
Singleton Consisten
iesPatri
k Prosser1, Kostas Stergiou2, and Toby Walsh31 Glasgow University, Glasgow, S
otland. pat�d
s.strath.a
.uk2 University of Strath
lyde, Glasgow, S
otland. ks�
s.strath.a
.uk3 University of York, York, England. tw�
s.york.a
.ukAbstra
t. We perform a
omprehensive theoreti
al and empiri
al studyof the bene�ts of singleton
onsisten
ies. Our theoreti
al results helppla
e singleton
onsisten
ies within the hierar
hy of lo
al
onsisten
ies.To determine the pra
ti
al value of these theoreti
al results, we mea-sured the
ost-e�e
tiveness of pre-pro
essing with singleton
onsisten
yalgorithms. Our experiments use both random and stru
tured problems.Whilst pre-pro
essing with singleton
onsisten
ies is not in general ben-e�
ial for random problems, it starts to pay o� when randomness andstru
ture are
ombined, and it is very worthwhile with stru
tured prob-lems like Golomb rulers. On su
h problems, pre-pro
essing with
onsis-ten
y te
hniques as strong as singleton generalized ar
-
onsisten
y (thesingleton extension of generalized ar
-
onsisten
y)
an redu
e runtimes.We also show that limiting algorithms that enfor
e singleton
onsisten-
ies to a single pass often gives a small redu
tion in the amount of prun-ing and improves their
ost-e�e
tiveness. These experimental results alsodemonstrate that
on
lusions from studies on random problems shouldbe treated with
aution.1 Introdu
tionLo
al
onsisten
y te
hniques lie
lose to the heart of
onstraint programming'ssu

ess. They
an prune values from the domain of variables, saving mu
h fruit-less exploration of the sear
h tree. They
an also terminate bran
hes of the sear
htree, again saving mu
h fruitless exploration. But how do we balan
e e�ort be-tween inferen
e (enfor
ing some level of lo
al
onsisten
y) and sear
h (exploringpartial assignments)? If we maintain a lo
al
onsisten
y te
hnique at ea
h nodein the sear
h tree, then experien
e suggests that it must not be too expensive toenfor
e. We may, however, be able to a�ord a (relatively expensive) lo
al
on-sisten
y te
hnique if it is only used for pre-pro
essing or for the �rst few levelsof sear
h. We are then fa
ed with a large number of
hoi
es as a vast menagerieof lo
al
onsisten
ies have been de�ned over the last few years. Debruyne andBessiere identi�ed singleton ar
-
onsisten
y as one of the most promising
an-didates [DB97℄. This paper therefore explores its usefulness in greater detail, aswell as that of other singleton
onsisten
ies.2 Formal ba
kgroundA
onstraint satisfa
tion problem (Csp) P is a triple (X;D;C). X is a setof variables. For ea
h xi 2 X , Di is the domain of the variable. Ea
h k-ary

2
onstraint
 2 C is de�ned over a set of variables (x1; : : : xk) by the subsetof the Cartesian produ
t D1 � : : : Dk whi
h are
onsistent values. Following[DB97℄, we denote by P jDi=fag the CSP obtained by assigning value a to variablexi. An all-di�erent
onstraint over the variables (x1; : : : xk) allows the valuesf(a1; : : : ak) j ai 2 Di &8u; v:au 6= avg. A solution is an assignment of values tovariables that is
onsistent with all
onstraints.Many lesser levels of
onsisten
y have been de�ned for binary
onstraintsatisfa
tion problems (see [DB97℄ for additional referen
es). A problem is (i; j)-
onsistent i� it has non-empty domains and any
onsistent instantiation of ivariables
an be extended to a
onsistent instantiation involving j additionalvariables [Fre85℄. A problem is strong (i; j)-
onsistent i� it is (k; j)-
onsistentfor all k � i. A problem is ar
-
onsistent (AC) i� it is (1; 1)-
onsistent. A prob-lem is path-
onsistent (PC) i� it is (2; 1)-
onsistent. A problem is strong path-
onsistent i� it is strong (2; 1)-
onsistent. A problem is path inverse
onsistent(PIC) i� it is (1; 2)-
onsistent. A problem is neighbourhood inverse
onsistent(NIC) i� any value for a variable
an be extended to a
onsistent instantiationfor its immediate neighbourhood [FE96℄. A problem is restri
ted path-
onsistent(RPC) i� it is ar
-
onsistent and if a variable assigned to a value is
onsistentwith just a single value for an adjoining variable then for any other variablethere exists a value
ompatible with these instantiations. A problem is singletonar
-
onsistent (SAC) i� it has non-empty domains and for any instantiation ofa variable, the resulting subproblem
an be made ar
-
onsistent.Many of these de�nitions
an be extended to non-binary
onstraints. Forexample, a (non-binary) Csp is generalized ar
-
onsistent (GAC) i� for anyvariable in a
onstraint and value that it is assigned, there exist
ompatiblevalues for all the other variables in the
onstraint [MM88℄. Regin gives an eÆ-
ient algorithm for enfor
ing generalized ar
-
onsisten
y on a set of all-di�erent
onstraints [Reg94℄. We
an also maintain a level of
onsisten
y at every nodein a sear
h tree. For example, the MAC algorithm for binary Csps maintainsar
-
onsisten
y at ea
h node in the sear
h tree [Gas79℄. As a se
ond example,on a non-binary problem, we
an maintain generalized ar
-
onsisten
y (MGAC)at every node in the sear
h tree.3 Singleton
onsisten
iesThe notion of a singleton
onsisten
y is general, and
an be applied to otherlevels of lo
al
onsisten
y than ar
-
onsisten
y. For instan
e, a problem is sin-gleton restri
ted path-
onsistent (SRPC) i� it has non-empty domains and forany instantiation of a variable, the resulting subproblem
an be made restri
tedpath-
onsistent [DB97℄. As a se
ond (and we believe previously unde�ned) ex-ample, a non-binary problem is singleton generalized ar
-
onsistent (SGAC) i� ithas non-empty domains and for any instantiation of a variable, the resulting sub-problem
an be made generalized ar
-
onsistent. As generalized ar
-
onsisten
yis itself a high level of
onsisten
y to a
hieve (see, for example, [SW99℄), sin-gleton generalized ar
-
onsisten
y is a very high level of
onsisten
y to a
hieve.However, as our experimental results demonstrate, it
an be very worthwhileenfor
ing it.

3One advantage of singleton
onsisten
ies (whi
h is shared with inverse
on-sisten
ies like path inverse
onsisten
y and neighbourhood inverse
onsisten
y,as well as with restri
ted path-
onsisten
y) is that enfor
ing them only requiresvalues to be pruned from the domain of variables. Enfor
ing path-
onsisten
y, by
omparison,
an
hange the
onstraint graph by adding new binary
onstraints.Note that a singleton
onsisten
y
an be a
hieved using any algorithm thata
hieves the relevant lo
al
onsisten
y. The de�nition of singleton
onsisten
yonly insists we
an make the resulting subproblem lo
ally
onsistent. We arenot interested in what values need to be pruned (or nogoods added) to make thesubproblem lo
ally
onsistent. We
an therefore use a lazy approa
h to enfor
ingthe lo
al
onsisten
y. For example, we
an use the lazy AC7 algorithm [SRGV96℄when a
hieving SAC.In this paper, we have used the algorithm proposed in [DB97℄ to a
hieve SACand a simple generalization of this algorithm to n�ary CSPs to a
hieve SGAC.To a
hieve SAC (SGAC) in a CSP P , this algorithm �rst a
hieves AC (GAC)and then goes through ea
h variable xi in P . For every value a in the domainof xi it
he
ks if the subproblem P jDi=fag is AC (GAC). If it is not then a isremoved from the domain of xi and AC (GAC) is enfor
ed. Failure to do someans that P is not SAC (SGAC). The pro
ess of going through the variablesin the CSP
ontinues while new in
onsistent values are dete
ted and deleted. Inshort, there is an inner loop that goes through the variables and an outer loopthat keeps this pro
ess going while new values are deleted.The worst-
ase
omplexity of a
hieving SAC is O(en2d4), where e is thenumber of
onstraints, n the number of variables, and d the domain size. Fornon-binary
onstraints, if we assume that GAC-s
hema [BR97℄ is used to en-for
e GAC then the worst
ase
omplexity of a
hieving SGAC is O(en2d2k),where k is the arity of the
onstraints. For the spe
ialized
ase of all-di�erent
onstraints, taking advantage of Regin's algorithm means that SGAC
an bea
hieved with O(
n4d4) worst-
ase
omplexity, where
 is the number of all-di�erent
onstraints.We
an redu
e the average
ost of the above algorithm by making just onepass, i.e., going through the variables and deleting in
onsistent values only on
e.This deletes less values and thus a
hieves a lesser level of
onsisten
y than SAC(SGAC), but as our experimental results show, is, in some
ases, very
ost-e�e
tive. We
all this algorithm restri
ted SAC (SGAC).4 Theoreti
al resultsFollowing [DB97℄, we
all a
onsisten
y property A stronger than B (A � B) i�in any problem in whi
h A holds then B holds, and stri
tly stronger (A > B) i�it is stronger and there is at least one problem in whi
h B holds but A does not.We
all a lo
al
onsisten
y property A in
omparable with B (A � B) i� A isnot stronger than B nor vi
e versa. Finally, we
all a lo
al
onsisten
y propertyA equivalent to B i� A implies B and vi
e versa. The following relationshipssummarize the most important results from [DB97℄ and elsewhere: strong PC >SAC > PIC > RPC > AC, NIC > PIC, NIC � SAC, and NIC � strong PC.

4 Our �rst result shows that a singleton
onsisten
y is stronger than the
or-responding lo
al
onsisten
y. A lo
al
onsisten
y property A is monotoni
 i�when a problem is A-
onsistent then any subproblem formed by instantiating avariable is also A-
onsistent. Most lo
al
onsisten
ies (e.g. all those introdu
edso far) are monotoni
.Theorem 1. If A-
onsisten
y is monotoni
 then singleton A-
onsisten
y � A-
onsisten
y.Proof. Immediate from the de�nitions of monotoni
 and singleton
onsisten
y.Note that it is possible to
onstru
t (admittedly bizarre) lo
al
onsisten
ieswhi
h are not monotoni
. For example,
onsider a weakened form of AC whi
h isequivalent to AC on every ar
 ex
ept the ar
 between variables x1 and x2 wheneither are instantiated. If we take a problem in whi
h the ar
 between x1 and x2is not AC, then this weakened form of AC will dete
t the ar
-in
onsisten
y butthe singleton
onsisten
y will not. On this problem, the singleton
onsisten
yis a
tually weaker than the
orresponding lo
al
onsisten
y. Note also that asingleton
onsisten
y is not ne
essarily stri
tly stronger than the
orrespondingmonotoni
 lo
al
onsisten
y. For example, on problems whose
onstraint graphsare trees, SAC is only equivalent to AC (sin
e ar
-
onsisten
y is already enoughto guarantee global
onsisten
y).Our next result allows us to map many previous results up to singleton
on-sisten
ies. For example, as RPC is stronger than AC, singleton RPC is strongerthan SAC.Theorem 2. If A-
onsisten
y � B-
onsisten
y then singleton A-
onsisten
y �singleton B-
onsisten
y.Proof. Consider a problem that is singleton A-
onsistent, and a subproblemformed from instantiating a variable. Now this subproblem is A-
onsistent. AsA � B, this subproblem is B-
onsistent. Hen
e the original problem is singletonB-
onsistent.Note that we do not need A-
onsisten
y or B-
onsisten
y to be monotoni
 forthis proof to work. Debruyne and Bessiere prove that SAC is stri
tly strongerthan PIC [DB97℄. We
an generalize this proof to show that singleton (i; j)-
onsisten
y is stri
tly stronger than (i; j+1)-
onsisten
y. Debruyne and Bessiere'sresult is then a spe
ial
ase for i = j = 1. In addition, [DB97℄ does not give theproof of stri
tness, so for
ompleteness we give it here for the
ase i = j = 1.Theorem 3. Singleton (i; j)-
onsisten
y > (i; j + 1)-
onsisten
y.Proof. Consider a problem that is singleton (i; j)-
onsistent, and the subproblemresulting from any possible instantiation. This subproblem is (i; j)-
onsistent.Hen
e, for any
onsistent instantiation for i variables in the subproblem, we
anextend it to j other variables. That is, for any instantiation of i variables in theoriginal problem, we
an extend it to j + 1 other variables. Hen
e the original

5problem is (i; j + 1)-
onsistent. To show stri
tness,
onsider i = j = 1 and aproblem in four 0-1 variables with the
onstraints x1 6= x2, x2 6= x3, x2 6= x4,x3 6= x4. This is path inverse
onsistent. However, enfor
ing SAC proves thatthe problem is insoluble sin
e if we instantiate x1 with either of its values, theresulting subproblem
annot be made ar
-
onsistent.Debruyne and Bessiere also prove that strong PC is stri
tly stronger thanSAC [DB97℄. We
an also generalize this proof, showing that strong (i + 1; j)-
onsisten
y is stri
tly stronger than singleton (i; j)-
onsisten
y. Debruyne andBessiere's result is again a spe
ial
ase for i = j = 1. As before, [DB97℄ doesnot give the proof of stri
tness, so for
ompleteness we give it here for the
asei = j = 1.Theorem 4. Strong (i+ 1; j)-
onsisten
y > singleton (i; j)-
onsisten
y.Proof. Consider a problem that is strongly (i + 1; j)-
onsistent. Any
onsistentinstantiation for i + 1 variables
an be extended to j other variables. As theoriginal problem was strongly (i + 1; j)-
onsistent, it is (i; j)-
onsistent. Hen
ea subproblem formed by instantiating one variable is (i; j)-
onsistent, and any
onsistent instantiation of i variables
an be extended to j other variables. Thusthe original problem is singleton (i; j)-
onsistent. To show stri
tness,
onsideri = j = 1 and a problem in three 0-1 variables with x1 6= x2 and x1 6= x3.The problem is SAC. But it is not path-
onsistent sin
e the
onsistent partialassignment x2 = 0 and x3 = 1
annot be extended. Enfor
ing path-
onsisten
yadds the
onstraint x2 = x3.The last two results show that singleton (i; j)-
onsisten
y is sandwi
hed be-tween strong (i + 1; j)-
onsisten
y and (i; j + 1)-
onsisten
y. Finally, we givesome results
on
erning SGAC. Whilst this is a very high level of
onsisten
y toa
hieve in general, our experiments show that it
an be very worthwhile providedwe have an eÆ
ient algorithm to a
hieve it (as we do for the all-di�erent
on-straint). In [SW99℄, GAC was
ompared against binary
onsisten
ies (like SAC)on de
omposable non-binary
onstraints. These are non-binary
onstraints that
an be represented by binary
onstraints on the same set of variables [De
90℄.For example, an all-di�erent
onstraint
an be de
omposed into a
lique of not-equals
onstraints. De
omposable
onstraints are a spe
ial
ase of non-binary
onstraints where
omparisons between the binary and non-binary representa-tions are very dire
t. Constraints whi
h are not de
omposable (like parity
on-straints) require us to introdu
e additional variables to represent them usingbinary
onstraints. These additional variables make
omparisons more
ompli-
ated.Theorem 5. On de
omposable non-binary
onstraints, singleton generalized ar
-
onsisten
y is stri
tly stronger than singleton ar
-
onsisten
y on the binary de-
omposition.Proof. The proof follows immediately from Theorem 1, and the result of [SW99℄that GAC is stri
tly stronger than AC on the binary de
omposition. To show

6stri
tness,
onsider three all-di�erent
onstraints on fx1; x2; x3g, on fx1; x2; x4g,and on fx1; x3; x4g, in whi
h all variables have the domain f1; 2; 3g. The bi-nary de
omposition is SAC. But enfor
ing SGAC proves that the problem isunsatis�able.Though SGAC is a very high level of
onsisten
y to enfor
e, it is in
omparablein general to both strong PC and NIC on the binary de
omposition.Theorem 6. On de
omposable non-binary
onstraints, singleton generalized ar
-
onsisten
y is in
omparable to strong path-
onsisten
y and to neighbourhood in-verse
onsisten
y on the binary de
omposition.Proof. Consider a problem with six all-di�erent
onstraints on fx1; x2; x3g, onfx1; x3; x4g, on fx1; x4; x5g, on fx1; x2; x5g, on fx2; x3; x4g, and on fx3; x4; x5g.All variables have the domain f1; 2; 3; 4g. This problem is SGAC be
ause anyinstantiation of a variable results in a problem that is GAC. Enfor
ing NIC,however, shows that the problem is insoluble. Consider a problem with threenot-equals
onstraints, x1 6= x2, x1 6= x3, x2 6= x3 in whi
h ea
h variable has thesame domain of size two. This problem is SGAC but enfor
ing strong PC provesthat it is insoluble.Consider the following 2-
olouring problem. We have 5 variables, x1 to x5arranged in a ring. Ea
h variable has the same domain of size 2. Between ea
hpair of neighbouring variables in the binary de
omposition, there is a not-equals
onstraint. In the non-binary representation, we post a single
onstraint on all5 variables. This problem is NIC, but enfor
ing SGAC on the non-binary repre-sentation shows that the problem is insoluble. Finally,
onsider an all-di�erent
onstraint on 4 variables, ea
h with the same domain of size 3. The binary rep-resentation of the problem is strong PC but enfor
ing SGAC shows that it isinsoluble.5 Random problemsThese theoreti
al results help pla
e singleton
onsisten
ies within the hierar
hyof lo
al
onsisten
ies. But how useful are singleton
onsisten
ies in pra
ti
e? Toexplore this issue, we ran experiments �rst with random problems, then withproblems that
ombine stru
ture and randomness, and afterwards with morerealisti
 stru
tured problems. One of our intentions was to determine how wellresults from random problems predi
ted behaviour on more realisti
 problems.Our starting point is [DB97℄ whi
h reports a set of experiments on randomproblems with 20 variables and 10 values. These experiments identify how well
onsisten
y te
hniques like SAC approximate global
onsisten
y, and give theratio of the number of values pruned to the CPU times at di�erent points inthe phase spa
e. Debruyne and Bessiere
on
lude that SAC is a very promisinglo
al
onsisten
y te
hnique, removing most of the strong path-in
onsistent valueswhile requiring less time than path inverse
onsisten
y.Debruyne and Bessiere's experiments su�er from two limitations. First, theirexperiments only measure the ability of singleton ar
-
onsisten
y to approxi-mate global
onsisten
y. They do not tell us if SAC is useful within
omplete

7sear
h pro
edures like MAC. For instan
e, does pre-pro
essing with singletonar
-
onsisten
y redu
e MAC's sear
h enough to justify its
ost? Can we a�ordto maintain SAC within (a number of levels of) sear
h? Se
ond, their experimentswere restri
ted to random binary problems. Do results on random problems pre-di
t well behaviour on real problems? What about non-binary problems? Can itpay to enfor
e the singleton version of non-binary
onsisten
ies like GAC? Ourexperiments ta
kle both these issues.5.1 SAC and AC as a pre-pro
essMa
kworth's AC3 algorithm was en
oded and used to implement the AC andSAC pre-pro
esses and the domain �ltering within the FC and MAC sear
h al-gorithms. The reason AC3 was
hosen is be
ause it allows a standard measureof
omparison between algorithms, namely the
onsisten
y
he
k. FC was imple-mented as a
rippled version of MAC, i.e. propagation within AC3 was disabledbeyond the
onstraints in
ident on the
urrent variable.
1000

10000

100000

1e+06

1e+07

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

m
ea

n
co

ns
is

te
nc

y
ch

ec
ks

constraint tightness

 SAC
 AC

(a) 0

20

40

60

80

100

120

140

160

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

m
ea

n
de

le
tio

ns

constraint tightness

 SAC
 AC

(b)Fig. 1. SAC and AC pre-pro
essing for h20; 10; 0:5i: on the left (a) e�ort measured asmean
onsisten
y
he
ks and on the right (b) values deletedFigure 1a shows the mean pre-pro
essing
ost measured in
onsisten
y
he
ksfor AC and SAC over h20; 10; 0:5i model-B problems with a sample size of 500(i.e. problems studied by Debruyne and Bessiere) at ea
h value of
onstrainttightness p2. Looking at the
ontours for SAC and AC we see that the two blendtogether at the ar
-
onsisten
y phase transition (p2 � 0:65). This is expe
tedas the �rst phase of SAC is to make the problem ar
-
onsistent. If this phasedete
ts ar
-in
onsisten
y the problem is also SAC in
onsistent and there is nomore work to do.Figure 1b shows the average number of values removed from the problem bypre-pro
essing. Again, we see the SAC and AC
ontours blend together at theAC phase transition. About 80% of values are deleted in order to show SACinsolubility (p2 � 0:41), and about 70% for AC insolubility. The solubility phasetransition for this problem is round about p2 � 0:37, and we see next to no values

8being deleted by SAC until p2 � 0:38. This does not bode well for redu
tion insear
h e�ort for this problem.5.2 Sear
h after SAC
1000

10000

100000

1e+06

1e+07

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

m
ea

n
co

ns
is

te
nc

y
ch

ec
ks

constraint tightness

SAC-MAC
 SAC-FC

 AC-MAC
 MAC
 AC-FC

 FC

(a) 1

10

100

1000

10000

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

m
ea

n
no

de
s

vi
si

te
d

constraint tightness

search cost in nodes

 FC
 AC-FC

 SAC-FC
 MAC

 AC-MAC
SAC-MAC

(b)Fig. 2. Sear
h
ost for MAC and FC over h20; 10; 0:5i with and without pre-pro
essing:on the left (a) e�ort measured as mean
onsisten
y
he
ks and on the right (b) e�ortmeasured as nodes visitedFigure 2a shows the total
ost of determining if a h20; 10; 0:5i problem issoluble using the MAC and FC algorithm with various pre-pro
essing steps,both algorithms using the MRV dvo heuristi
. Constraint tightness p2 was in-
remented in steps of 0.01, and at ea
h value of p2 100 problems were analyzed.Cost is measured as average
onsisten
y
he
ks, whi
h also dire
tly
orrespondsto
pu times. The
ost of SAC pre-pro
essing dominates sear
h
ost. SAC-MACand SAC-FC
ompare poorly with their AC and null pre-pro
essing equivalents.At the solubility phase transition, p2 � 0:37, the average
ost of SAC-MACis 605K
he
ks whereas MAC without any pre-pro
ess
osts 198K
he
ks. The
ost of SAC pre-pro
essing from Figure 1 is 432K
he
ks at p2 = 0:37. Thissuggests that in these problems SAC is an une
onomi
al overhead. In fa
t wesee the solubility
omplexity peak dominated to su
h a degree that it appearsshifted right to the higher value of
onstrainedness asso
iated with the SACphase transition. Around the solubility phase transition it was observed thatfor all algorithms studied soluble problems were easier than insoluble problems.This was most notable for SAC-FC, the reason being that SAC pre-pro
essingfrequently dete
ted insolubility, but this was at the
ost of deleting many valuesfrom variables,
hanging the problem and this in turn initiates more iterationsof the outermost loop of the SAC algorithm. As an aside it should be noted thatAC-FC exhibits a twin peaked
omplexity
ontour, the se
ond (and lower) peakdue to the AC phase transition.Figure 2b shows
ost measured in median nodes visited. SAC pre-pro
essingmakes no impa
t on the size of the sear
h tree explored until it starts to delete

9values. As noted in Figure 1a, this does not begin to o

ur until just after thesolubility phase transition. Consequently we see a redu
tion in nodes visited onlyas we approa
h the SAC phase transition, i.e. values of p2 > 0:4.5.3 Dense problems and large sparse problemsWe investigated denser problems and large sparse problems. For the denseh20; 10; 1:0i problems sear
h
osts dominate pre-pro
essing when problems arehard. At the solubility
omplexity peak p2 = 0:21 the
ost of SAC pre-pro
essingwas about 680K
he
ks whereas SAC-MAC took 1835K
he
ks, MAC alone took1163K
he
ks, SAC-FC took 931K
he
ks, and FC alone took 258K
he
ks.Therefore, although SAC pre-pro
essing shows no advantage it is now substan-tially less e�ort than the sear
h pro
ess on hard problems.In the sparse h50; 10; 0:1i problems MAC and FC
ompete with ea
h otherover hard problems. Although the SAC pre-pro
ess
ontinues to be une
onomi
,it is just beginning to break even. In parti
ular, on 100 (hard) instan
es ofh50; 10; 0:1; 0:55i of the 26 insoluble instan
es 22 were dete
ted by the SAC pre-pro
ess, and 23 of the 74 soluble instan
es were dis
overed without ba
ktra
king.In total 43 of the soluble instan
es took less than 100 sear
h nodes. A studyof h50; 10; 0:2i problems, i.e large but slightly denser, showed that SAC pre-pro
essing was again une
onomi
al.These experiments suggest that SAC pre-pro
essing may be worthwhile onlarger sparse problems with tight
onstraints, but une
onomi
al on dense prob-lems with relatively loose
onstraints.6 Small-world problemsTo test the eÆ
ien
y of singleton
onsisten
y te
hniques on problems with stru
-ture, we �rst studied \small-world" problems. These are problems that
ombinestru
ture and randomness. In graphs with \small world" topology, nodes arehighly
lustered, whilst the path length between them is small. Re
ently, Wattsand Strogatz have shown su
h graphs o

ur in many biologi
al, so
ial and man-made systems that are often neither
ompletely regular nor
ompletely random[WS98℄. Walsh has argued that su
h a topology
an make sear
h problems hardsin
e lo
al de
isions qui
kly propagate globally [Wal99℄. To
onstru
t graphs withsu
h a topology, we start from the
onstraint graph of a stru
tured problem likea quasigroup. Note that a quasigroup
an be modelled using either all-di�erent
onstraints for ea
h row and
olumn or
liques of binary \not-equals"
onstraints.To introdu
e randomness, we add edges at random in the binary representation.Small world problems
reated in this way qui
kly be
ome very hard when theorder of the quasigroup is in
reased.Figures 3a and 3b show the median number of bran
hes explored and the
putime used when GAC and SGAC are used for prepro
essing small-world problems
reated by randomly adding edges to an order 6 quasigroup. GAC on the all-di�erent
onstraints is maintained during sear
h. The x-axis gives the per
entageof added edges in the total number of edges left to turn the quasigroup into a

10
omplete graph. 100 problems were generated at ea
h data point. We do notin
lude SAC and AC prepro
essing in Figures 3a and 3b be
ause they have noimpa
t as they do no pruning at all. This is not surprising, be
ause of the natureof the
onstraints. AC on a binary \not-equals"
onstraint may delete a valuefrom one of the variables only if the other one has a singleton domain. Likewise,when SAC redu
es a variable x to a singleton value v then v is removed from thedomain of all variables
onstrained with x, but no more �ltering
an be made.As a result, there
an be no singleton ar
-in
onsistent values in problems withdomain size 6.
0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 10 20 30 40 50 60

GAC
SGAC

(a) 0

2

4

6

8

10

12

14

0 10 20 30 40 50 60

GAC
SGAC

(b)Fig. 3. Sear
h
ost for GAC and SGAC. On the left (a) e�ort measured as bran
hesexplored and on the right (b) e�ort measured as
pu time used (in se
onds).Prepro
essing with SGAC is very eÆ
ient espe
ially at the solubility
om-plexity peak and in the insoluble region, where insolubility is dete
ted withoutsear
h for most insoluble instan
es. SGAC prepro
essing is also
ost-e�e
tive forsoluble instan
es, espe
ially for hard ones near the
omplexity peak, as it
utsdown the number of bran
hes explored signi�
antly. CPU times are also redu
eddespite the
ost of prepro
essing. The presen
e of stru
ture in the problemsmakes SGAC mu
h more eÆ
ient than on purely random problems.7 Problems of distan
eTo test singleton
onsisten
y te
hniques on a
lass of stru
tured, and non-binaryproblems, we ran experiments on a variety of problems of distan
e. This general
lass of problems is introdu
ed in [SSW00℄, and models several
hallenging
om-binatorial problems in
luding Golomb rulers and all-interval series. A problemof distan
es is de�ned by a graph in whi
h nodes are labelled with integers, theedges are labelled by the di�eren
e between the node labels at either end of ea
hedge, and there are
onstraints that all edge labels are di�erent. As in [SSW00℄,we model su
h problems with variables for both the nodes and edges, ternary
onstraints of the form dij = jxi � xj j that limit the values given to the edges,and a single all-di�erent
onstraint on the edges.

117.1 Golomb rulersPeter van Beek has proposed the Golomb ruler problem as a
hallenging
on-straint satisfa
tion problem for the CSPLib ben
hmark library (available asprob006 at http://
splib.
s.strath.a
.uk).The problem spe
i�
ation giventhere is:\A Golomb ruler may be de�ned as a set of m integers 0 = x1 < x2 <::: < xm, su
h that the m(m � 1)=2 di�eren
es xj � xi, 1 � i < j � m,are distin
t. Su
h a ruler is said to
ontain m marks and is of lengthxm. The obje
tive is to �nd optimal (minimum length) or near optimalrulers."Golomb rulers are problems of distan
e in whi
h the underlying graph is
om-plete. To turn optimization into satisfa
tion, we build a sequen
e of de
isionproblems, redu
ing am until the problem be
omes unsatis�able. The longest
urrently known optimal ruler has 21 marks and length 333. Peter van Beekreports that even quite small problems (with fewer than �fteen marks) are verydiÆ
ult for
omplete methods su
h as ba
ktra
king sear
h, and that their diÆ-
ulty lies both in proving optimality and in �nding a solution, sin
e the problemshave either a unique solution or just a handful of solutions.Marks Bran
hes CPU timeAC SAC restri
ted SAC AC SAC restri
ted SAC7-F 10 10 10 0.15 1.27 0.637-P 87 65 65 0.20 1.25 0.838-F 26 26 26 0.22 2.98 1.5648-P 506 461 461 1.55 3.52 2.269-F 309 282 282 1.28 8.00 4.049-P 2489 2318 2318 8.44 13.73 10.3010-F 1703 1692 1692 6.05 27.45 13.4110-P 11684 9658 9665 56.18 68.16 54.1711-F 7007 6584 6584 26.98 87.74 48.7211-P 202137 193419 193498 1240.90 1170.77 1151.70Table 1. Bran
hes explored and
pu time in se
onds when trying to �nd a ruler ofoptimal length (F) or prove that no shorter exists (P). Prepro
essing was done withAC, SAC and restri
ted SAC.Table 1 shows the sear
h
ost in bran
hes and
pu time for algorithms thatprepro
ess with AC, SAC and restri
ted SAC, and maintain GAC during sear
h.Although prepro
essing with SAC deletes
onsiderably more values than prepro-
essing with AC, this is not re
e
ted in the sear
h e�ort.Table 2 shows the sear
h e�ort for algorithms that prepro
ess with GAC,SGAC, and restri
ted SGAC, and maintain GAC on the all-di�erent
onstraintduring sear
h. SGAC deletes a large number of values during prepro
essing (morethan 60% in some
ases) and that has a notable e�e
t on sear
h. The number

12 Marks Bran
hes CPU timeGAC SGAC restri
ted SGAC GAC SGAC restri
ted SGAC7-F 10 5 6 0.15 1.06 0.587-P 87 0 0 0.18 0.34 0.328-F 26 22 22 0.21 2.49 1.298-P 506 265 339 1.57 3.21 1.559-F 309 261 262 1.30 5.14 2.909-P 2489 1844 1862 8.64 8.56 5.9210-F 1703 1592 1592 6.16 14.61 9.1510-P 11684 7823 7924 56.35 37.65 30.7711-F 7007 6464 6464 27.04 65.53 37.9611-P 202137 98967 99602 1239.81 491.58 442.96Table 2. Bran
hes explored and
pu time in se
onds when prepro
essing with GAC,SGAC and restri
ted SGAC.of explored bran
hes is
ut down, espe
ially when trying to prove optimality,and despite the
ost of prepro
essing, there is a gain in
pu times for the harderinstan
es. Restri
ted SGAC seems a better option than full SGAC sin
e it deletesalmost the same number of values and is more eÆ
ient in
pu times.Given the good results obtained by prepro
essing with SGAC, we investigatedwhether maintaining su
h a high level of
onsisten
y during sear
h is worthwhile.Our results showed that maintaining SGAC even for depth 1 in sear
h (i.e., atthe �rst variable) is too expensive. When trying to �nd an optimal ruler, weenfor
ed SGAC after instantiating the �rst variable. As a result, the numberof bran
hes was
ut down (though not signi�
antly), but runtimes were higher.When trying to prove optimality, we enfor
ed SGAC after ea
h value of the �rstvariable was tried. Again there was a gain in bran
hes, but runtimes were mu
hhigher than before.7.2 2-d Golomb rulers and all-interval seriesA Golomb ruler is a problem of distan
e in whi
h the underlying graph is
om-plete (i.e. a
lique). Our results with random problems suggest that singleton
onsisten
ies will show more promise on sparser problems. What happens thenwith problems of distan
e in whi
h the underlying graph (and hen
e the asso
i-ated
onstraint graph) is sparser? For example, in a 2-d Golomb ruler we have(2 or more) layers of
liques, with edges between node i in
lique j and node iin
lique j + 1. A 2-d Golomb ruler with k layers has a
onstraint graph withapproximately 1=k the edges of that of a 1-d Golomb ruler of the same size.Table 3 shows the sear
h e�ort for algorithms that prepro
ess with GAC,SGAC, and restri
ted SGAC, and maintain GAC on the all-di�erent
onstraintduring sear
h. SGAC prepro
essing redu
es the number of bran
hes, and the
pu times in the harder instan
es (rulers with 6 marks), but the e�e
t is not assigni�
ant as in the 1-d
ase.

13Marks Bran
hes CPU timeGAC SGAC restri
ted SGAC GAC SGAC restri
ted SGAC3-F 1 0 0 0.051 0.120 0.0683-P 6 0 0 0.048 0.052 0.0504-F 32 26 26 0.27 0.693 0.4074-P 210 74 191 0.389 1.228 0.5985-F 1404 1276 1276 2.552 3.767 3.1115-P 8177 7521 7521 14.764 14.389 13.5546-F 133010 113723 113723 376.23 321.553 317.0336-P 433087 357320 357320 1420.63 1071.82 1067.32Table 3. Bran
hes explored, and
pu time in se
onds when GAC, SGAC and restri
tedSGAC are used for prepro
essing 2-d Golmb rulers.An even sparser problem of distan
e is the all-interval series problem. Thisproblem was proposed by Holger Hoos as a
hallenging
onstraint satisfa
tionproblem for the CSPLib ben
hmark library (available as prob007 athttp://
splib.
s.strath.a
.uk). All-interval series are problems of distan
ein whi
h the underlying graph is a simple ring. They therefore have an asso-
iated
onstraint graph whi
h is very sparse
ompared to 1-d and 2-d Golombrulers. In the
ase of all-interval series, prepro
essing with SAC and SGAC hadno e�e
t as no values were pruned. Also, enfor
ing SAC (SGAC) at depth 1 hadvery little impa
t on the number of bran
hes explored and in
reased runtimes.8 Related workAs mentioned brie
y before, Debruyne and Bessiere
ompared the ability of avariety of di�erent lo
al
onsisten
ies (e.g. AC, RPC, PIC, SAC, strong PC,and NIC) at approximating global
onsisten
y on randomly generated binaryproblems with 20 variables and 10 values. [DB97℄. In addition, they
omputedthe ratio of CPU time to number of values pruned. They
on
luded that SACand RPC are both promising, the �rst having a good CPU time to number ofvalues pruned, and the se
ond requiring little additional CPU time to AC butpruning most of the values of path inverse
onsisten
y. Debruyne and Bessierealso studied singleton restri
ted path-
onsisten
y (SRPC) but
on
luded that itis too expensive despite its ability to prune many values.Closely related inferen
e te
hniques have shown promise in the neighbour-ing �eld of propositional satis�ability (SAT). One of the best pro
edures tosolve the SAT problem is the Davis-Putnam (DP) pro
edure [DLL62℄. The DPpro
edure
onsists of three main rules: the empty rule (whi
h fails and ba
k-tra
ks when an empty
lause is generated), the unit propagation rule (whi
hdeterministi
ally assigns any unit literal), and the bran
hing or split rule (whi
hnon-deterministi
ally assigns a truth value to a
hosen variable). The e�e
tive-ness of DP is in large part due to the power of unit propagation. Note thatthe unit propagation rule is e�e
tively the \singleton" empty rule. That is, ifwe assign the
omplement of an unit
lause, the empty rule will show that the

14resulting problem is unsatis�able; we
an therefore delete this assignment. Other\singleton"
onsisten
ies (spe
i�
ally that provided by the \singleton" unit rule)might therefore be of value. Indeed, some of the best
urrent implementationsof DP already perform a limited amount of \singleton" unit reasoning, havingheuristi
s that
hoose between a set of literals to bran
h upon by the amount ofunit propagation that they
ause [LA97℄.Smith, Stergiou and Walsh performed an extensive theoreti
al and empiri
alanalysis of the use of auxiliary variables and implied
onstraints in models ofproblems of distan
e [SSW00℄. They identi�ed a large number of di�erent models,both binary and non-binary, and
ompared theoreti
ally the level of
onsisten
ya
hieved by GAC on them. Their experiments on 1-d, 2-d and
ir
ular Golombrulers showed that the introdu
tion of auxiliary variables and implied
onstraintssigni�
antly redu
es the size of the sear
h spa
e. For instan
e, their �nal modelsredu
ed the time to �nd an optimal 10-mark Golomb ruler 50-fold.9 Con
lusionsWe have performed a
omprehensive theoreti
al and empiri
al study of the ben-e�ts of singleton
onsisten
ies. For example, we proved that singleton (i; j)-
onsisten
y is sandwi
hed between strong (i + 1; j)-
onsisten
y and (i; j + 1)-
onsisten
y. We also proved that, on non-binary
onstraints, singleton gener-alized ar
-
onsisten
y (the singleton extension of generalized ar
-
onsisten
y)is stri
tly stronger than both generalized ar
-
onsisten
y and singleton ar
-
onsisten
y (on the binary de
omposition). Singleton generalized ar
-
onsisten
yis, however, in
omparable to neighbourhood inverse
onsisten
y and strong path-
onsisten
y (on the binary de
omposition). Singleton generalized ar
-
onsisten
yis a very high level of
onsisten
y to a
hieve. Nevertheless our experimentsshowed that it
an be worthwhile if we have an eÆ
ient algorithm (as we dofor all-di�erent
onstraints). We ran experiments on both random and stru
-tured problems. On random problems, singleton ar
-
onsisten
y was rarely
ost-e�e
tive as a pre-pro
essing te
hnique. However, it did best on sparse problems.Results on problems with stru
ture were quite di�erent. On small-world prob-lems, 1-d and 2-d Golomb rulers, singleton generalized ar
-
onsisten
y was often
ost-e�e
tive as a pre-pro
essing te
hnique, espe
ially on large and insolubleproblems. Unlike random problems, more bene�ts were seen on dense prob-lems than on sparse problems. Our experiments also showed that restri
tingalgorithms that enfor
e singleton
onsisten
ies to one pass only gave a smallredu
tion in the amount of pruning.What general lessons
an be learned from this study? First, singleton
onsis-ten
ies
an be useful for pre-pro
essing but
an be too expensive for maintain-ing, even during the initial parts of sear
h only. Se
ond, singleton
onsisten
iesappear to be most bene�
ial on large, unsatis�able and stru
tured problems.Third, limiting algorithms that enfor
e singleton
onsisten
ies to a single passmakes a small dent on their ability to prune values, and
an thus improve their
ost-e�e
tiveness. Fourth, provided we have an eÆ
ient algorithm, it
an payto enfor
e
onsisten
ies as high as singleton generalized ar
-
onsisten
y. And�nally, random problems
an be very misleading. Our experiments on random

15problems suggested that pre-pro
essing with singleton
onsisten
ies was rarely
ost-e�e
tive and that it was most bene�
ial on sparse problems. The results ofour experiments on stru
tured problems
ould hardly be more
ontradi
tory.A
knowledgementsThe third author is supported by an EPSRC advan
ed resear
h fellowship. Theauthors are members of the APES (http://www.
s.strath.a
.uk/~apes) resear
hgroup and thank the other members for their
omments and feedba
k.Referen
es[BR97℄ C. Bessi�ere and J.C. R�egin. Ar

onsisten
y for general
onstraint networks:Preliminary results. In Pro
eedings IJCAI-97, pages 398{404, 1997.[DB97℄ R. Debruyne and C. Bessi�ere. Some pra
ti
able �ltering te
hniques for the
onstraint satisfa
tion problem. In Pro
eedings of the 15th IJCAI, pages412{417. International Joint Conferen
e on Arti�
ial Intelligen
e, 1997.[De
90℄ R. De
hter. On the expressiveness of networks with hidden variables. InPro
eedings of the 8th National Conferen
e on AI, pages 555{562. Ameri
anAsso
iation for Arti�
ial Intelligen
e, 1990.[DLL62℄ M. Davis, G. Logemann, and D. Loveland. A ma
hine program for theorem-proving. Communi
ations of the ACM, 5:394{397, 1962.[FE96℄ E. Freuder and C.D. Elfe. Neighborhood inverse
onsisten
y prepro
ess-ing. In Pro
eedings of the 12th National Conferen
e on AI, pages 202{208.Ameri
an Asso
iation for Arti�
ial Intelligen
e, 1996.[Fre85℄ E. Freuder. A suÆ
ient
ondition for ba
ktra
k-bounded sear
h. Journal ofthe Asso
iation for Computing Ma
hinery, 32(4):755{761, 1985.[Gas79℄ J. Gas
hnig. Performan
e measurement and analysis of
ertain sear
h al-gorithms. Te
hni
al report CMU-CS-79-124, Carnegie-Mellon University,1979. PhD thesis.[LA97℄ C.M. Li and Anbulagan. Heuristi
s based on unit propagation for satis�abil-ity problems. In Pro
eedings of the 15th IJCAI, pages 366{371. InternationalJoint Conferen
e on Arti�
ial Intelligen
e, 1997.[MM88℄ R. Mohr and G. Masini. Good old dis
rete relaxation. In Pro
eedings of theEuropean Conferen
e on Arti�
ial Intelligen
e (ECAI-88), pages 651{656,1988.[Reg94℄ J-C. R�egin. A �ltering algorithm for
onstraints of di�eren
e in CSPs. InPro
eedings of the 12th National Conferen
e on AI, pages 362{367. Ameri
anAsso
iation for Arti�
ial Intelligen
e, 1994.[SRGV96℄ T. S
hiex, J.C. R�egin, C. Gaspin, and G. Verfaillie. Lazy ar

onsisten
y.In Pro
eedings of the 12th National Conferen
e on Arti�
ial Intelligen
e(AAAI-96), pages 216{221, Portland, Oregon, 1996.[SSW00℄ B. Smith, K. Stergiou, and T. Walsh. Using auxiliary variables and implied
onstraints to model non-binary problems. In To appear in Pro
eedings of the17th National Conferen
e on Arti�
ial Intelligen
e (AAAI-2000), Austin,Texas, 2000.[SW99℄ K. Stergiou and T. Walsh. The di�eren
e all-di�eren
e makes. In Pro
eedingsof 16th IJCAI. International Joint Conferen
e on Arti�
ial Intelligen
e, 1999.[Wal99℄ T. Walsh. Sear
h in a small world. In Pro
eedings of IJCAI-99, 1999.[WS98℄ D.J. Watts and S.H. Strogatz. Colle
tive dynami
s of 'small-world' networks.Nature, 393:440{442, 1998.

