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Abstract. We presenta novel approachto dealwith preferencesexpressedasa
mixtureof hardconstraints,soft constraints,andCP-nets.We constructa setof
hardconstraintswhosesolutionsare the optimal solutionsof the setof prefer-
ences,whereoptimalis defineddifferentlyw.r.t. otherapproaches[2,7]. Thenew
definition of optimality introducedin this paper, allows us to avoid dominance
testing(is oneoutcomebetterthananother?)which is a very expensive opera-
tion oftenusedwhenfinding optimalsolutionsor testingoptimality, while being
reasonableandintuitive.Wealsoshow how hardconstraintscansometimeselim-
inatecyclesin thepreferenceordering.Finally, we extendthis approachto deal
with the preferencesof multiple agents.This simpleandeleganttechniqueper-
mits conventionalconstraintandSAT solversto solve problemsinvolving both
preferencesandconstraints.

1 Intr oduction

Preferencesandconstraintsareubiquitousin real-life scenarios.We often have hard
constraints(as“I mustbe at the office before9am”) aswell assomepreferences(as
“I would prefer to be at the office around8:30am”or “I would prefer to go to work
by bicycle ratherthanby car”). Whilst formalismsto representandreasonabouthard
constraintsarerelatively stable,having beenstudiedfor over 20 years[5], preferences
havenot receivedasmuchattentionuntil morerecenttimes.Amongthemany existing
approachesto representpreferences,we will considerCP-nets[6, 3], which is a quali-
tative approachwherepreferencesaregivenby orderingoutcomes(asin “I like meat
overfish”) andsoft constraints[1], which is a quantitativeapproachwherepreferences
aregivento eachstatementin absoluteterms(asin “My preferencefor fish is 0.5 and
for meatis 0.9”).

It is easyto reasonwith hardandsoft constraintsat thesametime,sincehardcon-
straintsare just a specialcaseof soft constraints.Much lessis understoodaboutrea-
soningwith CP-netsand(hardor soft) constraints.Oneof our aims is to tackle this
problem.We will definea structurecalleda constrainedCP-net.This is just a CP-net
plusa setof hardconstraints.We will give a semanticsfor this structure(basedon the
original flipping semanticsof CP-nets)which givespriority to thehardconstraints.We
will show how to obtainthe optimal solutionsof sucha constrainedCP-netby com-
piling the preferencesinto a set of hard constraintswhosesolutionsare exactly the
optimalsolutionsof theconstrainedCP-net.This allows us to testoptimality in linear



time,evenif theCP-netis not acyclic. Findinganoptimalsolutionof a constrainedCP
netis NP-hard1 (asit is in CP-netsandin hardconstraints).

Prior to this work, to testoptimality of a CP-netplus a setof constraints,we had
to find all solutionsof theconstraints(which is NP-hard)andthentestif any of them
dominatethe solutionin question[2]. Unfortunatelydominancetestingis not known
to be in NP even for acyclic CP-nets,aswe mayhave to explorechainsof worsening
flips thatareexponentiallylong.By comparison,wedonotneedto performdominance
testingin our approach.Our semanticsis alsousefulwhentheCP-netdefinesa prefer-
enceorderingthatcontainscycles,sincethehardconstraintscaneliminatethesecycles.
Lastly, sincewe compilepreferencesdown into hardconstraints,we canusestandard
constraintsolvingalgorithms(or SAT algorithmsif thevariableshave just two values)
to reasonaboutpreferencesandconstraints,ratherthandevelopspecialpurposealgo-
rithms for constrainedCP-nets(as in [2]). We alsoconsiderwhena CP-netis paired
with a setof soft constraints,andwhenthereareseveral CP-nets,andsetsof hardor
soft constraints.In all thesecases,optimal solutionscanbe found by solving a setof
hardor soft constraints,avoidingdominancetesting.

2 Background

2.1 CP-nets

In many applications,it is naturalto expresspreferencesvia genericqualitative(usually
partial) preferencerelationsover variableassignments.For example,it is often more
intuitive to say“I preferredwine to whitewine”, ratherthan“Redwinehaspreference
0.7andwhitewinehaspreference0.4”. Theformerstatementprovideslessinformation,
but doesnot requirecarefulselectionof preferencevalues.Moreover, we oftenwish to
representconditionalpreferences,asin “If it is meat,thenI preferredwine to white”.
Qualitative andconditionalpreferencestatementsarethususefulcomponentsof many
applications.

CP-nets[6,3] are a graphicalmodel for compactlyrepresentingconditionaland
qualitative preferencerelations.They exploit conditionalpreferentialindependenceby
structuringanagent’spreferencesundertheceterisparibusassumption.Informally,CP-
netsaresetsof conditionalceterisparibus (CP) preferencestatements.For instance,
thestatement“I preferredwineto whitewineif meatis served.” assertsthat,giventwo
mealsthat differ only in the kind of wine served and both containingmeat,the meal
with a red wine is preferableto the mealwith a white wine. Many users’preferences
appearto beof this type.

CP-netsbearsomesimilarity to Bayesiannetworks. Both utilize directedgraphs
where eachnodestandsfor a domainvariable,and assumea set of features ����	� ��
	���
 ����� with finite domains��� � ���
�	��
 ��� ��� � . For eachfeature

���
, eachuser

specifiesa setof parent features����� ��� � that canaffect her preferencesover the val-
uesof

���
. This definesa dependency graphin which eachnode

���
has ����� ��� � as

1 Morepreciselyit is in FNP-hard,sinceit is nota decisionproblem.In therestof thepaperwe
will write NPmeaningFNPwhennot relatedto decisionproblems.



its immediatepredecessors.Giventhis structuralinformation,theuserexplicitly speci-
fiesherpreferenceover thevaluesof

���
for each completeoutcomeon ����� ��� � . This

preferenceis assumedto take theform of totalor partialorderover ��� � � [6,3].
For example,considera CP-netwhosefeaturesare � , � ,  , and ! , with binary

domainscontaining " and " if � is the nameof the feature,andwith the preference
statementsasfollows: �$# � , %&# % , �'�&()% ��* � �&( % �,+.- # - , �/�0( % ��* � �0()% �1+ - # - ,-2+.3 # 3 , -2+ 3 # 3 . Here,statement�)# � representstheunconditionalpreferencefor�4�5� over �5� � , while statement-2+63 # 3 statesthat !7� 3 is preferredto !7� 3 ,
giventhat  8� - .

Thesemanticsof CP-netsdependson thenotionof a worseningflip. A worsening
flip is a changein the valueof a variableto a valuewhich is lesspreferredby theCP
statementfor thatvariable.For example,in theCP-netabove,passingfrom �9% -�3 to �9% -�3
is a worseningflip since - is betterthan - given � and % . We saythatoneoutcome: is
betterthananotheroutcome; (written :<#<; ) if f thereis a chainof worseningflips
from : to ; . Thisdefinitioninducesastrict partialorderover theoutcomes.In general,
theremay be many optimal outcomes.However, in acyclic CP-nets(that is, CP-nets
with anacyclic dependency graph),thereis only one.

Severaltypesof queriescanbeaskedaboutCP-nets.First,givenaCP-net,whatare
theoptimaloutcomes?For acyclic CP-nets,suchaqueryis answerablein lineartime[6,
3]: weforwardsweepthroughtheCP-net,startingwith theunconditionalvariables,fol-
lowing thearrowsin thedependency graphandassigningateachstepthemostpreferred
valuein thepreferencetable.For instance,in theCP-netabove,wewouldchoose�=�>�
and �7�?% , then  @� - andthen !A� 3 . Theoptimaloutcomeis therefore�B% -�3 . The
samecomplexity alsoholdsfor testingwhetheranoutcomeis optimalsinceanacyclic
CP-nethasonly oneoptimaloutcome.Wecanfind thisoptimaloutcome(in lineartime)
andthencompareit to thegivenone(againin lineartime).Ontheotherhand,for cyclic
CP-nets,bothfindingandtestingoptimaloutcomesis NP-hard.

Thesecondtypeof queryis a dominancequery. Giventwo outcomes,is onebetter
thanthe other?Unfortunately, this queryis NP-hardeven for acyclic CP-nets.Whilst
tractablespecialcasesexist, thereare also acyclic CP-netsin which thereare expo-
nentially long chainsof worseningflips betweentwo outcomes.In the CP-netof the
example,�B% - 3 is worsethan �9% -3 .
2.2 Soft and hard constraints

Thereareseveral formalismsfor describingsoft constraints. We usethe c-semi-ring
formalism[1] asthisgeneralizesmostof theothers.In brief, asoftconstraintassociates
eachinstantiationof its variableswith a value from a partially orderedset.We also
supplyoperationsfor combining( C ) andcomparing(+) values.A semi-ringis a tupleD � 
FEG
 C 
IHJ
K9L suchthat: � is a setand HM
KON � ; E is commutative,associative andH is its unit element; C is associative, distributesover E , K is its unit elementand H
is its absorbingelement.A c-semi-ringis a semi-ring

D � 
IEG
 C 
PHM
K9L in which E is
idempotent,K is its absorbingelementand C is commutative.

Let us considerthe relation Q over � suchthat �RQ7% if f � E %��S% . Then Q is
a partial order, E and C aremonotoneon Q , H is its minimum and K its maximum,D � 
 Q L is a completelatticeand,for all � 
 % N � , � E %0�UTWVJ%X�/� 
 % � . Moreover, if C is



idempotent:E distributesover C ;
D � 
 Q L is acompletedistributivelatticeand C its glb.

Informally, therelation Q comparessemi-ringvaluesandconstraints.When �)Q>% , we
saythatb is betterthana. Givenasemi-ringYZ� D � 
IEG
 C 
PHM
K9L , afiniteset ! (variable
domains)andanorderedsetof variables[ , asoftconstraint is apair

D]\_^/` 
P-�a�bML where-�a�bdc [ and
\.^'` + !fe gih � ekjl� . A constraintspecifiesa setof variables,andassigns

to eachtupleof valuesof thesevariablesanelementof thesemi-ring.
A softconstraint satisfactionproblem(SCSP)is givenby a setof soft constraints.

A solution to an SCSPis a completeassignmentto its variables,and the preference
valueassociatedwith a solution is obtainedby multiplying the preferencevaluesof
the projectionsof the solutionto eachconstraint.A solutionis betterthananotherif
its preferencevalueis higherin thepartial orderof the semi-ring.Finding anoptimal
solution for an SCSPis NP-hard.On the other hand,given two solutions,checking
whetheroneis preferableto anotheris straightforward:computethe semi-ringvalues
of thetwo solutionsandcomparetheresultingtwo values.

Eachsemiringidentifiesaclassof softconstraints.Forexample,fuzzyCSPsareSC-
SPsover thesemiring Ynmnoqp6rs� Dut v 
	w�xy
uz �_{ 
uz�|yb}
 v 
	w~L . This meansthatpreferences
areover [0,1], andthatwe wantto maximizetheminimumpreferenceoverall thecon-
straints.Anotherexampleis given by weightedCSPs,which arejust SCSPsover the
semiring Yn�n� �����	� � DW� 
uz�|yb}
IEG
 v 
IE��dL , which meansthatpreferences(bettercalled
costshere)arerealnumbers,andthatwewantto minimizetheir sum.

Notethathardconstraintsarejust a specialclassof soft constraints:thoseover the
semiring Y oqp6r � Di� "��BT��	� 
]�i� V�� � 
I*�
 ( 
 "��BT��	� 
]�i� V�� L , which meansthat therearejust
two preferences( "��BT'�~� and �i� V�� ), that the preferenceof a solutionis the logical and
of thepreferencesof their subtuplesin theconstraints,andthattrueis betterthanfalse
(orderinginducedby thelogical or operation* ).

3 ConstrainedCP-nets

We now definea structurewhich is a CP-netplusa setof hardconstraints.In latersec-
tionswewill relaxthisconceptby allowing softconstraintsratherthanhardconstraints.

Definition 1 (constrainedCP-net).A ConstrainedCP-netis a CP-netplussomecon-
straints on subsetsof its variables.We will thuswrite a constrainedCP-netasa pairD/� 
  L , where

�
is a setof conditionalpreferencestatementsdefininga CP-netand  

is a setof constraints.

The hardconstraintscanbe expressedby genericrelationson partial assignments
or, in thecaseof binaryfeatures,by asetof Booleanclauses.As with CP-nets,thebasis
of thesemanticsof constrainedCP-netsis thepreferenceordering, # , which is defined
by meansof thenotionof a worseningflip. A worseningflip is definedvery similarly
to how it is definedin a regular(unconstrained)CP-net.

Definition 2 ( � w #�� � ). Givena constrainedCP-net
D'� 
  L , outcome� � is better

thanoutcome� � (written � � #8� � ) iff there is a chain of flips from � � to � � , where
each flip is worseningfor

�
andeach outcomein thechainsatisfies .



Theonly differencewith thesemanticsof (unconstrained)CP-netsis thatwe now
restrictourselvesto chainsof feasibleoutcomes.Asweshow shortly, thissimplechange
hassomevery beneficialeffects.First, we observe that the # relationremainsa strict
partial orderingas it wasfor CP-nets[6,3]. Second,it is easyto seethat checkingif
an outcomeis optimal is linear (we merelyneedto checkit is feasibleandany flip is
worsening).Third, if a setof hardconstraintsaresatisfiableanda CP-netis acyclic,
thenthe constrainedCP-netformedfrom putting the hardconstraintsandthe CP-net
togethermust have at leastone feasibleand undominatedoutcome.In other words,
addingconstraintsto an acyclic CP-netdoesnot eliminateall the optimal outcomes
(unlessit eliminatesall outcomes).Comparethis to [2] whereaddingconstraintsto a
CP-netmaymakeall theundominatedoutcomesinfeasiblewhile notallowing any new
outcomesto be optimal. For example,if we have � � #�� � #��0� in a CP-net,and
thehardconstraintsmake � � infeasible,thenaccordingto oursemantics� � is optimal,
while accordingto thesemanticsin [2] no feasibleoutcomeis optimal.

Theorem1. A constrainedandacyclicCP-neteitherhasno feasibleoutcomesor has
at leastonefeasibleandundominatedoutcome.

Proof. Take an acyclic constrainedCP-net
D'� 
  L . � inducesa preferenceordering

that containsno cyclesand hasexactly onemost preferredoutcome,say � . If � is
feasible,it is optimal for

D/� 
  L . If � is infeasible,we move down the preference
orderinguntil atsomepointwehit thefirst feasibleoutcome.Thisis optimalfor

D'� 
  L .��

4 An example

We will illustrate constrainedCP-netsby meansof a simpleexample.This example
illustratesthataddingconstraintscaneliminatecyclesin thepreferenceorderingdefined
by theCP-net.This is not true for thesemanticsof [6], whereaddinghardconstraints
cannotbreakcycles.

SupposeI wantto fly to Australia.I canfly with British Airways(BA) or Singapore
Airlines,andI canchoosebetweenbusinessor economy. If I fly Singapore,thenI prefer
to save money andfly economyratherthanbusinessasthereis goodleg roomevenin
economy. However, if I fly BA, I preferbusinessto economyas thereis insufficient
leg room in their economycabin. If I fly business,then I preferSingaporeto BA as
Singapore’s inflight serviceis much better. Finally, if I have to fly economy, then I
preferBA to SingaporeasI collect BA’s airmiles.If we use � for British Airways, �
for SingaporeAirlines, % for business,and % for economythenwe have: � + %�# % ,� + %0#s% , % + �$#�� , and % + �$# � .

ThisCP-nethaschainsof worseningflips which containcycles.For instance,�B%�#� %�# � %�# �9%�#U�9% . That is, I preferto fly BA in business( �9% ) thanBA in economy
( � % ) for the leg room, which I prefer to Singaporein economy( � % ) for the airmiles,
which I prefer to Singaporein business( �B% ) to save money, which I prefer to BA in
business( �9% ) for the inflight service.Accordingto the semanticsof CP-nets,noneof
the outcomesin the cycle is optimal, sincethereis alwaysanotheroutcomewhich is
better.



Supposenow thatmy travel budgetis limited, andthatwhilst Singaporeoffersno
discountson their businessfares,I have enoughairmiles with BA to upgradefrom
economy. I thereforeaddtheconstraintthat,whilst BA in businessis feasible,Singapore
in businessis not. That is, �9% is not feasible.In this constrainedCP-net,accordingto
ournew semantics,thereis nocycleof worseningflips asthehardconstraintsbreakthe
chainby making �B% infeasible.Thereis onefeasibleoutcomethatis undominated,that
is, �B% . I fly BA in businessusingmy airmilesto get theupgrade.I amcertainlyhappy
with this outcome.

Notice that the notion of optimality introducedin this papergivespriority to the
constraintswith respectto the CP-net.In fact, an outcomeis optimal if it is feasible
and it is undominatedin the constrainedCP-netordering.Therefore,while it is not
possiblefor aninfeasibleoutcometo beoptimal,it is possiblefor anoutcomewhich is
dominatedin theCP-netorderingto beoptimalin theconstrainedCP-net.

5 Finding optimal outcomes

We now show how to mapany constrainedCP-netontoanequivalentconstraintsatis-
factionproblemcontainingjust hardconstraints,suchthat the solutionsof thesehard
constraintscorrespondsto the optimal outcomesof the constrainedCP-net.The ba-
sic idea is that eachconditionalpreferencestatementof the given CP-netmapsonto
a conditionalhardconstraint.For simplicity, we will first describetheconstructionfor
Booleanvariables.In thenext section,wewill passto themoregeneralcaseof variables
with morethantwo elementsin their domain.

ConsideraconstrainedCP-net
D/� 
  L . Sincewearedealingwith Booleanvariables,

theconstraintsin  canbeseenasa setof Booleanclauses,which we will assumeare
in a conjunctive normalform. We now definethe optimality constraints for

D'� 
  L ,
writtenas

�R�2�  wherethesubscript% standsfor Booleanvariables,as  �� � aI��� o�� ���&���N �Z� . The function aI��� mapstheconditionalpreferencestatement  + �¡# � onto
thehardconstraint: �' ¢( £¤�¥ oM¦ § ¥.¤�¨ � §F©

�WªP« � � j¬�
where ¨ � §F© �Wª]« � is the clause¨ wherewe have deleted� . The purposeof ¨ � §F© �WªP« � is
to modelwhathasto be trueso thatwe cansafelyassign� to true, its morepreferred
value.

To returnto our flying example,the hardconstraintsforbid % and � to be simulta-
neouslytrue.This canbewritten asthe clause� * % . Hence,we have theconstrained
CP-net

D'� 
  L where
� � � � + %0# % , � + %0#s% , % + �$# � , % + �)#d� � and  � � � * % � .

Theoptimality constraintscorrespondingto thegivenconstrainedCP-netaretherefore� * % plusthefollowing clauses:

�/�®(�� � j¯% �'%}( % � j �
�°j % %,j¯�

Theonly satisfyingassignmentfor theseconstraintsis �9% . This is alsotheonly optimal
outcomein the constrainedCP-net.In general,thesatisfyingassignmentsof the opti-



mality constraintsareexactlythefeasibleandundominatedoutcomesof theconstrained
CP-net.

Theorem2. Givena constrainedCP-net
D/� 
  L overBooleanvariables,anoutcomeis

optimalfor
D'� 
  L iff it is a satisfyingassignmentof theoptimalityconstraints

�5�2�  .

Proof. ( ± ) Considerany outcome� that is optimal.Supposethat � doesnot satisfy��� �  . Clearly � satisfies , sincetobeoptimalit mustbefeasible(andundominated).
Therefore� mustnotsatisfysomeaI�k� o � ��� where�¢N � . Theonly wayanimplication
is notsatisfiedis whenthehypothesisis trueandtheconclusionis false. Thatis, �8²�  ,�³² ¨ � §F© �WªP« � and ��² � where� �<  + �f# � . In this situation,flipping from � to �
would give usa new outcome�2´ suchthat �2´µ²�� andthis would bean improvement
accordingto � . However, by doing so, we have to make surethat the clausesin  
containing� maynow notbesatisfied,sincenow � is false.However, wealsohavethat�@² ¨ � §�© �Wª]« � , meaningthat if � is falsetheseclausesaresatisfied.Hence,thereis an
improving flip to anotherfeasibleoutcome�2´ . But � wassupposedto beundominated.
Thusit is notpossiblethat � doesnotsatisfy

�5�2�  . Therefore� satisfiesall aI�k� o&� ���
where��N � . Sinceit is alsofeasible,� is a satisfyingassignmentof

���2�  .

( ¶ ) Considerany assignment� which satisfies
�A�2�  . Clearly it is feasibleas�¬�2�  includes  . Supposewe perform an improving flip in � . Without loss of

generality, considerthe improving flip from � to � . Therearetwo cases.Supposethat
thisnew outcomeis not feasible.Thenthisnew outcomedoesnotdominatetheold one
in oursemantics.Thus � is optimal.Suppose,on theotherhand,thatthisnew outcome
is feasible.If this is an improving flip, theremustexist a statement  + ��# � in

�
suchthat �·²¸  . By assumption,� is a satisfyingassignmentof

�¹� �  . Therefore�º² aI�k� �/  + �# � � . Since �º²U  and �º² � , and true is not allowed to imply
false, at leastone ¨ � §F© �WªP« � is not implied by � where ¨ N  and � N ¨ . However,
as the new outcomeis feasible, ¨ hasto be satisfiedindependentof how we set � .
Hence,�?² ¨ � §�© �Wª]« � . As this is a contradiction,this cannotbeanimproving flip. The
satisfyingassignmentis thereforefeasibleandundominated.

��
It immediatelyfollows thatwe cantestfor feasibleandundominatedoutcomesin

lineartime in thesizeof
D/� 
  L : we just needto testthesatisfiabilityof theoptimality

constraints,which areasmany asthe constraintsin  andthe conditionalstatements
in
�

. Notice that this constructionworks also for regular CP-netswithout any hard
constraints.In this case,the optimality constraintsare of the form  ·j»� for each
conditionalpreferencestatement  + �)# � .

It wasalreadyknown thatoptimality testingin acyclic CP-netsis linear [6]. How-
ever, our constructionalsoworkswith cyclic CP-nets.Thereforeoptimality testingfor
cyclic CP-netshasnow becomean easyproblem,even if the CP-netsare not con-
strained.On the otherhand,determiningif a constrainedCP-nethasany feasibleand
undominatedoutcomesis NP-complete(to show completeness,wemapany SAT prob-
lemdirectlyontoaconstrainedCP-netwith no preferences).Noticethatthisholdsalso
for acyclic CP-nets,andfindinganoptimaloutcomein anacyclic constrainedCP-netis
NP-hard.



6 Non-Booleanvariables

The constructionin the previous sectioncan be extendedto handlevariableswhose
domaincontainsmore than 2 values.Notice that in this casethe constraintsare no
longerclausesbut regularhardconstraintsoverasetof variableswith acertaindomain.
Given a constrainedCP-net

D/� 
  L , considerany conditionalpreferencestatement�
for feature { in

�
of the form   + � � #�� � #¹� � . For simplicity, we considerjust

3 values.However, all the constructionsandargumentsextendeasilyto morevalues.
Theoptimality constraintscorrespondingto this preferencestatement(let uscall themaI��� o � ��� ) are:  �(¡�' �¼&(�{��R� � �µ½_¾ § ª¿ o�ÀFÁyÂJÃ ¼XÄ j¬{��>� �

 �(��� ¼ (�{��>� �	�µ½6¾ § ª¿ o À ÁyÂJÃ ¼XÄ jÅ{��=� �}* {��>� �
where  ¼ is thesubsetof constraintsin  which involvevariable{ 2, and ½ � projects
ontothevariablesin

�
. Theoptimality constraintscorrespondingto

D/� 
  L areagain���  Æ�@ 5� � aI�k� o�� �������N �O� . We canagainshow that this constructiongivesa
new problemwhosesolutionsareall theoptimaloutcomesof theconstrainedCP-net.

Theorem3. Givena constrainedCP-net
D/� 
  L , an outcomeis optimal for

D/� 
  L iff
it is a satisfyingassignmentof theoptimalityconstraints

�7�  .

Proof. ( ± ) Considerany outcome� that is optimal.Supposethat � doesnot satisfy�Ç�  . Clearly � satisfies , sinceto be optimal it mustbe feasible(andundomi-
nated).Therefore� mustnotsatisfysomeaI��� o�� ��� where� preferencestatementin

�
.

Without lossof generality, let us considerthe optimality constraints Z(s�' ¼ (¡{=�� ��È½_¾ § ª�¿ o À ÁyÂnÃ ¼�Ä jÅ{��=� � and  �(¡�' ¼ (�{��5� �	�È½6¾ § ª¿ o À ÁyÂJÃ ¼XÄ j¬{��>� �}* {��=� �
correspondingto the preferencestatement  + � � #7� � #Æ�B� . The only way an im-
plication is not satisfiedis when the hypothesisis true and the conclusionis false.
Let us take the first implication: �É²Æ  , �Ê²S�� 1¼$(�{Æ�l� � �Ë½_¾ § ª¿ o�ÀFÁyÂJÃ ¼XÄ and�<²O�W{f�4� � * {f�4� � � . In this situation,flipping from �/{¢�4� � * {f�4� � � to {f�4� �
wouldgiveusanew outcome� ´ suchthat � ´ ²){��>� � andthiswouldbeanimprove-
mentaccordingto � . However, by doingso,wehaveto makesurethattheconstraintsin containing{��>� � or {��R� � maynow notbesatisfied,sincenow �W{��=� � * {��>� � �
is false.However, we alsohave that �7²R�� ¼ (f{Z�³� �	��½_¾ § ª�¿ o�ÀFÁyÂnÃ ¼�Ä , meaningthat
if {s�·� � theseconstraintsaresatisfied.Hence,thereis an improving flip to another
feasibleoutcome�2´ . But � wassupposedto beundominated.Therefore� satisfiesthe
first of thetwo implicationsabove.

Letusnow considerthesecondimplication: �²)  , �8²��' �¼_(µ{��>� � �µ½6¾ § ª¿ o�À�ÁyÂJÃ ¼XÄ
and �S²¸{��Æ� � . In this situation,flipping from {s�7� � to {s�Æ� � would give us a
new outcome�2´ suchthat �2´È²¢{O�8� � andthis would bean improvementaccording
to � . However, by doingso,we have to make surethat theconstraintsin  containing{d��� � maynow not be satisfied,sincenow {d�@� � is false.However, we alsohave
that ��²=�' ¼ (¢{d�Æ� �	�®½_¾ § ª�¿ o�ÀFÁyÂnÃ ¼�Ä , meaningthat if {d��� � theseconstraintsare
satisfied.

2 Moreprecisely, ÌÈÍ&Î ��Ï,Ð Ì2Ñ Ò Ð°ÏPÓÔÖÕ � .



Hence,thereis an improving flip to anotherfeasibleoutcome�2´ . But � wassup-
posedto be undominated.Therefore � satisfiesthe secondimplication above. Thus� mustsatisfyall constraintsaI��� o&� ��� where�>N � . Sinceit is alsofeasible, � is a
satisfyingassignmentof

�Æ�  .
( ¶ ) Considerany assignment� which satisfies

�Ç�  . Clearly it is feasibleas�·�  includes . Supposewe performanimproving flip in � . Therearetwo cases.
Supposethattheoutcomesobtainedby performingany improving flip arenot feasible.
Then suchnew outcomesdo not dominatethe old one in our semantics.Thus � is
optimal.

Suppose,on theotherhand,that thereis at leastonenew outcome,obtainedvia an
improving flip, which is feasible.Assumethe flips passesfrom {��@�B� to {��@� � . If
this is an improving flip, without lossof generality, theremustexist a statement  +��� #R{f�4� � #R{¢�4� � # ��	� in � suchthat �<²�  . By hypothesis,� is a satisfying
assignmentof

�¹�  . Therefore�³² aI�k� �/  +M��� #={¡�U� � # ��	� #5{��U� � # �	��×�
=  Ë(¸�� �¼®(f{Z�?� � �&½_¾ § ª¿ o�ÀFÁyÂnÃ ¼XÄ j �	��Ø* {Z�³� � . Since �7²¡  and �7²¡{Z�³� � ,
andtrue is not allowedto imply false, � cannotsatisfy �' �¼2(�{¡�?� � ��½_¾ § ª�¿ o�À�ÁiÂJÃ ¼�Ä .
But, asthenew outcome,which contains{¡�?� � , is feasible,suchconstraintshave to
be satisfiedindependentof how we set { . Hence,�·²=�' ¼ (¢{��@� �~��½_¾ § ª�¿ o�À�ÁiÂJÃ ¼�Ä .
As this is a contradiction,this cannotbean improving flip to a feasibleoutcome.The
satisfyingassignmentis thereforefeasibleandundominated.

��
Noticethattheconstruction

�<�  for variableswith morethantwo valuesin their
domainsis a generalizationof theonefor Booleanvariables.That is,

�7�  <� �·� � if
�

and  areover Booleanvariables.Similar complexity resultshold alsonow.
However, while for Booleanvariablesoneconstraintis generatedfor eachpreference
statement,now we generateas many constraintsas the size of the domainminus 1.
Thereforetheoptimality constraintscorrespondingto a constrainedCP-net

D/� 
  L are�  � E�� � � C � ! � , where ! is thedomainof thevariables.Testingoptimality is still
linear in thesizeof

D/� 
  L , if we assume! bounded.Findinganoptimaloutcomeas
usualrequiresusto find asolutionof theconstraintsin

�<�  , which is NP-hardin the
sizeof

D/� 
  L .
7 CP-netsand soft constraints

It maybethatwe havesoftandnot hardconstraintsto addto ourCP-net.For example,
we mayhave soft constraintsrepresentingotherquantitative preferences.In therestof
this section,a constrainedCP-netwill bea pair

D/� 
  L , where
�

is a CP-netand  is
a setof soft constraints.Noticethat this definitiongeneralizestheonegivenin Section
6 sincehardconstraintscanbeseenasaspecialcaseof softconstraints(seeSection2).

Theconstructionof theoptimalityconstraintsfor constrainedCP-netscanbeadapted
to workwith softconstraints.Tobeasgeneralaspossible,variablescanagainhavemore
thantwo valuesin their domains.The constraintswe obtainarevery similar to those
of theprevioussections,exceptthatnow we have to reasonaboutoptimizationassoft
constraintsdefineanoptimizationproblemratherthana satisfactionproblem.

Considerany CP statement� of the form   + {8�¯� � #A{<�¬� � #A{8�¯�6� .
For simplicity, we againconsiderjust 3 values.However, all theconstructionsandar-



gumentsextendeasilyto morevalues.The optimality constraintscorrespondingto � ,
called aI�k�uÙ hPÚ � � ��� , arethefollowing hardconstraints:

 �( - V � � � Ù �y¿ oqÁ �u�' �(� ¼ (�{��R� ��È½_¾ § ª¿ o�ÀFÁyÂnÃ ¼XÄ � jÅ{��>� �
 �( - V � � � Ù �y¿ oMÁ �u�' �(� �¼�(�{��=� � �µ½_¾ § ª¿ o�ÀFÁyÂnÃ ¼XÄ � jÅ{��R� � a�� {��>� �

where  ¼ is the subsetof soft constraintsin  which involve variable { , %���� � ��Y � is
the highestpreferencevalue for a completeassignmentof the variablesin the setof
soft constraintsY , and - V �uÛ Y is a hardconstraintobtainedfrom the soft constraintY
by forbiddingall tupleswhich have preferencevaluelessthan : in Y . The optimality
constraintscorrespondingto

D/� 
  L are  hyÜ � � D/� 
  Lu� � � aI�k� Ù h]Ú � � ���1�]�¢N �O� .
Considera CP-netwith two features,

�
and Ý , suchthatthedomainof Ý containsÞ � and Þ � , while the domainof

�
contains { � , { � , and { � . Moreover, we have the

following CP-netpreferencestatements:Þ � # Þ � , Þ � + { � #R{ � #�{ � , Þ � + { � #R{ � #{k� . We also have a soft (fuzzy) unaryconstraintover
�

, which gives the following
preferencesover thedomainof

�
: 0.1to { � , 0.9to { � , and0.5to {�� . By lookingat the

CP-netalone,theorderingover theoutcomesis givenby Þ � { � # Þ � { � # Þ � {���# Þ � {k�
and Þ � { � # Þ � { � # Þ � { � # Þ � {k� . Thus Þ � { � is theonly optimaloutcomeof theCP-
net.On theotherhand,by takingthesoftconstraintalone,theoptimaloutcomesareall
thosewith

� �R{ � (thus Þ � { � and Þ � { � ).
Let us now considerthe CP-netandthe soft constraintstogether. To generatethe

optimality constraints,we first computebest(C),which is 0.9.Then,wehave:

– for statementÞ � # Þ � : Ý<� Þ � ;
– for statementÞ � + { � #>{ � #>{ � : we generatetheconstraintsÝ�� Þ � (¢"��6T��~��j� �S{ � and Ýß� Þ � (OÝß� Þ � j � �S{ � * � �S{ � . Notice that we have

falsein theconditionof thefirst implicationbecause- V �ià	á â �/ÝÆ� Þ � (¢ �¼2( � �{ � �1½6ã �<"��BT'�~� . On theotherhand,in theconditionof thesecondimplicationwe
have - V � à	á â �'Ý<� Þ � (° ¼ ( � ��{ ���µ½ ã �U�'Ý<� Þ ��� . Thus,by removing false,we
have justoneconstraint:Ý<� Þ � j � �R{ �}* � �>{ � ;

– for statementÞ �>+ { � #¬{ � #¬{k� : similarly to above, we have the constraintÝ<� Þ � j � �>{ � .
Let usnow computetheoptimalsolutionsof thesoft constraintover

�
which are

alsofeasiblefor thefollowingsetof constraints:Ý8� Þ � , Ý<� Þ � j � ��{ ��* � �R{ � ,ÝÇ� Þ � j � ��{ � . The only solutionwhich is optimal for the soft constraintsand
feasiblefor the optimality constraintsis Þ � { � . Thus this solution is optimal for the
constrainedCP-net.

Notice that the optimal outcomefor the constrainedCP-netof the above example
is not optimal for the CP-netalone.In general,an optimal outcomefor a constrained
CP-nethasto be optimal for the soft constraints,andsuchthat thereis no otherout-
comewhich canbe reachedfrom it in the orderingof the CP-netwith an improving
chainof optimaloutcomes.Thus,in thecaseof CP-netsconstrainedby softconstraints,
Definition 2 is replacedby thefollowing one:

Definition 3 ( � w # Ù hPÚ � � � ). Givena constrainedCP-net
D'� 
  L , where  is a setof

softconstraints,outcome� � is better thanoutcome� � (written � � # Ù hPÚ � � � ) iff there



is a chainof flips from � � to � � , whereeach flip is worseningfor
�

andeach outcome
in thechain is optimalfor  .

Noticethatthis definitionis justa generalizationof Def. 2, sinceoptimality in hard
constraintsis simply feasibility. Thus #0�G# Ù hPÚ � when  is a setof hardconstraints.

ConsiderthesameCP-netasin thepreviousexample,andabinaryfuzzyconstraint
over

�
and Ý which gives preference0.9 to { � Þ � and { � Þ � , and preference0.1 to

all otherpairs.Accordingto theabove definition,both { � Þ � and { � Þ � areoptimal for
theconstrainedCP-net,sincethey areoptimal for thesoft constraintsandthereareno
improving pathof optimaloutcomesbetweenthemin theCP-netordering.Let uscheck
thattheconstructionof theoptimality constraintsobtainsthesameresult:

– for Þ � # Þ � we get - V � à	á â �� �ä&(¢ÝÆ� Þ ��1½_å jlÝÆ� Þ � . Since - V � àá â �' �ä&(¢ÝÆ�Þ ���µ½6å �<� � �>{ ��� , weget
� ��{ � j¬Ý<� Þ � .

– for statementÞ �>+ { � #¯{ � #¬{k� : ÝÊ� Þ � ( - V � àá â �/ÝÊ� Þ � (s ¼ ( � �{ �	��½ ã j � �8{ � . Since - V � à	á â �'Ý7� Þ � (¢ ¼ ( � �U{ �	��½ ã �<"��BT'�~� , we geta
constraintwhich is alwaystrue.Also, wehavetheconstraintÝ<� Þ � ( - V � àá â �/Ý<�Þ � (¢ ¼ ( � �5{ �~�}½ ã j � �>{ �æ* � �5{ � . Since - V � à	á â �'Ý³� Þ � (¢ ¼ ( � �{ ���µ½ ã �U�'Ýç Þ �� , we get Ý8� Þ � (�Ý<� Þ � j � �R{ �}* � �>{ � .

– for statementÞ �>+ { � #¬{ � #¬{k� : similarly to above, we have the constraintÝ<� Þ � j � �>{ �1* � �>{ � .
Thusthe setof optimality constraintsis the following one:

� �Æ{ � j�ÝÅ� Þ � ,Ýè� Þ � j � �Æ{ � * � �Æ{ � , and Ýè� Þ � j � �7{ � * � �Æ{ � . The feasible
solutionsof this setof constraintsare { � Þ � , { � Þ � , and { � Þ � . Of theseconstraints,the
optimaloutcomesfor thesoftconstraintare { � Þ � and { � Þ � . Noticethat,in theordering
inducedby theCP-netover theoutcomes,thesetwo outcomesarenot linkedby a path
of improving flips throughoptimaloutcomesfor thesoftconstraints.Thusthey areboth
optimalfor theconstrainedCP-net.

Theorem4. Givena constrainedCP-net
D/� 
  L , where  is a setof softconstraints,

an outcomeis optimalfor
D'� 
  L iff it is an optimalassignmentfor  andif it satisfies hiÜ � � D'� 
  L]� .

Proof. ( ± ) Consideran outcome� that is optimal for
D'� 
  L . Thenby definition it

mustbeoptimal for  . Supposetheoutcomedoesnot satisfy  hiÜ � . Therefore� must
not satisfysomeconstraintaI�k� o � ��� where� preferencestatementin

�
. Without loss

of generality, let usconsidertheoptimality constraints

 �( - V � � � Ù �y¿ oqÁ �u�' �(� ¼ (�{��R� ��È½_¾ § ª¿ o À ÁyÂnÃ ¼XÄ � jÅ{��>� �
 �( - V � � � Ù �y¿ oMÁ �u�' �(� ¼ (�{��=� �~�µ½_¾ § ª¿ o À ÁyÂnÃ ¼XÄ � jÅ{��R� �a�� {��>� �

correspondingto thepreferencestatement  + � � #s� � #s�6� .
Theonly way an implicationis not satisfiedis whenthehypothesisis true andthe

conclusionis false. Let us take the first implication: �é²<  , �l² - V � � � Ù �y¿ oqÁ �u�' d( ¼ (�{¸�³� ����½_¾ § ª¿ o�ÀFÁyÂnÃ ¼XÄ � and �7²��/{Z�³� �,* {¸�³�6� � . In this situation,flipping
from �/{@�ê� ��* {��ê�6� � to {��ë� � would give us a new outcome �2´ suchthat



�2´�²d{R�·� � andthis would be an improvementaccordingto � . However, by doing
so,we have to make surethat the soft constraintsin  containing{��@� � or {¸�Æ�B�
may now still be satisfiedoptimally, sincenow �W{s�7� �&* {��Æ�B� � is false.We also
have that �7² - V � � � Ù �y¿ oMÁ �u�' Ë(Ë �¼2(¢{Z�³� � ��½6¾ § ª�¿ o�ÀFÁiÂJÃ ¼�Ä � , meaningthat if {Z�³� �
theseconstraintsaresatisfiedoptimally. Hence,thereis an improving flip to another
outcome�2´ which is optimalfor  andwhichsatisfies hiÜ � . But � wassupposedto be
undominated.Therefore� satisfiesthefirst of thetwo implicationsabove.

Let us now considerthe secondimplication: �è²R  , �è² - V � � � Ù �y¿ oqÁ �u�/ Z(O ¼ ({8�è� �	�)½_¾ § ª¿ o À ÁyÂnÃ ¼XÄ � , and �ë²4{U�è�B� . In this situation,flipping from {8�Å�B�
to {>�¹� � would give us a new outcome�2´ suchthat �2´�²s{>�¹� � andthis would
be an improvementaccordingto � . However, by doing so,we have to make surethat
the constraintsin  containing {��ê�B� may now still be satisfiedoptimally, since
now {<�¯� � is false.However, we also have that �l² - V � � � Ù �y¿ oMÁ �]�/ �(¸ �¼�(O{<�� � ��½_¾ § ª�¿ o�ÀFÁyÂnÃ ¼�Ä � , meaningthat if {�Ç� � theseconstraintsaresatisfiedoptimally.
Hence,thereis animproving flip to anotherfeasibleoutcome� ´ . But � wassupposed
to be undominated.Therefore� satisfiesthe secondimplication above. Thus � must
satisfyall theoptimality constraintsaI��� o � ��� where�¢N � .

( ¶ ) Considerany assignment� which is optimalfor  andsatisfies hiÜ � . Suppose
we perform a flip on � . Thereare two cases.Supposethat the new outcomeis not
optimal for  . Thenthenew outcomedoesnot dominatetheold onein our semantics.
Thus � is optimal.Suppose,on theotherhand,that thereis at leastonenew outcome,
obtainedvia an improving flip, which is optimal for  andsatisfies hiÜ � . Assumethe
flip passesfrom {��R� � to {��R� � . If thisis animprovingflip, withoutlossof generality,
theremust exist a statement  +2��	� #A{<�¬� � #A{<�¬� � # ��� in

�
suchthat�Æ²¡  . By hypothesis,� is anoptimalassignmentof  andsatisfies hiÜ � . Therefore�³² aI��� �'  +n�	�� #4{��8� � # �	�� #5{��8� � # �	��×� =  ¢( - V � � � Ù �y¿ oqÁ �u�/ f(Ë 1¼2(�{��� � �È½_¾ § ª�¿ o�ÀFÁyÂnÃ ¼�Ä � j ��	�	* {��>� � .

Since �A²s  and �A²d{R�7�B� , and true is not allowed to imply false, � cannot
satisfy - V � � � Ù �y¿ oMÁ �]�/ ì(G ¼ (�{��>� �~�È½_¾ § ª�¿ o À ÁyÂnÃ ¼�Ä � . But �2´ , whichcontains{��=� � , is
assumedto beoptimalfor  , so - V � � � Ù �y¿ oMÁ �]�/ �(� ¼ (ì{��R� �~�µ½6¾ § ª¿ o À ÁyÂJÃ ¼XÄ � hasto be
satisfiedindependentlyof how we set { . Hence,�U²¡�� ¼ (�{��5� �	�}½6¾ § ª¿ o À ÁyÂJÃ ¼XÄ . As
this is a contradiction,this cannotbeanimproving flip to anoutcomewhich is optimal
for  andsatisfies hiÜ � . Thus � is optimalfor theconstrainedCP-net.

��
It is easyto seehow theconstructionof this sectioncanbeusedwhena CP-netis

constrainedby asetof bothhardandsoftconstraints,or by severalsetsof hardandsoft
constraints,sincethey canall beseenasjust onesetof soft constraints.

Let usnow considerthe complexity of constructingtheoptimality constraintsand
of testingor finding optimaloutcomes,in thecaseof CP-netsconstrainedby soft con-
straints.First,aswith hardconstraints,thenumberof optimalityconstraintswegenerate
is � � �í� C¸� � ! � ç w~� , where � � � is thenumberof preferencestatementsin

�
and ! is

thedomainof thevariables.Thuswe have �  hyÜ � � D'� 
  L]�� � � � � CZ� � ! � ç w~� . To test
if anoutcome� is optimal,weneedto checkif � satisfies hyÜ � andif it is optimalfor . Checkingfeasibility for  hyÜ � takeslinear time in � � � C¸� � ! � ç w�� . Then,we need
to checkif � is optimalfor  . This is NP-hardthefirst timewe do it, otherwise(if the
optimalpreferencevaluefor  is known) is linear in thesizeof  . To find anoptimal



outcome,we needto find theoptimalsfor  which arealsofeasiblefor  hiÜ � . Finding
optimalsfor  needsexponentialtimein thesizeof  , andcheckingfeasibility in  hyÜ �
is linear in the sizeof  hiÜ � . Thus,with respectto the correspondingresultsfor hard
constraints,weonly needto domorework thefirst timewewantto testanoutcomefor
optimality.

8 Multiple constrainedCP-nets

Therearesituationswhenwe needto representthepreferencesof multiple agents.For
example,whenweareschedulingworkers,eachwill haveasetof preferencesconcern-
ing theshifts.Theseideasgeneralizeto sucha situation.ConsiderseveralCP-nets

� � ,
. . . ,

�°î
, anda setof hardor soft constraints . We will assumefor now that all the

CP netshave the samefeatures.To begin, we will sayan outcomeis optimal if f it is
optimal for eachconstrainedCPnet

D'�ì� 
  L . This is a specificchoicebut we will see
laterthatotherchoicescanbeconsideredaswell. Wewill call thisnotionof optimality,
All-optimal.

Definition 4 (All-optimal). GivenamultipleconstrainedCPnet ïß� D � � �X
ð�	���
 � î �F
  L ,
an outcome� is All-optimal for ï if � if it is optimal for each constrainedCP netD/�ì� 
  L .

This definition, togetherwith Theorem4, implies that to find the all-optimal out-
comesfor ï we just needto generatethe optimality constraintsfor eachconstrained
CP net

D/�G� 
  L , and then take the outcomeswhich areoptimal for  andsatisfyall
optimality constraints.

Theorem5. Givena multiple constrainedCP net ï � D � � �X
	���	
 � î �F
  L , an out-
come� is All-optimal for ï iff � is optimal for  andit satisfiestheoptimalitycon-
straintsin ñ �  hiÜ � � D/�G� 
  Lu� .

This semanticsis oneof consensus:all constrainedCPnetsmustagreethatanout-
comeis optimalto declareit optimalfor themultipleconstrainedCPnet.Choosingthis
semanticsobviouslysatisfiesall CPnets.However, therecouldbenooutcomewhich is
optimal. In [8] a similar consensussemantics(althoughfor multiple CP nets,with no
additionalconstraints)is calledParetooptimality, andit is oneamongseveralalterna-
tive to aggregatepreferencesexpressedvia severalCPnets.This semantics,adaptedto
ourcontext, would bedefinedasfollows:

Definition 5 (Pareto).Givena multipleconstrainedCP net ïò� D � � ��
�	��	
 � î ��
  L ,
an outcome� is Pareto-betterthanan outcome�2´ iff it is betterfor each constrained
CP net.It is Pareto-optimalfor ï iff there is no otheroutcomewhich is Pareto-better.

If anoutcomeis all-optimal,it is alsoPareto-optimal.However, theconverseis not
truein general.Thesetwo semanticsmayseemequallyreasonable.However, while all-
optimality canbe computedvia the approachof this paper, which avoids dominance
testing,Paretooptimality needssuchtests,and thereforeit is in generalmuchmore



expensive to compute.In particular, whilst optimality testingfor Paretooptimality re-
quiresexponentialtime, for All-optimality it just needslinear time (in the sumof the
sizesof theCPnets).

Otherpossibilitiesproposedin [8] requireoptimalsto be the bestoutcomesfor a
majorityof CPnets(thisis calledMajority), or for thehighestnumberof CPnets(called
Max). Othersemanticslike Lex, associateeachCPnetwith a priority, andthendeclare
optimal thoseoutcomeswhich areoptimal for the CP netswith highestpriority, in a
lexicographicalfashion.In principle,all thesesemanticscanbe adaptedto work with
multiple constrainedCPnets.However, asfor Paretooptimality, whilst their definition
is possible,reasoningwith themwould requiremorethanjust satisfyinga combination
of theoptimality constraints,andwould involvedominancetesting.

Thusthemaingainfrom oursemantics(all-optimalandothersthatcanbecomputed
via thisapproach)is thatdominancetestingis not required.Thismakesoptimality test-
ing (afterthefirst test)linearratherthanexponential,althoughfindingoptimalsremains
difficult (asit is whenwe find theoptimalsof thesoft constraintsandcheckthefeasi-
bility of theoptimality constraints).

9 Relatedwork

Theclosestwork is [2], whereacyclic CPnetsareconstrainedvia hardconstraints,and
an algorithm is proposedto find one or all the optimal outcomesof the constrained
CP net. However, thereareseveral differences.First, the notion of optimality in this
previousapproachis differentfrom theoneusedhere:in [2], anoutcome� is optimal
if satisfiesthe constraintsandthereis no otherfeasibleoutcomewhich is betterthan
it in the CP net ordering.Therefore,if two outcomesare both feasibleand thereis
an improving path from one to the other one in the CP net, but they are not linked
by a pathof feasibleoutcomes,thenin this previousapproachonly thehighestoneis
optimal,while in oursthey areboth optimal.For example,assumewe have a CP net
with two Booleanfeatures,� and � , andthefollowingCPstatements:�)# � , � + %0# % ,� + %�#�% , andthe constraint� * % which rulesout � % . Then,the CP net orderingon
outcomesis �9%0#d� %0# � %0# �B% . In ourapproach,both �9% and � % areoptimal,whilst in
in thepreviousapproachonly �9% is optimal.Thuswe obtaina supersetof theoptimals
computedin thepreviousapproach.

Reasoningaboutthissupersetis, however, computationallymoreattractive.To find
the first optimal outcome,the algorithm in [2] usesbranchand boundand thus has
a complexity that is comparableto solving the setof constraints.Then,to find other
optimal outcomes,they needto performdominancetests(asmany as the numberof
optimal outcomesalreadycomputed),which arevery expensive. In our approach,to
find oneoptimaloutcomewe just needto solvea setof optimality constraints,which is
NP-hard.

Two issuesthatarenotaddressedin [2] aretestingoptimalityefficiently andreason-
ing with cyclic CPnets.To testoptimality, wemustrunthebranchandboundalgorithm
to find all optimals,andstopwhenthegivenoutcomeis generatedor whenall optimals
arefound.In our approach,we checkthefeasibility of thegivenoutcomewith respect
to theoptimalityconstraints.Thusit takeslineartime.Ourapproachis basedon theCP



statementsandnoton thetopologyof thedependency graph.Thusit worksjust aswell
with cyclic CPnets.

Anotherrelatedwork is [7], whereCPnetsorderingsareapproximatedvia a setof
softconstraints.Theapproximationhereis notneeded,sincewearenot trying to model
theentireorderingoveroutcomes,but only thesetof optimals.

Finally, our constructioncanbeseenasa generalizationof thatgivenin Section4
of [4], wherethey treatthecaseof mappinga CPneton Booleanfeatures,without any
constraints,ontoaSAT problem.

10 Conclusions

We have presenteda novel approachto dealwith preferencesexpressedasa mixture
of hardconstraints,soft constraints,andCPnets.Themain ideais to generatea setof
hardconstraintswhosesolutionsareoptimalfor thepreferences.Ourapproachfocuses
onfindingandtestingoptimalsolutions.It avoidsthecostlydominancetestspreviously
usedto reasonaboutCPnets.To representthepreferencesof multiple agents,we have
alsoconsideredmultipleCPnets.We haveshown thatit is possibleto definesemantics
for preferenceaggregationfor multiple CP netswhich alsoavoid dominancetesting.
Oneof themainadvantagesof this simpleandeleganttechniqueis that it permitscon-
ventionalconstraintandSAT solversto solveproblemsinvolving bothpreferencesand
constraints.

Acknowledgements.This work is partially supportedby ASI (Italian SpaceAgency)
underprojectARISCOM (ContractI/R/215/02).

References

1. S. Bistarelli, U. Montanari,F. Rossi.Semiring-basedConstraintSolvingandOptimization.
Journalof ACM, vol. 44,n. 2, pp.201-236,March1997.

2. C. Boutilier, R. Brafman,C. Domshlak,H. HoosandD. Poole.Preference-basedconstraint
optimizationwith CP-nets.ComputationalIntelligence,vol. 20,n.2,pp.137-157,May 2004.

3. C. Boutilier, R.Brafman,H. Hoos,andD. Poole.Reasoningwith conditionalceterisparibus
preferencestatements.In Proceedingsof 15thAnnualConferenceonUncertaintyin Artificial
Intelligence(UAI-99), pp.71-80,Stockholm,Sweden,1999.

4. R. BrafmanandY. Dimopoulos.ExtendedSemanticsandOptimizationAlgorithmsfor CP-
Networks. ComputationalIntelligence,vol. 20,n. 2, pp.218-245,May 2004.

5. R. Dechter. Constraintprocessing.MorganKaufmann,2003.
6. C. Domshlak,R. I. Brafman. CP-nets- reasoningandconsistency testing. In Proceedings

of theEighthInternationalConferenceonPrinciplesof Knowledge RepresentationandRea-
soning(KR-02), pages121–132.MorganKaufmann,Toulose,France,2002.

7. C. Domshlak,F. Rossi,K. B. Venable,T. Walsh.Reasoningaboutsoft constraintsandcon-
ditional preferences:complexity resultsand approximationtechniques.In Proceedingsof
theEighteenthInternationalJoint Conferenceon Artificial Intelligence(IJCAI-03), Morgan
Kaufmann,Acapulco,Mexico, August2003.

8. F. Rossi,K. B. Venable,T. Walsh.mCPnets:representingandreasoningwith preferences
of multiple agents.In Proceedingof theNineteenthNationalConferenceon Artificial Intel-
ligence(AAAI-04), SanJose,CA, USA, July2004.


