
Constraint Programming!

A technology to tackle combinatorial 
optimization problems	





What is Constraint Programming!

•  Our definition	


	

Solving a combinatorial problem	


	

Taking into account the problem structure	



•  Programming with Constraints	


–  A declarative programming paradigm where	


	

Relations between variables are stated as constraints	



•  Technology for solving combinatorial problems	


–  Finite domain propagation	


	


	

	





Why Constraint Programming!

•  Imagine you own a small print shop	


•  Running your business requires	



–  Accepting customer orders	


–  Splitting each order into jobs	


–  Assigning workers to machines	


–  Scheduling tasks for each job	


–  Packing orders for delivery	





Why Constraint Programming!

•  Running your business requires	


–  Accepting customer orders	



•  Capacity constrained optimization problem	


–  Splitting orders into jobs	



•  Lot sizing problem	



–  Assigning workers to machines	


•  Assignment problem	



–  Scheduling tasks for each job	


•  Resource constrained scheduling problem	



–  Packing orders for delivery	


•  Packing problem	





Why Constraint Programming!

•  Solving each of these separately is an optimization 
problem	


–  But solving each separately will be far from globally 

optimal	


•  How can we solve all together.	



–  Only if we take into account the problem structure	


–  And use a technology that can take advantage of it	





Overview!

•  Constraint Satisfaction and Optimization Problems	


•  Domains and Valuations	


•  Constraints and Propagators	


•  Propagation Engines	


•  Search	


•  Optimization by Satisfaction	


•  Global Constraints	





Constraint Satisfaction Problem!

•  “Find an object from a finite set which satisfies a 
number of constraints”	



•  Sounds easy	


–  Test each constraint on each object 	


–  If one satisfies all constraints, finish.	



•  But	


–  There are MANY of them	





Map Colouring!

A classic CSP is the problem of coloring a map so that no 
adjacent regions have the same color 

WA

NT

SA

Q

NSW

V

T

Can the map of Australia be 
colored with 4 colors ? 

Can the map of Australia be 
colored with 3 colors ? 

Can the map of Australia be 
colored with 2 colors ? 



4-Queens!

Place 4 queens on a 4 x 4 chessboard so that none can take 
another. 

Q1 Q2 Q3 Q4 

1 

2 

3 

4 

Four variables Q1, Q2, Q3, 
Q4 representing the row of 
the queen in each column. 
Domain of each variable is 
{1,2,3,4} 

One solution! --> 



Sudoku!

•  How many ways can you fill a 
Sudoku board with numbers 
1-9?���
	



•  How many Sudoku puzzles are 
there?	



5  9  3  7  6  2  8  1  4  
2  6  8  4  3  1  5  7  9  
7  1  4  9  8  5  2  3  6  
3  2  6  8  5  9  1  4  7  
1  8  7  3  2  4  9  6  5  
4  5  9  1  7  6  3  2  8  
9  4  2  6  1  8  7  5  3  
8  3  5  2  4  7  6  9  1 
6  7  1  5  9  3  4  8  2 

6,670,903,752,021,072,936,960 



Combinatorial Optimization!

•  “Find an optimal object from a set of objects”	


•  Sounds easy	



–  Evaluate each object using the scoring function	


–  Remember the best	



•  But	


–  The objects are only specified “intensionally”	



•  Only those objects satisfying some constraints	



–  There are MANY of them	





Smuggler’s Knapsack!

A smuggler with a knapsack with capacity 9, needs to 
choose items to smuggle to make a maximum profit 

object profit size
whiskey 15 4
perfume 10 3
cigarettes 7 2

What is the best set of items you can come up with? 



Gantry Crane Planning Example!

Gantry Straddle 
Interface 

(GSI) 

Gantry Rail Interface 
(GRAI) 

 
Gantry Road 

Interface 
(GRI) 

Intermediate Stacking Area 
(ISA) 

Northern Exclusion Zone Fence 

Southern Exclusion Zone Fence 
Tracking Area 

 



System Specification:  
gantry crane planning example!

•  Where should containers be placed ready for 
loading/straddling?	



•  In what order should the gantries pick up the 
containers?	



•  What planning should be done for trains/trucks 
which haven’t arrived yet?	



•  How can we enable the gantries to unload all the 
trains and all the trucks?	





Importance!

•  Combinatorial Optimization is everywhere	


–  Scheduling	


–  Rostering	


–  Packing	


–  Routing	


–  Allocating (e.g. water)	


–  Planning	



•  Finding good or optimal solutions can save time, 
money and reduce environmental impact. 	


	





The Holy Grail for  
Constraint Programming!

•  Model Problems Naturally	


–  constraints	


–  solution properties	



•  Solve them efficiently	


–  overcome combinatorial explosion	



•  Compile	


–  Natural models to efficient solutions	





Technology for Constraint Solving!

•  Local search	


–  Simulated annealing	


–  Tabu search	



•  Population search	


–  Genetic algorithms	


–  Beam search	



•  Mixed integer programming	


•  Finite domain propagation	





Why is Constraint Solving Hard?!

•  Write down solutions to the following (integer) 
constraints or claim unsatisfiability	


–  x = 5, y = 6	


–  x = 3, y = 4, x = 5	


–  y = x+2, z = y – x+2, u = 2*y + z	


–  y = x+2, z = y – x + 2, x = z+1	


–  y = x+2, z = y – x+2, x ≥ z+1, y ≤ z – 1	



•  The problem is conjunction	





Finite Domain Propagation!

•  Overcoming conjunction	


–  Treat each constraint separately	


–  Communicate inferences via variables	



•  A weak inference method	


•  Add to that	



–  Search (guess bits of solution)	


–  Engineering (to make the inference fast)	


–  Learning (to remember what you already did)	





•  81 variables	


–  Each cell in table	



•  Each cell takes 1..9	


•  Each row, each column, and 

each 3x3 square contain the 
numbers 1..9	


–  No repeats	


–  Each number used	


–  Assignment subproblem!	



Sudoku!



7	

 8	
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6	
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9	



•  What goes in the green cell?	


•  Reason about the column	



Propagation!



3	


7	

 8	

 1	
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 1	


6	


7	
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9	



•  What goes in the green cell?	


•  Reason about what numbers 

cannot go in the other cells 
in the square?	



Propagation!



1 2 4 	


6 9	



1 2 5	


9	



1 2 4	


5 6 9	

 3	



7	

 8	
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1 2 4 	


6 9	



1 2 5	


9	



1 2 4	


5 6 9	

 2	

 3	



3	

 4	


6	

 5	

 1	



6	


7	



5	

 4	

 8	

 6	
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9	



•  What can go in the green 
cell?	



•  Reason about the row and 
then the column. 	



Propagation!
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•  What can go in the green 
cell?	



•  Reason about the row and 
column	



Propagation!
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•  What goes in the green cell?	


•  Reason about the row	



Propagation!
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•  Any other fixed variables?	



3 
3 

Propagation!



Propagation!

•  Examine each constraint in turn	


•  Reduce the domains of variables in the constraint	


•  Repeat until no further reduction	





Overview!

•  Constraint Satisfaction and Optimization Problems	


•  Domains and Valuations	


•  Constraints and Propagators	


•  Propagation Engines	


•  Search	


•  Optimization by Satisfaction	


•  Global Constraints	





Domains!

•  Record for each variable X its domain	


–  set of possible values, denoted D(X)	



•  Usually D(X) is finite, but it might be very large	


–  All 32 bit integers	


–  All 64 bit floating point numbers between 0 and 1	



•  Essentially 	


–  Variables X represents a choice	


–  The domain D(X) represents the possible choices for X	



•  Failed domain: D(X) = {} for some X.	



	





Valuations!

•  A valuation θ is a mapping of variables to values: 
e.g. { X -> 3, Y -> 4 }	


–  θ(X) = 3, θ(Y) = 4 	


–  vars(θ) = {X,Y}	



•  We say a valuation θ ∈ D if  	


–  θ(X) ∈ D(X) for each X ∈ vars(θ)	



•  A solution is a valuation which satisfies each 
constraint in the problem	



•  Valuation domain Dθ(X) = { θ(X) | X ∈ vars(θ) }	





Overview!

•  Constraint Satisfaction and Optimization Problems	


•  Domains and Valuations	


•  Constraints and Propagators	


•  Propagation Engines	


•  Search	


•  Optimization by Satisfaction	


•  Global Constraints	





Constraints!

•  A constraint c is a set of valuations (its solutions) 
over a set of variables vars(c)	


–  X ≠ Y:	



•  { { X-> 1, Y -> 2}, { X -> 1, Y -> 3}, {X -> 2, Y -> 1}, 	


       {X -> 2, Y -> 3}, {X -> 3, Y -> 1}, {X -> 3, Y -> 2} }	


•  or { { X -> red, Y -> yellow}, {X -> red, Y -> blue }, … }	



–  X = Y + 1 	


•  { { X -> 2, Y -> 1}, {X -> 3, Y -> 2} }	





Propagators!

•  A propagator f for constraint c is a function from 
domains to domains: D’ = f(D)	



•  Monotonically decreasing:  f(D)(X) ⊆ D(X)	


•  Correct for c: never removes a value which occurs 

in a solution of c from D	


–  θ ∈ D and θ ∈ c  implies θ ∈ f(D) 	



•  Checking for c: if all variables in c are fixed then 
it returns a failed domain unless this is solution. 	


–  f(Dθ) = Dθ iff θ is a solution of c	





Propagators!

•  Propagator for X = Y + 1	


•  f(D)(X) = D(X) ∩ [min(D(Y))+1 .. max(D(Y))+1] 	


•  f(D)(Y) = D(Y)	


•  Correct, even though it never modifies D(Y)	


•  Is it checking?	





Domain Propagators!

•  The strongest propagator for a constraint c 
removes all values that don’t take part in a 
solution of c in domain D	


–  f(D(X)) = D(X) ∩ { θ(X) | θ ∈ c, θ ∈ D }	



•  The strongest propagator for c is called the domain 
propagator for c	



•  Write down the domain propagator for the 
constraint X ≠ Y	


–  f(D)(X) = D(X) – {d}, D(Y) = {d}	


–  f(D(X) = D(X), otherwise	


–  Y is symmetrically defined	





Linear Propagators!

•  Linear constraints are the most common constraint 
used in modelling	


–  Σ ai Xi = b  or Σ ai Xi ≤ b 	



•  What is the result of the domain propagation of	


–  X = 3Y + 5Z	


–  D(X) = [2..7], D(Y) = [0..2], D(Z) = [-1..2]	


–  Solutions: (3,1,0), (5,0,1), (6,2,0)	


–  D’(X) = {3,5,6}, D’(Y) = {0,1,2}, D’(Z) = {0,1}	





Linear Propagators!

•  The complexity of linear equation Σ ai Xi = b 
domain propagation is?	


–  Linear O(n)	


–  Sorting O(n log n)	


–  Quadratic O(n*n)	


–  NP-hard	



•  For linear inequality Σ ai Xi ≤ b propagation it is?	


–  Linear O(n)	


–  Sorting O(n log n)	


–  Quadratic O(n*n)	


–  NP-hard	





Bounds Propagators!

•  A bounds propagator only examines and sets 
upper and lower bounds of variable domains	



•  Advantage only deal with 2n pieces of information	


•  Write down a bounds propagator for the constraint 

X = abs(Y)	


–  D’(X) = D(X) ∩ [0.. m] where	



•  m = max(max(D(Y)),-min(D(Y)) 	


–  D’(Y) = D(Y) ∩ [-max(D(X)) .. max(D(X)] 	



•  Is this the strongest bounds propagator possible?	





Linear Bounds Propagators!

•  The complexity of linear equation Σ ai Xi = b 
strongest bounds propagation is?	


–  Linear O(n)	


–  Sorting O(n log n)	


–  Quadratic O(n*n)	


–  NP-hard	



•  The complexity of linear inequality bounds 
propagation is	


–  Linear!	



	





Linear Inequality!
•  To propagate  the general linear inequality	



•  Use propagation rules (where ai > 0)	



	

	



  

€ 

aixii=1..n∑ ≤ b

  

€ 

xi ≤
b − a j min(D, x j )

j=1..n, j≠ i
∑

ai



Linear Equation!
•  To propagate  the general linear inequality	



•  Use propagation rules (where ai > 0)	



	

	



  

€ 

aixii=1..n∑ = b

  

€ 

xi ≤
b − a j min(D, x j )

j=1..n, j≠ i
∑

ai

  

€ 

xi ≥
b − a j max(D, x j )

j=1..n, j≠ i
∑

ai



Linear Bounds Propagators!

•  Implement linear equation Σ ai Xi = b  propagator 
as	


–  Σ ai Xi ≤ b 	


–  Σ ai Xi ≥ b 	



•  What is the result of the bounds propagation of	


–  X = 3Y + 5Z	


–  D(X) = [2..7], D(Y) = [0..2], D(Z) = [-1..2]	


–  Smallest value of 3Y + 5Z = -5, largest 16	


–  Smallest value of X - 5Z = -8, largest 12	


–  Smallest value of X – 3Y = -4, largest 7 	


–  D’(X) = [2..7], D’(Y) = [0..2], D’(Z) = [0..1]	


–  Domain D’(X) = {3,5,6}, D’(Y) = [0..2], D’(Z) = [0..1]	



	

	





Exercise: X = Y × Z!

•  Suppose 	


–  D(X) = [ 0.. 5 ], D(Y) = [ -2 .. 3], D(Z) = [ 1..6 ]	



•  What domain would a domain propagator return?	


•  What about	



–  D(X) = [ 3.. 5 ], D(Y) = [ -2 .. 3], D(Z) = [ 2..6 ]	





Propagation Strength!

•  Propagators should be	


–  Strong: remove as many values as possible, and	


–  Efficient: execute quickly	



•  But in the end efficiency is much more important	


•  Almost no propagators are 	



–  the strongest possible (domain propagators) 	


–  or even the strongest possible bounds propagator!	





Overview!

•  Constraint Satisfaction and Optimization Problems	


•  Domains and Valuations	


•  Constraints and Propagators	


•  Propagation Engines	


•  Search	


•  Optimization by Satisfaction	


•  Global Constraints	





Propagation Engine!

•  Propagation repeatedly applied propagators f ∈ F 
until all at fixpoint f(D) = D	



isolv(Fo, Fn, D)	


	

F := Fo ∪Fn; Q := Fn	


	

while (Q ≠ {})	


	

 	

f := choose(Q)            % select next propagator to run	


	

 	

Q := Q – {f}; D’ := f(D);	


	

 	

Q := Q ∪ new(f,F,D,D’) % add affected props	


	

 	

D := D’	


	

return D	





Propagation Engine!

• choose(Q)	


–  typically a FIFO queue	


–  pick the propagator in the queue longest	



•  Don’t add the same propagator twice! 	



• new(f,F,D,D’)	


–  return propagators f’ in F where f’(D’) ≠ D’	


–  simplest version	



•  Add propagators for constraints whose variables have changed 
domain	



•  { f  | vars(f) ∩ { X | D(X) ≠ D’(X) } ≠ {} } 	





Propagation Example!

 WA   NT    SA     Q   NSW  V      T 

WA NT WA SA NT SA
NT Q SA Q SA NSW
SA V Q NSW NSW V

≠ ≠ ≠

≠ ≠ ≠

≠ ≠ ≠

WA = red NT = yellow

Queue Q given by boxed propagators 

Have we found a solution? 



Whats Wrong with Propagation?!

•  Every propagator that makes a change puts itself 
back on the queue	


–  We would expect it to make no new change	



•  Most propagators wake up and make no change to 
domains	


–  Intrinsic to propagation, but can we improve it?	





Idempotence!

•  A propagator is idempotent if	


–  f(D) = f(f(D))	



•  An idempotent propagator does not need to put 
itself back on the queue.	



•  Actually most propagators are not idempotent 
because of domain holes	



•  E.g.  X = abs(Y), D(X) = {0,2,4}, D(Y) = {-3,1}	


–  D’ = f(D), D’(X) = {0,2}, D’(Y) = {-3,1}	


–  D’’ = f(D’), D’’(X) = {0,2}, D’’(Y) = {1}	



•  Dynamic idempotence: propagator returns whether 
it is idempotent when executed	





Events!

•  Some domain changes will not cause a propagator 
to change domains	



•  Only wake up when an event of interest occurs	


–  fix(X): X becomes fixed	


–  lbc(X): lower bound of X changes	


–  ubc(X): upper bound of X changes	


–  dmc(C): the domain of X changes 	



•  What events should wakeup X ≠ Y ?	





Propagation Redundancy!

•  Sometimes we can tell that	


–  f(D) = D	


–  For all future domains D	



•  The usual case is redundancy	


–  D |= c  	


–  All solutions of D are solutions of c	



•  For example: 	


–  once X ≠ Y propagates it is redundant	





Propagation Example!

 WA   NT    SA     Q   NSW  V      T 

WA NT WA SA NT SA
NT Q SA Q SA NSW
SA V Q NSW NSW V

≠ ≠ ≠

≠ ≠ ≠

≠ ≠ ≠

WA = red NT = yellow

Queue Q given by boxed propagators 

11 propagations versus 21  



Overview!

•  Constraint Satisfaction and Optimization Problems	


•  Domains and Valuations	


•  Constraints and Propagators	


•  Propagation Engines	


•  Search	


•  Optimization by Satisfaction	


•  Global Constraints	





Propagation Solving!

•  A propagation solver only determines	


–  Failure with a failed domain	


–  Solution when |D(X)| = 1 for all X	



•  Mostly neither case holds.	


•  We need to add more information	



–  By guessing 	


•  Search	



–  Usually we split the domain of a variable in two!	





Search!

search(Fo,Fn,D)	


   D := isolv(Fo,Fn,D)	


   if (D is a false domain) return false domain D 	


   if (|D(X)| = 1 forall X) return D	


   (c1, c2) := choose(D) where D |= c1 ∨ c2	


   D1 := search(Fo ∪ Fn, { prop(c1) }, D))	


   if (D1 is not a false domain) return  D1	


   D2 := search(Fo ∪ Fn, { prop(c2) }, D)) 	


   if (D2 is not a false domain) return  D2   	


   return false domain 	





Search Choice!

•  The choice of how to split the search is crucial	


•  Usually we choose a variable X with |D(X)| > 1	


•  And then choose a value d ∈ D(X) and add	



–  X = d ∨ X ≠ d	


–  This is called labelling	



•  Or choose the d ∈ D(X) and add	


–  X ≤ d ∨ X ≥ d+1	


–  This is called domain splitting	


–  But usually d = min(D(X))	





Search -- Example!

There is no  
possible  
value for 

variable Q3! 

Q1 Q2 Q3 Q4 

1 

2 

3 

4 

No value  
can be 

assigned to 
Q3 in this 

case! 

Therefore, 
we need to 

choose  
another value 

for Q2. 



Search-- Example!

Q1 Q2 Q3 Q4 

1 

2 

3 

4 

We cannot  
find any  

possible value 
for Q4 in 
this case! 

Backtracking… 
 

Find another  
value for Q3? 

No! 

backtracking, 
 

Find another 
value of Q2? 

No! 

backtracking, 
 

Find another 
value of Q1? 

 
Yes, Q1 = 2 



Search -- Example!

Q1 Q2 Q3 Q4 

1 

2 

3 

4 



Search Tree!

Q1 = 1 

Q2 = 3 Q2 ≠ 3 

Q1 ≠ 1 

Q1 = 2 Q1 ≠ 2 

failure failure solution 



Search Tree Exercise!

•  Var: value order	


•  NSW =r =y =b	


•  NT =b =r =y	


•  Q =r =y =b	


•  T =r =y =b	


•  V =r =y =b	


•  SA =r =y =b	


•  WA =r =y =b	



WA

NT

SA

Q

NSW

V

T



Programmed Search!

•  One the advantages of propagation solving	


•  The user can specify the search strategy	



–  Allows them to add knowledge of where solutions lie	


•  The right search strategy can make an exponential 

difference	


•  Not all variables need to be labelled	



–  Some will be fixed by the constraints and the rest of the 
search	





Choices for Search Strategy!

•  Labelling search:	


–  int_search(Vars, Varchoice, Valchoice, complete)	


–  Choose a variable (can make an exponential difference)	



• input_order: in the order given e.g. Vars = NSW, NT, …	


• first_fail: choose variable X where |D(X)| is smallest	


• smallest: choose variable X where min(D(X)) is smallest	


• largest: choose variable X where max(D(X)) is largest	



–  Choose a value (only moves solutions earlier)	


• indomain_min: select least possible value	


• indomain_max: select greatest possible value	


• indomain_median: select median value from domain	


• indomain_random: select a random value from domain	





Playing with Search Strategies!

•  nqueens.mzn is a model for placing n queens on an n x 
n chessboard so none can take another	


–  Available from summer school website (Exercises)	



•  We can run the model (for n = 8) like this	


–  minizinc –s –D “n = 8;” nqueens.mzn 

•  It prints out a solution and the number of choices required 
to find it (amount of search) using default search	



•  We can add a programmed search strategy by changing	


–  solve satisfy;  to	


–  solve :: int_search(q, Varchoice,  Valchoice, 
complete) satisfy;  

•  Experiment with nqueens.mzn to find the most 
robust search strategy as n increases!	





Playing with Search Strategies!

•  We can run the model (for n = 8) like this	


–  minizinc –s –D “n = 8;” nqueens.mzn 

•  Change search using	


–  solve :: int_search(q, Varchoice,  Valchoice, 
complete) satisfy; 

–  Varchoice: input_order, first_fail, smallest,  
largest	



–  Valchoice: indomain_min, indomain_max, 
indomain_median, indomain_random	



•  Experiment with nqueens.mzn to find the most 
robust search strategy as n increases!	





Finished Quickly!

•  You can find all solutions using	


–  minizinc –a –s –D “n = 8;” nqueens.mzn 

•  Compare different Valchoices for finding all 
solutions for n = 8	


–  Notice anything?	


	





More Advanced Search!

•  Programmed search is an important part of CP	


•  Dynamic variable selection strategies:	



–  dom_w_deg, impact, activity, regret, …	


•  Restarts:	



–  Geometric, Luby, …	


•  Different ways to explore the search tree	



–  Limited discrepancy search, breadth first, best first, …	





Dom_w_deg!

•  Domain / weighted degree	


–  degree in the number of constraints the var is in	



•  dom_w_deg: choose a variable with minimum	


–  domain size / sum of failures by constraints it is in	



•  Each variable gets a fail count 	


–  (= number of constraints it appears in initially)	



•  Each time a constraint detects failure 	


–  increment fail count for all variables involved	



•  Choose the variable with minimum	


–  domain size / failcount	





Dom_w_deg!

•  Why does it work	


–  Concentrates on variables that are causing 

failure	


•  Imagine 15 Boolean vars b that are 

easy to solve and 4 integers x with no 
solution	



•  Searching with first fail 	


–  always chooses Booleans	


–  then tries to solve integer problem	


–  491504 choices to fail	



•  Dom_w_deg	


–  First branches chooses Booleans	


–  On backtracking always chooses xs	


–  182 choices to fail	



x x x

b

b1

b2

b3

b15

x x

x

x

x



Dom_w_deg!

•  If you are interested try the search strategy 
exercise using also	


–  dom_w_deg as a Varchoice	



•  Note dom_w_deg is a poor approximation to the 
powerful search strategy	


–  Activity based search!	





Restarts + Heavy tails!

Standard Distribution 
(finite mean & 

variance) 

Power series 
decay 

Exponential 
decay 



Heavy Tailed Behaviour!

75% ≤ 30 5% ≥ 100000 

Searching for solutions to Quasigroup completion problems 



Restarts!

•  If 75% finish in 30 backtracks	


–  after 50 backtracks why not start again	



•  trying a different search	


•  here the variable and value selection is random	



–  you might be in one of the 5% that require > 100,000	


•  Restarting conquers heavy tailed behaviour	





Restart Strategies!

Policy for when to restart 	


•  Constant restart – after using L resources	


•  Geometric restart	



–  restart after using L resources, with new limit α L	


•  Luby restart	



–  1,1,2,1,1,2,4,1,1,2,1,1,2,4,8, … 	


–  "universally optimal" for randomized algorithms: 	



•  no worse than a log factor slower than optimal policy	


•  not bettered by more than a constant factor by other universal 

policies	





Restarts!

•  Restarts are ubiquitous in default search strategies	


•  Combined with dynamic variable selection 

strategies they have another advantage	


–  A bad choice at the top requires exponential search to 

undo	


–  Restarts avoid this, by throwing away the choice.	





Overview!

•  Constraint Satisfaction and Optimization Problems	


•  Domains and Valuations	


•  Constraints and Propagators	


•  Propagation Engines	


•  Search	


•  Optimization by Satisfaction	


•  Global Constraints	





Optimization for CSPs!

•  So far only looked at finding a solution: this is  satisfiability	


•  However often we want to find an optimal solution: 	


	

One that minimizes/maximizes an objective function o.	



•  Because the domains are finite we can use a solver to build a 
simple optimizer for minimization	



	


retry_int_opt(F, D, f, best_so_far)	



D2 := search(F,{},D)	


if (D2 is a false domain) return best_so_far	


let θ be the solution corresponding to D2	


return retry_int_opt(F ∪ { prop(o < θ(o))}, D, f, θ)	





Retry Optimization Example!

Smugglers knapsack problem  (optimize profit) 
minimize  subject to− − −

+ + ≤ ∧ + + ≥

= = =

15 10 7

4 3 2 9 15 10 7 30
0 9 0 9 0 9

W P C
capacity profit

W P C W P C
D W D P D C( ) [ .. ], ( ) [ .. ], ( ) [ .. ]

First solution found:  D W D P D C( ) [ .. ], ( ) [ .. ], ( ) [ .. ]= = =0 0 1 1 3 3

Corresponding solution  θ = {W a 0,Pa1,Ca 3}
θ(o) = −31

minimize  subject to− − −

+ + ≤ ∧ + + ≥

− − − < −

= = =

15 10 7

4 3 2 9 15 10 7 30
15 10 7 31

0 9 0 9 0 9

W P C
capacity profit

W P C W P C
W P C

D W D P D C( ) [ .. ], ( ) [ .. ], ( ) [ .. ]

Next solution found:  D W D P D C( ) [ .. ], ( ) [ .. ], ( ) [ .. ]= = =1 1 1 1 1 1

θ = {W a1,Pa1,Ca1}
θ(o) = −32

minimize  subject to− − −

+ + ≤ ∧ + + ≥

− − − < − ∧ − − − < −

= = =

15 10 7

4 3 2 9 15 10 7 30
15 10 7 31 15 10 7 32

0 9 0 9 0 9

W P C
capacity profit

W P C W P C
W P C W P C
D W D P D C( ) [ .. ], ( ) [ .. ], ( ) [ .. ]

No next solution!  

Return best solution  Corresponding solution  



Backtracking Optimization!

•  Since the solver may use backtracking search 
anyway combine it with the optimization	



•  At each step in backtracking search, if best is the 
best solution so far add the constraint o < best(o)	



•  Very similar to branch-and-cut methods	


–  Use consistency techniques instead of linear relaxation	





Smugglers knapsack problem  (whiskey available) 
capacity profit

W P C W P C4 3 2 9 15 10 7 30+ + ≤ ∧ + + ≥

D W D P D C( ) [ .. ], ( ) [ .. ], ( ) [ .. ]= = =0 9 0 9 0 9
Current domain: 

after bounds consistency 

D W D P D C( ) [ .. ], ( ) [ .. ], ( ) [ .. ]= = =0 2 0 3 0 4

W = 0 

D W D P D C( ) [ .. ], ( ) [ .. ], ( ) [ .. ]= = =0 0 1 3 0 4

P = 1 

D W D P D C( ) [ .. ], ( ) [ .. ], ( ) [ .. ]= = =0 0 1 1 3 3

(0,1,3) 

Solution Found: add constraint 

Smugglers knapsack problem 
capacity profit

W P C W P C
W P C

4 3 2 9 15 10 7 30
15 10 7 31

+ + ≤ ∧ + + ≥

− − − < −

Backtracking Optimization (Ex.)!



Initial bounds consistency 

capacity profit
W P C W P C

W P C
4 3 2 9 15 10 7 30

15 10 7 31
+ + ≤ ∧ + + ≥

− − − < −

P = 2 

false 

P = 3 

false 

W = 1 

(1,1,1) 

Add constraint 

€ 

capacity profit
4W + 3P + 2C ≤ 9 ∧ 15W +10P + 7C ≥ 30

−15W −10P − 7C < −31∧
−15W −10P − 7C < −32

W = 0 

P = 1 

(0,1,3) 

Smugglers knapsack problem  

W = 2 

false 

Return last sol (1,1,1) 

Backtracking Optimization (Ex.)!



Search and Optimization!

•  Programmed search is even more important for 
optimization	


–  Finding a good solution early reduces the search space!	





Jobshop Scheduling Exercise!

•  Scheduling tasks in order, so that only one task is 
on each machine at any one time	



•  Aim is to minimize completion time of all tasks	


•  Challenging problem: some 10x10 problems were 

unsolved only 10 years ago	



1,1 1,2 1,3

2,1 2,2 2,3

3,1 3,2 3,3

1,1 1,2 1,3

2,1 2,2 2,3

3,1 3,2 3,3



Optimization Search Exercise!

•  You can run a 5x5 jobshop problem as	


–  minizinc –a –s jobshop.mzn 
–  jobshop.mzn available from school website	



•  Modify the search by replacing	


–  solve minimize t_end;   by	


–  solve :: Searchstrategy minimize t_end; 

•   Using	


–  int_search(s, Varchoice, Valchoice, complete)  
–  int_search([t_end],input_order,Valchoice, complete) 
–  seq_search([IntSearch1,IntSearch2])	



•  Find the search strategy requiring least choices to 
prove optimality	





Overview!

•  Constraint Satisfaction and Optimization Problems	


•  Domains and Valuations	


•  Constraints and Propagators	


•  Propagation Engines	


•  Search	


•  Optimization by Satisfaction	


•  Global Constraints	





Global Constraints!

•  One of the principal advantages of propagation solving	


•  A global constraint captures an important subproblem:	



–  alldifferent: assignment subproblem	


–  cumulative: resource allocation problem	



•  Each global constraint is implemented by (possibly 
several)	


–  propagators	



•  A good implementation of a global constraints has	


–  strong propagation (ideally domain propagation)	


–  fast propagation	



•  Usually global propagators are not idempotent	





Alldifferent!

•  alldifferent([V1,...,Vn]) holds when each variable 
V1,..,Vn takes a different value	



•  Not needed for expressiveness. alldifferent([X, Y, Z]) 
is equivalent to X ≠ Y∧ X ≠ Z ∧ Y ≠ Z	



•  But propagation doesn handle disequalities well	


–  E.g. D(X) = {1,2}, D(Y) = {1.2}, D(Z) = {1,2}	



•  But there is a solution	


–  Specialized propagator for alldifferent.	





Simple propagator for alldifferent([V1,…,Vn])	


	

 	

f(D)	


	

 	

 	

let W = {V1,…,Vn}	


	

 	

 	

while (exists V ∈ W where D(V) = {d})	



	

 	

 	

 	

W := W - {V}	


	

 	

 	

 	

foreach  (V’ ∈ W) 	

 	


	

 	

                  D(V’) := D(V’) - {d}	



	

 	

 	

DV := ∪V ∈ W D(V) 	


	

 	

 	

if (|DV| < |W|) return false domain	


	

 	

 	

return D	



	


•  Wakes up on fix(Vi) events, idempotent	


•  More efficient but hardly propagates more than 

disequalities	



Alldifferent Propagator!



Alldifferent Example!

•  alldifferent([X,Y,Z])	


•  D(X) = {1,2}, D(Y) = {1,2}, D(Z) = {1,2}	



•  DV = {1,2}, W = {X,Y,Z}	


•  |DV| < |W| hence detects unsatisfiability.	



•  Note that the disequations do not!	





•  Domain consistent propagator for 
alldifferent	


–  First important global propagator O(n2.5)	


–  Based on maximal matching, wakes on dmc() events	



•  alldifferent([X,Y,Z,T,U])	


•  D(X) = {1,2,3}, D(Y) = {2,3}, D(Z) = {2,3}, 	


	

D(T) = {1,2,3,4,5}, D(U) = {3,4,5,6}	


	


	


	


	


•  D’(X) = {1}, D’(Y) = {2,3}, D’(Z) = {2,3},	


	

D’(T) = {4,5}, D’(U) = {4,5,6}	



Alldifferent Propagator!

X Y Z T U

1 2 3 4 5 6

heavy = maximal matching 
dashed = cant be in max matching 



Maximal Matching!
•  Start with a given partial matching	


•  Choose an unmatched variable	



•  Search for an alternating path	


–  unmatched and matched edges	


–  reaching an unmatched value	



X Y Z T U

1 2 3 4 5 6



Maximal Matching!
•  Start with a given partial matching	


•  Choose an unmatched variable	



•  Search for an alternating path	


–  unmatched and matched edges	


–  reaching an unmatched value	



X Y Z T U

1 2 3 4 5 6

X Y Z T U

1 2 3 4 5 6



Maximal Matching!
•  Start with a given partial matching	


•  Choose an unmatched variable	



•  Search for an alternating path	


–  unmatched and matched edges	


–  reaching an unmatched value	



X Y Z T U

1 2 3 4 5 6

X Y Z T U

1 2 3 4 5 6



Maximal Matching!
•  Start with a given partial matching	


•  Choose an unmatched variable	



•  Search for an alternating path	


–  unmatched and matched edges	


–  reaching an unmatched value	



X Y Z T U

1 2 3 4 5 6

X Y Z T U

1 2 3 4 5 6



Maximal Matching!
•  Start with a given partial matching	


•  Choose an unmatched variable	



•  Search for an alternating path	


–  unmatched and matched edges	


–  reaching an unmatched value	



X Y Z T U

1 2 3 4 5 6

X Y Z T U

1 2 3 4 5 6



Maximal Matching!
•  Start with a given partial matching	


•  Choose an unmatched variable	



•  Search for an alternating path	


–  unmatched and matched edges	


–  reaching an unmatched value	



X Y Z T U

1 2 3 4 5 6

X Y Z T U

1 2 3 4 5 6



Maximal Matching!
•  Start with a given partial matching	


•  Choose an unmatched variable	



•  Search for an alternating path	


–  unmatched and matched edges	


–  reaching an unmatched value	



X Y Z T U

1 2 3 4 5 6

X Y Z T U

1 2 3 4 5 6

X Y Z T U

1 2 3 4 5 6



Failure!
•  If not every variable is matched in the maximal 

matching then the alldifferent constraint cannot be 
satisfied.	



  

€ 

alldifferent([X,Y, Z,T,U])
D(X) = {1,2},D(Y ) = {1,2},D(Z) = {1,2},

D(T) = {2,3,4,5},D(U) = {3,4,5,6}

X Y Z T U

1 2 3 4 5 6



Propagation!

•  Keep edges which are reachable from unmatched 
nodes (pink + green)	



•  Keep edges in an SCC or in matching, delete rest	


•  D’(X) = {1}, D’(Y) = {2,3}, D’(Z) = {2,3},	


	

D’(T) = {4,5}, D’(U) = {4,5,6}	



X Y Z T U

1 2 3 4 5 6



Alldifferent!

•  Given the domain D(X) = {2,4}, D(Y) = {1,3,5,6}, 
D(Z) = {1,2,3}, D(T) = {2,4}, D(U) = {1,2,3,4}	



•  What is the result of propagating 
alldifferent([X,Y,Z,T,U])?	



•  Draw the matching graph and work it out! 	





•  bounds consistent propagator for 
alldifferent	


–  Most common implementation O(n log n)	


–  Based on maximal matching, wakes on lbc(), ubc()  

events	


•  Usually as fast as the naïve first propagator	



Alldifferent Propagator!



Cumulative!

•  cumulative([S1,…,Sn], [D1,…,Dn], [R1,…,Rn], L)	


	

schedule n tasks with start times Si and durations 
Di needing Ri units of a single resource where L 
units are available at each moment. 	



•  Very complex propagator	


•  Many different implementations	



–  Different complexities	


–  None implement strongest bounds or domain 

propagation!	





Cumulative Example!

	

Bernd is moving house. He has 4 people to do the 
move and must move in one hour. He has the 
following furniture: piano must be moved before bed	



	

 Item Time No. of 
people 

piano 30 min 3 
chair 10 min 1 
bed 20 min 2 
table 15 min 2 How can we model this? 

D(P) = D(C) = D(B) = D(T) = [0..60], P + 30 ≤ B, 
P + 30 ≤ 60, C + 10 ≤ 60, B + 15 ≤ 60, T+ 15 ≤ 60,   
cumulative([P,C,B,T], [30,10,20,15], [3,1,2,2], 4) 

0 15 30 45 60
0

2

4
piano

bed

table

chair



Cumulative Timetable Propagator!
•  Determine the parts where a task must be running	


•  The resource profile adds up these parts	


•  Use profile to move other tasks	


Example: after initial bounds	


	


Propagating P + 30 ≤ B 	



D(P) = [0..10], D(C) = [0..50], D(B) = [30..40], D(T) = [0..45] 

D(P) = [0..15], D(C) = [0..50],  
D(B) = [30..40], D(T) = [30..45] 

D(P) = [0..30], D(C) = [0..50], D(B) = [0..40], D(T) = [0..45] 

0 15 30 45 60
0

2

4

piano table

piano
resource profile

table cant fit here

bed

bed



Compulsory Parts!
•  A task y with earliest start time sey, latest start 

time sly, and duration dy	


–  compulsory part: sly .. sey + dy	



•  Profile = sum of compulsory parts	


•  Failure: at time t profile goes over resource bound	


•  Propagation	



–  If resources for task x don’t fit at time slx ≤ t < slx + dx	


•  move slx to t + 1	



–  similarly move sex back to t-dx if sex ≤ t < sex + dx	



sly sey 

sly + dy 



Cumulative by Decomposition!

•  We can implement cumulative using simpler 
constraints	


–  Bit  (Si ≥ t ∧ Si + Di < t)	


–  Task i is active at time t	


–  At all times t,  Σi ∈ 1..n Bit × Ri  ≤ L	



•  Decomposition propagates like timetable 	


–  But O(n tmax) where n is number of tasks and tmax is 

maximum time horizon	


–  Versus O(n2) for the global propagator	



•  Very many Boolean vars introduced  O(n tmax) 	





Cumulative exercise!
•  rcpsp.mzn is a classic cumulative resource problem	


•  We can try different implementations of cumulative 

–  Cumulative by decomposition: minizinc 
–  Cumulative propagator: mzn-g12fd 
–  Annotate the cumulative constraints 	



•  :: histogram_filtering: time-tabling bounds propagator 	


•  :: edge_finding_filtering: edge-finding bounds 

propagator O(n2 * k)	


•  :: ext_edge_finding_filtering: extended edge-finding 

bounds propagator O(n2 * k)	


•  :: energy_feasibility_check: edge-finding consistency 

check O(n2)	



–  You can annotate with more than one! 	


•  :: annot1 :: annot2	





Cumulative exercise!

•  Try different cumulative annotations to find the 
least choice points required for finding the optimal 
solution to 	


–  mzn-g12fd –s –a rcpsp.mzn data.dzn	



    using data	


–  Bl2002.dzn 
–  J30_10_5.dzn 

•  How do they compare against the decomposition	


–  minizinc –s –a rcpsp.mzn data.dzn	





Priorities!

•  Once we have expensive global constraints	


–  Need to reconsider which propagator to run next!	



•  Expensive global constraints should be chosen last	


•  Priority queue:	



–  Pick the least expensive propagator available	


–  Typically few priority levels	



•  Unary, binary, ternary, linear, quadratic, cubic, veryslow	



•  E.g. X ≠ Y (binary), X = Y+ Z (ternary), 
alldifferent domain propagator (cubic)	





Staged Propagators!

•  With priorities we can run more than one 
propagator for the same constraint	


–  Simple alldifferent (linear)	


–  Bounds alldifferent (quadratic)	


–  Domain alldifferent (cubic)	



•  Better yet communicate	


–  If a higher priority stage notes that the later stage 

cannot do anything, it is not run	


–  These are called staged propagators	





Priorities and Staging!

•  Priorities and Staging increase the amount of 
propagators executed	


–  We need to reach a fixpoint at each level before 

proceeding	


•  But they reduce time	



–  Better to let cheap propagators determine all 
information for a slow global before it executes	



–  Instead of executing it multiple times!	





Summary!

•  Constraint programming is based on backtracking search	


•  Reduce the search using propagation	



–     incomplete inference but faster	


•  Optimization in CP is based on a branch & bound with a 

backtracking search	


•  Very general approach, not restricted to linear constraints.	


•  Programmer can add new global constraints and program their 

propagation behaviour.	


•  State-of-the-art solutions for many combinatorial optimization 

problems:  scheduling, routing, rostering …	


•  A good basis for hybridization (the highest level model)	


	





Lazy Clause Generation!

•  Repeatedly run propagators 	


•  Propagators change variable domains by:	



–  removing values 	


–  changing upper and lower bounds 	


–  fixing to a value	



•  Run until fixpoint. 	


KEY INSIGHT:	


•  Changes in domains are really the fixing of Boolean 

variables representing domains.	


•  Propagation is just the generation of clauses on these 

variables. 	


•  FD solving is just SAT solving: conflict analysis for 

FREE!	





Finite Domain Propagation Ex.!

•  D(x1) = D(x2) = D(x3) = D(x4) = D(x5) = {1..4}	


•  x2 ≤ x5, alldifferent([x1, x2, x3, x4]), 	


	

x1+x2+x3+x4 ≤ 9	



 
x1 
x2 
x3 
x4 
x5 

x1=1 
1 

1..4 
1..4 
1..4 
1..4 

alldiff 
1 

2..4 
2..4 
2..4 
1..4 

x2 ≤ x5 
1 

2..4 
2..4 
2..4 
2..4 

x5≤2 
1 

2..4 
2..4 
2..4 
2 

x2 ≤ x5 
1 
2 

2..4 
2..4 
2 

alldiff 
1 
2 

3..4 
3..4 
2 

sum≤9 
1 
2 
3 
3 
2 

alldiff 
1 
2 
✖ 
✖ 
2 

x5>2 
1 

2..4 
2..4 
2..4 
3..4 



Lazy Clause Generation Ex.!

x1=1 

x2 ≠1 

x3 ≠1 

x4 ≠1 

x2  ≥2 

x3 ≥2 

x4 ≥2 

x5 ≥2 x5≤2 x5=2 

x2 ≤2 x2=2 

x3≠2 

x4≠2 

x3≥3 

x4≥3 

x3≤3 

x4≤3 

x3=3 

x4=3 
fail 

alldiff x2 ≤ x5 x2 ≤ x5 alldiff sum≤9 alldiff 



1UIP Nogood Creation!

x1=1 

x2 ≠1 

x3 ≠1 

x4 ≠1 

x2  ≥2 

x3 ≥2 

x4 ≥2 

x5 ≥2 x5≤2 x5=2 

x2 ≤2 x2=2 

x3≠2 

x4≠2 

x3≥3 

x4≥3 

x3≤3 

x4≤3 

x3=3 

x4=3 
fail 

x3=3∧x4=3 false 

x4=3 

x3=3 

x4≥3∧ x4≤3∧ x3=3 false 

x4≤3 

{x3≥3,x4≥3,x3≤3,x4≤3} false 

x3≤3 

{x2  ≥2,x3≥3,x4≥3,x3≤3}  false 

x3≥3 

x2  ≥2 

x4≥3 

{x2  ≥2, x3≥3, x4≥3}  false {x2  ≥2,x4 ≥2,x4≠2,x3≥3}  false 

x4≠2 x4 ≥2 

{x2 ≥2,x3 ≥2,x4 ≥2,x3≠2,x4≠2}  false 

x3≠2 x3 ≥2 

{x2  ≥2,x3 ≥2,x4 ≥2,x2=2,x3≠2}  false 

x2=2 

{x2 ≥2, x3 ≥2, x4 ≥2, x2 =2}  false {[[x2 ≤1]],[[x3 ≤1]], 
[[x4 ≤1]],¬[[x2 =2]]}  

1 UIP Nogood 

alldiff x2 ≤ x5 x2 ≤ x5 alldiff sum≤9 alldiff 



Backjumping!

x1=1 

x2 ≠1 

x3 ≠1 

x4 ≠1 

x2  ≥2 

x3 ≥2 

x4 ≥2 

x5 ≥2 

{x2 ≥2, x3 ≥2, x4 ≥2, x2 =2}  false 

alldiff x2 ≤ x5 

x2 ≠2 x2  ≥3 

x2 ≤ x5 

x5 ≥3 

•  Backtrack to second 
last level in nogood	



	

•  Nogood will propagate	


	

•  Note stronger domain 

than usual backtracking	


•  D(x2) = {3..4}	



	





Whats Really Happening!

•  A high level “Boolean” model of the problem	


•  Clausal representation of the Boolean model is 

generated “as we go” 	


•  All generated clauses are redundant and can be 

removed at any time 	


•  We can control the size of the active “Boolean” 

model	





Activity-based search!

•  An excellent default search! 	


•  Weak at the beginning (no meaningful activities)	


•  Need hybrid approachs	



–  Hot Restart:	


•  Start with programmed search to “initialize” meaningful 

activities. 	


•  Switch to activity-based after restart	



–  Alternating	


•  Start with programmed search, switch to activity-based on 

restart	


•  Switch search type on each restart	



•  Much more to explore in this direction	





Strengths + Weaknesses!

•  Strengths	


–  High level modelling 	


–  Learning avoids repeating the same subsearch 	


–  Strong autonomous search 	


–  Programmable search 	


–  Specialized global propagators (but requires work)	



•  Weaknesses	


–  Optimization by repeated satisfaction search 	


–  Overhead compared to FD when nogoods are useless	





LCG Exercise!

•  Try the three previous exercises before using	


–  mzn-g12lazy 
–  mzn-g12cpx 

    instead of minizinc or mzn-g12fd 
•  What do you notice?	





Symbols!

Symbols: ∈   ∞ ∪  ⊆  ∩   θ   	




