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Abstract. We presenta novel approacho dealwith preferencesxpressedsa
mixture of hard constraintssoft constraintsand CP-nets We constructa setof
hard constraintswhosesolutionsare the optimal solutionsof the setof prefer
enceswhereoptimalis defineddifferentlyw.r.t. otherapproachef2, 7]. Thenew
definition of optimality introducedin this paper allows usto avoid dominance
testing (is one outcomebetterthananother?)which is a very expensve opera-
tion oftenusedwhenfinding optimal solutionsor testingoptimality, while being
reasonablandintuitive. We alsoshav how hardconstraint€ansometime®lim-
inatecyclesin the preferenceordering.Finally, we extendthis approactto deal
with the preference®f multiple agents.This simpleand eleganttechniqueper
mits conventionalconstraintand SAT solversto solve problemsinvolving both
preferencesndconstraints.

1 Intr oduction

Preferencesnd constraintsare ubiquitousin real-life scenariosWe often have hard
constraintgas*“l mustbe at the office before9am”) aswell assomepreferencegas
“I would preferto be at the office around8:30am”or “I would preferto go to work
by bicycle ratherthanby car”). Whilst formalismsto represenandreasornabouthard
constraintsarerelatively stable having beenstudiedfor over 20 years[5], preferences
have notrecevedasmuchattentionuntil morerecenttimes.Amongthe mary existing
approacheto represenpreferencesywe will considerCP-netg6, 3], which is a quali-
tative approachwherepreferencesre given by orderingoutcomegqasin “I like meat
overfish”) andsoft constraintg1], whichis a quantitatve approachwherepreferences
aregivento eachstatementn absoluteerms(asin “My preferencdor fishis 0.5and
for meatis 0.9").

It is easyto reasorwith hardandsoft constraintsatthe sametime, sincehardcon-
straintsare just a specialcaseof soft constraintsMuch lessis understoodaboutrea-
soningwith CP-netsand (hard or soft) constraintsOne of our aimsis to tackle this
problem.We will definea structurecalleda constrainedCP-net.This is just a CP-net
plusasetof hardconstraintsWe will give a semanticdor this structure(basedon the
original flipping semantic®f CP-nets)which givespriority to the hardconstraintsWe
will shov how to obtainthe optimal solutionsof sucha constrainedCP-netby com-
piling the preferencesnto a setof hard constraintswhosesolutionsare exactly the
optimal solutionsof the constrainedCP-net.This allows usto testoptimality in linear



time, evenif the CP-netis notagyclic. Findinganoptimal solutionof a constrainedCP
netis NP-hard" (asit is in CP-netsandin hardconstraints).

Prior to this work, to testoptimality of a CP-netplus a setof constraintswe had
to find all solutionsof the constraintgwhich is NP-hard)andthentestif arny of them
dominatethe solutionin question[2]. Unfortunatelydominancetestingis not known
to bein NP evenfor agyclic CP-netsaswe may have to explore chainsof worsening
flips thatareexponentiallylong. By comparisonye do not needto performdominance
testingin our approachOur semanticss alsousefulwhenthe CP-netdefinesa prefer
enceorderingthatcontainscycles,sincethehardconstraintsaneliminatethesecycles.
Lastly, sincewe compilepreferenceslown into hardconstraintswe canusestandard
constraintsolving algorithms(or SAT algorithmsif the variableshave just two values)
to reasomaboutpreferencesndconstraintsyatherthandevelop specialpurposealgo-
rithms for constrainedCP-nets(asin [2]). We also considerwhena CP-netis paired
with a setof soft constraintsandwhenthereare several CP-netsandsetsof hardor
soft constraintsin all thesecasespptimal solutionscanbe found by solving a setof
hardor soft constraintsavoiding dominanceesting.

2 Background

2.1 CP-nets

In mary applicationsit is naturalto expresspreferencesia genericqualitative (usually
partial) preferencerelationsover variableassignmentsi-or example,it is often more
intuitive to say“l preferredwine to white wine”, ratherthan“Red wine haspreference
0.7andwhitewine haspreferencd®.4”. Theformerstatemenprovideslessinformation,
but doesnot requirecarefulselectionof preferenceralues.Moreover, we oftenwish to
representonditionalpreferencesasin “If it is meat,thenl preferredwine to white”.
Qualitatve andconditionalpreferencestatementsarethususefulcomponent®f mary
applications.

CP-nets[6, 3] are a graphicalmodelfor compactlyrepresentingconditionaland
gualitative preferenceelations.They exploit conditionalpreferentiaindependencey
structuringanagents preferencesndertheceterisparibusassumptioninformally, CP-
netsare setsof conditional ceterisparibus (CP) preferencestatementskor instance,
thestatement| preferredwineto whitewineif meatis served. assertshat,giventwo
mealsthat differ only in the kind of wine sened and both containingmeat,the meal
with aredwine is preferableto the mealwith a white wine. Many users’preferences
appeato be of thistype.

CP-netsbearsomesimilarity to Bayesiannetworks. Both utilize directedgraphs
where eachnode standsfor a domainvariable,and assumea set of featuresF’ =
{X1,...,X,} with finite domainsD(X; ), .. . ,D(X,,). For eachfeatureX;, eachuser
specifiesa setof parentfeaturesPa(X;) thatcanaffect her preferencesver the val-
uesof X;. This definesa dependeng graphin which eachnode X; has Pa(X;) as

! More preciselyit is in FNP-hardsinceit is nota decisionproblem.In therestof the paperwe
will write NP meaning=NP whennot relatedto decisionproblems.



its immediatepredecessors&iventhis structuralinformation,the userexplicitly speci-
fiesher preferenceover the valuesof X; for eadh completeoutcomeon Pa(X;). This
preferences assumedo take theform of total or partialorderover D(X) [6, 3].

For example,considera CP-netwhosefeaturesare A, B, C, and D, with binary
domainscontainingf and f if F is the nameof the feature,andwith the preference
statementasfollows:a = @, b= b, (aAb)V (@AD) : c =, (aAb)V (@AD): T > c,
c:d>d,¢:d > d.Heresstatement > @ representshe unconditionalpreferencdor
A = a over A = @, while statement : d > d stateshatD = d is preferredto D = d,
giventhatC = c.

The semanticof CP-netsdependon the notion of a worseningflip. A worsening
flip is a changein the valueof a variableto a valuewhich is lesspreferredby the CP
statementor thatvariable For example,in the CP-netabove, passingrom abed to abéd
is aworsenindflip sincec is betterthane givena andb. We saythatoneoutcomex is
betterthananotheroutcomeg (written a > ) iff thereis a chainof worseningflips
from a to 8. This definitioninducesa strict partialorderoverthe outcomesin general,
theremay be mary optimal outcomesHowever, in agyclic CP-nets(thatis, CP-nets
with anagyclic dependenggraph).thereis only one.

Severaltypesof queriescanbeaskedaboutCP-netsFirst, givena CP-netwhatare
theoptimaloutcomesor agyclic CP-netssuchaqueryis answerablén lineartime [6,
3]: weforwardsweephroughthe CP-netstartingwith theunconditionalariablesfol-
lowing thearrowsin thedependenggraphandassigningateachstepthemostpreferred
valuein thepreferencéable.For instancein the CP-netabore,wewouldchoosed = a
andB = b, thenC = ¢ andthenD = d. The optimal outcomeis thereforeabcd. The
samecompleity alsoholdsfor testingwhetheran outcomeis optimalsinceanagyclic
CP-nethasonly oneoptimaloutcome We canfind this optimaloutcome(in lineartime)
andthencomparet to thegivenone(againin lineartime). Onthe otherhand for cyclic
CP-netspothfinding andtestingoptimaloutcomess NP-hard.

The secondype of queryis adominancegquery Giventwo outcomesis onebetter
thanthe other?Unfortunately this queryis NP-hardeven for agyclic CP-nets Whilst
tractablespecialcasesexist, thereare also agyclic CP-netsin which thereare expo-
nentially long chainsof worseningflips betweentwo outcomesin the CP-netof the
example,abed is worsethanabed.

2.2 Softand hard constraints

Thereare several formalismsfor describingsoft constaints We usethe c-semi-ring
formalism[1] asthis generalizesnostof theothers.n brief, asoftconstraintassociates
eachinstantiationof its variableswith a value from a partially orderedset. We also
supplyoperationgor combining(x) andcomparing(+) values.A semi-ringis a tuple
(A, +, x,0,1) suchthat: A is asetand0,1 € A; + is commutatve, associatie and
0 is its unit element;x is associatie, distributesover +, 1 is its unit elementand 0
is its absorbingelement.A c-semi-ringis a semi-ring (A, +, x,0,1) in which + is
idempotent] is its absorbingelementand x is commutatve.

Let us considerthe relation< over A suchthata < biffa +b = b. Then< is
a partial order + and x aremonotoneon <, 0 is its minimumand 1 its maximum,
(A, <) is acompletelatticeand,for all a,b € A, a + b = lub(a,b). Moreover, if x is



idempotent: distributesover x; (A, <) is acompletedistributive latticeand x its glb.
Informally, therelation< comparesemi-ringvaluesandconstraintsWhena < b, we
saythatbis betterthana. Givenasemi-ringS = (A, +, x, 0, 1), afinite setD (variable
domains)andanorderedsetof variablesl’, asoftconstrint is a pair (def , con) where
con C V anddef : DIc°nl — A. A constraintspecifiesa setof variablesandassigns
to eachtuple of valuesof thesevariablesanelementf the semi-ring.

A softconstrint satisfactionproblem(SCSP)is given by a setof soft constraints.
A solutionto an SCSPis a completeassignmento its variables,and the preference
value associatedvith a solutionis obtainedby multiplying the preferencevaluesof
the projectionsof the solutionto eachconstraint.A solutionis betterthan anotherif
its preferencevalueis higherin the partial orderof the semi-ring.Finding an optimal
solution for an SCSPis NP-hard.On the other hand, given two solutions,checking
whetheroneis preferableto anotheris straightforward: computethe semi-ringvalues
of thetwo solutionsandcomparetheresultingtwo values.

Eachsemiringidentifiesa classof softconstraintsFor example fuzzy CSPsareSC-
SPsoverthesemiringSrcsp = ([0, 1], max, min, 0, 1). This meanshatpreferences
areover[0,1], andthatwe wantto maximizethe minimum preferencever all the con-
straints.Anotherexampleis given by weightedCSPs which arejust SCSPsover the
semiringSyeight = (R, min, +,0, +00), which meanshat preferencegbettercalled
costshere)arerealnumbersandthatwe wantto minimizetheir sum.

Notethathardconstraintsarejust a specialclassof soft constraintsthoseover the
semiringScsp = ({false,true}, V, A, false, true), which meanghattherearejust
two preferencegfalse andtrue), thatthe preferenceof a solutionis the logical and
of the preferencesf their subtuplesn the constraintsandthattrueis betterthanfalse
(orderinginducedby thelogical or operationv).

3 Constrained CP-nets

We now definea structurewhichis a CP-netplusa setof hardconstraintsin later sec-
tionswewill relaxthis concepby allowing softconstraintgatherthanhardconstraints.

Definition 1 (constrained CP-net). A ConstainedCP-netis a CP-netplussomecon-
straints on subsetf its variables.We will thuswrite a constained CP-netasa pair
(N, C), wher N is a setof conditionalprefelencestatementslefininga CP-netandC
is a setof constaints.

The hard constraintscanbe expressedy genericrelationson partial assignments
or, in thecaseof binaryfeatureshy asetof BooleanclausesAs with CP-netsthebasis
of the semanticof constrainedCP-netds the preferencerdering,-, whichis defined
by meansof the notion of a worseningdflip. A worsenindflip is definedvery similarly
to how it is definedin aregular (unconstrainedP-net.

Definition 2 (O1 > 0,). Givena constained CP-net(N, C'), outcomeO; is better
thanoutcomeO, (written O, = Os) iff thereis a chain of flips from O to O, where
ead flip is worseningfor N andead outcomdn the chain satisfiesC'.



The only differencewith the semanticof (unconstrainedCP-netss thatwe now
restrictoursehesto chainsof feasibleoutcomesAs we shav shortly, thissimplechange
hassomevery beneficialeffects. First, we obsere thatthe - relationremainsa strict
partial orderingasit wasfor CP-netg[6, 3]. Secondjt is easyto seethat checkingif
an outcomeis optimalis linear (we merelyneedto checkit is feasibleandary flip is
worsening).Third, if a setof hard constraintsare satisfiableand a CP-netis agyclic,
thenthe constrainedCP-netformedfrom putting the hard constraintsand the CP-net
togethermusthave at leastone feasibleand undominatedoutcome.ln other words,
addingconstraintsto an agyclic CP-netdoesnot eliminateall the optimal outcomes
(unlessit eliminatesall outcomes)Comparethis to [2] whereaddingconstraintso a
CP-netmaymake all theundominatedutcomesnfeasiblewhile notallowing any new
outcomego be optimal. For example,if we have O; = O > O3 in a CP-net,and
thehardconstraintsnake O, infeasible thenaccordingo our semanticg), is optimal,
while accordingto the semanticsn [2] no feasibleoutcomeis optimal.

Theorem1. A constainedandacyclic CP-neteitherhasno feasibleoutcome®r has
at leastonefeasibleandundominatedutcome

Proof. Take an agyclic constrainedCP-net(N,C). N inducesa preferenceordering
that containsno cycles and hasexactly one most preferredoutcome,say O. If O is
feasible,it is optimal for (N, C). If O is infeasible,we move down the preference
orderinguntil atsomepointwe hit thefirst feasibleoutcomeThisis optimalfor (IV, C).
O

4 An example

We will illustrate constrainedCP-netsby meansof a simple example. This example
illustratesthataddingconstraintsaneliminatecyclesin thepreferencerderingdefined
by the CP-net.This is not true for the semanticof [6], whereaddinghardconstraints
cannotbreakcycles.

Supposé wantto fly to Australia.l canfly with British Airways(BA) or Singapore
Airlines, andl canchoosebetweerbusines®r economylf | fly Singaporethenl prefer
to save monegy andfly economyratherthanbusinessasthereis goodleg roomevenin
economy However, if | fly BA, | preferbusinessto economyasthereis insufiicient
leg roomin their economycabin.If | fly businessthen| prefer Singaporeto BA as
Singapores inflight serviceis much better Finally, if | have to fly economy thenl|
preferBA to Singaporeas| collect BA's airmiles.If we usea for British Airways,a
for SingaporeAirlines, b for businessandb for economythenwe have:a : b > b,
a:b>=bb:a>a,andb:a > a.

This CP-nethaschainsof worseningflips which containcycles.For instanceab >
ab - @b = ab = ab. Thatis, | preferto fly BA in businesgab) thanBA in economy
(ab) for the leg room, which | preferto Singaporein economy(ab) for the airmiles,
which | preferto Singaporen businesgab) to sasze money, which | preferto BA in
businesdqab) for the inflight service.Accordingto the semanticsof CP-netsnhoneof
the outcomesn the cycle is optimal, sincethereis always anotheroutcomewhich is
better



Supposenow thatmy travel budgetis limited, andthatwhilst Singaporeoffers no
discountson their businessfares,| have enoughairmiles with BA to upgradefrom
economyl thereforeaddtheconstrainthat,whilst BA in businesss feasible Singapore
in businesss not. Thatis, ab is not feasible.In this constrainedCP-net,accordingto
our new semanticsthereis no cycle of worseninglips asthehardconstraintbreakthe
chainby makingab infeasible.Thereis onefeasibleoutcomethatis undominatedthat
is, ab. | fly BA in businesausingmy airmilesto gettheupgradel amcertainlyhappy
with this outcome.

Notice that the notion of optimality introducedin this papergives priority to the
constraintswith respectio the CP-net.In fact, an outcomeis optimal if it is feasible
andit is undominatedn the constrainedCP-netordering. Therefore,while it is not
possiblefor aninfeasibleoutcometo be optimal, it is possiblefor anoutcomewhichis
dominatedn the CP-netorderingto be optimalin the constrainedCP-net.

5 Finding optimal outcomes

We now shav how to mapary constrainedCP-netonto an equivalentconstraintsatis-
factionproblemcontainingjust hard constraintssuchthat the solutionsof thesehard
constraintscorresponddo the optimal outcomesof the constrainedCP-net.The ba-
sic ideais that eachconditionalpreferencestatemenbf the given CP-netmapsonto
a conditionalhardconstraintFor simplicity, we will first describethe constructiorfor

Booleanvariablesin thenext sectionwe will passo themoregenerakaseof variables
with morethantwo elementsn theirdomain.

ConsiderconstrainedCP-net{ N, C). Sincewe aredealingwith Boolearvariables,
theconstraintsn C canbe seenasa setof Booleanclauseswhich we will assumeare
in a conjunctve normalform. We now definethe optimality constraints for (NN, C),
writtenasN @, C wherethesubscripb standgor BooleanvariablesasC U {optc (p) |
p € N}. Thefunctionopt mapsthe conditionalpreferencestatementy : a > @ onto
thehardconstraint:

(90 A /\ ¢|a=true) —a

YeC,acy

wherey|,=true IS the clausey wherewe have deleteda. The purposeof ¢|g=¢rye IS
to modelwhat hasto be true so thatwe cansafelyassigna to true,its morepreferred
value.

To returnto our flying example,the hard constraintsorbid b anda to be simulta-
neouslytrue. This canbe written asthe clausea V b. Hence,we have the constrained
CP-net{N,C)whereN ={a:b>ba:b>bb:a>a,b:a > a}andC = {aVb}.
The optimality constraintcorrespondingo the givenconstrainedCP-netaretherefore
a V b plusthefollowing clauses:

(ana)=b (bAb)—>a
a—b b—a

Theonly satisfyingassignmentor theseconstraintss ab. Thisis alsothe only optimal
outcomein the constrainedCP-net.In general the satisfyingassignmentsf the opti-



mality constraint@reexactly thefeasibleandundominateeutcome®f theconstrained
CP-net.

Theorem2. GivenaconstainedCP-net(N, C') overBoolearvariablesanoutcomes
optimalfor (N, C) iff it is a satisfyingassignmentf the optimalityconstaints N &, C.

Proof. (=) Considerany outcomeQ thatis optimal. Supposehat O doesnot satisfy
Na@,C. ClearlyO satisfie<”, sinceto beoptimalit mustbefeasible(andundominated).
ThereforeO mustnotsatisfysomeopt(p) wherep € N. Theonly way animplication
is notsatisfieds whenthehypothesiss true andtheconclusiornis false Thatis, O ¢,
O+ 9Y|a=true andO F @ wherep = ¢ : a > @. In this situation,flipping from @ to a
would give usa new outcomeQ’ suchthatO’ + a andthis would be animprovement
accordingto p. However, by doing so, we have to make surethat the clausesin C
containinga maynow notbesatisfiedsincenow a is false.However, we alsohave that
O + v|a=true, meaningthatif @ is falsetheseclausesaresatisfied Hence thereis an
improving flip to anotheifeasibleoutcome(’. But O wassupposedo beundominated.
Thusit is not possiblethat O doesnotsatisfy N @, C. ThereforeO satisfiesall optc (p)
wherep € N. Sinceit is alsofeasible O is a satisfyingassignmenof N &, C.

(«) Considerary assignment) which satisfiesN @, C. Clearlyit is feasibleas
N @ C includesC. Supposewe perform an improving flip in O. Without loss of
generality considertheimproving flip from @ to a. Therearetwo casesSupposehat
this new outcomes notfeasible Thenthis new outcomedoesnotdominatetheold one
in our semanticsThusO is optimal. Supposepn the otherhand thatthis new outcome
is feasible.If this is animproving flip, theremustexist a statementp : a > @ in N
suchthat O F ¢. By assumption( is a satisfyingassignmenbf N &, C. Therefore
O F opt(p : a = @). SinceO + ¢ andO + @, andtrue is not allowed to imply
false atleastone|,=¢rue is Notimplied by O wherey € C anda € . However,
asthe new outcomeis feasible,iy hasto be satisfiedindependenbf how we seta.
Hence,O + ¢|a=true. AS thisis acontradictionthis cannotbe animproving flip. The
satisfyingassignmenis thereforefeasibleandundominated. O

It immediatelyfollows thatwe cantestfor feasibleandundominatecutcomesn
lineartimein thesizeof (IV, C): we just needto testthe satisfiabilityof the optimality
constraintswhich areasmary asthe constraintin C' andthe conditionalstatements
in N. Notice that this constructionworks also for regular CP-netswithout ary hard
constraintsin this case,the optimality constraintsare of the form ¢ — a for each
conditionalpreferencestatement : a > a.

It wasalreadyknown that optimality testingin agyclic CP-netss linear [6]. How-
ever, our constructioralsoworkswith cyclic CP-netsThereforeoptimality testingfor
cyclic CP-netshasnow becomean easyproblem,even if the CP-netsare not con-
strained.On the otherhand,determiningif a constrainedCP-nethasary feasibleand
undominatedutcomess NP-completgto shav completenessye mapary SAT prob-
lem directly ontoa constrainedCP-netwith no preferencesNoticethatthis holdsalso
for agyclic CP-netsandfinding anoptimaloutcomein anacyclic constrainedCP-netis
NP-hard.



6 Non-Booleanvariables

The constructionin the previous sectioncan be extendedto handlevariableswhose
domain containsmore than 2 values.Notice that in this casethe constraintsare no
longerclausedut regularhardconstraintoverasetof variableswith acertaindomain.
Given a constrainedCP-net{NN, C'), considerary conditionalpreferencestatemenp
for featurex in N of theform ¢ : a3 > a2 > asz. For simplicity, we considerjust
3 values.However, all the constructionsand argumentsextend easilyto morevalues.
The optimality constraintorrespondingo this preferencestatementlet us call them
optc(p)) are:
PeAN(Cy A = al) ivaT(Cm)—{w}_) T =a

O A (Co AT = a2) dvar(Ca)—{a} = T=0a1 VT = az

whereC, is thesubsebf constraintsn C' whichinvolve variablez 2, and| X projects
ontothevariablesin X . The optimality constraintsorrespondindo (N, C) areagain
N @ C = CU{optc(p) | p € N}. We canagainshow thatthis constructiongivesa
new problemwhosesolutionsareall the optimal outcomeof the constrainedCP-net.

Theorem 3. Givena constainedCP-net(N, C), an outcomeis optimalfor (N, C) iff
it is a satisfyingassignmenof the optimality constaints N & C.

Proof. (=) Considerary outcomeQO thatis optimal. Supposehat O doesnot satisfy
N & C. Clearly O satisfiesC, sinceto be optimal it mustbe feasible(and undomi-
nated).ThereforeO mustnotsatisfysomeopt (p) wherep preferencestatemenin V.

Without loss of generality let us considerthe optimality constraintsp A (C, A z =

a1) dvar(Ca)—{e}—= T = a1 andp A (Cz Az = a2) lvar(c)—{e} = T =01 VT = ay

correspondingo the preferencestatementy : a; = as > as. The only way anim-

plication is not satisfiedis when the hypothesisis true and the conclusionis false

Let us take the first implication: O F ¢, O + (C; Az = a1) lyar(c,)—{z} @Nd
O F (z = a2 V = = ag). In this situation,flipping from (z = as Vx = a3) toz = a1

would give usanew outcomeO’ suchthatO’ + x = a; andthis would beanimprove-
mentaccordingo p. However, by doingso,we haveto make surethatthe constraintsn

C containingz = as or z = a3 maynow notbesatisfiedsincenow (z = as Vx = a3)

is false.However, we alsohave thatO + (C; A ¢ = a1) lyar(c.)—{=},» Me@nNingthat
if £ = a; theseconstraintsare satisfied.Hence thereis animproving flip to another
feasibleoutcomeD’. But O wassupposedo beundominatedThereforeO satisfieshe
first of thetwo implicationsabove.

Letusnow considethesecondmplication:O ¢, O & (CeAz = a2) Lvar(cy)—{z}
andO F z = ag3. In this situation,flipping from z = a3 to z = a» would give usa
new outcomeO’ suchthatO’ + z = a, andthis would be animprovementaccording
to p. However, by doing so, we have to make surethatthe constraintsn C' containing
x = az maynow not be satisfied sincenow = = as is false.However, we alsohave
thatO F (Cy Az = a2) lvar(c,)—{z}, Meaningthatif = = a, theseconstraintsare
satisfied.

% More precisely C, = {c € C|z € con.}.



Hence,thereis animproving flip to anotherfeasibleoutcomeQ’. But O wassup-
posedto be undominatedThereforeO satisfiesthe secondimplication above. Thus
O mustsatisfyall constraintsopt(p) wherep € N. Sinceit is alsofeasible,O is a
satisfyingassignmentf N @ C.

(<) Considerary assignment) which satisfiesN @ C. Clearly it is feasibleas
N @ C includesC. Supposewe performanimproving flip in O. Therearetwo cases.
Supposehatthe outcomesbtainedby performingary improving flip arenotfeasible.
Then suchnew outcomesdo not dominatethe old onein our semanticsThus O is
optimal.

Supposeon the otherhand,thatthereis atleastonenew outcome pbtainedvia an
improving flip, which is feasible. Assumethe flips passedrom z = a3 to z = ax. If
this is animproving flip, without loss of generality theremustexist a statementp :
...>=x =uay>x=asz > ...in N suchthatO I ¢. By hypothesisQ is a satisfying
assignmenof N @ C. ThereforeO Fopt(p: ... =x=as = ... =z =az > ...)
= A (Ce AN = a2) dyar(cy)—{a}— --- V& = ap. SinceO F ¢ andO + z = ag,
andtrue is not allowedto imply falsg O cannotsatisfy(C, A z = a2) lvar(c,)—{a}-
But, asthe new outcome which containsz = a-, is feasible,suchconstraintshave to
be satisfiedindependenof how we setz. Hence,O F (Cy Az = a2) lyar(c,)—{z}-
As this is a contradiction this cannotbe animproving flip to a feasibleoutcome.The
satisfyingassignmenis thereforefeasibleandundominated. O

Noticethatthe constructionV @ C for variableswith morethantwo valuesin their
domainsis a generalizatiorof the onefor BooleanvariablesThatis, N & C = N &,
C if N andC areover Booleanvariables.Similar compleity resultshold also now.
However, while for Booleanvariablesone constraintis generatedor eachpreference
statementnow we generateas mary constraintsasthe size of the domainminus 1.
Thereforethe optimality constraintorrespondindgo a constrainedCP-net{ N, C') are
|C|+ | N | x | D |, whereD is thedomainof the variables Testingoptimality is still
linearin thesizeof (N, C), if we assumeD boundedFindingan optimal outcomeas
usualrequiresusto find asolutionof theconstraintsn N @ C, whichis NP-hardin the
sizeof (N, C).

7 CP-netsand soft constraints

It maybethatwe have softandnot hardconstraintdo addto our CP-net.For example,
we may have soft constraintgepresentingtherquantitatve preferencesn therestof
this section,a constrainedCP-netwill beapair (N, C), whereN is a CP-netandC is
a setof soft constraintsNotice thatthis definitiongeneralizeshe onegivenin Section
6 sincehardconstraintsanbe seenasa specialcaseof soft constraintseeSection?2).
Theconstructiorof theoptimality constraintgor constrainedCP-netcanbeadapted
towork with softconstraintsTo beasgenerabspossibleyariablescanagainhavemore
thantwo valuesin their domains.The constraintsive obtainarevery similar to those
of the previous sectionsgxceptthatnow we have to reasoraboutoptimizationassoft
constraintglefineanoptimizationproblemratherthana satishictionproblem.
Considerary CP statemenp of theform ¢ : x = a1 = © = a2 > z = as.
For simplicity, we againconsiderjust 3 values.However, all the constructionandar-



gumentsextend easilyto morevalues.The optimality constraintscorrespondindo p,
calledopt s, s+ (p), arethefollowing hardconstraints:

@ Acutpesyc) (P A Co AT = 1) Lvar(ca)-{z}) 2 T=a1

A CUtbest(C)(((p NCe Nz = a2) ivar(Cm)—{m}) — T = a107TT = a2

where(C,, is the subsetof soft constraintan C' which involve variablex, best(S) is
the highestpreferencevalue for a completeassignmenbf the variablesin the setof
soft constraintsS, andcut, S is a hard constraintobtainedfrom the soft constraintS
by forbidding all tupleswhich have preferencevaluelessthana in S. The optimality
constraintorrespondingo (N, C) areC,,:((N, C)) = {optsof:(p) | p € N}.

Considera CP-netwith two features X andY’, suchthatthe domainof Y contains
y1 andys, while the domainof X containsz,, z», and 3. Moreover, we have the
following CP-netpreferencestatementsy; &= ya, y1 : €1 > To > T3, ¥Ys : To > T1 >
z3. We also have a soft (fuzzy) unary constraintover X, which givesthe following
preferencesverthedomainof X: 0.1to 1, 0.9to x5, and0.5to 3. By looking atthe
CP-netalone theorderingovertheoutcomess givenby y1 21 > y122 > y123 > Y223
andyizs > Y222 > Y21 > Y23. Thusy;x; is the only optimal outcomeof the CP-
net.Ontheotherhand,by takingthe soft constraintalone the optimaloutcomesareall
thosewith X = x5 (thusy; x> andysxs).

Let us now considerthe CP-netandthe soft constraintsogether To generatehe
optimality constraintsyve first computebest(C) whichis 0.9. Then,we have:

— for statemeny; = y2: Y = y;

— for statemeny; : z; > zo > x3: we generatehe constraint” = y; A false —
X =xz,andY = y1 AY =y - X = 1 VX = z5. Notice thatwe have
falsein the conditionof thefirstimplicationbecauseutyo(Y = y1 AC, A X =
z1) ly= false. Ontheotherhand,in the conditionof the secondmplicationwe
havecuto.o(Y = y1 ACx AX = x2) Jy= (Y = y1). Thus,by removing false we
have justoneconstrainty = y; -+ X =21 V X = xs;

— for statementy, : 22 = z; = x3: similarly to above, we have the constraint
Y = Y2 — X = 2.

Let usnow computethe optimal solutionsof the soft constraintover X which are
alsofeasiblefor thefollowing setof constraintsY = 41, Y =y1 & X = 21 VX = 29,
Y = y» —» X = z,. Theonly solutionwhich is optimal for the soft constraintsand
feasiblefor the optimality constraintsis y;2>. Thus this solution is optimal for the
constrainedCP-net.

Notice that the optimal outcomefor the constrainedCP-netof the above example
is not optimal for the CP-netalone.In general,an optimal outcomefor a constrained
CP-nethasto be optimal for the soft constraintsand suchthat thereis no otherout-
comewhich canbe reachedrom it in the orderingof the CP-netwith animproving
chainof optimaloutcomesThus,in thecaseof CP-netsconstrainedy soft constraints,
Definition 2 is replaceddy thefollowing one:

Definition 3 (O1 >,f¢ O2). Givena constainedCP-net(NN, C'), whee C' is a setof
softconstaints,outcomeD; is better thanoutcomeD, (written Oy >4, O2) iff there



is a chain of flips fromO; to O2, where ead flip is worseningfor N andeacd outcome
in thechainis optimalfor C.

Noticethatthis definitionis justa generalizatiorof Def. 2, sinceoptimality in hard
constraintgs simply feasibility. Thus>=,, ¢ whenC'is a setof hardconstraints.

ConsidetthesameCP-netasin the previousexample ,anda binaryfuzzy constraint
over X andY which gives preferenced.9 to z2y; andz;y2, and preferenced.1 to
all otherpairs.Accordingto the above definition, both 25y, andx;y» areoptimal for
the constrainedCP-net,sincethey areoptimalfor the soft constraintsandthereareno
improving pathof optimaloutcomesetweerthemin the CP-netordering.Let uscheck
thatthe constructiorof the optimality constraintbtainsthe sameresult:

— fory; > ya wegetcuto.o(Cy ANY = y1) Ix— Y = y1. Sincecutoo(Cy AN Y =
y1) dx= (X =z2),wegetX =z > Y =y;.

— for statementy; : z1 = 22 = 231 Y = y1 Acutoo(Y =y AC, AN X =
z1) ly— X = 1. Sincecuto o(Y = y1 ACy A X = z1) ly= false, wegeta
constrainwhichis awaystrue.Also, we have theconstrain®” = y1 A cutoo(Y =
y1 N\ CoNX = 1‘2) i,y—) X=x21VX = 2. Sincecuto_g(Y =y N\ CoNX =
1'2) J,Y: (Y—yl),wegetY:yl/\Y =y > X=21VX =zo.

— for statementy, : z» = z1 > x3: similarly to abose, we have the constraint
Yzyg—)XZ.CL'QVX:.’IJl.

Thusthe setof optimality constraintds the followingone: X = 2o — Y = y1,
Y=y > X=21VX =z, andY =y, - X = 2, VX = z,. Thefeasible
solutionsof this setof constraintsarezsy;, £1y1, andz;ys. Of theseconstraintsthe
optimaloutcomedor the softconstraintarezsy; andzx;y>. Noticethat,in theordering
inducedby the CP-netover the outcomesthesetwo outcomesarenotlinkedby a path
of improving flips throughoptimaloutcomedor thesoftconstraintsThusthey areboth
optimalfor the constrainedCP-net.

Theorem4. Givena constainedCP-net{N, C), wher C is a setof softconstaints,
anoutcomds optimalfor (N, C) iff it is an optimalassignmentor C' andif it satisfies
Copt({N, C)).

Proof. (=) Consideran outcomeO thatis optimal for (IV, C). Thenby definition it
mustbe optimalfor C'. Supposehe outcomedoesnot satisfyC,,;. ThereforeO must
not satisfy someconstraintoptc (p) wherep preferencestatementn N. Without loss
of generality let usconsiderthe optimality constraints

@ Acutpesyc) (P A Co AT = 1) Lyar(co)-{z}) 2 T=a1

A CUtbest(C)(((p ANCy ANz = a2) ivar(Cm)f{z}) — T = a107TT = a2

correspondingo the preferencestatementy : a1 = a2 = as.

Theonly way animplicationis not satisfiedis whenthe hypothesigs true andthe
conclusionis false Let us take the first implication: O F ¢, O F cutyeqcy((p A
Ce Nz = a1) dyar(c,)—{z}) @NAO F (z = a2 V = = ag). In this situation,flipping
from (z = a2 V2 = a3) to z = a; would give us a new outcomeO' suchthat



O' + z = a; andthis would be animprovementaccordingto p. However, by doing
so,we have to make surethatthe soft constraintdn C' containingz = as or x = as

may now still be satisfiedoptimally, sincenow (z = a2 V z = a3) is false.We also
have thatO F cutpesyc)((p A Co Az = a1) lyar(c.)—{z}), Meaningthatif z = a,

theseconstraintsare satisfiedoptimally. Hence,thereis an improving flip to another
outcomeO’ whichis optimalfor C' andwhichsatisfiesC,,,,. But O wassupposedo be
undominatedThereforeO satisfieghefirst of thetwo implicationsabove.

Let us now considerthe secondimplication: O = ¢, O F cutpescy((p A Cz A
T = a2) dyar(Ca)—{z})» @NAO F 2 = ag. In this situation,flipping from z = a3
to x = ao would give us a new outcomeQ’ suchthatQ’ + z = ay andthis would
be animprovementaccordingto p. However, by doing so, we have to make surethat
the constraintsin C' containingz = a3 may now still be satisfiedoptimally, since
now z = as is false.However, we alsohave that O F cutyesicy((9 A Ce Az =
az) dvar(c,)-{z}), Meaningthatif x = a, theseconstraintsare satisfiedoptimally.
Hence thereis animproving flip to anotherfeasibleoutcome0’. But O wassupposed
to be undominatedThereforeO satisfiesthe secondmplication above. ThusO must
satisfyall the optimality constraint)ptc(p) wherep € N.

(<) Considerary assignmen® whichis optimalfor C andsatisfie,,;. Suppose
we performa flip on O. Thereare two casesSupposethat the new outcomeis not
optimalfor C. Thenthe new outcomedoesnot dominatethe old onein our semantics.
ThusO is optimal. Supposeon the otherhand,thatthereis atleastonenew outcome,
obtainedvia animproving flip, which is optimalfor C' andsatisfiesC,,;. Assumethe
flip passefromz = a3 tox = a,. If thisisanimproving flip, withoutlossof generality
theremustexist a statementp : ... = z = az > £ = a3z > ... in N suchthat
O I ¢. By hypothesisQ is anoptimal assignmenof C' andsatisfiesC,,;. Therefore
OFopt(p:...=x=ay > ... =a3>...) =@ Acutpespc)((p ANCe Nz =
a2) J/'ua,r(Cw)f{z}) —...Vz=as.

SinceO F ¢ andO + x = a3, andtrue is not allowed to imply false O cannot
satisfycutpese(c) (0 A Co Az = a2) Lvar(c.)—{=})- ButO', whichcontainsr = as, is
assumedo beoptimalfor C', socutyess(c) (9 A Ce AT = a2) lyar(c,)—{=}) hasto be
satisfiedndependentlyf how we setz. Hence,O F (C, A & = a2) dvar(c,)—{z}- AS
thisis a contradictionthis cannotbe animproving flip to anoutcomewhichis optimal
for C andsatisfiesC,,;. ThusO is optimalfor the constrainedCP-net. O

It is easyto seehow the constructiornof this sectioncanbe usedwhena CP-netis
constrainedy a setof bothhardandsoftconstraintspr by severalsetsof hardandsoft
constraintssincethey canall be seenasjust onesetof soft constraints.

Let us now considerthe compleity of constructingthe optimality constraintsand
of testingor finding optimal outcomesjn the caseof CP-netsconstrainedy soft con-
straints First,aswith hardconstraintsthenumberof optimality constraintsve generate
is |N|| x (|D] — 1), where|N| is the numberof preferencestatementén N andD is
the domainof thevariablesThuswe have |Cyp ((N, C))| = |N| x (|D| — 1). To test
if anoutcomeQ is optimal,we needto checkif O satisfiesC,,; andif it is optimalfor
C'. Checkingfeasibility for C,,,; takeslineartimein |N| x (|D| — 1). Then,we need
to checkif O is optimalfor C. Thisis NP-hardthefirst time we do it, otherwise(if the
optimal preferencevaluefor C is known) is linearin thesizeof C'. To find anoptimal



outcome we needto find the optimalsfor C' which arealsofeasiblefor C,,:. Finding
optimalsfor C needsxponentiatimein thesizeof C, andcheckingfeasibility in C,p¢
is linearin the size of C,,:. Thus,with respectto the correspondingesultsfor hard
constraintsyve only needto do morework thefirst time we wantto testanoutcomefor
optimality.

8 Multiple constrained CP-nets

Therearesituationswhenwe needto representhe preferencesf multiple agentsFor
example whenwe areschedulingvorkers,eachwill have a setof preferencesoncern-
ing the shifts. Theseideasgeneralizeo sucha situation.Considerseveral CP-netsVy,
..., Ny, anda setof hardor soft constraintsC'. We will assumefor now that all the
CP netshave the samefeatures.To begin, we will sayan outcomeis optimal iff it is
optimalfor eachconstrainedCP net{N;, C'). This is a specificchoicebut we will see
laterthatotherchoicescanbe considerecgswell. We will call this notionof optimality,
All-optimal.

Definition 4 (All-optimal). GivenamultipleconsteinedCPnetM = ((Ny,...,Ng),C),
an outcomeO is All-optimal for M if O if it is optimal for eat constained CP net

This definition, togetherwith Theorem4, implies thatto find the all-optimal out-
comesfor M we just needto generatahe optimality constraintdor eachconstrained
CP net(N;, C), andthentake the outcomeswhich are optimal for C' and satisfy alll
optimality constraints.

Theorem5. Givena multiple constainedCP net M = ((Ny,...,Ng),C), an out-
comeO is All-optimal for M iff O is optimalfor C andit satisfieghe optimality con-
straintsin | J,; Cope ((N3, C)).

This semanticss oneof consensusall constrainedCP netsmustagreethatanout-
comeis optimalto declaret optimalfor themultiple constrainedCP net.Choosinghis
semanticobviously satisfiesall CP nets.However, therecouldbeno outcomewhichis
optimal. In [8] a similar consensusemanticgalthoughfor multiple CP nets,with no
additionalconstraints)s called Paretooptimality, andit is oneamongseveralalterna-
tive to aggreyatepreferencesxpressedia several CP nets.This semanticsadaptedo
our context, would bedefinedasfollows:

Definition 5 (Pareto). Givena multiple constainedCP netM = ((Ny,...,Ng),C),
an outcomeO is Pareto-betterthanan outcome(’ iff it is betterfor eac constained
CPnet.lIt is Pareto-optimalfor M iff there is no otheroutcomewhich is Pareto-better

If anoutcomels all-optimal, it is alsoPareto-optimalHowever, the corverseis not
truein general Thesetwo semanticsnay seemequallyreasonabledowever, while all-
optimality canbe computedvia the approachof this paper which avoids dominance
testing, Pareto optimality needssuchtests,and thereforeit is in generalmuch more



expensve to compute.n particular whilst optimality testingfor Paretooptimality re-
quiresexponentialtime, for All-optimality it just needdineartime (in the sumof the
sizesof the CP nets).

Otherpossibilitiesproposedn [8] requireoptimalsto be the bestoutcomesfor a
majority of CPnets(thisis calledMajority), or for thehighesinumberf CPnets(called
Max). Othersemanticdik e Lex, associateachCP netwith a priority, andthendeclare
optimal thoseoutcomeswhich are optimal for the CP netswith highestpriority, in a
lexicographicalfashion.In principle, all thesesemanticsanbe adaptedo work with
multiple constrainedCP nets.However, asfor Paretooptimality, whilst their definition
is possiblereasoningvith themwould requiremorethanjust satisfyinga combination
of the optimality constraintsandwould involve dominanceesting.

Thusthemaingainfrom our semanticgall-optimalandothersthatcanbecomputed
via this approach)s thatdominanceestingis not required.This makesoptimality test-
ing (afterthefirst test)linearratherthanexponential althoughfinding optimalsremains
difficult (asit is whenwe find the optimalsof the soft constraintsandcheckthe feasi-
bility of the optimality constraints).

9 Relatedwork

Thecloseswork is [2], whereagyclic CP netsareconstrainedriia hardconstraintsand
an algorithmis proposedto find one or all the optimal outcomesof the constrained
CP net. However, thereare several differencesFirst, the notion of optimality in this
previousapproachs differentfrom the oneusedhere:in [2], anoutcomeO is optimal
if satisfiesthe constraintsandthereis no otherfeasibleoutcomewhich is betterthan
it in the CP net ordering. Therefore,if two outcomesare both feasibleand thereis
an improving path from oneto the otheronein the CP net, but they are not linked
by a pathof feasibleoutcomesthenin this previous approachonly the highestoneis
optimal, while in oursthey areboth optimal. For example,assumeve have a CP net
with two Booleanfeatures A and B, andthefollowing CPstatements: > @, a : b > b,
@ : b » b, andthe constrainta Vv b which rulesout ab. Then,the CP netorderingon
outcomess ab > ab > ab > @b. In our approachbothab andab areoptimal,whilstin
in the previousapproactonly ab is optimal. Thuswe obtaina supersebf the optimals
computedn the previousapproach.

Reasoningboutthis superseis, however, computationallymoreattractie. To find
the first optimal outcome,the algorithmin [2] usesbranchand boundandthus has
a compleity thatis comparabldo solving the setof constraintsThen,to find other
optimal outcomesthey needto perform dominancetests(asmary asthe numberof
optimal outcomesalreadycomputed) which are very expensve. In our approachto
find oneoptimal outcomewe just needto solve a setof optimality constraintswhichis
NP-hard.

Two issueghatarenotaddresseth [2] aretestingoptimality efficiently andreason-
ing with cyclic CPnets.To testoptimality, we mustrunthe branchandboundalgorithm
to find all optimals,andstopwhenthegivenoutcomeis generatear whenall optimals
arefound.In our approachyve checkthefeasibility of the given outcomewith respect
to theoptimality constraintsThusit takeslineartime. Our approachis basednthe CP



statementandnot on thetopologyof the dependenggraph.Thusit worksjust aswell
with cyclic CPnets.

Anotherrelatedwork is [7], whereCP netsorderingsareapproximatedia a setof
softconstraintsTheapproximatiorhereis notneededsincewe arenottrying to model
theentireorderingover outcomesbut only the setof optimals.

Finally, our constructioncanbe seenasa generalizatiorof that givenin Section4
of [4], wherethey treatthe caseof mappinga CP neton Booleanfeatureswithout ary
constraintspntoa SAT problem.

10 Conclusions

We have presentedh novel approacho dealwith preferencegxpressedasa mixture
of hardconstraintssoft constraintsand CP nets.The mainideais to generatea setof
hardconstraintsvhosesolutionsareoptimalfor the preferencesOur approacHocuses
onfinding andtestingoptimalsolutions It avoidsthe costlydominanceestspreviously
usedto reasoraboutCP nets.To representhe preferencesf multiple agentswe have
alsoconsiderednultiple CP nets.We have shavn thatit is possibleto definesemantics
for preferenceaggreyationfor multiple CP netswhich also avoid dominanceesting.
Oneof themainadwantage®f this simpleandeleganttechniques thatit permitscon-
ventionalconstraintand SAT solversto solve problemsinvolving both preferenceand
constraints.
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