However, the space complexity can still be prohibitive.

In what follows we describe two algorithms for PWIC, which are
stronger and more efficient than rel PIC, with better time complexity
than a generic algorithm. These algorithms can be easily modified to
achieve rel PIC. Our algorithms achieve the same pruning as a two-
step procedure of PWC followed by GAC with better time and space
complexity.

4.1 PWIC-1: A Simple Algorithm for PWIC
From the definition of PWIC we can immediately derive a simple
algorithm by extending a GAC algorithm so that whenever it finds
a GAC-supporting tuple for a value in a constraint ci, it also checks
if this tuple has a PW-support in all constraints intersecting with ci.
Figure 1 gives PWIC-1, an algorithm for PWIC based on the GAC
algorithm GAC2001/3.1 [5].

function PWIC-1
1: Q← ∅;
2: for each constraint ci

3: for each variable xj where xj ∈ var(ci)
4: if Revise(xj, ci) > 0
5: if D(xj) is empty return INCONSISTENCY;
6: put in Q each constraint cm such that xj ∈ var(cm);
7: return Propagation;
function Propagation
8: while Q is not empty
9: pop constraint ci from Q;
10: for each unassigned variable xj where xj ∈ var(ci)
11: if Revise(xj, ci) > 0
12: if D(xj) is empty return INCONSISTENCY;
13: put in Q each cm 6= ci such that xj ∈ var(cm);
14: return CONSISTENCY;
function Revise(xj, ci)
15: for each value a ∈ D(xj)
16: PW← FALSE;
17: for each valid τ (∈ rel(ci)) ≥l lastGACxj ,a,ci

such that τ [xj] = a
18: PW← TRUE;
19: for each cm such that var(ci) ∩ var(cm) > 1
20: if @ valid τ ′(∈ rel(cm)) such that

τ [var(ci) ∩ var(cm)] = τ ′[var(ci) ∩ var(cm)]
21: PW← FALSE; break;
22: if PW=TRUE lastGACxj ,a,ci

← τ ; break;
23: if PW=FALSE remove a from D(xj);
24: return number of deleted values;

Figure 1. A simple algorithm for PWIC.

Algorithm PWIC-1 uses a stack (or queue) of constraints to prop-
agate value deletions, and works as follows. In the initial phase it
iterates over each constraint ci (line 2) and updates the domain of
every variable xj involved in ci by calling Revise (line 4). Dur-
ing each revision, for each value a of D(xj) we first look for a tu-
ple in rel(ci) that GAC-supports it. As in GAC2001/3.1, we store
a pointer lastGACxj ,a,ci

. This is now the most recently discov-
ered tuple in rel(ci) that GAC-supports value a of variable xj and
is pairwise consistent. If this tuple is valid then we know that a is
GAC-supported. Otherwise, we look for a new GAC-support start-
ing from the tuple immediately “after” lastGACxj ,a,ci

(line 17).
If lastGACxj ,a,ci

is valid or a new GAC-support is found then
the algorithm checks if the GAC-support (tuple τ) is pairwise con-
sistent. Note that this check must be performed in the case where
lastGACxj,a,ci

is valid, since this tuple may have lost its PW-
supports on some of ci’s intersecting constraints.

To check if τ has PW-supports, PWIC-1 iterates over each con-
straint cm that intersects with ci on more than one variable. Con-
straints intersecting on one variable are not considered because
PWIC offers here no more pruning than GAC. It checks if there
is a tuple τ ′ ∈ rel(cm) such that τ ′ is a PW-support of τ (lines

19-20). If such tuples are found for all intersecting constraints then
lastGACxj ,a,ci

is updated (line 22). If no PW-support is found on
some intersecting constraint, then the iteration stops (line 21) and
the algorithm looks for a new GAC-support. If no pairwise consis-
tent GAC-support is found, a is removed from D(xj) (line 23). In
this case, all constraints involving D(xj) not already in the stack are
put on the stack (line 6). Constraints are then removed from the stack
sequentially and their variables revised. The algorithm terminates if
a domain is wiped out, in which case the problem is not PWIC, or if
the stack becomes empty, in which case the problem is PWIC.

Proposition 1 The worst-case time complexity of algorithm
PWIC-1 is O(e2k3d2k−f).

Proof: The complexity is determined by the revise function.
Revise(xj, ci) can be called at most kd times for each constraint
ci; once for every deletion of a value from D(xj), where xj is one
of the k variables in var(ci). In each call, the algorithm performs
one check to see if lastGACxj,a,ci

is valid. If lastGACxj,a,ci
is

not valid, it tries to find a new GAC-support for a in rel(ci). The
cost to make a GAC for the total number of calls to Revise(xj, ci)
is O(kdk−1) (see [5] for details).

For each GAC-support τ found, PWIC-1 iterates over the, at most
e, constraints that intersect with ci to determine if τ has PW-supports.
For each such constraint cm, it checks at most dk−f tuples, i.e. those
that take the same values in variables var(ci)∩var(cm) as in τ . The
cost of each such check is O(k − f) if we assume this is linear in
the arity of the tuple. Therefore, for each value of xj , Revise makes
O(kdk−1 × e(k − f)dk−f) checks. For kd values, the upper bound
in checks performed to make one constraint PWIC is O(ek3d2k−f).
For e constraints the complexity is O(e2k3d2k−f). 2

The space complexity of PWIC-1 is O(ekd).

4.2 PWIC-2: An Improved Algorithm for PWIC
Although the asymptotic time complexity of PWIC-1 is lower than
that of the generic algorithm of [13], it can still be prohibitive in
practice. (PWIC-2) offers a significant improvement in terms of time
complexity, but with an increase in the space complexity. The major
bottleneck for PWIC-1 is that each time a GAC-support τ for a value
a ∈ D(xj) is found in rel(ci), it has to check if τ is pairwise con-
sistent. This is done by iterating through all constraints that intersect
with ci. In each such iteration the algorithm may check all the dk−f

sub-tuples that include the assignment τ [var(ci) ∩ var(cm)]. This
process is repeated each time ci is revised. To overcome this problem,
for each constraint ci algorithm PWIC-2 keeps a set of df point-
ers for every constraint cm intersecting with ci. Each such pointer
lastPWci,cm,s corresponds to the s-th sub-tuple among the df sub-
tuples containing the possible combinations of values for variables
var(ci)∩ var(cm). Each pointer points to the most recently discov-
ered tuple in rel(cm) that extends sub-tuple s and is a PW-support
for the current GAC-support of a value (xj , a) on ci.

Figure 2 gives lines 20-21 of function Revise of PWIC-2 (the
rest of the algorithm is the same as PWIC-1). During each revision,
for each value a of D(xj) we first look for a tuple in rel(ci) that
GAC-supports it, in the same way as in PWIC-1. If such a tuple τ

is found then the algorithm checks if τ is pairwise consistent. For
each constraint cm that intersects with ci PWIC-2 first checks if
tuple lastPWci,cm,s is valid, where s is the sub-tuple τ [var(ci) ∩
var(cm)]. If it is valid then it PW-supports τ since they have the
same values for the variables var(ci) ∩ var(cm). Otherwise, the
algorithm looks for a new PW-support starting from the tuple that

function Revise(xj, ci)
s← τ [var(ci) ∩ var(cm)];
if lastPWci,cm,s is not valid

if ∃ valid τ ′(∈ rel(cm)) >l lastPWci,cm,s

and τ ′[var(ci) ∩ var(cm)] = s
lastPWci,cm,s ← τ ′;

else PW← FALSE; break;

Figure 2. Function Revise of PWIC-2.

includes the assignment s and is immediately “after” lastPWci,cm,s

in the lexicographic order. If such a tuple τ ′ is found, lastPWci,cm,s

is updated. If no tuple is found in rel(ci) that is both a GAC-support
for a and is pairwise conistent, then a is removed from D(xj).

The following example demonstrates the savings in constraint
checks that PWIC-2 achieves compared to PWIC-1.

Example 1 Consider the problem of Figure 3. There are four vari-
ables {x1, . . . , x4} and two constraints that intersect on x1 and x2.
Tuples in italics are inconsistent and the rest are consistent. Assume
we wish to determine if the values for x3 are PWIC. PWIC-1 checks
all 5 tuples of c2 for each value of x3, as depicted in Figure 3a (for
each tuple τ in c1, all tuples of c2 between the pair of edges start-
ing from τ are checked against τ). PWIC-2 checks all 5 tuples only
for value 0 of x3. After locating {0, 0, 4} of c2 as a PW-support for
{0, 0, 0} of c1, lastPWc1,c2,s, where s = {0, 0}, points to {0, 0, 4}.
For the rest of x3’s values, PWIC-2 only checks this.

x
1
 x
2
 x
3
 x
1
 x
2
 x
4

0 0 0

0 0 1

0 0 2

0 0 3

0 0 4

0 0 0

0 0 1

0 0 2

0 0 3

0 0 4

c
1
 c
2
 x
1
 x
2
 x
3
 x
1
 x
2
 x
4

0 0 0

0 0 1

0 0 2

0 0 3

0 0 4

0 0 0

0 0 1

0 0 2

0 0 3

0 0 4

c
1
 c
2

Figure 3. Applying PWIC-1 and PWIC-2.

Proposition 2 The worst-case time complexity of algorithm
PWIC-2 is O(e2k2dk).

Proof: The complexity is again determined by the calls to Revise.
When looking for a GAC-support within Revise, PWIC-2 is iden-
tical to PWIC-1 and therefore the two algorithms have the same
cost for this part. That is, O(kdk−1) to make a value a ∈ D(xj)
GAC for all calls to Revise(xj, ci). Once a GAC-support τ is
found, PWIC-2 iterates over the constraints that intersect with ci.
Assuming that τ [var(ci) ∩ var(cm)] = s, for any intersecting con-
straint cm PWIC-2 searches through the tuples that include assign-
ment s. However, these tuples are not searched from scratch ev-
ery time. Since the pointer lastPWci,cm,s is used, the tuples that
include assignment s are searched from scratch only during the
first time a GAC-support τ with τ [var(ci) ∩ var(cm)] = s is lo-
cated. In any subsequent iteration of the for loop in line 17 of Fig-
ure 1, and in any subsequent call to Revise(xj, ci), whenever a
GAC-support that includes s is located, the algorithm first checks
if lastPWci,cm,s is still valid. If it is not, then only tuples “after”

lastPWci,cm,s are searched, As a result, in the O(dk−1) times a
GAC-support for a is located, each tuple of each intersecting con-
straint is checked at most once (with each check costing O(k − f))
and there are at most dk−1 checks for the validity of lastPWci,cm,s.
Thus, the cost of Revise(xj, ci) is O(kdk−1 + e(dk−1 + (k −
f)(dk−1)))=O(ekdk−1). For the O(kd) times Reviseis called to
make a constraint PWIC, the upper bound is O(ek2dk) checks. For
e constraints the worst-case complexity is O(e2k2dk). 2

The space complexity of PWIC-2 is O(e2df). PWIC-2 is thus
not practical for large arity constraints sharing many variables. Note
that, even when constraints share just two variables (and the space
complexity is O(e2d2)), PWIC is stronger than GAC. It may be ben-
eficial to apply PWIC only to variables participating in certain con-
straints, based on properties like the arity and the number of shared
variables, and to apply GAC to the rest of the variables. Indeed, our
two algorithms for PWIC apply such a hybrid propagation scheme,
as they apply GAC to constraints that intersect on just one variable.

5 EXPERIMENTS
We compared algorithms that maintain GAC2001/3.1, PWIC-1,
PWIC-2, RPIC-1, and RPIC-2 throughout search (RPIC-1 and
RPIC-2 are algorithms for rel PIC similar to the corresponding al-
gorithms for PWIC). We simply refer to these search algorithms by
the consistency enforced. All algorithms used the dom/deg variable
ordering heuristic [4]. Figure 4 shows the average CPU time to solve
50 instances of randomly generated problems with 30 variables, uni-
form domain size of 10, 28 4-ary constraints, and varying constraint
looseness (along the x-axis). The problems were generated using the
extended model B [2]. On these instances, PWIC-1 and PWIC-2
are faster than GAC and RPIC-1 and RPIC-2 are slower. From ex-
periments with other parameters, we conjecture that PWIC is more
efficient than GAC on sparse problems, especially when the domain
size is large. On the other hand, PWIC is too expensive on problems
with medium or high density. Although it significantly reduces the
nodes visited, it is outperformed by GAC in CPU time. Rel PIC is
generally less efficient than both GAC and PWIC.

1

10

100

1000

10000

4 6 8 10 12

cp
u

tim
e

(s
ec

on
ds

)

constraint looseness (%)

RPIC-1
RPIC-2

GAC
PWIC-1
PWIC-2

Figure 4. Comparison on random problems.

We also ran experiments on the CLib configuration benchmark li-
brary (see www.itu.dk/doi/VeCoS/clib). To obtain hard in-
stances, each problem was slightly altered by adding a few variables
(5-6) and constraints (8-10) randomly, as described in [11].

Table 1 gives results for GAC, and (for space reasons) only
PWIC-1 and RPIC-1. There is a significant difference in run times
in favor of the algorithms that maintain inverse consistencies due
to the additional pruning they perform. PWIC-2 and RPIC-2 are

problem n e k d GAC PWIC-1 RPIC-1
nodes-time nodes-time nodes-time

machine 30 22 4 9 535874-14,38 12600-1,31 36046-4,27
fx 24 21 5 44 193372-4,06 1315-0,09 17624-1,32
fs 29 18 6 51 618654-23,29 19-0,00 1698-0,23
esvs 33 20 5 61 6179966-153,71 7859-0,24 39021-3,21

Table 1. Configuration problems. k and d are the maximum arity and
domain size. Averages are over 50 hard instances for each benchmark.

faster than PWIC-1 and RPIC-1, by a small margin on average.
The PWIC algorithms are again more efficient than the rel PIC ones.

6 CONCLUSION
Although domain filtering consistencies tend to be more practical
than consistencies that change the constraint relations and the con-
straint graph, very few such consistencies have been proposed for
non-binary constraints. In this paper, we performed a detailed study
of two such consistencies, rel PIC and PWIC. Our theoretical study
revealed some surprising results. For example, rel PIC and PWIC
are weaker than PIC when restricted to binary constraints, while for
non-binary constraints rel PIC and PWIC are incomparable to rel AC.
We also described algorithms that can be used to achieve PWIC and
rel PIC. One has a particularly good time complexity, competitive
with GAC algorithms, though with a higher space cost. Experiments
demonstrated the potential of inverse consistencies as an alternative
or complementary to GAC. As future work, we will investigate ways
to combine inverse consistencies with specialized GAC propagators.

ACKNOWLEDGEMENTS
We would like to thank Patrick Prosser for useful comments and sug-
gestions on an early draft of the paper.

REFERENCES
[1] F. Bacchus, X. Chen, P. van Beek, and T. Walsh, ‘Binary vs. Non-binary

CSPs’, Artificial Intelligence, 140, 1–37, (2002).
[2] C. Bessière, P. Meseguer, E.C. Freuder, and J. Larrosa, ‘On Forward

Checking for Non-binary Constraint Satisfaction’, Artificial Intelli-
gence, 141, 205–224, (2002).

[3] C. Bessière and J.C. Régin, ‘Arc Consistency for General Constraint
Networks: Preliminary Results’, in Proc. of IJCAI’97, pp. 398–404,
(1996).

[4] C. Bessière and J.C. Régin, ‘MAC and Combined Heuristics: Two Rea-
sons to Forsake FC (and CBJ?) on Hard Problems’, in Proc. of CP’96,
pp. 61–75, (1996).

[5] C. Bessière, J.C. Régin, R. Yap, and Y. Zhang, ‘An Optimal Coarse-
grained Arc Consistency Algorithm’, Artificial Intelligence, 165(2),
165–185, (2005).

[6] R. Debruyne and C. Bessière, ‘Domain Filtering Consistencies’, JAIR,
14, 205–230, (2001).

[7] E. Freuder, ‘A Sufficient Condition for Backtrack-bounded Search’,
JACM, 32(4), 755–761, (1985).

[8] E. Freuder and C. Elfe, ‘Neighborhood Inverse Consistency Preprocess-
ing’, in Proc. of AAAI’96, pp. 202–208, (1996).

[9] P. Janssen, P. Jègou, B. Nouguier, and M.C. Vilarem, ‘A filtering pro-
cess for general constraint satisfaction problems: Achieving pairwise
consistency using an associated binary representation’, in Proc. of IEEE
Workshop on Tools for Artificial Intelligence, pp. 420–427, (1989).

[10] P. Jègou, ‘On the Consistency of General Constraint Satisfaction Prob-
lems’, in Proc. of AAAI’93, pp. 114–119, (1993).

[11] N. Samaras and K. Stergiou, ‘Binary Encodings of Non-binary CSPs:
Algorithms and Experimental Results’, JAIR, 24, 641–684, (2005).

[12] P. van Beek and R. Dechter, ‘On the Minimality and Global Consistency
of Row-convex Constraint Networks’, JACM, 42(3), 543–561, (1995).

[13] G. Verfaillie, D. Martinez, and C. Bessière, ‘A Generic Customizable
Framework for Inverse Local Consistency’, in Proc. of AAAI’99, pp.
169–174, (1999).

