
Encodings of Non-Binary Constraint Satisfaction Problems

Kostas Stergiou and Toby Walsh
Department of Computer Science

University of Strathclyde
Glasgow G1 1XL

Scotlandfks,twg@cs.strath.ac.uk
Abstract

We perform a detailed theoretical and empirical compari-
son of the dual and hidden variable encodings of non-binary
constraint satisfaction problems. We identify a simple rela-
tionship between the two encodings by showing how we can
translate between the two by composing or decomposing re-
lations. This translation suggests that we will tend to achieve
more pruning in the dual than in the hidden variable encod-
ing. We prove that achieving arc-consistency on the dual
encoding is strictly stronger than achieving arc-consistency
on the hidden variable, and this itself is equivalent to achiev-
ing generalized arc-consistency on the original (non-binary)
problem. We also prove that, as a consequence of the un-
usual topology of the constraint graph in the hidden variable
encoding, inverse consistencies like neighborhood inverse
consistency and path inverse consistency collapse down onto
arc-consistency. Finally, we propose the “double encoding”,
which combines together both the dual and the hidden vari-
able encodings.

Introduction
Many constraint satisfaction problems (CSPs) can be

compactly formulated using non-binary relations. We can
solve a non-binary CSP either by using one of the algo-
rithms like forward checking (FC) which have been gen-
eralized to non-binary constraints or by translating it into
a binary CSP. There exist two well known methods for
translating non-binary CSPs into binary CSPs: the dual en-
coding (sometimes call the “dual graph method”) and the
hidden variable encoding. Recently, Bacchus and van Beek
have started to compare how backtracking algorithms like
FC perform on the two encodings and on the original non-
binary problem (Bacchus & van Beek 1998). Their ultimate
aim is to provide guidance on when to translate. We con-
tinue this research programme, focusing on higher levels
of consistency like arc-consistency (AC) and on the com-
parison of the two encodings. Bacchus and van Beek re-
mark “. . .An important question that we have not addressed
here is the relationship between the two binary translations.

Copyright c
1999, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

When is the dual representation to be preferred to the hid-
den representation and vice versa? Are there any theoreti-
cal results that can be proved about their relative behaviour?
. . . ” p.317-8 of (Bacchus & van Beek 1998). In this paper,
we provide answers to many of these questions. In addition,
we propose a new encoding which combines together both
the dual and the hidden variable encodings.

Formal background

A constraint satisfaction problem (CSP) is a triple(X;D;C). X is a set of variables. For eachxi 2 X, Di
is the domain of the variable. Eachk-ary constraintc 2 C
is defined over a set of variables(x1; : : :xk) by the subset
of the cartesian productD1 � : : :Dk which are consistent
values. A solution is an assignment of values to variables
that is consistent with all constraints. Many lesser levelsof
consistency have been defined for binary constraint satis-
faction problems (see (Debruyne & Bessi�ere 1997) for ref-
erences). A problem is(i; j)-consistent iff it has non-empty
domains and any consistent instantiation ofi variables can
be extended to a consistent instantiation involvingj addi-
tional variables. A problem is arc-consistent (AC) iff it
is (1; 1)-consistent. A problem is path-consistent (PC) iff
it is (2; 1)-consistent. A problem is strong path-consistent
iff it is (j; 1)-consistent forj � 2. A problem is path in-
verse consistent (PIC) iff it is(1; 2)-consistent. A problem
is neighborhood inverse consistent (NIC) iff any value for
a variable can be extended to a consistent instantiation for
its immediate neighborhood. A problem is restricted path-
consistent (RPC) iff it is arc-consistent and if a variable as-
signed to a value is consistent with just a single value for an
adjoining variable then for any other variable there exists
a value compatible with these instantiations. A problem
is singleton arc-consistent (SAC) iff it has non-empty do-
mains and for any instantiation of a variable, the problem
can be made arc-consistent.

Many of these definitions can be extended to non-binary
constraints. For example, a (non-binary) CSP is generalized
arc-consistent (GAC) iff for any variable in a constraint and
value that it is assigned, there exist compatible values forall

the other variables in the constraint (Mohr & Masini 1988).
We can also maintain a level of consistency at every node in
a search tree. For example, the MAC algorithms for binary
CSPs maintains arc-consistency at each node in the search
tree (Gaschnig 1979). As a second example, the forward
checking algorithm (FC) maintains a restricted form of arc-
consistency that ensures that the most recently instantiated
variable and those that are uninstantiated are arc-consistent.

Following (Debruyne & Bessi�ere 1997), we call a consis-
tency propertyA stronger thanB (A � B) iff in any prob-
lem in whichA holds thenB holds, and strictly stronger
(A > B) iff it is stronger and there is at least one problem
in whichB holds butA does not. We call a local consis-
tency propertyA incomparable withB (A � B) iff A is
not stronger thanB nor vice versa. Finally, we call a local
consistency propertyA equivalent toB iff A impliesB and
vice versa. The following identities summarize results from
(Debruyne & Bessi�ere 1997) and elsewhere: strong PC>
SAC> PIC> RPC> AC, NIC > PIC, NIC� SAC, and
NIC � strong PC.

Encodings of non-binary problems
Dual encoding

The dual encoding simply swaps the variables for con-
straints and vice versa. There is a dual variablevc for eachk-ary constraintc. Its domain is the set of consistent tuples
for that constraint. For each pair of constraintsc andc0 in
the original problem with variables in common, we intro-
duce a compatibility constraint between the dual variablesvc andv0c. This constraint restricts the dual variables to tu-
ples in which the variables that are shared take the same
value.

v1 v4

v2 v3

(0,0,1) (0,1,0)

(1,0,0)

(0,0,1) (1,0,0)

(1,1,1)

(0,1,0) (1,0,0)

(1,1,0) (1,1,1)

(0,0,0) (0,1,1)

(1,0,1)

R33
R22 & R33

R31

R11

R21 & R33

Fig. 1. Dual encoding of a non-binary CSP. Rij is the
binary relation on a pair of tuples that is true iff theith
element of the 1st tuple equals thejth element of the 2nd
tuple.

Consider an example with six 0-1 variables, and four
arithmetic constraints:x1+x2+x6 = 1, x1�x3+x4 = 1,x4 + x5 � x6 � 1, andx2 + x5 � x6 = 0. The dual en-

coding represents this problem with 4 dual variables, one
for each constraint. The domains of these dual variables
are the tuples that satisfy the respective constraint. For ex-
ample, the dual variable associated with the third constraintv3 has the domainf(0; 1; 0); (1; 0; 0); (1;1; 0); (1;1; 1)g as
these are the tuples of values for(x4; x5; x6) which satisfyx4 + x5 � x6 � 1. The dual encoding of the problem is
shown in Figure 1.

Hidden variable encoding

The hidden variable encoding also introduces a dual vari-
able vc for each (nonbinary) constraintc. Its domain is
again the set of consistent tuples for the variables in the
constraintc. For each tuple in the domain of the dual vari-
ablevc, we introduce compatibility constraints betweenvc
and each variablexi in the constraintc. Each constraint
specifies that the tuple assigned tovc is consistent with the
value assigned toxi. Consider again the example with four
arithmetic constraints. There are, in addition to the original
six 0-1 variables, four dual variables with the same domains
as in the dual encoding. For example, the dual variable as-
sociated with the third constraintv3 again has the domainf(0; 1; 0); (1; 0;0); (1;1;0); (1;1;1)g. There are now com-
patibility constraints betweenv3 andx2, betweenv3 andx5
and betweenv3 andx6, as these are the variables mentioned
in the third constraint. For example, the compatibility con-
straint betweenv3 andx2 is the relation that is true iff the
first element in the tuple assigned tov3 equals the value ofx2. The hidden variable encoding is shown in Figure 2.

v1 v4

v2 v3

(0,0,1) (0,1,0)

(1,0,0)

(0,0,1) (1,0,0)

(1,1,1)

(0,1,0) (1,0,0)

(1,1,0) (1,1,1)

(0,0,0) (0,1,1)

(1,0,1)

0 1 0 1 0 1 0 10 10 1
x2 x3 x4 x5 x6

r1
r2 r3

r1 r2 r3

r3

r1 r2 r3

r2r1

x1

Fig. 2. Hidden variable encoding of a non-binary CSP. The
binary relationri applies to a tuple and a value and is true
iff the ith element of the tuple equals the value.

Mapping between the encodings
We can construct the dual encoding by performing a (so-
lution preserving) simplification of the hidden variable en-
coding. This mapping compiles out the role of the original
variables by composing binary relations. Given the con-
straint graph of a hidden variable encoding, we collect the

set of paths of length 2 between each pair of dual variables,vc andv0c. We delete these paths and replace them with a
single constraint formed from the composition of the rela-
tions on the deleted paths. When any of the original vari-
ables becomes isolated from the rest of the constraint graph,
or connected just to a single dual variable, we can safely
delete it. Applying these simplifying transformations to ev-
ery pair of dual variables transforms the hidden variable en-
coding into the dual.

As an example, consider the hidden variable encoding
in Figure 2. We take a pair of dual variables,v1 andv2.
The variablex1 lies on the only path of length 2 betweenv1 andv2. We delete the twor1 constraints on this path
and add a new relationR11 that is the composition of the
two r1 relations. Asx1 is now isolated from the rest of
the constraint graph, we can safely delete it. We then take
another pair of dual variables, sayv1 andv4. There are two
paths of length 2 betweenv1 and v4. We delete both of
these paths. The path betweenv1 andv4 via x2 hadr2 andr1 constraints on it so induces a constraintR21 betweenv1 andv4. Similarly, the path betweenv1 andv4 via x6
had twor3 constraints on it so induces a constraintR33
betweenv1 andv4. We therefore add their unionR21&R33
as the new induced constraint betweenv1 andv4. We can
now deletex2 andx3 as they are isolated from the rest of
the problem. The intermediate CSPconstructed at this point
is shown in Figure 3. If we continue this simplification on
the remaining pairs of dual variables, we construct the dual
encoding shown in Figure 1.

v1 v4

v2 v3

(0,0,1) (0,1,0)

(1,0,0)

(0,0,1) (1,0,0)

(1,1,1)

(0,1,0) (1,0,0)

(1,1,0) (1,1,1)

(0,0,0) (0,1,1)

(1,0,1)

0 1 0 1 0 1
x4 x5 x6

r2 r3

r3 r1 r2 r3

R11

R21 & R33

Fig. 3. An intermediate point in the transformation of the
hidden variable encoding into the dual variable encoding.

The transformation of the hidden variable encoding into
the dual can easily be reversed. We simply take constraints
between pairs of dual variables and decompose them into
paths of constraints which take in the original variables.
Note that, at any point in the transformation, we still have a
binary CSP. It is therefore possible to have “hybrid” encod-
ings, in which some parts of the problem are represented by
a dual encoding and others by a hidden variable encoding.

It is also possible to construct a “double” encoding in which
both the dual and the hidden variable encoding are present
in their entirety. In the double encoding, we have both the
original variables and the dual variables. We also have both
the constraints between dual variables (as in the dual en-
coding), and the constraints between dual variables and the
original variables (as in the hidden variable encoding). In
the double encoding, we will have the extra pruning achiev-
able in the dual encoding. We will also be able to branch
on the original variables as in the hidden variable encod-
ing; branching heuristics may be able to perform better on
these than on the dual variables with their potentially large
domains.

We believe that this may be the first time this close rela-
tionship between the hidden variable and the dual encoding
has been identified. This observation has several practical
and theoretical consequences. For example, our ability to
propagate efficiently and effectively through the compati-
bility constraints in the hidden variable encoding is likely
to be a major cause of difference between the dual and the
hidden variable encodings. As a second example, enforc-
ing the same level of consistency in the two encodings will
inevitably do more pruning in the dual than in the hidden
variable encoding.

Theoretical comparison
To compare constraint propagation in a non-binary problem
and its encoding, we must tackle a variety of problems.

First, a static analysis in which we simply compare the
levels of consistency in a problem and in its encoding is
not very informative. The problem is that the translation
into the encoding builds in a significant level of consistency.
For example, the dual variables only have consistent tuples
in their domains. Hence, by construction, the dual encod-
ing has a level of consistency at least equal to GAC in the
original problem. A solution to this problem is to perform
a more dynamic analysis in which we compare the levels
of consistencyachievedby constraint propagation during
search.

Second, constraint propagation may infer nogoods in-
volving the dual variables, and these cannot be directly
compared with nogoods inferred in the original problem.
A solution to this problem is simply to translate nogoods
involving dual variables into nogoods involving the origi-
nal variables and values. For example, if we prune ak-ary
tuple from the domain of a dual variable, we translate this
into ak-ary nogood on the original variables.

Third, if we prune values or instantiate variables in the
original problem, we cannot perform the same simplifica-
tion on the dual encoding as the original variables have
been discarded. Any solution to this problem should en-
sure that, when all the variables in a constraintc have been
instantiated, the dual variablevc is reduced to an unitary do-

main. The solution we adopt is to remove any tuples from
the domains of dual variables that contain the value pruned
or that are not consistent with the variable instantiation in
the original problem. Note that the reverse direction is not
problematic. For instance, if we instantiate a dual variablevc, we can simply instantiate all variablesxi in the original
problem which appear inc.

Fourth, constraint propagation in the dual encoding will
infer nogoods which, when translated back into the original
problem, have a large arity. Constraint propagation in the
original problem may infer much fewer but much smaller
nogoods which can be derived from these larger arity no-
goods. For example, constraint propagation in the dual en-
coding may remove all tuples from a dual variable which
assign the valueai to a variablexi. ¿From this, we can de-
rive an unitary nogood that removesai from the domain ofxi. A solution to this problem is to compare the nogoods
that can be derived from the translated nogoods with those
that can be derived in the original problem.

We will therefore call achieving a consistency propertyA stronger than achievingB iff the nogoods identified
when achievingB are derivable from those identified when
achievingA, and strictly stronger if it is stronger and there
exists at least one problem on which one nogood identi-
fied when achievingA is not derivable from those identified
when achievingB.

Hidden variable encoding

If we ignore pruning of values in the dual variables, en-
forcing AC on the hidden variable encoding is equivalent to
enforcing GAC on the original problem.

Theorem 1 Achieving AC on the hidden variable encoding
is equivalent to achieving GAC on the variables in the orig-
inal problem.

Proof: Assume that, after removing some values from the
domains of variables in the original problem, we make the
problem GAC and this prunes the valueai from a variablexi. Then there exists some constraintc mentioningxi and
the assignment ofai to xi cannot be consistently extended
to the other variables inc. In the hidden variable encoding,
enforcing AC between these variables andvc will remove
all tuples that assignai to xi. Hence, considering the arc
betweenxi andvc, if we assignai to xi, there are no tuples
in the domain ofvc that are consistent. Hence, achieving
AC on the hidden variable encoding will pruneai from the
domain ofxi.

Assume that we make the problem AC and this prunes
the valueai from a variablexi. Then there exists a dual
variablevc in the hidden variable encoding wherec men-
tionsxi and none of the tuples left in the domain ofvc as-
signsai to xi. Hence, in the original representation of the
problem, the assignment ofai to xi cannot be consistently

extended to the other variables inc. We will therefore pruneai from the domain ofxi. 2
This theorem shows that we can achieve GAC by means

of a simple AC algorithm and the hidden variable encod-
ing. Whether this is computationally effective will depend
on the tightness and arity of the non-binary constraint. The
best AC algorithmhas worst-case time complexity ofO(d2)
whered is the domain size. For the hidden variable encod-
ing of very loosek-ary constraints, this may beO(m2k)
wherem is the domain size in the original problem. By
comparison, we may be able to achieve GAC at much less
cost. For example, GAC on all different constraints takes
justO(m2k2) worst-case time (Régin 1994).

In practive, we may see different results with a hidden
variable encoding as we can now branch on the hidden
variables and reason explicitly about the valid tuples in
their domains. For example, consider a parity constraint
even(x1 + x2 + x3) on three 0-1 variables. If we remove 1
from the domain ofx1 then the problem remains GAC, and
we do will notexplicitlyperform any pruning. However, in
the hidden variable encoding, achieving AC will prune two
of the four values from the dual variable leaving just the
tuples,(0; 0; 0) and(0; 1; 1). In other words, in the hidden
variable encoding, we identify the additional constraint thatx2 = x3.

The constraint graph of a hidden variable encoding has
a star-shaped topology in which constraints “radiate” out
from the original variables. Because of this topology, cer-
tain consistency techniques fail to achieve any additional
pruning over AC. In particular, NIC collapses down onto
AC. Other lesser levels of consistency between NIC and
AC (like PIC and RPC) therefore collapse down onto AC.
Note that, as we are comparing levels of consistency in the
hidden variable encoding, stronger than or equal to AC, we
can perform a static analysis that does not worry about the
level of consistency built into the encoding.

Theorem 2 On a hidden variable encoding, NIC is equiv-
alent to AC.

Proof: Consider a hidden variable encoding that is AC.
The proof divides into two cases. In the first case, consider
a hidden variable and its immediate neighborhood. As the
problem is AC, the hidden variable has a non-empty do-
main. Take any tuple in this domain, saya0 � : : : � ak.
Then the neighboring (non-hidden) variables,x0 to xk can
consistently take the valuesa0 to ak. In the second case,
consider a non-hidden variablex0 and its immediate neigh-
borhood. Pick any valuea0 from the domain ofx0. Now,
as the problem is AC, we can pick values for any of the
neighboring hidden variables. As these are not connected
directly to each other, these values are consistent with each
other. Hence the problem is NIC.2

Whilst we do not get any more pruning over AC by en-
forcing inverse consistencies like NIC and PIC, there are

levels of consistency stronger than AC that it can be useful
to enforce.

Theorem 3 On a hidden variable encoding, strong PC is
strictly stronger than SAC, which itself is strictly stronger
than AC.

Proof: Consider a problem with a single parity constraint,
even(x1 + x2+ x3) with variablex1 set to 0, and variablesx2 andx3 having 0-1 domains. The hidden variable encod-
ing of this problem is SAC but enforcing strong PC adds
the additional constraint thatx2 = x3.

Consider a problem with three parity constraints:
even(x1 + x2 + x3), even(x1 + x3 + x4), and even(x1 +x4+x2). If x1 is assigned to 1, and every other variable has
a 0-1 domain then the hidden variable encoding is AC but
it is not SAC. Enforcing SAC will show that the problem is
insoluble.2
Dual encoding
The dual encoding binds together the (non-binary) con-
straints much more tightly than the hidden variable encod-
ing. As a consequence, constraint propagation in the dual
can achieve high levels of consistency in the original (non-
binary) problem.

Theorem 4 Achieving AC on the dual encoding is strictly
stronger than achieving GAC on the original problem.

Proof: Assume that, after removing some values from do-
mains of variables in the original problem, we make the
problem GAC and this prunes the valueai from variablexi. Then there exists some constraintc mentioningxi and
the assignment ofai to xi cannot be consistently extended
to the other variables inc. In the dual encoding, we remove
tuples from the domains of the dual variables that assign
values to variables in the original problem that have been
removed. This will remove all tuples invc that assignai
to xi. Hence, we can derive the nogood thatai cannot be
assigned toxi. To show strictness, consider two parity con-
straints, even(x1+x2+x3) and even(x2+x3+x4) withx1
assigned to 1,x4 assigned to 0, and all other variables hav-
ing 0-1 domains. Each constraint is GAC. However, achiev-
ing AC on the dual encoding will prove that the problem is
insoluble sincex2 + x3 cannot be both even and odd.2

This extra pruning may come at computational cost if the
non-binary constraints have a large arity and are loose. As
predicted earlier, AC on the dual encoding is more pruning-
ful than AC on the hidden variable encoding.

Theorem 5 Achieving AC on the dual encoding is strictly
stronger than achieving AC on the hidden variable encod-
ing.

Proof: The proof follows from Theorems 1 and 4.2
These results can be extended to rank algorithms that

maintain AC and GAC during search, using arguments sim-
ilar to (Kondrak & van Beek 1997). For example, under a

suitable static variable and value ordering, MAC on the dual
encoding strictly dominates MAC on the hidden variable
encoding, which itself will be equivalent to an algorithm
that maintains GAC on the non-binary representation.

Experimental results
To support our theoretical results, we experimented with
two domains that involve non-binary constraints: Golomb
rulers and crossword puzzle generation.

Table 1 compares three encodings of some standard
crossword puzzles. The worst-time complexity of GAC on
the non-binary encoding of the puzzles is in the order ofO(mk), wherem is the number of letters in the alphabet
andk is the length of the words. In the puzzles we gener-
ated,k was up to 10. This obviously makes the non-binary
encoding completely impractical, so we did not consider it
in the experiments. The small domain size of the original
variables compared to the dual variables makes the hidden
representation better. Note, that because of the large sizeof
the dual variables, AC is expensive and it may be the case
that forward checking is enough to solve these problems in
reasonable time.

Size Dual Hidden Double
n - m Br.-CPU Br.-CPU Br.-CPU

68 - 135 18 - 488.75 2 - 53.85 2 - 552.66
88 - 180 11 - 550.4 0 - 78.15 0 - 632.03
86 - 177 50 - 451 5 - 73.52 5 - 564.88
80 - 187 34 - 900.95 19 - 93 19 - 1272
64 - 128 3 - 298.5 11 - 53.4 11 - 309.24
12 - 36 346 - 901.16138 - 60.88138 - 485.18

Table 1: Branches and CPU time when generating cross-
word puzzles. Fail First was used for variable ordering.n is
the number of variables andm is the number of constraints.

A Golomb Rulercan be represented by a set ofn vari-
ables of domain sizem, such thatx1 < x2 < : : : < xn,x1 = 0, and then(n�1)=2 differencesxj�xi, 1 � i < j �n, are distinct. Such a ruler hasn marks and is of lengthm.
The constraints can be encoded by adding an auxiliary vari-
ablexji for each differencexj�xi, such thatxj�xi = xji,
and then constraining all of the auxiliary variables to be
distinct. This givesn(n � 1)=2 ternary constraints and a
clique of binary `not equals' constraints. Table 2 compares
MGAC on the ternary representation to MAC on the hid-
den and double representations. As Theorem 1 predicted,
MGAC in the non-binary encoding explores the same num-
ber of branches as MAC in the hidden. The extra filter-
ing in the double encoding reduces the number of branches.
In terms of CPU time, though, the non-binary encoding is
the clear winner with the double performing poorly. The
dual encoding for this problem is impractical because of

the large domain size(O(m4)) of the dual variables needed
to represent the not-equals constraints. Such constraintsare
redundant in the double so they can be ignored.

Ruler Ternary Hidden Double
n-m Branches CPU CPU Branches CPU
7-25 12 0.2 0.45 12 2.42
7-24 436 1.36 3.37 382 9.03
8-34 35 0.7 1.75 35 14.84
8-33 2585 12.82 31.3 2139 94.06
9-44 283 4.26 9.71 257 80.09
9-43 15315 111.97 261.68 11170 824.17
10-55 1786 27.63 60.24 1455 444.66
10-54 73956 862.561861.93 * *

Table 2: Branches explored and CPU time (seconds) used to
find an optimal golomb ruler or prove that none exists. The
variables were ordered lexicographically. The numbers of
branches in the hidden representation are not given because
they are always equal to the corresponding numbers in the
non-binary representation. A * means that there was a cut
off after 1 hour of CPU.

Related work
Bacchus and van Beek present one of the first detailed ex-
perimental and theoretical studies of the hidden variable
and dual encodings (Bacchus & van Beek 1998). However,
their analysis is restricted to the FC algorithms (and a sim-
ple extension called FC+). Our analysis identifies the ben-
efits of enforcing higher levels of consistency. Such analy-
sis is valuable as toolkits like ILOG's Solver enforce these
higher levels of consistency during search. Bacchus and
van Beek also do not study the relationship between the two
encodings. Our results identify a simple mapping between
the two. This mapping motivates many of our theoretical
results.

Dechter has studied the trade-off between the number of
hidden variables and their domain size (Dechter 1990). She
shows that anyn-ary constraintR can be represented by(jRj � 2)=(k� 2) hidden variables of domain sizek wherejRj is the number of allowed tuples in the constraint. As
required, whenk = jRj, this degenerates to a single hidden
variable for eachn-ary constraint.

Conclusions
We have performed a detailed theoretical and empirical
comparison of the dual and hidden variable encodings
of non-binary constraint satisfaction problems. We have
shown how the hidden variable encoding can be trans-
formed into the dual encoding by composing relations. Mo-
tivated by this observation, we proved that achieving arc-
consistency on the dual encoding is strictly stronger than

achieving arc-consistency on the hidden variable, and this
itself is equivalent to achieving generalized arc-consistency
on the original (non-binary) problem. We also proved that,
as a consequence of the unusual topology of the constraint
graph in the hidden variable encoding, inverse consisten-
cies like neighborhood inverse consistency and path inverse
consistency collapse down onto arc-consistency. Finally,
we proposed the double encoding, which combines together
both the dual and the hidden variable encodings.

What general lessons can be learnt from this study? First,
there is a simple relationship between the dual and the hid-
den variable encoding based on the composition and de-
composition of the binary relations. Second, this relation-
ship suggests that enforcing the same level of consistency
in the two encodings will do more pruning in the dual.
We were able to prove this conjecture theoretically. Third,
it may pay to encode a non-binary constraint satisfaction
problem into a binary form. We can, for instance, achieve
generalized arc-consistency on a non-binary problem by en-
forcing arc-consistency on the hidden variable encoding. It
remains to be seen if these lessons can be translated back
into the solution of non-binary problems without the over-
head of encoding.

References
Bacchus, F., and van Beek, P. 1998. On the conversion be-
tween non-binary and binary constraint satisfaction prob-
lems. InProceedings of 15th National Conference on Arti-
ficial Intelligence, 311–318. AAAI Press/The MIT Press.

Debruyne, R., and Bessi�ere, C. 1997. Some practicable
filtering techniques for the constraint satisfaction problem.
In Proceedings of the 15th IJCAI, 412–417. International
Joint Conference on Artificial Intelligence.

Dechter, R. 1990. On the expressiveness of networks with
hidden variables. InProceedings of the 8th National Con-
ference on AI, 555–562. American Association for Artifi-
cial Intelligence.

Gaschnig, J. 1979. Performance measurement and anal-
ysis of certain search algorithms. Technical report CMU-
CS-79-124, Carnegie-Mellon University. PhD thesis.

Kondrak, G., and van Beek, P. 1997. A theoretical evalu-
ation of selected backtracking algorithms.Artificial Intel-
ligence89:365–387.

Mohr, R., and Masini, G. 1988. Good old discrete re-
laxation. InProceedings of the European Conference on
Artificial Intelligence (ECAI-88), 651–656.

Régin, J.-C. 1994. A filtering algorithm for constraints of
difference in CSPs. InProceedings of the 12th National
Conference on AI, 362–367. American Association for
Artificial Intelligence.

