CP-networks: semantics, complexity,
approximations and extensions

F. Rossi, K. B. Venable
Dept. of Pure and Applied Mathematics
University of Padova, Italy
{frossi,kvenable}@math.unipd.it

T. Walsh
Cork Constraint Computation Centre, University College Cork
Cork, Ireland
tw@4c.ucc.ie

July 23, 2002

Abstract

CP-networks are an elegant and compact qualitative framework for ex-
pressing preferences. Unfortunately, reasoning with CP-networks can be
computationally hard. We propose two remedies to this problem. First,
we suggest a new semantics for CP-networks that is more tractable. Sec-
ond, we show how CP-networks can be approximated with soft constraints.
The second remedy also allows us to integrate preference and constraint
reasoning in a single formalism.

1 Introduction and motivation

Extracting preferences from users is a notoriously difficult task. It is especially
difficult when users are required to provide quantitative preference measures.
Users are often happier providing qualitative measures. “All else being equal,
I prefer a red dress to a yellow dress”. “If the car is a convertible, I prefer a
hard top to a soft top”. These are conditional (“if the car is convertible”) and
ceteris paribus (“all else being equal”) preference statements. In [2], a compact
formalism called CP-networks is given for representing and reasoning about
preference rankings given such conditional preference statements.
Unfortunately, reasoning about CP-networks is computationally hard in gen-
eral. We suggest two different ways of tackling this problem. First, we show
how to modify the semantics of CP-networks in a modest way, preserving the
ceteris paribus property but making reasoning more tractable. Second, we show
how to abstract a CP-network onto a soft constraint satisfaction problem (and



to compute the quantitative preferences in the soft problem). Again, this makes
reasoning more tractable. However, this abstraction does loose some informa-
tion. For example, incomparable items in the CP-network may appear ordered
in the soft problem. However, the abstractions are always faithful, in the sense
that ordered items in the CP-network remain ordered in the same way in the
soft problem. We should note that there has been some recent work on ap-
proximating CP-networks [3] using a quantitative representation of preferences
However, only one approximation is considered in [3], while we propose sev-
eral here, within a general framework. Moreover, the user needs to specify the
numerical preferences, and the system checks whether they satisfy the ceteris
paribus property. Here, we automatically generate the quantitative preferences
while maintaining the ceteris paribus condition. Another advantage of the ap-
proach taken here is that it allows us to integrate preference and constraint
reasoning in a single formalism. This would be useful, for example, in configu-
ration problems where we have both user preferences and physical constraints
to satisfy.

2 CP-networks

For the formal and complete definitions about CP nets, we refer to [2]. We
assume a set of features, {A, B,C,...}. Each feature can have a finite domain
of values. Without loss of generality, we assume features have just two pos-
sible values (true or false), written a or @, b or b, etc. We assume that the
user has a preference ranking, a total preoder > on assignments of values to
features. Specifying such a preference ranking explicitly is not practical in gen-
eral as there are an exponential number of possible assignments to features.
Fortunately, the problem can be decomposed into a more manageable form if
the user’s preferences satisfy the ceteris paribus property. This is based on
the idea of (conditional) preferential independence. Just as Bayesian networks
exploit the independence of probabilities to specify compactly complex condi-
tional probabilities, we can exploit the independence of the user’s preferences
to specify compactly a complex preference ranking.

The preference ranking is specified by a set of (conditional and uncondi-
tional) ceteris paribus preference statements. An unconditional preference state-
ment is of the form: a > @. This has the semantics that whatever values are
taken by the other features, we will prefer an assignment to A of a over a. That
is, if we take an assignment which assigns a to A, we will prefer to swap this by
a keeping everything else constant. A conditional preference statement is of the
form: a : b = b. This has the semantics that, having assigned a to A, we will
prefer an assignment of b to B over b. That is, if we take an assignment which
assigns a to A and b to B, we will prefer to swap b by b keeping everything
else constant. In other words, for an ordering to be ceteris paribus, it must be
always possible to partition the remaining elements, w.r.t. the ordered couple,
of the ordered set in two sets Z and Y such that 3z assignment to Z such that
if z ya > by for any y, assignment to Y, holds. Preference statements define a



®\

(©—0C——6

o

Figure 1: A CP net.

graph of dependencies between features. If this graph does not contain cycles,
we can extract an ordering on features. For example, A is ordered before B by
the conditional preference statement a : b > b. As a running example, consider
the CP-network defined by the following preference statements: a > @, b > b,
(@Ab)V(@AD) :c>¢ (aAb)V(@Ab):C>c,c:d>dtc:d>d, d:e>e
d: e > €. This is shown in Figure 1.

There are several types of question we can ask of a CP-network. First, is the
network consistent? A CP-network is consistent iff there exists an assignment
that satisfies all the conditional preference statements at the highest level. For
example, a : b > b and @ : b = b are satisfied at their highest level by ab and
@b. Unfortunately, as we show in the next section, deciding the consistency of
a CP-network is intractable in general (assuming P # NP).

A second type of question is whether one assignment is better than another.
This is usually referred to as a dominance query. In [2], such queries are an-
swered by finding a sequence of worsening flips. One assignment dominates
another if we can get from the first to the second by flipping values, each of
which moves us down the ordering in a preference statement. For example, in
the running example, we can get from abcde to abcdé in two worsening flips
through the intermediate assignment abcde. Unfortunately, dominance query-
ing is also intractable as sequences of worsening flips can be exponentially long
in the number of features [2, 4].

3 Consistency of CP-networks

The semantics of CP-networks allow for any type of network: e.g. a graph with
cycles, an acyclic graph or a tree. The structure of the graph has a strong
influence on the consistency. In [2], it is claimed that “... Acyclic graphs always
have a unique most-preferred outcome ...” and that “...acyclic graphs are
alway consistent ...”. Neither of these claims is correct. The acyclic CP-
network a : b > b and @ : b > b has two most preferred assignments, ab and @b.
And the following CP-network is acyclic but is not consistent: a > @, b > b,
a:c>¢a:c=c b:¢>c b:c>C.
In general, determining the consistency of CP-networks is NP-complete.

Theorem 1 CP-NETWORK CONSISTENCY is NP-complete.



Proof: Clearly it is in NP. An assignment is a polynomial witness that can be
checked for optimality in time linear in the number of conditional preference
constraints.

To show NP-completeness, we reduce 3-SAT, the satisfiability of 3-cnf for-
mulae to CP-NETWORK CONSISTENCY. For each 3-cnf clause, z V y V z we
construct the conditional preference constraint: T Ay : z > Z. Consider any
model (satisfying assignment) of the original 3-cnf formulae. At least one of
z, y and z will be set true. If  or y are true, then the condition of the con-
structed conditional preference constraint is not satisfied and we can ignore it.
If x and y are both false, then z must be true. However, setting z to true
satisfies the conditional preference ordering as this is the most preferred value.
Hence, any model of the original 3-cnf formulae is an optimal assignment of the
constructed CP-network. The argument reverses and any optimal assignment
is also a model. The CP-network is therefore consistent iff the original 3-cnf
problem is satisfiable. O

We can identify a stronger condition than acyclicity that ensures that a CP-
network is consistent. That is, if the network is a tree (or a forest of trees) then
it must be consistent. Of course, a tree does not contain any cycles.

Theorem 2 A tree shaped CP-network is always consistent, and an optimal
assignment can be found in linear time.

Proof: We give a linear algorithm that is always guaranteed to terminate hav-
ing constructed an optimal assignment. We start with the variables at the root
of the CP-network, assigning them their most preferred values. We then move
down the tree. At each step, we consider any conditional preference constraint
whose condition is satisfied. We assign the next variable with the most preferred
value from this conditional preference constraint. If all the conditions of con-
ditional preference constraints are violated, or there is no preference ordering
on a variable, we assign it arbitrarily. For example, consider the conditional
preference constraints: a > @, a:b>b, b:C>c,b:c>¢C andbAc:d > d.
Starting at the root, we set a as it is unconditionally preferred over —a. As
a:b>b, we then set b. As b:¢ > ¢, we then set ¢. Finally, as bAC:d > d, we
set d and terminate. O

4 An alternative semantics

To recap, dominance queries in CP-networks may require finding an exponen-
tially long chain of worsening flips, whilst consistency testing is NP-complete.
Can we reduce the complexity of reasoning with CP-networks by redefining their
semantics but preserving the ceteris paribus property?

For acyclic networks we could, for example, say that a complete assignment
dominates another one if it wins first lexicographically. More precisely, we as-
sume that features are ordered by their dependencies with independent features
first. The assignment a4 ...a,, is better than by . ..b, iff there exists k such that



Vt < k . a; = by and ay > bg. This is the lexicographic ordering. It is pos-
sible to prove that this ordering satisfies the ceteris paribus property. Checking
this type of dominance is clearly linear in the number of features.

A more refined notion of dominance would consider all the features that are
at the same level w.r.t. the hierarchy induced by the preference statements.
Assuming the CP-network is acyclic, there is at least one node with an indegree
of zero, corresponding to an independent feature. We can define the level of a
feature in the hierarchy as the length of the maximum shortest path between it
and any of the nodes representing independent features. We could then say that
a complete assignment dominates another assignment if, starting at the highest
level, considering features that are at the same level in the hierarchy, its assign-
ments win on the majority. We will refer to this as majority lexicographic
ordering. This ordering is also ceteris paribus. Checking dominance queries is
again linear in the number of features.

Consider the CP-network: a = @, b>b,a:c>¢ b:d>d, b:e > €,
c: f> f,d:g>g. Take the two assignments s; = abedefg and sy = abcdefyg.
According to lexicographic ordering s; dominates ss since a > a. However,
according to majority lexicographic ordering, s, dominates s;. In fact, we have
three levels in the hierarchy. In the first level we have {A, B} in the second
{C, D, E} and in the third level {F,G}. Since s; wins on A and s» wins on
B they tie on the first level so the second level must be considered. Here s
wins on 2 out of 3 features. Notice that if dominance is defined in terms of
worsening flips, the 2 assignments are incomparable. Such dominance does
not discriminate between one violation at a higher level and two or more at
lower levels. In a lexicographic ordering, the assignment that better satisfies a
higher level is the most preferred, whilst in a majority lexicographic ordering,
the assignment that wins on the majority of the most important features is the
most preferred.

We can compare these orderings with the original semantics based on wors-
ening flips. First, note that both the lexicographical and the majority lexico-
graphical orderings are total, whilst the original ordering is partial. Given two
assignments, sy and sa, if s; > s3 then sy is ordered above s; according to both
the lexicographical and the majority lexicographical orderings. But the reverse
does not necessarily hold: if s; is above sy according to either the lexicograph-
ical or the majority lexicographical orderings, then either s; > s or s; and s
are incomparable.

5 Semi-ring based approximations

One way to reduce the complexity of reasoning with CP-networks, as we have
seen in the previous section, is to change their semantics from a partial order
based on chains of worsening flips to a total order based on lexicographical or
majority lexicographical orderings. An alternative solution is to approximate
CP-networks with soft constraint satisfaction problems (SCSPs) [1]. This will
allow for the use of the well established machinery underlying SCSPs to answer



dominance queries in linear time. In addition, we can then combine prefer-
ence reasoning with other forms of (hard and soft) constraint reasoning. This
would be useful, for example, in configuration problems where we have both
user preferences and hard physical constraints to satisfy.

5.1 Soft Constraints

Several formalizations of the concept of soft constraints are currently available.
We will use the c-semi-ring formalism [1] which generalizes and can express
many of the others. We assume the reader is familiar with most of the concepts
so give just a brief introduction here to explain notation. A longer survey can
be found at [1].

A semi-ring is a tuple (4, +, x,0,1) such that: Ais aset and 0,1 € A; + is
commutative, associative and 0 is its unit element; X is associative, distributes
over +, 1 is its unit element and 0 is its absorbing element. A c-semi-ring is
a semi-ring (A, +, x,0,1) in which + is idempotent, 1 is its absorbing element
and X is commutative. Let us consider the relation < over A such that a < b
iff a +b =0b. Then < is a partial order, + and x are monotone on <, 0 is its
minimum and 1 its maximum, (4, <) is a complete lattice and, for all a,b € A,
a+b = lub(a,b). Moreover, if X is idempotent: + distributes over x; (4, <) is a
complete distributive lattice and X its glb. Informally, the relation < compares
semi-ring values and constraints. In fact, when we have a < b, we will say that
b is better than a. Given a semi-ring S = (A, +, %,0,1), a finite set D (the
domain of the variables) and an ordered set of variables V', a constraint is a pair
(def ,con) where con C V and def : D/“?l — A. A constraint specifies a set
of variables, and assigns to each tuple of values of these variables an element of
the semi-ring.

A soft constraint problem is a pair (C,con) where con C V and C is a
set of constraints: con is the set of variables of interest for the constraint
set C, which may also concern variables not in con. Note that a classical
CSP is a SCSP with the c-semi-ring: Scsp = ({false,true},V, A, false,true).
Fuzzy CSPs [6, 5] can be modeled in the SCSP framework by choosing the
c-semi-ring Spcsp = ([0, 1], maz, min,0,1). Many other “soft” CSPs (proba-
bilistic, weighted, ...) can be modeled by using suitable semi-rings (Sprop =
([07 1]7ma'7:7 X,O, 1)7 Swez'ght = <R7 min; +, 07 +OO), L. )

Finding an optimal solution in a soft constraint problem is an NP-complete
problem, which is usually solved by a combination of branch and bound and
constraint propagation (when possible), or via local search. On the other hand,
given two solutions, checking whether one is better than another one is a very
simple problem, which can be easily solved by computing the semi-ring values of
the two solutions (via a multiplication of the semi-ring values of the constraints)
and then by comparing such two values.



5.2 Mapping CP-networks to soft constraints

Given a set of preference statements, we will now show how to build a corre-
sponding SCSP. We first need to identify the independent features. For each,
we introduce a variable in our SCSP that will have the domain of the feature,
and a unary constraint that will have as its scope just that variable and as
its relation the set of possible assignments to that feature, i.e. the domain of
the variable. When we have finished with the independent features, we start
considering conditional statements of the form: z3 Azs A--- A zp 2l > 22 >
-+ > x. We introduce two new variables: V, corresponding to set of features
in Z and with domain {z1,---,2,} and V,, corresponding to the features in
X and with domain the Cartesian product of the domains of the features in
X. We add a constraint that has as scope V, and V., and, as relation the
set Z1X1, 21Xk, "y, ZRT1, "+, 2pTg- Lhe preference function will assign
penalties or rewards, depending on the underlying semi-ring, according to the
conditional preference statements. We also add a hard constraint between V,
and all the variables representing features that appear in V,. The constraint sim-
ply forces assignments to the same feature, induced by assignments to different
variables to be consistent (similar to the constraints between dual and ordinary
variables in the hidden representation of non-binary constraints as binary ones).

After repeating this procedure for all the preference statements, we will
have built a soft constraint satisfaction problem representing the preference
ranking. As usual this can be represented graphically throught a constraint
graph, that we call the SC-network, in which each node corresponds to a variable
and will be labeled with the set of features the variable represents, and each
edge corresponds to a constraint. Moreover we associate to each soft constraint
¢, a weight w, and a cardinality s. defined as the cardinality of the domain of
V- If we assume to have n features and m cp statements we can measure the
complexity in terms of new constraints that must be added to the SC-network
for each statement. We’ll have at most n independent statements, i.e. on the
domain of a variable, and for each of the m—n statements remaining at most (m)
new constraints will have to be defined (one representing the actual statements
and (m-1) hard constraints).

This will be useful to model the network so that the ceteris paribus property
is respected.

As an example, the SC-network corresponding to the example in section 2,
when ignoring the last statement, is shown in figure 2, where edges without
weights are hard constraints. In the example note that X = C, Z = A, B.

In the following sections we will consider two different semi-rings for the soft
constraints. In each case, we will see how preferences p; and weights w; can be
set in order to match the ceteris paribus semantics.

First let’s show how this representation can answer dominance queries in a
straightforward fashion. Suppose we have two complete assignments, e.g. v and
TZ, and let us compute their preference using the semi-ring operators. That is, if
— .=
U= 01V - - - Uy, where v; is the value assigned in v to the i-th feature in the order,
then the preference associated with v will be: pref (1_}) =1, we, f (UUCU), where



aba->pl

abT—>p2

abc—>pl d->p1
abc—>p2 cap
abc—>pl cd—>p2
?EC—>Pi td->pl
abt->p _

abc—>p2 Td->p2

w3 w4
Figure 2: An SC net.
¢y is a constraint and v = 1,---,T, where T is the total number of constraints,

and w,, is the weight of that constraint. The preference of a total assignment
 is obtained by combining the preferences assigned to each partial assignment,
and projecting v on each constraint. The subtuple’s preference, in turn, is
obtained by multiplying the internal preference it is assigned in the constraint
by the weight of the constraint. The combination of subtuple preferences is
obtained by applying the multiplicative operator of the semi-ring.
— — .

Once we have pref(v) and pref(u) we compare the two values using the

. . .. = = —
additive operator of the semi-ring. The original query v >u becomes pref(v

) + pre f(ﬂ)) = pre f(?) We will now show how to instantiate this general
framework by choosing specific semi-rings.

5.3 Weighted soft constraints

In this section we will consider weighted CSPs, which, as noted before, are based
on the min+ semi-ring Swosp = (R4, min, +,+00,0). We assign preferences
using real positive numbers (or penalties) and prefer assignments whose total
penalty (which is the sum of all the penalties) is smaller. Larger penalties will be
assigned to values that appear later in the ordering to the right of a preference
statement. If we consider the previous example we can say that p;,ps € Ry
and p; < ps.

On the other hand we want to respect the ceteris paribus property. To see
this, in the example, consider the preference statement ¢ : d > d. Among any
two assignments containing c, that differ only by the value given to D, the one
assigning d is to be preferred. In particular, this should hold for abcde and
abcde. Tn the SC-network, changing d to d increases the penalty from p; to ps
in the constraint between C and D but lowers the penalty from p,; to p; in the
constraint from D and E. We must therefore set the weights in a precise way. In
order to do this we consider the SC-network as a DAG (in general in a constraint
network the edges are not directed). An edge will go from the variable of the



features that appear on the left of the preference statement, into the variable
of the features on the right. The setting of the penalties and the weights is
done dynamically during the construction of the SC-network. Hence we must
consider unary and binary soft constraints. Since we are assuming that all the
preference statements on domains of independent feature will appear first in
the list, when we set the corresponding unary constraint we can set the weight
to 1 and the penalties increasing as the the order of the statement decreases
adding 1 at each step. Notice that this implies that for each soft constraint the
maximum penalty assigned is s, — 1. When we add a new binary constraint,
we set its weight to 1 and its penalties as before. However all the weights of
the edges, in the graph to which we are adding the new edge, must be updated.
The update is Wpew = Y, we - (Se — 1), where e varies among the edges that can
be reached along any path from the node to which the edge points, each edge
counted only once.

When a dominance query, v > u is posed, the total penalties of the two
assignments are computed: pre f(U) =Y, wef (?Ucu), where we have used
the multiplicative operator of Sywcsp, that is +. Then the two values are com-
pared through the additive operator, so the original query becomes min(pref (U

),pref(ﬂ)) = pref(?f), which explicitly means ), wc,,f(i_[i}cy) >3, wc,,f(?i}cu
) and that we will write ?ZminJrﬁ .

It is possible to prove that the min+ ordering satisfies the ceteris paribus
property. It is also possible to derive the correspondence between a worsening
flip in the original CP-network model and a variation of the preference assigned
to one or more subtuples in the SC-network. In fact, given two assignments
$1 = ay...ap and s = by ...by,, suppose there is a worsening flip from s; to
$9 on the i-th component. There is therefore a preference statement in which
a; is preferred to b;. In the SC-network, there is a constraint on the variable
corresponding to the i-th feature that assigns a higher penalty to the subtuple
containing b; w.r. to the one containing a;. However, a worsening flip doesn’t
affect only the constraint corresponding to the preference statement on the
base of which the flip is legal, but its consequences are propagated to all the
constraints between the variable which has its value flipped and all other possible
depending variables. It is the way weights and local penalties are set that allows
us to say that to each worsening flip corresponds an increase on the total penalty.

Now we are ready to compare the two orderings > and >,,;,+ defined over
the set of assignments. We write vxu iff ?tﬂ and Ut?, and v ? u iff neither
- = - =
v>u nor u>=v (i.e. they are incomparable).

It is possible to prove the following:

o If assignment v is preferred to u in our model, that is, 3>mm+17, then
it’s either preferred to or incomparable with u in the original model.

o If two assignments are equally preferred in the min+ model than they are
either equal or incomparable in the original model.

o If two assignments are ordered in the original model, they will maintain



their ordering in the min+ model.

o If two assignments are incomparable in the original model, they can be
equal or ordered in any way in the min+ model.

e If two assignments are equally preferred in the original model they are
equally preferred also in the min+ model.

Since the min+ ordering is total, it is a linearization of the original partial
ordering. Assignments that are incomparable in the original ordering are or-
dered in min+. In compensation, however, dominance querying is now linear
time. It is also important to notice that min+ respects the original ordering in
the sense that it assignments that are preferred in the original remain preferred
in the min+ ordering.

5.4 SLO soft constraints

We will now choose a different semi-ring to approximate CP-networks via soft
constraints. The SLO semi-ring is defined as follows: Ssro = (A, maz,, mins, MAX,0),
where A is the set of sequences of n integers from 0 to MAX. The additive op-

erator, mazs and the multiplicative operator, mins are defined as follows:

o given s = s1---sp and t = t1---tp, s; = t;,4 = 1 < k and Sg41 # tgt1,
then maz,(s,t) = g1 ---gn where ¢; = s;,i <k, and for j > k . g; = s; if
Sk+1 = try1 else gj = tj;

o ming(s,t) =q¢=q1---qn where ¢; = 85,5 =1<k,and for j > k.q; =s;
if sp+1 < tp41 else g =¢;.

MAX is the sequence of n elements all equal to MAX, and 0 is the sequence
of n elements equal to 0. It is easy to show that this is a semi-ring deriving the
properties of mazx,; and min, from the ones of max and min. It is also easy to
prove that the ordering induced from mazs on A is lexicographic ordering.

We can now model a CP-network as a soft constraint problem based on Ssr.0.
First of all, we set M AX + 1=cardinality of the largest domain and n= number
of preference statements. All the weights of the edges are set to 1. Considering
the binary soft constraint as usual between a variable representing the features
on the left, F7,---, F}, and a variable representing the depending variable on the
right, F', its preference function will map the tuple of assignments (vy, - -, vk, v)
to the sequence of n integers that has M AX — i + 1, where i is the position of
v in the ordering, in the position corresponding to the constraint and MAX in
every other position.

Suppose we are given two complete sequences of assignments to features, s
and t, and we want to compare them. First of all we must compute pref(s)
and pref(t). Since we are working with semi-rings this is defined as: pref(s) =
min, (f(syc;)) and pref(t) = min,(f(t,c;)), where min; is defined over the set
of constraints and s, is the projection of s on the j-th constraint, j = 1---n.
By the definition of ming, pref(s) and pref(t) are sequences of n integers each

10



corresponding to a constraint and containing the level at which that constraint
is satisfied. To compare s and t, we have to check which between pref(s)
and pref(t) is better, which by definition of maxs means to check what is the
lexicographic ordering relation between pref(s) and pref(t). This can be done
directly since we are now dealing with integer numbers.

Does the SLO representation preserve the ceteris paribus condition? Let’s
consider the example: a =@, b>b,a:c>¢ b:d>d, b:e>¢ c: f > f,
d: g > g. In particular d : g > g, means that given any two assignments such
that the first one contains dg and the second dg and they differ only on the
value given to G, then the first one should dominate the second one. In the
arrays corresponding to the two assignments the integers would be exactly the
same up to the position corresponding to the G feature. They will differ on that
position and possibly on the position corresponding to features that depend on
G. When checking lexicographic ordering all the values until the G position will
be the same and the first assignment will win on G. The semi-ring therefore
respects the ceteris paribus condition.

The relationship between a worsening flip and a change on the SC-network
is as follows. When a worsening flip is performed, the integer in the position
corresponding to the constraint that expresses the statement used to legalize
that flip is lowered. However, some integers in subsequent positions can also
change, either growing or getting smaller. As the lexicographic ordering stops
as soon as it encounters an inequality, such changes are harmless.

A we did for the min+ semiring, we now compare the ordering over solutions
induced by the SLO semiring to the one originally used in CP nets:

e If assignment v is preferred to ¥ in SLO, then it’s either preferred or
incomparable with % in the original model.

o If two assignments are equally preferred in the SLO model, then they are
equally preferred also in the original model.

e Two assignments ordered in the original model will maintain their ordering
in the SLO model.

e If two assignments are incomparable in the original model, they can be
ordered in any way in SLO.

The SLO model is very useful to answer dominance queries as it inherits the
linear complexity from its semi-ring structure. In addition, sequences of integers,
despite the way one chooses to order them, show directly the “goodness” of an
assignment, i.e. where it actually is good and where it fails. We think that this
representation is very expressive and can be further exploited to reason about
conditional preferences.

One might wonder which of these two semi-rings (min+ and SLO) is the
best linearization of the original partial order. Let’s consider the sets Sq<, Sa>,
Sa= and S,? containing all the pairs that are judged to be respectively in the
<, >, and = order in the model «, and incomparable in the original model. We

11



will put a = o when referring to the original model, @ = min+ for the min+
model, and o = SLO when referring to the SLO model.

From the results of the previous section, we can infer that S,« C Smint<
and S,5 C Smin+t>- Moreover, we know that S,= = Spint= holds, and that
So7 € Smint> U Smint< U Smint=- In other words, whatever pair is equal or
ordered in some way in the original model,it maintains its ordering in the min+
model, while the pairs of assignments that are incomparable in the original
model are distributed among the three possibilities in the min+ model.

Let us now consider the SLO model. From the results of this section, we
can infer that S,« C Ssro< and S,s> C Ssros. Moreover, S,— C Sspo—,
which implies that S,? C Ssros> U Ssro<. In other words, as in min+, also in
the SLO model pairs of assignments maintain their ordering, but none of the
incomparable pairs become equally preferred in the SLO model.

From the previous inclusions we can derive that Spin+< C Ssro< and
Smin+> C Ssro>. Incomparability of the original model becomes equality in
the min+ model. However, incomparabile assignments in the original model are
forced into one of the two strict orderings in the SLO model. Therefore, the
min+ total order is a less brutal linearization of the original ordering of CP
nets w.r.t. the SLO model. Mapping incomparability onto equality would seem
to be more reasonable than mapping it onto an arbitrary ordering, since the
choice is still left to the final user. We might conclude therefore that the min+
model is to be preferred to the SLO model, as far as the approximation of the
original model is concerned. However maximizing the minimum reward, as in
any fuzzy framework [6, 5], has proved its usefulness in problem representation.
In the end, we suggest choosing the semi-ring considering the tradeoff between
linearization of the order and suitability of the representation provided.

6 Conclusions and future work

We have proposed two remedies to the fact that consistency checking and dom-
inance query answering in CP nets are NP-complete problems. First, we have
given a new semantics for CP nets that is more tractable to reason with. Second,
we have shown how CP nets can be approximated with soft constraints. This
second remedy also allows us to integrate preference and constraint reasoning
in a single formalism.

We plan to use our approach in preference elicitation systems, to guarantee
the consistency of the user preferences, and to guide the user to a consistent
scenario. Moreover, we also plan to study the issue of abstracting one order
with another one, which has been considered here in several instances. This will
allow to derive a formal theory of abstracting orders, in which we can determine
whether the order is “adequately” preserved.

12



References

[1]

[2]

[6]

S. Bistarelli, U. Montanari and F. Rossi. Semi-Ring-based Constraint Solv-
ing and Optimization. Journal of the ACM, Vol.44, n.2, March 1997.

Craig Boutilier, Ronen I. Brafman, Holger H. Hoos, and David Poole. Rea-
soning with ceteris paribus preference statements. Proc. 15th Conf. on Un-
certainty in AT, pp. 71-80, 1999.

Craig Boutilier, Fahiem Bacchus, and Ronen I. Brafman. UCP-Networks:
A Directed Graphical Representation of Conditional Utilities. Proc. UAI
2001.

Carmel Domshlak and Ronen I. Brafman. CP-nets — Reasoning and Con-
sistency Testing. Proc. KR’02, 2002.

D. Dubois, H. Fargier and H. Prade. The calculus of fuzzy restrictions as a
basis for flexible constraint satisfaction. Proc. IEEE International Confer-
ence on Fuzzy Systems. IEEE, 1993.

T. Schiex. Possibilistic constraint satisfaction problems, or “How to handle
soft constraints?”, Proc. 8th Conf. of Uncertainty in AI, pp. 269275, 1992.

13



