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t. We perform a 
omprehensive theoreti
al and empiri
al studyof the bene�ts of singleton 
onsisten
ies. Our theoreti
al results helppla
e singleton 
onsisten
ies within the hierar
hy of lo
al 
onsisten
ies.To determine the pra
ti
al value of these theoreti
al results, we mea-sured the 
ost-e�e
tiveness of pre-pro
essing with singleton 
onsisten
yalgorithms. Our experiments use both random and stru
tured problems.Whilst pre-pro
essing with singleton 
onsisten
ies is not in general ben-e�
ial for random problems, it starts to pay o� when randomness andstru
ture are 
ombined, and it is very worthwhile with stru
tured prob-lems like Golomb rulers. On su
h problems, pre-pro
essing with 
onsis-ten
y te
hniques as strong as singleton generalized ar
-
onsisten
y (thesingleton extension of generalized ar
-
onsisten
y) 
an redu
e runtimes.We also show that limiting algorithms that enfor
e singleton 
onsisten-
ies to a single pass often gives a small redu
tion in the amount of prun-ing and improves their 
ost-e�e
tiveness. These experimental results alsodemonstrate that 
on
lusions from studies on random problems shouldbe treated with 
aution.1 Introdu
tionLo
al 
onsisten
y te
hniques lie 
lose to the heart of 
onstraint programming'ssu

ess. They 
an prune values from the domain of variables, saving mu
h fruit-less exploration of the sear
h tree. They 
an also terminate bran
hes of the sear
htree, again saving mu
h fruitless exploration. But how do we balan
e e�ort be-tween inferen
e (enfor
ing some level of lo
al 
onsisten
y) and sear
h (exploringpartial assignments)? If we maintain a lo
al 
onsisten
y te
hnique at ea
h nodein the sear
h tree, then experien
e suggests that it must not be too expensive toenfor
e. We may, however, be able to a�ord a (relatively expensive) lo
al 
on-sisten
y te
hnique if it is only used for pre-pro
essing or for the �rst few levelsof sear
h. We are then fa
ed with a large number of 
hoi
es as a vast menagerieof lo
al 
onsisten
ies have been de�ned over the last few years. Debruyne andBessiere identi�ed singleton ar
-
onsisten
y as one of the most promising 
an-didates [DB97℄. This paper therefore explores its usefulness in greater detail, aswell as that of other singleton 
onsisten
ies.2 Formal ba
kgroundA 
onstraint satisfa
tion problem (Csp) P is a triple (X;D;C). X is a setof variables. For ea
h xi 2 X , Di is the domain of the variable. Ea
h k-ary



2
onstraint 
 2 C is de�ned over a set of variables (x1; : : : xk) by the subsetof the Cartesian produ
t D1 � : : : Dk whi
h are 
onsistent values. Following[DB97℄, we denote by P jDi=fag the CSP obtained by assigning value a to variablexi. An all-di�erent 
onstraint over the variables (x1; : : : xk) allows the valuesf(a1; : : : ak) j ai 2 Di &8u; v:au 6= avg. A solution is an assignment of values tovariables that is 
onsistent with all 
onstraints.Many lesser levels of 
onsisten
y have been de�ned for binary 
onstraintsatisfa
tion problems (see [DB97℄ for additional referen
es). A problem is (i; j)-
onsistent i� it has non-empty domains and any 
onsistent instantiation of ivariables 
an be extended to a 
onsistent instantiation involving j additionalvariables [Fre85℄. A problem is strong (i; j)-
onsistent i� it is (k; j)-
onsistentfor all k � i. A problem is ar
-
onsistent (AC) i� it is (1; 1)-
onsistent. A prob-lem is path-
onsistent (PC) i� it is (2; 1)-
onsistent. A problem is strong path-
onsistent i� it is strong (2; 1)-
onsistent. A problem is path inverse 
onsistent(PIC) i� it is (1; 2)-
onsistent. A problem is neighbourhood inverse 
onsistent(NIC) i� any value for a variable 
an be extended to a 
onsistent instantiationfor its immediate neighbourhood [FE96℄. A problem is restri
ted path-
onsistent(RPC) i� it is ar
-
onsistent and if a variable assigned to a value is 
onsistentwith just a single value for an adjoining variable then for any other variablethere exists a value 
ompatible with these instantiations. A problem is singletonar
-
onsistent (SAC) i� it has non-empty domains and for any instantiation ofa variable, the resulting subproblem 
an be made ar
-
onsistent.Many of these de�nitions 
an be extended to non-binary 
onstraints. Forexample, a (non-binary) Csp is generalized ar
-
onsistent (GAC) i� for anyvariable in a 
onstraint and value that it is assigned, there exist 
ompatiblevalues for all the other variables in the 
onstraint [MM88℄. Regin gives an eÆ-
ient algorithm for enfor
ing generalized ar
-
onsisten
y on a set of all-di�erent
onstraints [Reg94℄. We 
an also maintain a level of 
onsisten
y at every nodein a sear
h tree. For example, the MAC algorithm for binary Csps maintainsar
-
onsisten
y at ea
h node in the sear
h tree [Gas79℄. As a se
ond example,on a non-binary problem, we 
an maintain generalized ar
-
onsisten
y (MGAC)at every node in the sear
h tree.3 Singleton 
onsisten
iesThe notion of a singleton 
onsisten
y is general, and 
an be applied to otherlevels of lo
al 
onsisten
y than ar
-
onsisten
y. For instan
e, a problem is sin-gleton restri
ted path-
onsistent (SRPC) i� it has non-empty domains and forany instantiation of a variable, the resulting subproblem 
an be made restri
tedpath-
onsistent [DB97℄. As a se
ond (and we believe previously unde�ned) ex-ample, a non-binary problem is singleton generalized ar
-
onsistent (SGAC) i� ithas non-empty domains and for any instantiation of a variable, the resulting sub-problem 
an be made generalized ar
-
onsistent. As generalized ar
-
onsisten
yis itself a high level of 
onsisten
y to a
hieve (see, for example, [SW99℄), sin-gleton generalized ar
-
onsisten
y is a very high level of 
onsisten
y to a
hieve.However, as our experimental results demonstrate, it 
an be very worthwhileenfor
ing it.



3One advantage of singleton 
onsisten
ies (whi
h is shared with inverse 
on-sisten
ies like path inverse 
onsisten
y and neighbourhood inverse 
onsisten
y,as well as with restri
ted path-
onsisten
y) is that enfor
ing them only requiresvalues to be pruned from the domain of variables. Enfor
ing path-
onsisten
y, by
omparison, 
an 
hange the 
onstraint graph by adding new binary 
onstraints.Note that a singleton 
onsisten
y 
an be a
hieved using any algorithm thata
hieves the relevant lo
al 
onsisten
y. The de�nition of singleton 
onsisten
yonly insists we 
an make the resulting subproblem lo
ally 
onsistent. We arenot interested in what values need to be pruned (or nogoods added) to make thesubproblem lo
ally 
onsistent. We 
an therefore use a lazy approa
h to enfor
ingthe lo
al 
onsisten
y. For example, we 
an use the lazy AC7 algorithm [SRGV96℄when a
hieving SAC.In this paper, we have used the algorithm proposed in [DB97℄ to a
hieve SACand a simple generalization of this algorithm to n�ary CSPs to a
hieve SGAC.To a
hieve SAC (SGAC) in a CSP P , this algorithm �rst a
hieves AC (GAC)and then goes through ea
h variable xi in P . For every value a in the domainof xi it 
he
ks if the subproblem P jDi=fag is AC (GAC). If it is not then a isremoved from the domain of xi and AC (GAC) is enfor
ed. Failure to do someans that P is not SAC (SGAC). The pro
ess of going through the variablesin the CSP 
ontinues while new in
onsistent values are dete
ted and deleted. Inshort, there is an inner loop that goes through the variables and an outer loopthat keeps this pro
ess going while new values are deleted.The worst-
ase 
omplexity of a
hieving SAC is O(en2d4), where e is thenumber of 
onstraints, n the number of variables, and d the domain size. Fornon-binary 
onstraints, if we assume that GAC-s
hema [BR97℄ is used to en-for
e GAC then the worst 
ase 
omplexity of a
hieving SGAC is O(en2d2k),where k is the arity of the 
onstraints. For the spe
ialized 
ase of all-di�erent
onstraints, taking advantage of Regin's algorithm means that SGAC 
an bea
hieved with O(
n4d4) worst-
ase 
omplexity, where 
 is the number of all-di�erent 
onstraints.We 
an redu
e the average 
ost of the above algorithm by making just onepass, i.e., going through the variables and deleting in
onsistent values only on
e.This deletes less values and thus a
hieves a lesser level of 
onsisten
y than SAC(SGAC), but as our experimental results show, is, in some 
ases, very 
ost-e�e
tive. We 
all this algorithm restri
ted SAC (SGAC).4 Theoreti
al resultsFollowing [DB97℄, we 
all a 
onsisten
y property A stronger than B (A � B) i�in any problem in whi
h A holds then B holds, and stri
tly stronger (A > B) i�it is stronger and there is at least one problem in whi
h B holds but A does not.We 
all a lo
al 
onsisten
y property A in
omparable with B (A � B) i� A isnot stronger than B nor vi
e versa. Finally, we 
all a lo
al 
onsisten
y propertyA equivalent to B i� A implies B and vi
e versa. The following relationshipssummarize the most important results from [DB97℄ and elsewhere: strong PC >SAC > PIC > RPC > AC, NIC > PIC, NIC � SAC, and NIC � strong PC.



4 Our �rst result shows that a singleton 
onsisten
y is stronger than the 
or-responding lo
al 
onsisten
y. A lo
al 
onsisten
y property A is monotoni
 i�when a problem is A-
onsistent then any subproblem formed by instantiating avariable is also A-
onsistent. Most lo
al 
onsisten
ies (e.g. all those introdu
edso far) are monotoni
.Theorem 1. If A-
onsisten
y is monotoni
 then singleton A-
onsisten
y � A-
onsisten
y.Proof. Immediate from the de�nitions of monotoni
 and singleton 
onsisten
y.Note that it is possible to 
onstru
t (admittedly bizarre) lo
al 
onsisten
ieswhi
h are not monotoni
. For example, 
onsider a weakened form of AC whi
h isequivalent to AC on every ar
 ex
ept the ar
 between variables x1 and x2 wheneither are instantiated. If we take a problem in whi
h the ar
 between x1 and x2is not AC, then this weakened form of AC will dete
t the ar
-in
onsisten
y butthe singleton 
onsisten
y will not. On this problem, the singleton 
onsisten
yis a
tually weaker than the 
orresponding lo
al 
onsisten
y. Note also that asingleton 
onsisten
y is not ne
essarily stri
tly stronger than the 
orrespondingmonotoni
 lo
al 
onsisten
y. For example, on problems whose 
onstraint graphsare trees, SAC is only equivalent to AC (sin
e ar
-
onsisten
y is already enoughto guarantee global 
onsisten
y).Our next result allows us to map many previous results up to singleton 
on-sisten
ies. For example, as RPC is stronger than AC, singleton RPC is strongerthan SAC.Theorem 2. If A-
onsisten
y � B-
onsisten
y then singleton A-
onsisten
y �singleton B-
onsisten
y.Proof. Consider a problem that is singleton A-
onsistent, and a subproblemformed from instantiating a variable. Now this subproblem is A-
onsistent. AsA � B, this subproblem is B-
onsistent. Hen
e the original problem is singletonB-
onsistent.Note that we do not need A-
onsisten
y or B-
onsisten
y to be monotoni
 forthis proof to work. Debruyne and Bessiere prove that SAC is stri
tly strongerthan PIC [DB97℄. We 
an generalize this proof to show that singleton (i; j)-
onsisten
y is stri
tly stronger than (i; j+1)-
onsisten
y. Debruyne and Bessiere'sresult is then a spe
ial 
ase for i = j = 1. In addition, [DB97℄ does not give theproof of stri
tness, so for 
ompleteness we give it here for the 
ase i = j = 1.Theorem 3. Singleton (i; j)-
onsisten
y > (i; j + 1)-
onsisten
y.Proof. Consider a problem that is singleton (i; j)-
onsistent, and the subproblemresulting from any possible instantiation. This subproblem is (i; j)-
onsistent.Hen
e, for any 
onsistent instantiation for i variables in the subproblem, we 
anextend it to j other variables. That is, for any instantiation of i variables in theoriginal problem, we 
an extend it to j + 1 other variables. Hen
e the original



5problem is (i; j + 1)-
onsistent. To show stri
tness, 
onsider i = j = 1 and aproblem in four 0-1 variables with the 
onstraints x1 6= x2, x2 6= x3, x2 6= x4,x3 6= x4. This is path inverse 
onsistent. However, enfor
ing SAC proves thatthe problem is insoluble sin
e if we instantiate x1 with either of its values, theresulting subproblem 
annot be made ar
-
onsistent.Debruyne and Bessiere also prove that strong PC is stri
tly stronger thanSAC [DB97℄. We 
an also generalize this proof, showing that strong (i + 1; j)-
onsisten
y is stri
tly stronger than singleton (i; j)-
onsisten
y. Debruyne andBessiere's result is again a spe
ial 
ase for i = j = 1. As before, [DB97℄ doesnot give the proof of stri
tness, so for 
ompleteness we give it here for the 
asei = j = 1.Theorem 4. Strong (i+ 1; j)-
onsisten
y > singleton (i; j)-
onsisten
y.Proof. Consider a problem that is strongly (i + 1; j)-
onsistent. Any 
onsistentinstantiation for i + 1 variables 
an be extended to j other variables. As theoriginal problem was strongly (i + 1; j)-
onsistent, it is (i; j)-
onsistent. Hen
ea subproblem formed by instantiating one variable is (i; j)-
onsistent, and any
onsistent instantiation of i variables 
an be extended to j other variables. Thusthe original problem is singleton (i; j)-
onsistent. To show stri
tness, 
onsideri = j = 1 and a problem in three 0-1 variables with x1 6= x2 and x1 6= x3.The problem is SAC. But it is not path-
onsistent sin
e the 
onsistent partialassignment x2 = 0 and x3 = 1 
annot be extended. Enfor
ing path-
onsisten
yadds the 
onstraint x2 = x3.The last two results show that singleton (i; j)-
onsisten
y is sandwi
hed be-tween strong (i + 1; j)-
onsisten
y and (i; j + 1)-
onsisten
y. Finally, we givesome results 
on
erning SGAC. Whilst this is a very high level of 
onsisten
y toa
hieve in general, our experiments show that it 
an be very worthwhile providedwe have an eÆ
ient algorithm to a
hieve it (as we do for the all-di�erent 
on-straint). In [SW99℄, GAC was 
ompared against binary 
onsisten
ies (like SAC)on de
omposable non-binary 
onstraints. These are non-binary 
onstraints that
an be represented by binary 
onstraints on the same set of variables [De
90℄.For example, an all-di�erent 
onstraint 
an be de
omposed into a 
lique of not-equals 
onstraints. De
omposable 
onstraints are a spe
ial 
ase of non-binary
onstraints where 
omparisons between the binary and non-binary representa-tions are very dire
t. Constraints whi
h are not de
omposable (like parity 
on-straints) require us to introdu
e additional variables to represent them usingbinary 
onstraints. These additional variables make 
omparisons more 
ompli-
ated.Theorem 5. On de
omposable non-binary 
onstraints, singleton generalized ar
-
onsisten
y is stri
tly stronger than singleton ar
-
onsisten
y on the binary de-
omposition.Proof. The proof follows immediately from Theorem 1, and the result of [SW99℄that GAC is stri
tly stronger than AC on the binary de
omposition. To show



6stri
tness, 
onsider three all-di�erent 
onstraints on fx1; x2; x3g, on fx1; x2; x4g,and on fx1; x3; x4g, in whi
h all variables have the domain f1; 2; 3g. The bi-nary de
omposition is SAC. But enfor
ing SGAC proves that the problem isunsatis�able.Though SGAC is a very high level of 
onsisten
y to enfor
e, it is in
omparablein general to both strong PC and NIC on the binary de
omposition.Theorem 6. On de
omposable non-binary 
onstraints, singleton generalized ar
-
onsisten
y is in
omparable to strong path-
onsisten
y and to neighbourhood in-verse 
onsisten
y on the binary de
omposition.Proof. Consider a problem with six all-di�erent 
onstraints on fx1; x2; x3g, onfx1; x3; x4g, on fx1; x4; x5g, on fx1; x2; x5g, on fx2; x3; x4g, and on fx3; x4; x5g.All variables have the domain f1; 2; 3; 4g. This problem is SGAC be
ause anyinstantiation of a variable results in a problem that is GAC. Enfor
ing NIC,however, shows that the problem is insoluble. Consider a problem with threenot-equals 
onstraints, x1 6= x2, x1 6= x3, x2 6= x3 in whi
h ea
h variable has thesame domain of size two. This problem is SGAC but enfor
ing strong PC provesthat it is insoluble.Consider the following 2-
olouring problem. We have 5 variables, x1 to x5arranged in a ring. Ea
h variable has the same domain of size 2. Between ea
hpair of neighbouring variables in the binary de
omposition, there is a not-equals
onstraint. In the non-binary representation, we post a single 
onstraint on all5 variables. This problem is NIC, but enfor
ing SGAC on the non-binary repre-sentation shows that the problem is insoluble. Finally, 
onsider an all-di�erent
onstraint on 4 variables, ea
h with the same domain of size 3. The binary rep-resentation of the problem is strong PC but enfor
ing SGAC shows that it isinsoluble.5 Random problemsThese theoreti
al results help pla
e singleton 
onsisten
ies within the hierar
hyof lo
al 
onsisten
ies. But how useful are singleton 
onsisten
ies in pra
ti
e? Toexplore this issue, we ran experiments �rst with random problems, then withproblems that 
ombine stru
ture and randomness, and afterwards with morerealisti
 stru
tured problems. One of our intentions was to determine how wellresults from random problems predi
ted behaviour on more realisti
 problems.Our starting point is [DB97℄ whi
h reports a set of experiments on randomproblems with 20 variables and 10 values. These experiments identify how well
onsisten
y te
hniques like SAC approximate global 
onsisten
y, and give theratio of the number of values pruned to the CPU times at di�erent points inthe phase spa
e. Debruyne and Bessiere 
on
lude that SAC is a very promisinglo
al 
onsisten
y te
hnique, removing most of the strong path-in
onsistent valueswhile requiring less time than path inverse 
onsisten
y.Debruyne and Bessiere's experiments su�er from two limitations. First, theirexperiments only measure the ability of singleton ar
-
onsisten
y to approxi-mate global 
onsisten
y. They do not tell us if SAC is useful within 
omplete



7sear
h pro
edures like MAC. For instan
e, does pre-pro
essing with singletonar
-
onsisten
y redu
e MAC's sear
h enough to justify its 
ost? Can we a�ordto maintain SAC within (a number of levels of) sear
h? Se
ond, their experimentswere restri
ted to random binary problems. Do results on random problems pre-di
t well behaviour on real problems? What about non-binary problems? Can itpay to enfor
e the singleton version of non-binary 
onsisten
ies like GAC? Ourexperiments ta
kle both these issues.5.1 SAC and AC as a pre-pro
essMa
kworth's AC3 algorithm was en
oded and used to implement the AC andSAC pre-pro
esses and the domain �ltering within the FC and MAC sear
h al-gorithms. The reason AC3 was 
hosen is be
ause it allows a standard measureof 
omparison between algorithms, namely the 
onsisten
y 
he
k. FC was imple-mented as a 
rippled version of MAC, i.e. propagation within AC3 was disabledbeyond the 
onstraints in
ident on the 
urrent variable.
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(b)Fig. 1. SAC and AC pre-pro
essing for h20; 10; 0:5i: on the left (a) e�ort measured asmean 
onsisten
y 
he
ks and on the right (b) values deletedFigure 1a shows the mean pre-pro
essing 
ost measured in 
onsisten
y 
he
ksfor AC and SAC over h20; 10; 0:5i model-B problems with a sample size of 500(i.e. problems studied by Debruyne and Bessiere) at ea
h value of 
onstrainttightness p2. Looking at the 
ontours for SAC and AC we see that the two blendtogether at the ar
-
onsisten
y phase transition (p2 � 0:65). This is expe
tedas the �rst phase of SAC is to make the problem ar
-
onsistent. If this phasedete
ts ar
-in
onsisten
y the problem is also SAC in
onsistent and there is nomore work to do.Figure 1b shows the average number of values removed from the problem bypre-pro
essing. Again, we see the SAC and AC 
ontours blend together at theAC phase transition. About 80% of values are deleted in order to show SACinsolubility (p2 � 0:41), and about 70% for AC insolubility. The solubility phasetransition for this problem is round about p2 � 0:37, and we see next to no values



8being deleted by SAC until p2 � 0:38. This does not bode well for redu
tion insear
h e�ort for this problem.5.2 Sear
h after SAC
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(b)Fig. 2. Sear
h 
ost for MAC and FC over h20; 10; 0:5i with and without pre-pro
essing:on the left (a) e�ort measured as mean 
onsisten
y 
he
ks and on the right (b) e�ortmeasured as nodes visitedFigure 2a shows the total 
ost of determining if a h20; 10; 0:5i problem issoluble using the MAC and FC algorithm with various pre-pro
essing steps,both algorithms using the MRV dvo heuristi
. Constraint tightness p2 was in-
remented in steps of 0.01, and at ea
h value of p2 100 problems were analyzed.Cost is measured as average 
onsisten
y 
he
ks, whi
h also dire
tly 
orrespondsto 
pu times. The 
ost of SAC pre-pro
essing dominates sear
h 
ost. SAC-MACand SAC-FC 
ompare poorly with their AC and null pre-pro
essing equivalents.At the solubility phase transition, p2 � 0:37, the average 
ost of SAC-MACis 605K 
he
ks whereas MAC without any pre-pro
ess 
osts 198K 
he
ks. The
ost of SAC pre-pro
essing from Figure 1 is 432K 
he
ks at p2 = 0:37. Thissuggests that in these problems SAC is an une
onomi
al overhead. In fa
t wesee the solubility 
omplexity peak dominated to su
h a degree that it appearsshifted right to the higher value of 
onstrainedness asso
iated with the SACphase transition. Around the solubility phase transition it was observed thatfor all algorithms studied soluble problems were easier than insoluble problems.This was most notable for SAC-FC, the reason being that SAC pre-pro
essingfrequently dete
ted insolubility, but this was at the 
ost of deleting many valuesfrom variables, 
hanging the problem and this in turn initiates more iterationsof the outermost loop of the SAC algorithm. As an aside it should be noted thatAC-FC exhibits a twin peaked 
omplexity 
ontour, the se
ond (and lower) peakdue to the AC phase transition.Figure 2b shows 
ost measured in median nodes visited. SAC pre-pro
essingmakes no impa
t on the size of the sear
h tree explored until it starts to delete



9values. As noted in Figure 1a, this does not begin to o

ur until just after thesolubility phase transition. Consequently we see a redu
tion in nodes visited onlyas we approa
h the SAC phase transition, i.e. values of p2 > 0:4.5.3 Dense problems and large sparse problemsWe investigated denser problems and large sparse problems. For the denseh20; 10; 1:0i problems sear
h 
osts dominate pre-pro
essing when problems arehard. At the solubility 
omplexity peak p2 = 0:21 the 
ost of SAC pre-pro
essingwas about 680K 
he
ks whereas SAC-MAC took 1835K 
he
ks, MAC alone took1163K 
he
ks, SAC-FC took 931K 
he
ks, and FC alone took 258K 
he
ks.Therefore, although SAC pre-pro
essing shows no advantage it is now substan-tially less e�ort than the sear
h pro
ess on hard problems.In the sparse h50; 10; 0:1i problems MAC and FC 
ompete with ea
h otherover hard problems. Although the SAC pre-pro
ess 
ontinues to be une
onomi
,it is just beginning to break even. In parti
ular, on 100 (hard) instan
es ofh50; 10; 0:1; 0:55i of the 26 insoluble instan
es 22 were dete
ted by the SAC pre-pro
ess, and 23 of the 74 soluble instan
es were dis
overed without ba
ktra
king.In total 43 of the soluble instan
es took less than 100 sear
h nodes. A studyof h50; 10; 0:2i problems, i.e large but slightly denser, showed that SAC pre-pro
essing was again une
onomi
al.These experiments suggest that SAC pre-pro
essing may be worthwhile onlarger sparse problems with tight 
onstraints, but une
onomi
al on dense prob-lems with relatively loose 
onstraints.6 Small-world problemsTo test the eÆ
ien
y of singleton 
onsisten
y te
hniques on problems with stru
-ture, we �rst studied \small-world" problems. These are problems that 
ombinestru
ture and randomness. In graphs with \small world" topology, nodes arehighly 
lustered, whilst the path length between them is small. Re
ently, Wattsand Strogatz have shown su
h graphs o

ur in many biologi
al, so
ial and man-made systems that are often neither 
ompletely regular nor 
ompletely random[WS98℄. Walsh has argued that su
h a topology 
an make sear
h problems hardsin
e lo
al de
isions qui
kly propagate globally [Wal99℄. To 
onstru
t graphs withsu
h a topology, we start from the 
onstraint graph of a stru
tured problem likea quasigroup. Note that a quasigroup 
an be modelled using either all-di�erent
onstraints for ea
h row and 
olumn or 
liques of binary \not-equals" 
onstraints.To introdu
e randomness, we add edges at random in the binary representation.Small world problems 
reated in this way qui
kly be
ome very hard when theorder of the quasigroup is in
reased.Figures 3a and 3b show the median number of bran
hes explored and the 
putime used when GAC and SGAC are used for prepro
essing small-world problems
reated by randomly adding edges to an order 6 quasigroup. GAC on the all-di�erent 
onstraints is maintained during sear
h. The x-axis gives the per
entageof added edges in the total number of edges left to turn the quasigroup into a
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omplete graph. 100 problems were generated at ea
h data point. We do notin
lude SAC and AC prepro
essing in Figures 3a and 3b be
ause they have noimpa
t as they do no pruning at all. This is not surprising, be
ause of the natureof the 
onstraints. AC on a binary \not-equals" 
onstraint may delete a valuefrom one of the variables only if the other one has a singleton domain. Likewise,when SAC redu
es a variable x to a singleton value v then v is removed from thedomain of all variables 
onstrained with x, but no more �ltering 
an be made.As a result, there 
an be no singleton ar
-in
onsistent values in problems withdomain size 6.
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(b)Fig. 3. Sear
h 
ost for GAC and SGAC. On the left (a) e�ort measured as bran
hesexplored and on the right (b) e�ort measured as 
pu time used (in se
onds).Prepro
essing with SGAC is very eÆ
ient espe
ially at the solubility 
om-plexity peak and in the insoluble region, where insolubility is dete
ted withoutsear
h for most insoluble instan
es. SGAC prepro
essing is also 
ost-e�e
tive forsoluble instan
es, espe
ially for hard ones near the 
omplexity peak, as it 
utsdown the number of bran
hes explored signi�
antly. CPU times are also redu
eddespite the 
ost of prepro
essing. The presen
e of stru
ture in the problemsmakes SGAC mu
h more eÆ
ient than on purely random problems.7 Problems of distan
eTo test singleton 
onsisten
y te
hniques on a 
lass of stru
tured, and non-binaryproblems, we ran experiments on a variety of problems of distan
e. This general
lass of problems is introdu
ed in [SSW00℄, and models several 
hallenging 
om-binatorial problems in
luding Golomb rulers and all-interval series. A problemof distan
es is de�ned by a graph in whi
h nodes are labelled with integers, theedges are labelled by the di�eren
e between the node labels at either end of ea
hedge, and there are 
onstraints that all edge labels are di�erent. As in [SSW00℄,we model su
h problems with variables for both the nodes and edges, ternary
onstraints of the form dij = jxi � xj j that limit the values given to the edges,and a single all-di�erent 
onstraint on the edges.



117.1 Golomb rulersPeter van Beek has proposed the Golomb ruler problem as a 
hallenging 
on-straint satisfa
tion problem for the CSPLib ben
hmark library (available asprob006 at http://
splib.
s.strath.a
.uk).The problem spe
i�
ation giventhere is:\A Golomb ruler may be de�ned as a set of m integers 0 = x1 < x2 <::: < xm, su
h that the m(m � 1)=2 di�eren
es xj � xi, 1 � i < j � m,are distin
t. Su
h a ruler is said to 
ontain m marks and is of lengthxm. The obje
tive is to �nd optimal (minimum length) or near optimalrulers."Golomb rulers are problems of distan
e in whi
h the underlying graph is 
om-plete. To turn optimization into satisfa
tion, we build a sequen
e of de
isionproblems, redu
ing am until the problem be
omes unsatis�able. The longest
urrently known optimal ruler has 21 marks and length 333. Peter van Beekreports that even quite small problems (with fewer than �fteen marks) are verydiÆ
ult for 
omplete methods su
h as ba
ktra
king sear
h, and that their diÆ-
ulty lies both in proving optimality and in �nding a solution, sin
e the problemshave either a unique solution or just a handful of solutions.Marks Bran
hes CPU timeAC SAC restri
ted SAC AC SAC restri
ted SAC7-F 10 10 10 0.15 1.27 0.637-P 87 65 65 0.20 1.25 0.838-F 26 26 26 0.22 2.98 1.5648-P 506 461 461 1.55 3.52 2.269-F 309 282 282 1.28 8.00 4.049-P 2489 2318 2318 8.44 13.73 10.3010-F 1703 1692 1692 6.05 27.45 13.4110-P 11684 9658 9665 56.18 68.16 54.1711-F 7007 6584 6584 26.98 87.74 48.7211-P 202137 193419 193498 1240.90 1170.77 1151.70Table 1. Bran
hes explored and 
pu time in se
onds when trying to �nd a ruler ofoptimal length (F) or prove that no shorter exists (P). Prepro
essing was done withAC, SAC and restri
ted SAC.Table 1 shows the sear
h 
ost in bran
hes and 
pu time for algorithms thatprepro
ess with AC, SAC and restri
ted SAC, and maintain GAC during sear
h.Although prepro
essing with SAC deletes 
onsiderably more values than prepro-
essing with AC, this is not re
e
ted in the sear
h e�ort.Table 2 shows the sear
h e�ort for algorithms that prepro
ess with GAC,SGAC, and restri
ted SGAC, and maintain GAC on the all-di�erent 
onstraintduring sear
h. SGAC deletes a large number of values during prepro
essing (morethan 60% in some 
ases) and that has a notable e�e
t on sear
h. The number



12 Marks Bran
hes CPU timeGAC SGAC restri
ted SGAC GAC SGAC restri
ted SGAC7-F 10 5 6 0.15 1.06 0.587-P 87 0 0 0.18 0.34 0.328-F 26 22 22 0.21 2.49 1.298-P 506 265 339 1.57 3.21 1.559-F 309 261 262 1.30 5.14 2.909-P 2489 1844 1862 8.64 8.56 5.9210-F 1703 1592 1592 6.16 14.61 9.1510-P 11684 7823 7924 56.35 37.65 30.7711-F 7007 6464 6464 27.04 65.53 37.9611-P 202137 98967 99602 1239.81 491.58 442.96Table 2. Bran
hes explored and 
pu time in se
onds when prepro
essing with GAC,SGAC and restri
ted SGAC.of explored bran
hes is 
ut down, espe
ially when trying to prove optimality,and despite the 
ost of prepro
essing, there is a gain in 
pu times for the harderinstan
es. Restri
ted SGAC seems a better option than full SGAC sin
e it deletesalmost the same number of values and is more eÆ
ient in 
pu times.Given the good results obtained by prepro
essing with SGAC, we investigatedwhether maintaining su
h a high level of 
onsisten
y during sear
h is worthwhile.Our results showed that maintaining SGAC even for depth 1 in sear
h (i.e., atthe �rst variable) is too expensive. When trying to �nd an optimal ruler, weenfor
ed SGAC after instantiating the �rst variable. As a result, the numberof bran
hes was 
ut down (though not signi�
antly), but runtimes were higher.When trying to prove optimality, we enfor
ed SGAC after ea
h value of the �rstvariable was tried. Again there was a gain in bran
hes, but runtimes were mu
hhigher than before.7.2 2-d Golomb rulers and all-interval seriesA Golomb ruler is a problem of distan
e in whi
h the underlying graph is 
om-plete (i.e. a 
lique). Our results with random problems suggest that singleton
onsisten
ies will show more promise on sparser problems. What happens thenwith problems of distan
e in whi
h the underlying graph (and hen
e the asso
i-ated 
onstraint graph) is sparser? For example, in a 2-d Golomb ruler we have(2 or more) layers of 
liques, with edges between node i in 
lique j and node iin 
lique j + 1. A 2-d Golomb ruler with k layers has a 
onstraint graph withapproximately 1=k the edges of that of a 1-d Golomb ruler of the same size.Table 3 shows the sear
h e�ort for algorithms that prepro
ess with GAC,SGAC, and restri
ted SGAC, and maintain GAC on the all-di�erent 
onstraintduring sear
h. SGAC prepro
essing redu
es the number of bran
hes, and the
pu times in the harder instan
es (rulers with 6 marks), but the e�e
t is not assigni�
ant as in the 1-d 
ase.



13Marks Bran
hes CPU timeGAC SGAC restri
ted SGAC GAC SGAC restri
ted SGAC3-F 1 0 0 0.051 0.120 0.0683-P 6 0 0 0.048 0.052 0.0504-F 32 26 26 0.27 0.693 0.4074-P 210 74 191 0.389 1.228 0.5985-F 1404 1276 1276 2.552 3.767 3.1115-P 8177 7521 7521 14.764 14.389 13.5546-F 133010 113723 113723 376.23 321.553 317.0336-P 433087 357320 357320 1420.63 1071.82 1067.32Table 3. Bran
hes explored, and 
pu time in se
onds when GAC, SGAC and restri
tedSGAC are used for prepro
essing 2-d Golmb rulers.An even sparser problem of distan
e is the all-interval series problem. Thisproblem was proposed by Holger Hoos as a 
hallenging 
onstraint satisfa
tionproblem for the CSPLib ben
hmark library (available as prob007 athttp://
splib.
s.strath.a
.uk). All-interval series are problems of distan
ein whi
h the underlying graph is a simple ring. They therefore have an asso-
iated 
onstraint graph whi
h is very sparse 
ompared to 1-d and 2-d Golombrulers. In the 
ase of all-interval series, prepro
essing with SAC and SGAC hadno e�e
t as no values were pruned. Also, enfor
ing SAC (SGAC) at depth 1 hadvery little impa
t on the number of bran
hes explored and in
reased runtimes.8 Related workAs mentioned brie
y before, Debruyne and Bessiere 
ompared the ability of avariety of di�erent lo
al 
onsisten
ies (e.g. AC, RPC, PIC, SAC, strong PC,and NIC) at approximating global 
onsisten
y on randomly generated binaryproblems with 20 variables and 10 values. [DB97℄. In addition, they 
omputedthe ratio of CPU time to number of values pruned. They 
on
luded that SACand RPC are both promising, the �rst having a good CPU time to number ofvalues pruned, and the se
ond requiring little additional CPU time to AC butpruning most of the values of path inverse 
onsisten
y. Debruyne and Bessierealso studied singleton restri
ted path-
onsisten
y (SRPC) but 
on
luded that itis too expensive despite its ability to prune many values.Closely related inferen
e te
hniques have shown promise in the neighbour-ing �eld of propositional satis�ability (SAT). One of the best pro
edures tosolve the SAT problem is the Davis-Putnam (DP) pro
edure [DLL62℄. The DPpro
edure 
onsists of three main rules: the empty rule (whi
h fails and ba
k-tra
ks when an empty 
lause is generated), the unit propagation rule (whi
hdeterministi
ally assigns any unit literal), and the bran
hing or split rule (whi
hnon-deterministi
ally assigns a truth value to a 
hosen variable). The e�e
tive-ness of DP is in large part due to the power of unit propagation. Note thatthe unit propagation rule is e�e
tively the \singleton" empty rule. That is, ifwe assign the 
omplement of an unit 
lause, the empty rule will show that the



14resulting problem is unsatis�able; we 
an therefore delete this assignment. Other\singleton" 
onsisten
ies (spe
i�
ally that provided by the \singleton" unit rule)might therefore be of value. Indeed, some of the best 
urrent implementationsof DP already perform a limited amount of \singleton" unit reasoning, havingheuristi
s that 
hoose between a set of literals to bran
h upon by the amount ofunit propagation that they 
ause [LA97℄.Smith, Stergiou and Walsh performed an extensive theoreti
al and empiri
alanalysis of the use of auxiliary variables and implied 
onstraints in models ofproblems of distan
e [SSW00℄. They identi�ed a large number of di�erent models,both binary and non-binary, and 
ompared theoreti
ally the level of 
onsisten
ya
hieved by GAC on them. Their experiments on 1-d, 2-d and 
ir
ular Golombrulers showed that the introdu
tion of auxiliary variables and implied 
onstraintssigni�
antly redu
es the size of the sear
h spa
e. For instan
e, their �nal modelsredu
ed the time to �nd an optimal 10-mark Golomb ruler 50-fold.9 Con
lusionsWe have performed a 
omprehensive theoreti
al and empiri
al study of the ben-e�ts of singleton 
onsisten
ies. For example, we proved that singleton (i; j)-
onsisten
y is sandwi
hed between strong (i + 1; j)-
onsisten
y and (i; j + 1)-
onsisten
y. We also proved that, on non-binary 
onstraints, singleton gener-alized ar
-
onsisten
y (the singleton extension of generalized ar
-
onsisten
y)is stri
tly stronger than both generalized ar
-
onsisten
y and singleton ar
-
onsisten
y (on the binary de
omposition). Singleton generalized ar
-
onsisten
yis, however, in
omparable to neighbourhood inverse 
onsisten
y and strong path-
onsisten
y (on the binary de
omposition). Singleton generalized ar
-
onsisten
yis a very high level of 
onsisten
y to a
hieve. Nevertheless our experimentsshowed that it 
an be worthwhile if we have an eÆ
ient algorithm (as we dofor all-di�erent 
onstraints). We ran experiments on both random and stru
-tured problems. On random problems, singleton ar
-
onsisten
y was rarely 
ost-e�e
tive as a pre-pro
essing te
hnique. However, it did best on sparse problems.Results on problems with stru
ture were quite di�erent. On small-world prob-lems, 1-d and 2-d Golomb rulers, singleton generalized ar
-
onsisten
y was often
ost-e�e
tive as a pre-pro
essing te
hnique, espe
ially on large and insolubleproblems. Unlike random problems, more bene�ts were seen on dense prob-lems than on sparse problems. Our experiments also showed that restri
tingalgorithms that enfor
e singleton 
onsisten
ies to one pass only gave a smallredu
tion in the amount of pruning.What general lessons 
an be learned from this study? First, singleton 
onsis-ten
ies 
an be useful for pre-pro
essing but 
an be too expensive for maintain-ing, even during the initial parts of sear
h only. Se
ond, singleton 
onsisten
iesappear to be most bene�
ial on large, unsatis�able and stru
tured problems.Third, limiting algorithms that enfor
e singleton 
onsisten
ies to a single passmakes a small dent on their ability to prune values, and 
an thus improve their
ost-e�e
tiveness. Fourth, provided we have an eÆ
ient algorithm, it 
an payto enfor
e 
onsisten
ies as high as singleton generalized ar
-
onsisten
y. And�nally, random problems 
an be very misleading. Our experiments on random



15problems suggested that pre-pro
essing with singleton 
onsisten
ies was rarely
ost-e�e
tive and that it was most bene�
ial on sparse problems. The results ofour experiments on stru
tured problems 
ould hardly be more 
ontradi
tory.A
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