
Modelling the Golomb Ruler ProblemBarbara M. Smith1, Kostas Stergiou2, and Toby Walsh21 The APES Research Group, School of Computer Studies, University of Leeds,Leeds, United Kingdom. Email: bms@scs.leeds.ac.uk2 The APES Research Group, Department of Computer Science, University ofStrathclyde, Glasgow, United Kingdom. Email: fks,twg@cs.strath.ac.ukAbstract. The Golomb ruler problem has been proposed as a chal-lenging constraint satisfaction problem. We consider a large number ofdi�erent models of this problem, both binary and non-binary. The prob-lem can be modelled using quaternary constraints, but in practice usinga set of auxiliary variables and ternary constraints gives better results.A binary encoding of the problem gives a smaller search tree, but isimpractical because it takes far longer to run. We compare variable or-dering heuristics and consider the use of implied constraints to improvepropagation. We believe that more case studies such as this are essentialto reduce the skill currently required for successful modelling.1 IntroductionIn his AAAI-98 invited talk, Gene Freuder identi�ed modelling as one of themajor hurdles preventing the uptake of constraint satisfaction technology. Theavailability of non-binary constraints can increase the number of possible modelsof a problem amnd so makes modelling still more di�cult. In this paper, wereport a case study in modelling a challenging problem. We identify a largenumber of di�erent models, both binary and non-binary, and compare themtheoretically and empirically. We believe that many more studies like this willbe needed to turn the art of modelling into a science.2 The problemPeter van Beek has proposed the Golomb ruler problem as a challenging con-straint satisfaction problem for the CSPLib benchmark library (available asprob006 at http://csplib.cs.strath.ac.uk).The problem speci�cation giventhere is: \A Golomb ruler may be de�ned as a set of m integers 0 = x1 < x2 <::: < xm, such that the m(m � 1)=2 di�erences xj � xi, 1 � i < j � m, are dis-tinct. Such a ruler is said to contain m marks and is of length am. The objectiveis to �nd optimal (minimum length) or near optimal rulers."The longest currently known optimal ruler has 21 marks and length 333. vanBeek reports that even quite small problems (with fewer than �fteen marks)are very di�cult for complete methods such as backtracking search, and thattheir di�culty lies both in proving optimality and in �nding a solution, sincethe problems have either a unique solution or just a handful of solutions.1



3 Modelling the problemTo represent these as constraint satisfaction problems, we use m variables,x1; :::; xm, each with a domain f1 .. Lg, where L is an upper limit on the lengthof the ruler. We post monotonicity constraints, xi < xi+1 for 1 � i < m. Thereare three obvious ways of modelling the distinctness constraint on the di�erencesbetween the marks:quaternary constraints: we post O(m4) constraints of the form, xj � xi 6=xl � xk, for all i < j; k < l;ternary and binary constraints: we introduce m(m � 1)=2 auxiliary vari-ables, dij, for all i < j, constrained to equal xj �xi by means of m(m�1)=2ternary constraints; we then post O(m4) binary not-equals constraints be-tween all pairs of auxiliary variables;ternary and all-di�erent constraints: we again introduce m(m� 1)=2 aux-iliary variables, dij, constrained to equal xj � xi by means of m(m � 1)=2ternary constraints; however, we now post a single all-di�erent constraint onthe m(m � 1)=2 auxiliary variables.The problem also has a re
ection symmetry which we can break by adding theconstraint that x2 � x1 < xm � xm�1 (or equivalently, d12 < dm�1;m).4 Theoretical comparisonAs in other studies (e.g. [7, 6]), we will compare the levels of consistency achievedby generalized arc consistency on the di�erent representations. The quaternaryconstraints express directly a relationship between the original variables whichis only represented indirectly via the auxiliary variables in the ternary mod-els. Hence, replacing quaternary constraints with auxiliary variables might beexpected to reduce the level of consistency achieved. However, generalized arcconsistency on the representation using auxiliary variables and an all-di�erentconstraint can be either stronger or weaker than generalized arc consistency onthe representation using quaternary constraints.Theorem 1 Generalized arc consistency on the representation using auxiliaryvariables and an all-di�erent constraint is incomparable to generalized arc con-sistency on the representation using quaternary constraints.Proof: Consider a Golomb ruler with x1 = f0g, x2 = f1; 2g, and x3 = f4g.The representation with auxiliary variables and an all-di�erent constraint isgeneralized arc consistent. However, enforcing generalized arc consistency onthe constraint x3 � x2 6= x2 � x1 in the quaternary representation prunes thevalue 2 from the domain of x2.Consider a Golomb ruler with x1 = f0g, x2 = f1; 2g, x3 = f3g, and x4 =f4; 5g. The representation using quaternary constraints is generalized arc consis-tent. However, enforcing generalized arc consistency on the representation with2



auxiliary variables and an all-di�erent constraint shows that the problem is in-soluble since the auxiliary variables d12, d23 and d34 have domains f1; 2g andthus cannot be all di�erent. �More surprisingly, replacing the single all-di�erent constraint with a cliqueof binary not-equals constraints can also be enough to counter the loss of consis-tency resulting from the removal of the quaternary constraints. As the auxiliaryvariables are shared between constraints, reasoning about them can achieve extrapruning. In fact, generalized arc consistency on the representation using auxil-iary variables and a clique of binary not-equals constraints is incomparable togeneralized arc consistency on the representation using quaternary constraints.Theorem 2 Generalized arc consistency on the representation using auxiliaryvariables and binary not-equals constraints is incomparable to generalized arcconsistency on the representation using quaternary constraints.Proof: Consider the �rst Golomb ruler in the previous proof. The representa-tion with auxiliary variables and binary not-equals constraints is generalized arcconsistent. However, enforcing generalized arc consistency on the representationusing quaternary constraints prunes the value 2 from the domain of x2.Consider a Golomb ruler with x1 = f0g, x2 = f1g, x3 = f3g, x4 = f7; 8g,and x5 = f8; 9g. The representation using quaternary constraints is generalizedarc consistent. However, enforcing generalized arc consistency on the represen-tation with auxiliary variables and binary not-equals constraints shows that theproblem is insoluble since the auxiliary variable d45 has all its possible values (1,2 or 3) removed from its domain by the constraints with the auxiliary variablesd12, d23 and d13. �However, it is not surprising that, in the ternary representation, replacingthe single all-di�erent constraint with a clique of binary not-equals constraintsreduces the level of consistency achieved.Theorem 3 Generalized arc consistency on the representation using auxiliaryvariables and an all-di�erent constraint is strictly stronger than generalized arcconsistency on the representation using auxiliary variables and binary not-equalsconstraints.Proof: It is trivially stronger as generalized arc consistency on an all-di�erentconstraint is stronger than arc consistency on a clique of binary not-equals con-straints. To show strictness, consider again the second Golomb ruler in the �rstproof. The representation of this problem using auxiliary variables and binarynot-equals constraints is generalized arc consistent. However, enforcing general-ized arc consistency on the representation with auxiliary variables and an all-di�erent constraint shows that the problem is insoluble. �We can show what needs to be added to the ternary representation to makeGAC in that case stronger than for the quaternary constraints. In the examplegiven in the proof of Theorem 1, of a ruler with x1 = f0g, x2 = f1; 2g, x3 =3



f4g, the value 2 would be deleted from the domain of x2 if we added to theternary representation the ternary constraints 2xj � xi � xk 6= 0 for all i; j; kwith i < j < k. These are the only constraints that need be added to ensurethat GAC on the ternary constraints prunes at least as many values as GAC onthe quaternary constraints. If i; j; k; l are all di�erent, the constraint xj � xi 6=xl � xk is generalized arc consistent unless at least three of the variables havea singleton domain, and one of the values of the remaining variable, say xi,violates the constraint; this value will be deleted. But in that case, dkl alsohas a singleton domain, and arc consistency on dij 6= dkl would delete the onlypossible value for dkl from the domain of dij. Then making the ternary constraintdij = xj � xi generalized arc consistent will delete the same value of xi: so wewould get the same result as with the quaternary constraint. Hence, it is onlywhen the quaternary constraint is actually a ternary constraint, because two ofthe variables coincide, that the ternary representation has a weaker e�ect, asshown in Theorem 1. Furthermore, this can only happen when the constraintis xj � xi 6= xk � xj where k > j > i, which is equivalent to the constraint2xj�xi�xk 6= 0 given earlier. Other constraints xj�xi 6= xk�xi or xk�xj 6=xk � xi where k > j > i are taken care of by the ordering constraints, sincexk > xj > xi.This shows that in theory ternary constraints can substitute for (and in factimprove on) the original quaternary constraints.To conclude, we have shown that theory alone cannot choose between therepresentations with quaternary constraints and those with auxiliary variables,on the basis of the levels of consistency achievable. However, the results of thenext section show that introducing auxiliary variables can be very worthwhilein practice.5 Experimental resultsTable 1 shows the number of branches explored and the CPU time used to �nd anoptimal Golomb ruler, using ILOG Solver, for given numbers of marks. Solver'sinbuilt minimization functions were used to �nd a ruler with minimal length foreach number of marks. The table shows the number of branches explored duringthe search (the number of fails) and the CPU time (on a Silicon Graphics O2),both in �nding the optimal solution (F) and in proving optimality thereafter(P). With the all-di�erent constraint, R�egin's �ltering algorithm [4] was used fore�ciency. In all three representations, the search variables are those representingthe marks, i.e. xi, i = 1; :::;m, and are ordered lexicographically.Although the theory of the last section is concerned with generalized arcconsistency applied to both the quaternary and ternary constraints, we have notused GAC in these experiments, except on the all-di�erent constraint. However,in section 7 below, we compare GAC on the ternary constraints with arc con-sistency, and show that in terms of CPU time it is not competitive. The sameis likely to be true of GAC on the quaternary representation, especially as, onthe quaternary constraints in this problem, GAC will not often be able to prune4



Marks Stage Quaternary Ternary + Not-Equals Ternary + All-Di�Branches CPU Branches CPU Branches CPU4 F 1 0.003 1 0.002 1 0.003P 1 0.001 1 0.001 1 0.0015 F 7 0.006 3 0.003 2 0.006P 5 0.004 7 0.002 2 0.0026 F 15 0.020 6 0.007 6 0.012P 63 0.042 39 0.015 10 0.0067 F 116 0.170 28 0.023 26 0.033P 594 0.801 327 0.198 84 0.1258 F 756 2.03 130 0.104 98 0.124P 4852 14.0 2605 2.27 599 1.239 F 7271 31.7 1622 1.70 816 1.56P 33679 168 17823 22.1 2924 9.6910 F 78503 657 21507 27.9 9757 24.3P - - - - 13707 68.311 F - - - - 31666 94.5P - - - - - -Table 1. Branches explored and CPU time (seconds) used to �nd a minimal lengthruler (F) or prove that none shorter exists (P). A - means that the run was cut o� after105 branches.any values. (Furthermore, in Solver, GAC is harder to implement for quaternaryconstraints than for ternary constraints.)Table 1 shows that in practice the quaternary representation is much less e�-cient than the other two, both in terms of branches explored and CPU time. Therepresentation with the all-di�erent constraint explores a much smaller searchtree, although it is not always quicker than the not-equals representation, espe-cially for the smaller problems. The experiments show that introducing auxiliaryvariables is in practice well worthwhile in the Golomb ruler problem.6 Branching heuristicsWe next investigate the e�ect of variable ordering heuristics. We concentrate onthe auxiliary variable representation with the single all-di�erent constraint asthis is the most e�cient in terms of CPU time, from those compared in Table 1.Table 2 compares lexicographic ordering with two versions of the heuristic whichchooses next the variable with smallest remaining domain (SD); this heuristichas often been found to give good results, although mainly in binary constraintsatisfaction problems. In one version of the smallest-domain heuristic, both theoriginal and the auxiliary variables are used as search variables. In the otherversion (restricted SD) only the original variables are used as search variables.The lexicographic ordering selects the original variables in order, starting fromx2 (since x1 is already assigned to 0). When all the original variables have beenassigned, constraint propagation will have already assigned the auxiliary vari-5



Marks Stage SD Restricted SD LexicographicBranches CPU Branches CPU Branches CPU4 F 1 0.003 1 0.003 1 0.003P 1 0.001 1 0.001 1 0.0015 F 2 0.006 2 0.006 2 0.006P 2 0.002 2 0.002 2 0.0026 F 5 0.011 7 0.011 6 0.012P 8 0.007 15 0.009 10 0.0067 F 32 0.034 42 0.044 26 0.033P 166 0.194 137 0.135 84 0.1188 F 269 0.281 129 0.151 98 0.124P 1893 3.48 840 1.35 599 1.239 F 2310 3.46 1051 1.63 816 1.56P 22059 59.1 4388 10.8 2924 9.6910 F - - 10084 20.4 9757 24.3P - - 21916 79.9 13707 68.311 F - - 42946 107 31666 94.5Table 2. Branches explored and CPU time (seconds) used to �nd a minimal lengthruler (F) or prove that none shorter exists (P). A - means that the run was cut o� after105 branches.ables as well, and therefore a restricted form of this heuristic does exactly thesame thing.If the di�erence variables are used as the search variables, instead of the orig-inal variables, and are assigned in the order d12; d13; d14; :::; d1m; ::, constraintpropagation will ensure that the variables x2; x3; :::; xm are assigned values si-multaneously. As before, the remaining di�erence variables will also be assignedvalues as the result of constraint propagation from the xi variables. Hence, lexico-graphic ordering of the auxiliary variables gives identical results to lexicographicordering of the original variables, in both ternary representations.It is clear from Table 2 that lexicographic ordering gives much better resultsthan smallest domain ordering. With the smallest domain ordering, it is a goodidea to search only on the original variables, and not on the auxiliary variables aswell.With lexicographic ordering, however, it is immaterialwhich set of variablesare used as the search variables.In the quaternary representation, smallest domain ordering again exploresmore branches than lexicographic ordering, but the di�erence is not so markedas with the ternary representation shown in Table 2.Hence, our results show that in this problem it is better to build up the rulerprogressively, using either the original or the auxiliary variables, than to moveback and forth along the ruler as the domain sizes change. The reason for thismay be that, in the former case, the smaller di�erences will be assigned �rst,and this will allow the all-di�erent constraint to increase the lower bound on theremaining auxiliary variables and hence prune more values.6



7 Binary encodingsAn alternative strategy for solving these non-binary models is to encode theminto binary problems using one of the standard encodings such as the hiddenvariable or the dual encoding [1, 6]. In the case of Golomb rulers, the doubleencoding introduced in [6] is more practical than the dual encoding. The doubleencoding combines together all the constraints from the dual and the hiddenvariable encodings. In a dual encoding, the dual variables associated with eitherthe all-di�erent constraint or the clique of not-equals constraints have such largedomains that we cannot a�ord to enforce arc consistency. In a double encoding,whilst we introduce dual variables associated with the ternary constraints, we canignore the dual variables associated with the all-di�erent constraint or the cliqueof not-equals constraints as they are redundant. This makes it computationallyfeasible to use the double encoding. Finally, whilst encodings of models withternary constraints are practical, encodings of the quaternary constraints havedomains which are prohibitively large. We therefore looked at four new models.hidden variable encoding + all-di�erent constraint: each ternary constraintis replaced by a hidden variable with domain of size O(L2); we also post asingle all-di�erent constraint between the auxiliary variables;hidden variable encoding + not-equals constraint: each ternary constraintis replaced by a hidden variable with domain of size O(L2); we also postO(m4) binary not-equals constraints between each pair of auxiliary vari-ables; this model contains purely binary constraints;double encoding + all-di�erent constraint: each ternary constraint is re-placed by a hidden variable with domain of size O(L2); we also post com-patibility constraints between hidden variables that share variables, and asingle all-di�erent constraint between the auxiliary variables;double encoding + not-equals constraint: each ternary constraint is re-placed by a hidden variable with domain of size O(L2); we also post compat-ibility constraints between hidden variables that share variables, and O(m4)binary not-equals constraints between each pair of auxiliary variables; thismodel contains purely binary constraints.We did not consider it feasible to �nd optimal rulers using the binary encod-ings, as in Tables 1 and 2, since this normally requires setting L, the maximumlength of the ruler, to some large value initially and then gradually reducing themaximum length allowed until no ruler can be found. Unfortunately, becausethe domain sizes of the hidden variables in the binary encodings are O(L2), theearly stages of the optimization, when L is large and it should be very easy to�nd a ruler of length less than L, become very time-consuming. Instead, we haveused the known optimal rulers to compare the encodings. We �rst �nd a rulerwith length � Lmin, where Lmin is the optimal length, and then show that thereis no ruler with length � Lmin � 1.Table 3 gives results from the models in which all the constraints are binary,including the all-di�erent constraint, which is treated as a collection of binary 6=7



constraints. These models are compared with the ternary representation, withthe all-di�erent constraint treated similarly. Two versions of the ternary repre-sentation are shown: in one, Solver's standard constraint propagation based onarc consistency is used on the ternary constraints. In the other, generalized arcconsistency is used for the ternary constraints: these constraints are expressed us-ing Solver's IlcTableConstraint function which implements Bessi�ere and R�egin'sGAC-schema [2].Marks Length Hidden + 6= Double + 6= 3-ary + GAC + 6= 3-ary + 6=Branches CPU Branches CPU Branches CPU Branches CPU4 6 1 0.008 1 0.009 1 0.003 1 0.0024 5* 2 0.005 2 0.007 2 0.002 2 0.0015 11 2 0.034 2 0.064 2 0.012 2 0.0035 10* 9 0.042 9 0.079 9 0.014 9 0.0046 17 5 0.150 5 0.473 5 0.052 5 0.0056 16* 36 0.304 32 0.912 36 0.109 42 0.0187 25 18 0.645 17 3.70 18 0.251 21 0.0147 24* 286 3.13 237 11.9 286 1.18 341 0.2068 34 45 2.34 45 21.2 45 0.964 54 0.0438 33* 2015 31.4 1461 117 2012 12.1 2648 2.329 44 708 22.0 506 147 705 8.51 1098 1.209 43* 12822 302 8846 1180 12815 115 18723 23.4Table 3. Branches explored and CPU time (seconds) used to �nd a ruler of no morethan the speci�ed length or prove that none exists, using lexicographic ordering. *indicates that there is no ruler of this length.Fewer branches are explored in the double than in the hidden encoding. Thehidden encoding gives very similar results, in terms of the size of the search tree,to the ternary representation with generalized arc consistency. As expected, GACon the ternary representation reduces the size of the search tree considerably,compared with just arc consistency. However, the CPU times tell a di�erent story.Both the binary encodings, and especially the double, are far worse than theternary models. This is not surprising as arc consistency takes longer to enforcein the binary encodings due to the large domain sizes of the hidden variables.The worst-case time complexity of maintaining generalized arc consistency onthe ternary constraints is O(L3), whilst that for arc consistency on the hiddenvariable representation is O(L4). Furthermore, in terms of CPU time, enforcinggeneralized arc consistency on the ternary constraints is not worthwhile; however,this may be partly due to the fact that a general algorithm is being used. Analgorithm specialized for these constraints might give better results.Table 4 gives an equivalent comparison when we replace the clique of bi-nary not-equals constraints with a single all-di�erent constraint. The resultsare similar: the double encoding gives the best results in terms of the num-ber of branches explored, but is not practicable as the CPU time is far longer8



than with the other representations. The quickest results come from using theternary representation without GAC, even though this gives the largest searchtree. Comparison of Tables 3 and 4 shows that in all four models it is worthwhileto use a single all-di�erent constraint rather than binary not-equals constraints.Marks Length Hidden + AllDi� Double + AllDi� 3-ary + AllDi� + GAC 3-ary + AllDi�Branches CPU Branches CPU Branches CPU Branches CPU4 6 0 0.007 0 0.007 0 0.003 0 0.0024 5* 1 0.001 1 0.001 1 0.001 1 0.0025 11 1 0.037 1 0.064 1 0.014 1 0.0045 10* 1 0.028 1 0.027 1 0.010 1 0.0036 17 3 0.156 3 0.473 3 0.059 3 0.0086 16* 11 0.199 10 0.563 11 0.079 11 0.0117 25 10 0.660 10 3.65 10 0.267 13 0.0197 24* 88 2.13 83 8.33 88 0.809 94 0.1348 34 29 2.37 29 21.3 28 0.996 32 0.0538 33* 567 19.2 501 83.8 567 7.57 620 1.309 44 361 19.6 293 144 360 8.10 465 1.059 43* 2746 159 2398 712 2741 63.4 3268 10.710 55 2064 151 1793 892 2062 61.6 2750 9.3510 54* 13883 1240 - - 13879 493 15606 77.7Table 4. Branches explored and CPU time (seconds) used to �nd a ruler of no morethan the speci�ed length or prove that none exists, using lexicographic ordering. *indicates that there is no ruler of this length. - means that the run was not attempted.8 Implied constraintsSo far, we have considered di�erent ways of representing the basic problem,and the e�ect of putting more or less e�ort into constraint propagation throughsome form of arc consistency. Another route to improved performance is to addconstraints to the model: the constraints we can consider are not required toensure that solutions found are correct, but are implied by constraints alreadyin the model. Such implied constraints are derived from two or more existingconstraints and so can be viewed as partially achieving some higher level ofconsistency than arc consistency. The intention in adding implied constraints isthat propagating them will lead to more, or at least earlier, pruning of valuesfrom the domains of variables than would otherwise occur.In the Golomb ruler problem, one set of implied constraints has already beenmentioned, namely the constraints 2xj�xi�xk 6= 0, for i < j < k. As discussedin section 4, these constraints, in theory, give additional pruning in the ternaryrepresentation and allow GAC on the ternary representation to be stronger thanGAC on the quaternary representation. These constraints are implied by theconstraints dij 6= djk, dij = xj � xi and djk = xk � xj.9



Although implied constraints have often been found to lead to signi�cantlyfaster solution time (e.g. [3, 5]), choosing useful implied constraints is somethingof an art. We can state some conditions for good implied constraints. First,to allow useful constraint propagation, we require either constraints for whichspecialized and e�cient constraint propagation algorithms are available, or elseconstraints of small arity. Secondly, we should be able to envisage circumstancesin which a candidate implied constraint will lead to values being deleted fromthe domains of variables which would not be deleted by the existing constraints.However, although these are desirable, they are not su�cient to ensure areduction in solution time. Adding constraints brings an overhead, and a worth-while implied constraint must achieve su�cient additional pruning to more thano�set this overhead. It is hard to predict whether a given candidate impliedconstraint will do this, without experimenting. For instance, the constraints2xj � xi � xk 6= 0 meet the conditions, since they are of small arity and wehave given in section 4 an example of a value being deleted by a constraint ofthis form which would not be deleted by the existing ternary constraints. How-ever, experiments with the ternary model with an all-di�erent constraint, whichhas already been shown to give the best results in terms of CPU time, show thatadding these constraints makes no di�erence to the number of branches explored,if a lexicographic ordering is used. Hence, adding these constraints increases theCPU time. If a smallest-domain ordering is used, the number of branches ex-plored decreases signi�cantly with these constraints, but not su�ciently to beatthe lexicographic ordering. Overall, despite their theoretical advantage, they arenot worth using.Below, we consider other implied constraints, and their e�ect when addedto the model which has so far proved best, i.e. the ternary representation, withauxiliary variables, a single all-di�erent constraint and lexicographic ordering.8.1 Ordering Constraints on the Auxiliary VariablesFor any set of three indices i; j; k with i < j < k, it must be true that dij < dikand djk < dik. These constraints are implied by the constraints de�ning thedi�erence variables and the ordering constraints xi < xj < xk (which in turnare implied by the constraints xi < xi+1 for 1 � i < m). In this case, the impliedconstraints are binary, hence cheap to propagate, and we can see that they couldlead to domain reductions not achievable otherwise. For instance, suppose we aretrying to �nd the minimal length ruler with 5 marks and are currently lookingfor one with length 11 (which is the minimal length). The initial domain of eachof the variables x2, x3, x4 is f0..11g. The ordering constraints on the originalvariables, and the fact that x1 = 0 and x5 = 11, will reduce their domains tox2: f1..8g, x3: f2..9g, x4: f3..10g. The initial domain of the variables d23, d24,d34 will be f1..11g. The reduction in the domains of the original variables willreduce the domains of these variables too: d23 to f1..8g, d24 to f1..9g and d34 tof1..8g. The all-di�erent constraint cannot make any further reductions, whetheror not we invoke the full �ltering algorithm. However, if we have the constraintsd23 < d24 and d34 < d24, 1 is removed from the domain of d24. So this example10



shows that in theory we might get additional propagation from such constraints.Hence, on theoretical grounds, there seems good reason to suppose that addingthese constraints would give improved performance.The �rst column of Table 5 shows the best results obtained hitherto (al-ready seen in Tables 1 and 2.) The second column shows the results of addingthe ordering constraints on the di�erence variables to this model. The orderingconstraints do reduce the size of the search tree explored, except for the small-est problems, although they do not in most cases reduce the CPU time. Hence,somewhat surprisingly, these constraints are not worthwhile, in conjunction withthe rest of the search strategy.Marks Stage Ternary + AllDi� Ternary + AllDi�+ order constraintsBranches CPU Branches CPU4 F 1 0.003 1 0.004P 1 0.001 1 0.0015 F 2 0.006 2 0.008P 2 0.002 2 0.0026 F 6 0.012 6 0.019P 10 0.006 10 0.0097 F 26 0.033 26 0.054P 84 0.118 79 0.1168 F 98 0.124 98 0.189P 599 1.23 556 1.229 F 816 1.56 780 1.84P 2924 9.69 2726 9.9110 F 9757 24.3 9259 27.9P 13707 68.3 12527 69.911 F 31666 94.5 30797 112P 343220 2000 322579 2070Table 5. Branches explored and CPU time to �nd a minimal length ruler (F) orprove that none shorter exists (P) with and without order constraints on the di�erencevariables.8.2 Improved Bounds on the Auxiliary VariablesThe variables dij are currently set up with lower bound 1 and upper boundthe maximum length allowed for the ruler. The ordering constraints describedabove improve these bounds on a sequence of di�erences; for instance, becaused12 < d13 < d14::: < d1n, the lower bounds of these variables will be 1, 2, 3,..., n � 1. However, it is clear that these lower bounds are not in most casesattainable: we cannot, for instance, have d13 = 2, because that would meand12 = d23 = 1.How do we get tighter bounds, in general? If we consider that dij = di;i+1+di+1;i+2 + ::: + dj�1;j, we see that dij is the sum of j � i integers, which are11



constrained to be all di�erent. So dij must be at least equal to the sum of the�rst j � i integers, i.e. dij � (j � i)(j � i + 1)=2.The chain of reasoning leading to this as an implied constraint is harder todisentangle than in the previous examples. We �rst have to write xj � xi as(xj � xj�1) + (xj�1 � xj�2) + ::: + (xi+1 � xi) and then use the constraintsde�ning the di�erence variables to derive dij = di;i+1 + di+1;i+2 + :::+ dj�1;j.Then, since there is an all-di�erent constraint on all the di�erence variables,there is an all-di�erent constraint on any subset. Hence, dij is constrained tobe the sum of j � i di�erent integers. Solver, and other constraint programmingtools as far as we are aware, do not provide a \sum of n all di�erent" constraint,but we can use it, outside Solver, to derive the new lower bounds as above.Similarly, note that d12 + d23 + :::dn�2;n�1+ dn�1;n = xn. So, dij = xn �(d12+d23+ ::+di�1;i+dj;j+1+ :::dn�1;n). The di�erences on the right hand sideof this expression are again a set of di�erent integers, and there are n�1�j+i ofthem. So we can maximise the RHS by minimising the sum of these consecutivedi�erences. This gives dij � xn � (n� 1� j + i)(n � j + i)=2.These constraints are cheap to implement: the �rst set are just unary con-straints, the second set are binary constraints involving xn. As xn is reduced,these constraints get tighter, so that they are more e�ective the closer we get tothe minimal length.We can tighten the lower bounds on the di�erence variables still further. Thelower bounds described above are based on the observation that the di�erencedij must be made up of the sum of j � i di�erent integers. However, this sectionof the ruler, i.e. from mark i to mark j, must itself form a Golomb ruler withj� i+1 marks, although not necessarily one of minimal length. So having foundall minimal length rulers with fewer than n marks, we can use the lengths ofthese rulers, l2; l3; :::; ln�1, while searching for the minimal length ruler with nmarks. That is, dij � lj�i+1, provided that i > 1 or j < n.Table 6 shows the results of adding these bounds to the model, with andwithout the order constraints described in the last section. The �rst two columnsof the table show that reducing the initial domains of the di�erence variables inthis way leads to signi�cant bene�ts. The search space explored is considerablyreduced, and so is the CPU time: because of the smaller domains, the CPUtime is less than before even if there is no reduction in the number of branchesexplored. The �nal column shows that also adding order constraints on thedi�erence variables, as described in section 8.1, gives almost no further reductionin the number of branches explored, and is considerably more expensive in CPUtime.8.3 Dynamic Bounds on the Auxiliary VariablesAs mentioned in section 8.2, there is an implicit \sum of n all di�erent" constrainton each di�erence variable, which we have so far used to reduce their initialdomains. Ideally, we should like to be able to use this constraint during searchas well. For instance, if we have assigned the values 1 and 3 to x2 and x3, then12



Marks Stage 3-ary + AllDi� + tighter bounds + tighter bounds+ order constraintsBranches CPU Branches CPU Branches CPU4 F 1 0.003 1 0.004 1 0.004P 1 0.001 1 0.001 1 0.0015 F 2 0.006 2 0.006 2 0.007P 2 0.002 2 0.001 2 0.0026 F 6 0.012 6 0.012 6 0.013P 10 0.006 6 0.004 6 0.0057 F 26 0.033 26 0.032 26 0.038P 84 0.118 54 0.051 54 0.0638 F 98 0.124 98 0.128 98 0.160P 599 1.23 385 0.503 385 0.6359 F 816 1.56 718 1.17 718 1.47P 2924 9.69 1751 3.61 1751 4.4810 F 9757 24.3 7971 17.1 7948 21.3P 13707 68.3 7812 24.0 7807 29.511 F 31666 94.5 29251 80.8 29190 108P 343220 2000 252985 1020 252577 1300Table 6. Branches explored and CPU time to �nd a minimal length ruler (F) orprove that none shorter exists (P), with and without tighter bounds on the di�erencevariables.any di�erence variable dij where i � 2 must be at least the sum of j� i di�erentintegers excluding 1, 2 and 3.We have implemented a limited form of propagation for this constraint, bykeeping track of the largest mark so far assigned a value, xmax, and the valueswhich have so far been assigned to the di�erence variables. Whenever a di�erencevariable is assigned, we calculate the sum of the m�max smallest integers whichhave not yet been assigned to the di�erence variables, and post a constraint onthis branch of the search tree that the value of dmax;m must be at least this sum.Table 7 shows the e�ect of adding this constraint propagation to the modelgiving the best results so far in term of CPU time (from Table 6). Except forthe smallest problems, there are signi�cant reductions in both the number ofbranches explored and CPU time. We have also solved the 12-mark problemusing this model. Finding the optimal solution took 1,398,326 backtracks, andthe total number of backtracks including the proof of optimality was 1,911,435:the total CPU time was about 2.5 hours. This is a signi�cant reduction in searche�ort from the results by Jean-Francois Puget reported in CSPLib: he found asolution for this problem using ILOG Solver after 2,042,000 backtracks, and thetotal number of backtracks including the proof of optimality was 3,143,316.It is possible that more e�ort put into propagating the \sum of n all di�erent"constraint might pay dividends. On the other hand, what we have implementedso far is relatively lightweight, and given that the variables are being assignedin lexicographic order, recalculating the lower bound on the length of the restof the ruler is an obvious way to try to prune values. Attempting to use the13



Marks Stage 3-ary + AllDi�+ tighter bounds + dynamic boundsBranches CPU Branches CPU4 F 1 0.004 1 0.004P 1 0.001 1 0.0015 F 2 0.006 2 0.007P 2 0.001 2 0.0026 F 6 0.012 6 0.013P 6 0.004 6 0.0047 F 26 0.032 25 0.032P 57 0.051 50 0.0498 F 98 0.128 80 0.111P 385 0.503 355 0.4809 F 718 1.17 509 0.822P 1751 3.61 1564 3.4110 F 7971 17.1 5428 12.0P 7812 24.0 6810 22.111 F 29251 80.8 19211 53.6P 252985 1020 224636 967Table 7. Branches explored and CPU time to �nd a ruler of minimal length (F) orprove that none shorter exists (P), with and without dynamic lower bounds on thedi�erence constraints.constraint more extensively is likely to incur increased overheads, and possiblyresult in little or no extra pruning.9 ConclusionsWe began with a simple representation of the Golomb ruler problem using qua-ternary constraints on the variables representing the positions of the marks, andhave considered many alternatives to this basic model. We showed theoreticallythat the level of consistency achieved by generalized arc consistency in the qua-ternary representation cannot be compared with the consistency level achievedin a ternary representation with auxiliary variables. However, experimental re-sults (using AC rather than GAC on the quaternary and ternary constraints)show that the extra propagation through the auxiliary variables reduces boththe number of explored branches and the CPU time. This is true whether usingan all-di�erent constraint over all the auxiliary variables or representing the all-di�erent constraint as a clique of binary not-equals constraints. We have shownthat the double encoding of non-binary into binary constraints reduces the num-ber of explored branches signi�cantly. However, the CPU time is much greaterbecause of the cost of enforcing arc consistency on hidden variables with largedomains. We have also considered several sets of implied constraints, in conjunc-tion with the ternary representation of the problem, some of which can reduceboth the number of branches explored and the CPU time signi�cantly. Our �nalmodel is a dramatic improvement over the basic model which we started with:14



for instance, the time taken to �nd an optimal 10{mark ruler has been reduced50-fold.What general lessons can be learned from this study? First, even simpleproblems can be modelled in many di�erent ways. Counting all possible encod-ings, both binary and non-binary, this study alone has suggested �fteen possiblemodels for the problem, although we have omitted some of these from our exper-iments (in particular the binary translations of the quaternary representations).If we include all possible ways of adding the implied constraints discussed insection 8, there would be many more.Secondly, �nding the best model involves a trade-o� between the arity ofthe constraints and the e�ciency with which we can reason about them. Themost e�ective model in this case study was not the one involving quaternaryconstraints but that with ternary constraints which allows us to post a single,large, all-di�erent constraint.Thirdly, the addition of implied constraints may allow us to achieve higherlevels of consistency. However, �nding good implied constraints which will resultin an overall improvement in solution times is not easy. Although we have sug-gested some guidelines, our experience with this problem indicates that often itwill only be possible to tell by experiment whether a particular set of impliedconstraints is worthwhile.AcknowledgmentsThe third author is supported by EPSRC award GR/K/65706. All authors wishto thank the other members of the APES research group.References1. F. Bacchus and P. van Beek. On the Conversion Between Non-Binary and BinaryConstraint Satisfaction Problems. In Proceedings AAAI'98, pages 311{318, 1998.2. C. Bessi�ere and J.-C. R�egin. Arc consistency for general constraint networks: pre-liminary results. In Proceedings IJCAI'97, volume 1, pages 398{404, 1997.3. L. Proll and B. Smith. ILP and Constraint Programming Approaches to a TemplateDesign Problem. INFORMS Journal on Computing, 10:265{275, 1998.4. J.-C. R�egin. A �ltering algorithm for constraints of di�erence in CSPs. In Proceed-ings AAAI'94, volume 1, pages 362{367, 1994.5. J.-C. R�egin. Minimization of the number of breaks in sports scheduling problemsusing constraint programming. In Proceedings of the DIMACS Workshop on Con-straint Programming and Large Scale Discrete Optimization, Sept. 1998.6. K. Stergiou and T. Walsh. Encodings of Non-Binary Constraint Satisfaction Prob-lems. In Proceedings AAAI'99, 1999.7. K. Stergiou and T. Walsh. The Di�erence All-Di�erence Makes. In ProceedingsIJCAI'99, 1999. 15


