Modelling the Golomb Ruler Problem

Barbara M. Smith!, Kostas Stergiou?, and Toby Walsh?

! The APES Research Group, School of Computer Studies, University of Leeds,
Leeds, United Kingdom. Email: bms@scs.leeds.ac.uk
2 The APES Research Group, Department of Computer Science, University of
Strathclyde, Glasgow, United Kingdom. Email: {ks,tw}@cs.strath.ac.uk

Abstract. The Golomb ruler problem has been proposed as a chal-
lenging constraint satisfaction problem. We consider a large number of
different models of this problem, both binary and non-binary. The prob-
lem can be modelled using quaternary constraints, but in practice using
a set of auxiliary variables and ternary constraints gives better results.
A binary encoding of the problem gives a smaller search tree, but is
impractical because it takes far longer to run. We compare variable or-
dering heuristics and consider the use of implied constraints to improve
propagation. We believe that more case studies such as this are essential
to reduce the skill currently required for successful modelling.

1 Introduction

In his AAAI-98 invited talk, Gene Freuder identified modelling as one of the
major hurdles preventing the uptake of constraint satisfaction technology. The
availability of non-binary constraints can increase the number of possible models
of a problem amnd so makes modelling still more difficult. In this paper, we
report a case study in modelling a challenging problem. We identify a large
number of different models, both binary and non-binary, and compare them
theoretically and empirically. We believe that many more studies like this will
be needed to turn the art of modelling into a science.

2 The problem

Peter van Beek has proposed the Golomb ruler problem as a challenging con-
straint satisfaction problem for the CSPLib benchmark library (available as
prob006 at http://csplib.cs.strath.ac.uk). The problem specification given
there 1s: “A Golomb ruler may be defined as a set of m integers 0 = 21 < z2 <
... < &y, such that the m(m — 1)/2 differences z; — 2;, 1 <i < j < m, are dis-
tinct. Such a ruler is said to contain m marks and is of length a,,. The objective
is to find optimal (minimum length) or near optimal rulers.”

The longest currently known optimal ruler has 21 marks and length 333. van
Beek reports that even quite small problems (with fewer than fifteen marks)
are very difficult for complete methods such as backtracking search, and that
their difficulty lies both in proving optimality and in finding a solution, since
the problems have either a unique solution or just a handful of solutions.

3 Modelling the problem

To represent these as constraint satisfaction problems, we use m variables,
T1, ..., m, each with a domain {1 .. L}, where L is an upper limit on the length
of the ruler. We post monotonicity constraints, x; < x;41 for 1 < ¢ < m. There
are three obvious ways of modelling the distinctness constraint on the differences
between the marks:

quaternary constraints: we post O(m?) constraints of the form, z; — #; #
x; — ay, for all ¢ < j, k < I;

ternary and binary constraints: we introduce m(m — 1)/2 auxiliary vari-
ables, d;;, for all i < j, constrained to equal z; — 2; by means of m(m—1)/2
ternary constraints; we then post O(m?) binary not-equals constraints be-
tween all pairs of auxiliary variables;

ternary and all-different constraints: we again introduce m(m —1)/2 aux-
iliary variables, d;;, constrained to equal z; — #; by means of m(m — 1)/2
ternary constraints; however, we now post a single all-different constraint on
the m(m — 1)/2 auxiliary variables.

The problem also has a reflection symmetry which we can break by adding the
constraint that zs — 21 < &, — &m—1 (or equivalently, dis < dp—1,m).

4 Theoretical comparison

As in other studies (e.g. [7,6]), we will compare the levels of consistency achieved
by generalized arc consistency on the different representations. The quaternary
constraints express directly a relationship between the original variables which
is only represented indirectly via the auxiliary variables in the ternary mod-
els. Hence, replacing quaternary constraints with auxiliary variables might be
expected to reduce the level of consistency achieved. However, generalized arc
consistency on the representation using auxiliary variables and an all-different
constraint can be either stronger or weaker than generalized arc consistency on
the representation using quaternary constraints.

Theorem 1 Generalized arc consistency on the representation using auzxiliary
variables and an all-different constraint is incomparable to generalized arc con-
sistency on the representation using quaternary constraints.

Proof: Consider a Golomb ruler with z; = {0}, #2 = {1,2}, and 23 = {4}.
The representation with auxiliary variables and an all-different constraint is
generalized arc consistent. However, enforcing generalized arc consistency on
the constraint x3 — z2 # x9 — 1 in the quaternary representation prunes the
value 2 from the domain of 5.

Consider a Golomb ruler with z; = {0}, 2 = {1,2}, 23 = {3}, and =4 =
{4,5}. The representation using quaternary constraints is generalized arc consis-
tent. However, enforcing generalized arc consistency on the representation with

auxiliary variables and an all-different constraint shows that the problem is in-
soluble since the auxiliary variables dy2, ds and dss have domains {1,2} and
thus cannot be all different. O

More surprisingly, replacing the single all-different constraint with a clique
of binary not-equals constraints can also be enough to counter the loss of consis-
tency resulting from the removal of the quaternary constraints. As the auxiliary
variables are shared between constraints, reasoning about them can achieve extra
pruning. In fact, generalized arc consistency on the representation using auxil-
iary variables and a clique of binary not-equals constraints is incomparable to
generalized arc consistency on the representation using quaternary constraints.

Theorem 2 Generalized arc consistency on the representation using auzxiliary
variables and binary not-equals constraints is incomparable to generalized arc
consistency on the representation using quaternary constraints.

Proof: Consider the first Golomb ruler in the previous proof. The representa-
tion with auxiliary variables and binary not-equals constraints is generalized arc
consistent. However, enforcing generalized arc consistency on the representation
using quaternary constraints prunes the value 2 from the domain of 5.
Consider a Golomb ruler with 1 = {0}, 2 = {1}, 3 = {3}, a4 = {7,8},
and x5 = {8,9}. The representation using quaternary constraints is generalized
arc consistent. However, enforcing generalized arc consistency on the represen-
tation with auxiliary variables and binary not-equals constraints shows that the
problem is insoluble since the auxiliary variable d45 has all its possible values (1,
2 or 3) removed from its domain by the constraints with the auxiliary variables

d12, d23 and d13. O

However, it is not surprising that, in the ternary representation, replacing
the single all-different constraint with a clique of binary not-equals constraints
reduces the level of consistency achieved.

Theorem 3 Generalized arc consistency on the representation using auziliary
variables and an all-different constraint is strictly stronger than generalized arc
consistency on the representation using auzriliary variables and binary not-equals
constraints.

Proof: It is trivially stronger as generalized arc consistency on an all-different
constraint 1s stronger than arc consistency on a clique of binary not-equals con-
straints. To show strictness, consider again the second Golomb ruler in the first
proof. The representation of this problem using auxiliary variables and binary
not-equals constraints is generalized arc consistent. However, enforcing general-
1zed arc consistency on the representation with auxiliary variables and an all-
different constraint shows that the problem is insoluble. O

We can show what needs to be added to the ternary representation to make
GAC in that case stronger than for the quaternary constraints. In the example
given in the proof of Theorem 1, of a ruler with #; = {0}, 5 = {1,2}, 25 =

{4}, the value 2 would be deleted from the domain of s if we added to the
ternary representation the ternary constraints 2z; — a; — ap # 0 for all 4,7, &
with ¢ < j < k. These are the only constraints that need be added to ensure
that GAC on the ternary constraints prunes at least as many values as GAC on
the quaternary constraints. If 4, j, k,{ are all different, the constraint «; — z; #
x; — xy 1s generalized arc consistent unless at least three of the variables have
a singleton domain, and one of the values of the remaining variable, say x;,
violates the constraint; this value will be deleted. But in that case, dy; also
has a singleton domain, and arc consistency on d;; # di; would delete the only
possible value for dy; from the domain of d;;. Then making the ternary constraint
d;; = x; — x; generalized arc consistent will delete the same value of x;: so we
would get the same result as with the quaternary constraint. Hence, it is only
when the quaternary constraint is actually a ternary constraint, because two of
the variables coincide, that the ternary representation has a weaker effect, as
shown in Theorem 1. Furthermore, this can only happen when the constraint
is &; —a; # xp — x; where & > j > 4, which is equivalent to the constraint
2e; —a; — xp # 0 given earlier. Other constraints x; — x; # xp — 45 or &) — x; £
zy — x; where k > j > i are taken care of by the ordering constraints, since
Tp > T5 > Ty

This shows that in theory ternary constraints can substitute for (and in fact
improve on) the original quaternary constraints.

To conclude, we have shown that theory alone cannot choose between the
representations with quaternary constraints and those with auxiliary variables,
on the basis of the levels of consistency achievable. However, the results of the
next section show that introducing auxiliary variables can be very worthwhile
in practice.

5 Experimental results

Table 1 shows the number of branches explored and the CPU time used to find an
optimal Golomb ruler, using ILOG Solver, for given numbers of marks. Solver’s
inbuilt minimization functions were used to find a ruler with minimal length for
each number of marks. The table shows the number of branches explored during
the search (the number of fails) and the CPU time (on a Silicon Graphics O2),
both in finding the optimal solution (F) and in proving optimality thereafter
(P). With the all-different constraint, Régin’s filtering algorithm [4] was used for
efficiency. In all three representations, the search variables are those representing
the marks, 1.e. z;, ¢ = 1,..., m, and are ordered lexicographically.

Although the theory of the last section is concerned with generalized arc
consistency applied to both the quaternary and ternary constraints, we have not
used GAC in these experiments, except on the all-different constraint. However,
in section 7 below, we compare GAC on the ternary constraints with arc con-
sistency, and show that in terms of CPU time it is not competitive. The same
is likely to be true of GAC on the quaternary representation, especially as, on
the quaternary constraints in this problem, GAC will not often be able to prune

Marks|Stage| Quaternary |Ternary + Not-Equals|Ternary + All-Diff

Branches CPU |Branches CPU Branches CPU

4 F 1 0.003 1 0.002 1 0.003

P 1 0.001 1 0.001 1 0.001

5 F 7 0.006 3 0.003 2 0.006

P 5 0.004 7 0.002 2 0.002

6 F 15 0.020 6 0.007 6 0.012

P 63 0.042 39 0.015 10 0.006

7 F 116 0.170 28 0.023 26 0.033

P 594 0.801 327 0.198 84 0.125

8 F 756 2.03 130 0.104 98 0.124

P 4852 14.0 2605 2.27 599 1.23

9 F 7271 31.7 1622 1.70 816 1.56

P 33679 168 | 17823 22.1 2924 9.69

10 F 78503 657 | 21507 27.9 9757 24.3

P - - - - 13707 68.3

11 F - - - - 31666 94.5
P - - - - - -

Table 1. Branches explored and CPU time (seconds) used to find a minimal length
ruler (F') or prove that none shorter exists (P). A - means that the run was cut off after
10° branches.

any values. (Furthermore, in Solver, GAC is harder to implement for quaternary
constraints than for ternary constraints.)

Table 1 shows that in practice the quaternary representation is much less effi-
cient than the other two, both in terms of branches explored and CPU time. The
representation with the all-different constraint explores a much smaller search
tree, although 1t is not always quicker than the not-equals representation, espe-
cially for the smaller problems. The experiments show that introducing auxiliary
variables is in practice well worthwhile in the Golomb ruler problem.

6 Branching heuristics

We next investigate the effect of variable ordering heuristics. We concentrate on
the auxiliary variable representation with the single all-different constraint as
this 1s the most efficient in terms of CPU time, from those compared in Table 1.
Table 2 compares lexicographic ordering with two versions of the heuristic which
chooses next the variable with smallest remaining domain (SD); this heuristic
has often been found to give good results, although mainly in binary constraint
satisfaction problems. In one version of the smallest-domain heuristic, both the
original and the auxiliary variables are used as search variables. In the other
version (restricted SD) only the original variables are used as search variables.
The lexicographic ordering selects the original variables in order, starting from
22 (since x7 is already assigned to 0). When all the original variables have been
assigned, constraint propagation will have already assigned the auxiliary vari-

Marks|Stage SD Restricted SD | Lexicographic
Branches CPU |Branches CPU |Branches CPU

4 F 1 0.003 1 0.003 1 0.003
P 1 0.001 1 0.001 1 0.001

5 F 2 0.006 2 0.006 2 0.006
P 2 0.002 2 0.002 2 0.002

6 F 5 0.011 7 0.011 6 0.012
P 8 0.007 15 0.009 10 0.006

7 F 32 0.034 42 0.044 26 0.033
P 166 0.194 137 0.135 84 0.118

8 F 269 0.281 129 0.151 98 0.124
P 1893 3.48 840 1.35 599 1.23

9 F 2310 3.46 1051 1.63 816 1.56
P 22059 59.1 4388 10.8 2924 9.69

10 F - - 10084 20.4 | 9757 24.3
P - - 21916 799 | 13707 68.3

11 F - - 42946 107 | 31666 94.5

Table 2. Branches explored and CPU time (seconds) used to find a minimal length
ruler (F) or prove that none shorter exists (P). A - means that the run was cut off after
10° branches.

ables as well, and therefore a restricted form of this heuristic does exactly the

same thing.

If the difference variables are used as the search variables, instead of the orig-
inal variables, and are assigned in the order dys,di3,d14,...,dim, .., constraint
propagation will ensure that the variables zo, 23, ..., z,, are assigned values si-
multaneously. As before, the remaining difference variables will also be assigned
values as the result of constraint propagation from the «; variables. Hence, lexico-
graphic ordering of the auxiliary variables gives identical results to lexicographic
ordering of the original variables, in both ternary representations.

It is clear from Table 2 that lexicographic ordering gives much better results
than smallest domain ordering. With the smallest domain ordering, it is a good
idea to search only on the original variables, and not on the auxiliary variables as
well. With lexicographic ordering, however, it is immaterial which set of variables
are used as the search variables.

In the quaternary representation, smallest domain ordering again explores
more branches than lexicographic ordering, but the difference is not so marked
as with the ternary representation shown in Table 2.

Hence, our results show that in this problem it i1s better to build up the ruler
progressively, using either the original or the auxiliary variables, than to move
back and forth along the ruler as the domain sizes change. The reason for this
may be that, in the former case, the smaller differences will be assigned first,
and this will allow the all-different constraint to increase the lower bound on the
remaining auxiliary variables and hence prune more values.

7 Binary encodings

An alternative strategy for solving these non-binary models is to encode them
into binary problems using one of the standard encodings such as the hidden
variable or the dual encoding [1,6]. In the case of Golomb rulers, the double
encoding introduced in [6] is more practical than the dual encoding. The double
encoding combines together all the constraints from the dual and the hidden
variable encodings. In a dual encoding, the dual variables associated with either
the all-different constraint or the clique of not-equals constraints have such large
domains that we cannot afford to enforce arc consistency. In a double encoding,
whilst we introduce dual variables associated with the ternary constraints, we can
ignore the dual variables associated with the all-different constraint or the clique
of not-equals constraints as they are redundant. This makes 1t computationally
feasible to use the double encoding. Finally, whilst encodings of models with
ternary constraints are practical, encodings of the quaternary constraints have
domains which are prohibitively large. We therefore looked at four new models.

hidden variable encoding + all-different constraint: each ternary constraint
is replaced by a hidden variable with domain of size O(L?); we also post a
single all-different constraint between the auxiliary variables;

hidden variable encoding + not-equals constraint: each ternary constraint
is replaced by a hidden variable with domain of size O(L?); we also post
O(m*) binary not-equals constraints between each pair of auxiliary vari-
ables; this model contains purely binary constraints;

double encoding + all-different constraint: each ternary constraint is re-
placed by a hidden variable with domain of size O(L?); we also post com-
patibility constraints between hidden variables that share variables, and a
single all-different constraint between the auxiliary variables;

double encoding 4+ not-equals constraint: each ternary constraint is re-
placed by a hidden variable with domain of size O(L?); we also post compat-
ibility constraints between hidden variables that share variables, and O(m?)
binary not-equals constraints between each pair of auxiliary variables; this
model contains purely binary constraints.

We did not consider it feasible to find optimal rulers using the binary encod-
ings, as in Tables 1 and 2, since this normally requires setting L, the maximum
length of the ruler, to some large value initially and then gradually reducing the
maximum length allowed until no ruler can be found. Unfortunately, because
the domain sizes of the hidden variables in the binary encodings are O(L?), the
early stages of the optimization, when L is large and it should be very easy to
find a ruler of length less than L, become very time-consuming. Instead, we have
used the known optimal rulers to compare the encodings. We first find a ruler
with length < L, where Ly, 1s the optimal length, and then show that there
is no ruler with length < Ly, — 1.

Table 3 gives results from the models in which all the constraints are binary,
including the all-different constraint, which is treated as a collection of binary #

constraints. These models are compared with the ternary representation, with
the all-different constraint treated similarly. Two versions of the ternary repre-
sentation are shown: in one, Solver’s standard constraint propagation based on
arc consistency is used on the ternary constraints. In the other, generalized arc
consistency is used for the ternary constraints: these constraints are expressed us-
ing Solver’s IlcTableConstraint function which implements Bessiére and Régin’s

GAC-schema [2].

Marks|Length| Hidden + # Double + # [3-ary + GAC + #| 3-ary + #

Branches CPU |Branches CPU|Branches CPU |Branches CPU
4 6 1 0.008 1 0.009 1 0.003 1 0.002
4 5* 2 0.005 2 0.007 2 0.002 2 0.001
5 11 2 0.034 2 0.064 2 0.012 2 0.003
5 10* 9 0.042 9 0.079 9 0.014 9 0.004
6 17 5 0.150 5 0.473 5 0.052 5 0.005
6 16* 36 0.304 32 0.912 36 0.109 42 0.018
7 25 18 0.645 17 3.70 18 0.251 21 0.014
7 24%* 286 3.13 237 11.9 286 1.18 341 0.206
8 34 45 2.34 45 21.2 45 0.964 54 0.043
8 33* 2015 31.4 1461 117 2012 12.1 2648 2.32
9 44 708 22.0 506 147 705 8.51 1098 1.20
9 43%* 12822 302 8846 1180 | 12815 115 18723 23.4

Table 3. Branches explored and CPU time (seconds) used to find a ruler of no more
than the specified length or prove that none exists, using lexicographic ordering. *

indicates that there is no ruler of this length.

Fewer branches are explored in the double than in the hidden encoding. The
hidden encoding gives very similar results; in terms of the size of the search tree,
to the ternary representation with generalized arc consistency. As expected, GAC
on the ternary representation reduces the size of the search tree considerably,
compared with just arc consistency. However, the CPU times tell a different story.
Both the binary encodings, and especially the double, are far worse than the
ternary models. This is not surprising as arc consistency takes longer to enforce
in the binary encodings due to the large domain sizes of the hidden variables.
The worst-case time complexity of maintaining generalized arc consistency on
the ternary constraints is O(L?), whilst that for arc consistency on the hidden
variable representation is O(L*). Furthermore, in terms of CPU time, enforcing
generalized arc consistency on the ternary constraints is not worthwhile; however,
this may be partly due to the fact that a general algorithm is being used. An
algorithm specialized for these constraints might give better results.

Table 4 gives an equivalent comparison when we replace the clique of bi-
nary not-equals constraints with a single all-different constraint. The results
are similar: the double encoding gives the best results in terms of the num-
ber of branches explored, but is not practicable as the CPU time is far longer

than with the other representations. The quickest results come from using the
ternary representation without GAC, even though this gives the largest search
tree. Comparison of Tables 3 and 4 shows that in all four models it is worthwhile
to use a single all-different constraint rather than binary not-equals constraints.

Marks|Length|Hidden + AlIDiff|[Double + AllDiff|3-ary 4+ AlDiff + GAC|3-ary 4+ AllDiff
Branches CPU |Branches CPU |Branches CPU Branches CPU

4 6 0 0.007 0 0.007 0 0.003 0 0.002
4 5* 1 0.001 1 0.001 1 0.001 1 0.002
5 11 1 0.037 1 0.064 1 0.014 1 0.004
5 10* 1 0.028 1 0.027 1 0.010 1 0.003
6 17 3 0.156 3 0.473 3 0.059 3 0.008
6 16* 11 0.199 10 0.563 11 0.079 11 0.011
7 25 10 0.660 10 3.65 10 0.267 13 0.019
7 24%* 88 2.13 83 8.33 88 0.809 94 0.134
8 34 29 2.37 29 21.3 28 0.996 32 0.053
8 33* 567 19.2 501 83.8 567 7.57 620 1.30
9 44 361 19.6 293 144 360 8.10 465 1.05
9 43%* 2746 159 2398 712 2741 63.4 3268 10.7
10 55 2064 151 1793 892 2062 61.6 2750 9.35
10 54%* 13883 1240 - - 13879 493 15606 77.7

Table 4. Branches explored and CPU time (seconds) used to find a ruler of no more
than the specified length or prove that none exists, using lexicographic ordering. *
indicates that there is no ruler of this length. - means that the run was not attempted.

8 Implied constraints

So far, we have considered different ways of representing the basic problem,
and the effect of putting more or less effort into constraint propagation through
some form of arc consistency. Another route to improved performance is to add
constraints to the model: the constraints we can consider are not required to
ensure that solutions found are correct, but are implied by constraints already
in the model. Such implied constraints are derived from two or more existing
constraints and so can be viewed as partially achieving some higher level of
consistency than arc consistency. The intention in adding implied constraints is
that propagating them will lead to more, or at least earlier, pruning of values
from the domains of variables than would otherwise occur.

In the Golomb ruler problem, one set of implied constraints has already been
mentioned, namely the constraints 2z; —x; — 2 # 0, for ¢ < j < k. As discussed
in section 4, these constraints, in theory, give additional pruning in the ternary
representation and allow GAC on the ternary representation to be stronger than
GAC on the quaternary representation. These constraints are implied by the

constraints d; # dji, dij = x; — x; and dji = xp — 2.

Although implied constraints have often been found to lead to significantly
faster solution time (e.g. [3,5]), choosing useful implied constraints is something
of an art. We can state some conditions for good implied constraints. First,
to allow useful constraint propagation, we require either constraints for which
specialized and efficient constraint propagation algorithms are available, or else
constraints of small arity. Secondly, we should be able to envisage circumstances
in which a candidate implied constraint will lead to values being deleted from
the domains of variables which would not be deleted by the existing constraints.

However, although these are desirable, they are not sufficient to ensure a
reduction in solution time. Adding constraints brings an overhead, and a worth-
while implied constraint must achieve sufficient additional pruning to more than
offset this overhead. It is hard to predict whether a given candidate implied
constraint will do this, without experimenting. For instance, the constraints
2e; — x; — xr # 0 meet the conditions, since they are of small arity and we
have given in section 4 an example of a value being deleted by a constraint of
this form which would not be deleted by the existing ternary constraints. How-
ever, experiments with the ternary model with an all-different constraint, which
has already been shown to give the best results in terms of CPU time, show that
adding these constraints makes no difference to the number of branches explored,
if a lexicographic ordering is used. Hence, adding these constraints increases the
CPU time. If a smallest-domain ordering is used, the number of branches ex-
plored decreases significantly with these constraints, but not sufficiently to beat
the lexicographic ordering. Overall, despite their theoretical advantage, they are
not worth using.

Below, we consider other implied constraints, and their effect when added
to the model which has so far proved best, i.e. the ternary representation, with
auxiliary variables, a single all-different constraint and lexicographic ordering.

8.1 Ordering Constraints on the Auxiliary Variables

For any set of three indices ¢, j, k with ¢ < j < k, it must be true that d;; < d;;,
and d;r < djr. These constraints are implied by the constraints defining the
difference variables and the ordering constraints «; < «; < x (which in turn
are implied by the constraints z; < #;41 for 1 < i < m). In this case, the implied
constraints are binary, hence cheap to propagate, and we can see that they could
lead to domain reductions not achievable otherwise. For instance, suppose we are
trying to find the minimal length ruler with 5 marks and are currently looking
for one with length 11 (which is the minimal length). The initial domain of each
of the variables a5, #3, x4 is {0..11}. The ordering constraints on the original
variables, and the fact that #; = 0 and 25 = 11, will reduce their domains to
zo: {1..8}, x3: {2..9}, x4: {3..10}. The initial domain of the variables das, daa,
dsq will be {1..11}. The reduction in the domains of the original variables will
reduce the domains of these variables too: das to {1..8}, d2a to {1..9} and d3z4 to
{1..8}. The all-different constraint cannot make any further reductions, whether
or not we invoke the full filtering algorithm. However, if we have the constraints
daz < doq and dszyq < daq, 1 1s removed from the domain of ds4. So this example

10

shows that in theory we might get additional propagation from such constraints.
Hence, on theoretical grounds, there seems good reason to suppose that adding
these constraints would give improved performance.

The first column of Table 5 shows the best results obtained hitherto (al-
ready seen in Tables 1 and 2.) The second column shows the results of adding
the ordering constraints on the difference variables to this model. The ordering
constraints do reduce the size of the search tree explored, except for the small-
est problems, although they do not in most cases reduce the CPU time. Hence,
somewhat surprisingly, these constraints are not worthwhile, in conjunction with
the rest of the search strategy.

Marks|Stage| Ternary + AllDiff] Ternary + AlIDiff
+ order constraints
Branches CPU |Branches CPU
4 F 1 0.003 1 0.004
P 1 0.001 1 0.001
5 F 2 0.006 2 0.008
P 2 0.002 2 0.002
6 F 6 0.012 6 0.019
P 10 0.006 10 0.009
7 F 26 0.033 26 0.054
P 84 0.118 79 0.116
8 F 98 0.124 98 0.189
P 599 1.23 556 1.22
9 F 816 1.56 780 1.84
P 2924 9.69 2726 9.91
10 F 9757 24.3 9259 27.9
P 13707 68.3 12527 69.9
11 F 31666 94.5 30797 112
P 343220 2000 322579 2070

Table 5. Branches explored and CPU time to find a minimal length ruler (F) or
prove that none shorter exists (P) with and without order constraints on the difference

variables.

8.2 Improved Bounds on the Auxiliary Variables

The variables d;; are currently set up with lower bound 1 and upper bound
the maximum length allowed for the ruler. The ordering constraints described
above improve these bounds on a sequence of differences; for instance, because
dis < diz < di4... < dip, the lower bounds of these variables will be 1, 2, 3,
..., n — 1. However, it is clear that these lower bounds are not in most cases
attainable: we cannot, for instance, have di3 = 2, because that would mean
dis = daz = 1.

How do we get tighter bounds, in general? If we consider that d;; = d; ;41 +
dit1,i42 + ...+ dj_1 5, we see that d;; is the sum of j — ¢ integers, which are

11

constrained to be all different. So d;; must be at least equal to the sum of the
first j — ¢ integers, 1.e. d;; > (j —9)(j — i+ 1)/2.

The chain of reasoning leading to this as an implied constraint is harder to
disentangle than in the previous examples. We first have to write z; — x; as
(zj — 2zj_1) + (zjo1 — 2j_2) + ... + (541 — 2;) and then use the constraints
defining the difference variables to derive d;; = d; ;41 + dig1,i42 + ... + dj—1 ;.
Then, since there is an all-different constraint on all the difference variables,
there is an all-different constraint on any subset. Hence, d;; is constrained to
be the sum of j — 7 different integers. Solver, and other constraint programming
tools as far as we are aware, do not provide a “sum of n all different” constraint,
but we can use it, outside Solver, to derive the new lower bounds as above.

Similarly, note that dis + dag + ... dp_2pn—1+ dp1p = Tpn. So, dij = x, —
(dio+dos+..+di—1,i+dj j41+...dn_1). The differences on the right hand side
of this expression are again a set of different integers, and there are n—1—j+1 of
them. So we can maximise the RHS by minimising the sum of these consecutive
differences. This gives dij; <z, —(n—1—j+) (n—j+14)/2.

These constraints are cheap to implement: the first set are just unary con-
straints, the second set are binary constraints involving z,. As z, is reduced,
these constraints get tighter, so that they are more effective the closer we get to
the minimal length.

We can tighten the lower bounds on the difference variables still further. The
lower bounds described above are based on the observation that the difference
d;; must be made up of the sum of j — i different integers. However, this section
of the ruler, 1.e. from mark ¢ to mark j, must itself form a Golomb ruler with
Jj— 1+ 1 marks, although not necessarily one of minimal length. So having found
all minimal length rulers with fewer than n marks, we can use the lengths of
these rulers, l5,13, ...,l,_1, while searching for the minimal length ruler with n
marks. That is, d;; > l;_;41, provided that + > 1 or j < n.

Table 6 shows the results of adding these bounds to the model, with and
without the order constraints described in the last section. The first two columns
of the table show that reducing the initial domains of the difference variables in
this way leads to significant benefits. The search space explored is considerably
reduced, and so is the CPU time: because of the smaller domains, the CPU
time is less than before even if there is no reduction in the number of branches
explored. The final column shows that also adding order constraints on the
difference variables, as described in section 8.1, gives almost no further reduction
in the number of branches explored, and is considerably more expensive in CPU
time.

8.3 Dynamic Bounds on the Auxiliary Variables

Asmentioned in section 8.2, there is an implicit “sum of n all different” constraint
on each difference variable, which we have so far used to reduce their initial
domains. Ideally, we should like to be able to use this constraint during search
as well. For instance, if we have assigned the values 1 and 3 to z; and z3, then

12

Marks|Stage|3-ary + AlIDiff[4 tighter bounds| + tighter bounds
+ order constraints

Branches CPU |Branches CPU |Branches CPU

4 F 1 0.003 1 0.004 1 0.004
P 1 0.001 1 0.001 1 0.001

5 F 2 0.006 2 0.006 2 0.007
P 2 0.002 2 0.001 2 0.002

6 F 6 0.012 6 0.012 6 0.013
P 10 0.006 6 0.004 6 0.005

7 F 26 0.033 26 0.032 26 0.038
P 84 0.118 54 0.051 54 0.063

8 F 98 0.124 98 0.128 98 0.160
P 599 1.23 385 0.503 385 0.635

9 F 816 1.56 718 1.17 718 1.47
P 2924 9.69 1751 3.61 1751 4.48

10 F 9757 24.3 7971 17.1 7948 21.3
P 13707 68.3 7812 24.0 7807 29.5

11 F 31666 94.5 | 29251 80.8 29190 108
P 343220 2000 | 252985 1020 252577 1300

Table 6. Branches explored and CPU time to find a minimal length ruler (F) or
prove that none shorter exists (P), with and without tighter bounds on the difference

variables.

any difference variable d;; where ¢ > 2 must be at least the sum of j — i different
integers excluding 1, 2 and 3.

We have implemented a limited form of propagation for this constraint, by
keeping track of the largest mark so far assigned a value, ,,4,, and the values
which have so far been assigned to the difference variables. Whenever a difference
variable is assigned, we calculate the sum of the m —max smallest integers which
have not yet been assigned to the difference variables, and post a constraint on
this branch of the search tree that the value of dyar,m must be at least this sum.

Table 7 shows the effect of adding this constraint propagation to the model
giving the best results so far in term of CPU time (from Table 6). Except for
the smallest problems, there are significant reductions in both the number of
branches explored and CPU time. We have also solved the 12-mark problem
using this model. Finding the optimal solution took 1,398,326 backtracks, and
the total number of backtracks including the proof of optimality was 1,911,435:
the total CPU time was about 2.5 hours. This is a significant reduction in search
effort from the results by Jean-Francois Puget reported in CSPLib: he found a
solution for this problem using ILOG Solver after 2,042,000 backtracks, and the
total number of backtracks including the proof of optimality was 3,143,316.

It 1s possible that more effort put into propagating the “sum of n all different”
constraint might pay dividends. On the other hand, what we have implemented
so far is relatively lightweight, and given that the variables are being assigned
in lexicographic order, recalculating the lower bound on the length of the rest
of the ruler is an obvious way to try to prune values. Attempting to use the

13

Marks|Stage| 3-ary + AllDiff

+ tighter bounds|+ dynamic bounds

Branches CPU |Branches CPU

4 F 1 0.004 1 0.004

P 1 0.001 1 0.001

5 F 2 0.006 2 0.007

P 2 0.001 2 0.002

6 F 6 0.012 6 0.013

P 6 0.004 6 0.004

7 F 26 0.032 25 0.032

P 57 0.051 50 0.049

8 F 98 0.128 80 0.111

P 385 0.503 355 0.480

9 F 718 1.17 509 0.822

P 1751 3.61 1564 3.41

10 F 7971 17.1 5428 12.0

P 7812 24.0 6810 22.1

11 F 29251 80.8 19211 53.6

P 252985 1020 224636 967

Table 7. Branches explored and CPU time to find a ruler of minimal length (F) or
prove that none shorter exists (P), with and without dynamic lower bounds on the

difference constraints.

constraint more extensively is likely to incur increased overheads, and possibly
result in little or no extra pruning.

9 Conclusions

We began with a simple representation of the Golomb ruler problem using qua-
ternary constraints on the variables representing the positions of the marks, and
have considered many alternatives to this basic model. We showed theoretically
that the level of consistency achieved by generalized arc consistency in the qua-
ternary representation cannot be compared with the consistency level achieved
in a ternary representation with auxiliary variables. However, experimental re-
sults (using AC rather than GAC on the quaternary and ternary constraints)
show that the extra propagation through the auxiliary variables reduces both
the number of explored branches and the CPU time. This is true whether using
an all-different constraint over all the auxiliary variables or representing the all-
different constraint as a clique of binary not-equals constraints. We have shown
that the double encoding of non-binary into binary constraints reduces the num-
ber of explored branches significantly. However, the CPU time is much greater
because of the cost of enforcing arc consistency on hidden variables with large
domains. We have also considered several sets of implied constraints, in conjunc-
tion with the ternary representation of the problem, some of which can reduce
both the number of branches explored and the CPU time significantly. Our final
model is a dramatic improvement over the basic model which we started with:

14

for instance, the time taken to find an optimal 10-mark ruler has been reduced
50-fold.

What general lessons can be learned from this study? First, even simple
problems can be modelled in many different ways. Counting all possible encod-
ings, both binary and non-binary, this study alone has suggested fifteen possible
models for the problem, although we have omitted some of these from our exper-
iments (in particular the binary translations of the quaternary representations).
If we include all possible ways of adding the implied constraints discussed in
section 8, there would be many more.

Secondly, finding the best model involves a trade-off between the arity of
the constraints and the efficiency with which we can reason about them. The
most effective model in this case study was not the one involving quaternary
constraints but that with ternary constraints which allows us to post a single,
large, all-different constraint.

Thirdly, the addition of implied constraints may allow us to achieve higher
levels of consistency. However, finding good implied constraints which will result
in an overall improvement in solution times is not easy. Although we have sug-
gested some guidelines, our experience with this problem indicates that often it
will only be possible to tell by experiment whether a particular set of implied
constraints is worthwhile.

Acknowledgments

The third author is supported by EPSRC award GR/K/65706. All authors wish
to thank the other members of the APES research group.

References

1. F. Bacchus and P. van Beek. On the Conversion Between Non-Binary and Binary
Constraint Satisfaction Problems. In Proceedings AAAI’98, pages 311-318, 1998.

2. C. Bessiere and J.-C. Régin. Arc consistency for general constraint networks: pre-
liminary results. In Proceedings IJCAI’97, volume 1, pages 398-404, 1997.

3. L. Proll and B. Smith. ILP and Constraint Programming Approaches to a Template
Design Problem. INFORMS Journal on Computing, 10:265-275, 1998.

4. J.-C. Régin. A filtering algorithm for constraints of difference in CSPs. In Proceed-
ings AAAI’94, volume 1, pages 362-367, 1994.

5. J.-C. Régin. Minimization of the number of breaks in sports scheduling problems
using constraint programming. In Proceedings of the DIMACS Workshop on Con-
straint Programming and Large Scale Discrete Optimization, Sept. 1998.

6. K. Stergiou and T. Walsh. Encodings of Non-Binary Constraint Satisfaction Prob-
lems. In Proceedings AAAI’'99, 1999.

7. K. Stergiou and T. Walsh. The Difference All-Difference Makes. In Proceedings
IJCAT99, 1999.

15

