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Abstract. We can break symmetry by eliminating solutions within each sym-
metry class. For instance, the Lex-Leader method eliminates all but the smallest
solution in the lexicographical ordering. Unfortunately, the Lex-Leader method
is intractable in general. We prove that, under modest assumptions, we cannot
reduce the worst case complexity of breaking symmetry by using other order-
ings on solutions. We also prove that a common type of symmetry, where rows
and columns in a matrix of decision variables are interchangeable, is intractable
to break when we use two promising alternatives to the lexicographical order-
ing: the Gray code ordering (which uses a different ordering on solutions), and
the Snake-Lex ordering (which is a variant of the lexicographical ordering that
re-orders the variables). Nevertheless, we show experimentally that using other
orderings like the Gray code to break symmetry can be beneficial in practice as
they may better align with the objective function and branching heuristic.

1 Introduction

Symmetry occurs in many combinatorial problems. For example, when coloring a
graph, we can permute the colors in any proper coloring. Symmetry can also be in-
troduced by modelling decisions (e.g. using a set of finite domain variables to model a
set of objects will introduce the symmetries that permute these variables). A common
method to deal with symmetry is to add constraints which eliminate symmetric solu-
tions (e.g. [1–13]). Unfortunately, breaking symmetry by adding constraints to elim-
inate symmetric solutions is intractable in general [2]. More specifically, deciding if
an assignment is the smallest in its symmetry class for a matrix with row and col-
umn symmetries is NP-hard, supposing rows are appended together and compared lex-
icographically. There is, however, nothing special about appending rows together or
comparing solutions lexicographically. We could use any total ordering over assign-
ments. For example, we could break symmetry with the Gray code ordering. That is,
we add constraints that eliminate symmetric solutions within each symmetry class that
are not smallest in the Gray code ordering. This is a total ordering over assignments
used in error correcting codes. Such an ordering may pick out different solutions in
each symmetry class, reducing the conflict between symmetry breaking, problem con-
straints, objective function and the branching heuristic. The Gray code ordering has
some properties that may be useful for symmetry breaking. In particular, neighbouring
assignments in the ordering only differ at one position, and flipping one bit reverses the
ordering of the subsequent bits.



As a second example, we can break row and column symmetry with the Snake-Lex
ordering [14]. This orders assignments by lexicographically comparing vectors con-
structed by appending the variables in the matrix in a “snake like” manner. The first
row is appended to the reverse of the second row, and this is then appended to the third
row, and then the reverse of the fourth row and so on. As a third example, we can break
row and column symmetry by ordering the rows lexicographically and the columns with
a multiset ordering [15]. This is incomparable to the Lex-Leader method.

We will argue theoretically that breaking symmetry with a different ordering over
assignments cannot improve the worst case complexity. However, we also show that
other orderings can be useful in practice as they pick out different solutions in each
symmetry class. Our argument has two parts. We first argue that, under modest assump-
tions which are satisfied by the Gray code and Snake-Lex orderings, we cannot reduce
the computational complexity from that of breaking symmetry with the lexicograph-
ical ordering which considers variables in a matrix row-wise. We then prove that for
the particular case of row and column symmetries, breaking symmetry with the Gray
code or Snake-Lex ordering is intractable (as it was with the lexicographical ordering).
Many dynamic methods for dealing with symmetry are equivalent to posting symmetry
breaking constraints “on the fly” (e.g. [16–24]).

Hence, our results have implications for such dynamic methods too.

2 Background

A symmetry of a set of constraints S is a bijection σ on complete assignments that
maps solutions of S onto other solutions of S. Many of our results apply to the more
restrictive definition of symmetry which considers just those bijections which map in-
dividual variable-value pairs [25]. However, this more general definition captures also
conditional symmetries [26]. In addition, a few of our results require this more general
definition. In particular, Theorem 3 only holds for this more general definition1. The set
of symmetries form a group under composition. Given a symmetry groupΣ, a subsetΠ
generates Σ iff any σ ∈ Σ is a composition of elements from Π . A symmetry group Σ
partitions the solutions into symmetry classes (or orbits). We write [A]Σ for the symme-
try class of solutions symmetric to the solution A. Where Σ is clear from the context,
we write [A]. A set of symmetry breaking constraints is sound iff it leaves at least one
solution in each symmetry class, and complete iff it leaves at most one solution in each
symmetry class.

We will study what happens to symmetries when problems are reformulated onto
equivalent problems. For example, we might consider the Boolean form of a problem
in which Xi = j maps onto Zij = 1. Two sets of constraints, S and T over possibly
different variables are equivalent iff there is a bijection between their solutions. Suppose
Ui and Vi for i ∈ [1, k] are partitions of the sets U and V into k subsets. Then the two
partitions are isomorphic iff there are bijections π : U 7→ V and τ : [1, k] 7→ [1, k]
such that π(Ui) = Vτ(i) for i ∈ [1, k] where π(Ui) = {π(u) | u ∈ Ui}. Two symmetry
groups Σ and Π of constraints S and T respectively are isomorphic iff S and T are
equivalent, and their symmetry classes of solutions are isomorphic.

1 We thank an anonymous reviewer for pointing this out.



3 Using Other Orderings

The Lex-Leader method [2] picks out the lexicographically smallest solution in each
symmetry class. For every symmetry σ, it posts a lexicographical ordering constraint:
〈X1, . . . , Xn〉 ≤lex σ(〈X1, . . . , Xn〉) where X1 to Xn is some ordering on the vari-
ables in the problem. Many static symmetry breaking constraints can be derived from
such Lex-Leader constraints. For example, DOUBLELEX constraints to break row and
column symmetry can be derived from them [27]. As a second example, PRECEDENCE
constraints to break the symmetry due to interchangeable values can also be derived
from them [5, 8]. Efficient algorithms exist to propagate such lexicographical con-
straints (e.g. [28–30]).

We could, however, break symmetry by using another ordering on assignments like
the Gray code ordering. We define the Gray code ordering on Boolean variables. For
each symmetry σ, we could post an ordering constraint:

〈X1, . . . , Xn〉 ≤Gray σ(〈X1, . . . , Xn〉)

Where the k-bit Gray code ordering is defined recursively as follows: 0 is before 1,
and to construct the k + 1-bit ordering, we append 0 to the front of the k-bit ordering,
and concatenate it with the reversed k-bit ordering with 1 appended to the front. For
instance, the 4-bit Gray code orders assignments as follows:

0000, 0001, 0011, 0010, 0110, 0111, 0101, 0100,

1100, 1101, 1111, 1110, 1010, 1011, 1001, 1000

The Gray code ordering is well founded. Hence, every set of complete assignments will
have a smallest member under this ordering. This is the unique complete assignment
in each symmetry class selected by posting such Gray code ordering constraints. Thus
breaking symmetry with Gray code ordering constraints is sound and complete.

Proposition 1 Breaking symmetry with Gray code ordering constraints is sound and
complete.

In Section 6, we propose a propagator for the Gray code ordering constraint. We
cannot enforce the Gray code ordering by ordering variables and values, and using a
lexicographical ordering constraint. For example, we cannot map the 2-bit Gray code
onto the lexicographical ordering by simply re-ordering variables and values. To put it
another way, no reversal and/or inversion of the bits in the 2-bit Gray code will map it
onto the lexicographical ordering. The 2-bit Gray code orders 00, 01, 11 and then 10.
We can invert the first bit to give: 10, 11, 01 and then 00. Or we can invert the second
bit to give: 01, 00, 10, and then 11. Or we can invert both bits to give: 11, 10, 00, and
then 01. We can also reverse the bits to give: 00, 10, 11, and then 01. And we can then
invert one or both bits to give: 10, 00, 01, and then 10; or 01, 11, 10, and then 00; or
11, 01, 00, and then 10. Note that none of these re-orderings and inversions is the 2-bit
lexicographical ordering: 00, 01, 10, and then 11.



4 Complexity of Symmetry Breaking

We will show that, under some modest assumptions, we cannot make breaking sym-
metry computationally easier by using a new ordering like the Gray code ordering.
Our argument breaks into two parts. First, we observe how the symmetry of a problem
changes when we reformulate onto an equivalent problem. Second, we argue that we
can map onto an equivalent problem on which symmetry breaking is easier.

Proposition 2 If a set of constraints S has a symmetry groupΣ, S and T are equivalent
sets of constraints, π is any bijection between solutions of S and T , and Π ⊆ Σ then:

(a) πΣπ−1 is a symmetry group of T ;
(b) Σ and πΣπ−1 are isomorphic symmetry groups;
(c) if Π generates Σ then πΠπ−1 generates πΣπ−1.

We will use this proposition to argue that symmetry breaking with any ordering
besides the lexicographical ordering is intractable. We consider only simple orderings.
In a simple ordering, we can compute the position of any assignment in the ordering in
polynomial time, and given any position in the ordering we can compute the assignment
at this position in polynomial time. We now give our main result.

Proposition 3 Given any simple ordering �, there exists a symmetry group such that
deciding if an assignment is smallest in its symmetry class according to � is NP-hard.

Proof: Deciding if an assignment is smallest in its symmetry class according to≤lex is
NP-hard [2]. Since � and ≤lex are both simple orderings, there exist polynomial func-
tions f to map assignments onto positions in the ≤lex ordering, and g to map positions
in the� ordering to assignments. Consider the mapping π defined by π(A) = g(f(A)).
Now π is a permutation that is polynomial to compute which maps the total ordering of
assignments of ≤lex onto that for �. Similarly, π−1 is a permutation that is polynomial
to compute which maps the total ordering of assignments of � onto that for ≤lex. Let
Σrc be the row and column symmetry group. By Theorem 2, the problem of finding the
lexicographical least element of each symmetry class for Σrc is equivalent to the prob-
lem of finding the least element of each symmetry class according to � for πΣrcπ−1.
Thus, for the symmetry group πΣrcπ−1 deciding if an assignment is smallest in its
symmetry class according to � is NP-hard. 2

It follows that there exists an infinite family of symmetry groups such that checking
a constraint which is only satisfied by the smallest member of each symmetry class is
NP-hard. Note that the Gray code and Snake-Lex orderings are simple. Hence, break-
ing symmetry with either ordering is NP-hard for some symmetry groups. Note that
we are not claiming that deciding if an assignment is smallest in its symmetry class
is NP-complete. First, we would need to worry about the size of the input (since we
are considering the much larger class of symmetries that act on complete assignments
rather than on literals). Second, to decide that an assignment is the smallest, we are also
answering a complement problem (there is no smaller symmetric assignment). This will
take us to DP-completeness or above.



5 Breaking Matrix Symmetry

We next consider a common type of symmetry. In many models, we have a matrix
of decision variables in which the rows and columns are interchangeable [31–33]. We
will show that breaking row and column symmetry specifically is intractable with the
Gray code and the Snake-Lex orderings, as it is with the lexicographical ordering that
considers the variables in a row-wise order.

Proposition 4 Finding the smallest solution up to row and column symmetry for the
Snake-Lex ordering is NP-hard.

Proof: We reduce from the problem of finding the Lex-Leader solution of a matrix B.
Let B be an n ×m matrix of Boolean values. W.l.o.g. we assume B does not contain
a row of only ones since any such row can be placed at the bottom of the matrix. We
embed B in the matrix M such that finding σ(M), denoted M ′, the smallest row and
column symmetry of M in the Snake-Lex ordering is equivalent to finding the Lex-
Leader of B. We ensure that even rows in the Snake-Lex smallest symmetric solution
of M are taken by dummy identical rows. Then in odd rows, where Snake-Lex moves
from the left to the right along a row like Lex does, we embed the Lex-Leader solution
of B.
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Fig. 1. (a) Construction of M (b) Partial construction of M ′. The first and all even rows are fixed.

Let z be the maximum number of zeros in any row of B. We construct M with
2n+ 1 rows and (z + 2) + (z + 1) +m columns so that it contains three sets of rows.
The first set consists of a single row that contains z + 2 zeros followed by (z + 1) +m
ones. The second set contains n identical rows with z + 2 +m ones followed by z + 1
zeros in each row. The third set of rows contains n rows such that at the ith row the first
(z+2) positions are ones, the nextm positions are the ith row fromB and the last z+1
positions are ones again. Schematic representation of M is shown at Figure 1(a).

We determine positions of rows and columns that must be fixed in M ′ up to permu-
tation of identical rows and columns. The first row of M has to be the first row of M ′

as no other row contains z + 2 zeros. Note that this also fixes the position of columns
from 1 to z + 2 in M to be the first columns in the M ′. Note also that these columns
are identical and each of them contains the zero in the first row only.



One of the rows in the second set has to be the second row of M ′, as none of the
rows that embed rows from B contains z + 1 zeros. As we move from the right to the
left on even rows, this also makes sure that last z + 1 columns from M must be the last
columns in M ′. We summarise that at this point the first two rows are fixed and the first
z + 2 columns and the last z + 1 columns in M ′ must be equal to a permutation of the
first z + 2 identical columns and the last z + 1 identical columns in M , respectively.

By assumption, B does not contain rows with all ones. Moreover, only rows that
embed rows fromB can have the value zero at columns from (z+2)+1 to (z+2)+m
in M ′. Hence, a row from the third set that embeds a row from B has to be the third
row in M ′. We do not specify which row it is at this point. The fourth row has to be
again a row from the second set as any of remaining rows from the second set has z+1
zeros in the last z + 1 columns in M ′ while any row that embeds B has at most z
zeros. We can repeat this argument for the remaining rows. A schematic representation
of the positions of rows from the first and second sets are shown in Figure 1(b). Note
that the first and all even rows in M ′ are fixed. The only part of M ′ not yet specified is
the ordering of odd rows of m columns from (z + 2) + 1 to (z + 2) + m. These are
exactly all rows from B. Hence, finding M ′ is reduced to ordering of this set of rows
and columns that embed B. Now, all columns from (z + 2) + 1 to (z + 2) + m are
interchangeable, all odd rows except the first are interchangeable, and all elements of
M ′ except elements of B are fixed by construction. As the Snake-Lex ordering goes
from the left to the right on odd rows like the Lex ordering, finding M ′ is equivalent to
finding the Lex-Leader of B 2

To show that finding the smallest row and column symmetry in the Gray code or-
dering is NP-hard, we need a technical lemma about cloning columns in a matrix. We
use rowwise ordering in a matrix. Suppose we clone each column in a n ×m Boolean
matrix B to give the matrix Bc. Let Bcgl be the smallest row and column symmetry of
Bc in the Gray code ordering.

Lemma 1 Any original column of B is followed by its clone in Bcgl ignoring permuta-
tion of identical original columns.

Proof: By contradiction. Suppose there exists an element Bcgl[j, i + 1] such that the
original column i and the next column i + 1 are different at the jth row. We denote by
k the [j, i + 1] element of Bcgl in its row-wise linearization. We ignore the rows from
j + 1 to n at this point as they are not relevant to this discrepancy.

Each pair of columns coincide on the first j rows for the first i − 1 columns and
on the first j − 1 rows for the columns from i to m. We conclude that (1) i is odd and
i+1 is even; (2) the number of ones between the first and the (k− 2)th positions in the
linearization of Bcgl is even as each value is duplicated; (3) the clone of the ith column
cannot be among the first i − 1 columns as each such column is followed by its clone
by assumption. Hence, the clone of the ith column is among columns from i+ 2 to m.

Suppose the clone of the ith column is the pth column. Note that the pth column
must coincide with the i + 1th column at the first j − 1 rows. We consider two cases.
In the first case, Bcgl[j, i] = 1 and Bcgl[j, i+ 1] = 0. Note that the total number of ones
at the positions from 1 to k − 1 is odd as we have one in the position k − 1 and the
number of ones in the first k − 2 positions is even. Next we swap the (i+ 1)th and pth



columns in Bcgl. This will not change the first k − 1 elements in the linearization as the
pth column must coincide with the i + 1th column at the first j − 1 rows. Moreover,
this swap puts 1 in position k. As the number of ones up to the (k−1)th position is odd
then 1 goes before 0 at position k in the Gray code ordering. Hence, by swapping the
(i+ 1)th and pth columns we obtain a matrix that is smaller than Bcgl in the Gray code
ordering. This is a contradiction. In the second case, Bcgl[j, i] = 0 andBcgl[j, i+1] = 1.
Note that the total number of ones at positions 1 to k − 1 in the linearization is even as
we have zero at the position k− 1 and the number of ones in the first k− 2 positions is
even. Therefore, 0 precedes 1 at position k in the Gray code ordering. By swapping the
(i+ 1)th and pth columns we obtain a matrix that is smaller than Bcgl in the Gray code
ordering as 0 appears at the position k instead of 1. This is a contradiction. 2

Proposition 5 Finding the smallest solution up to row and column symmetry for the
Gray code ordering is NP-hard.

Proof: We again reduce from the problem of finding the Lex-Leader solution of a
matrix B. We clone every column of B and obtain a new matrix Bc. Let Bcgl be the
smallest row and column symmetry of Bc in the Gray code ordering. Lemma 1 shows
that each original column is followed by its clone in Bcgl. Next we delete all clones by
removing every second column. We call the resulting matrix Bl. We prove that Bl is
the Lex-Leader of B by contradiction. Suppose there exists a matrix M which is the
Lex-Leader of B that is different from Bl. Hence, M is also the Lex-Leader of Bl. We
find the first element M [j, i] where Bl[j, i] 6= M [j, i] in the row-wise linearization of
M and Bl, so that Bl[j, i] = 1 and M [j, i] = 0. We denote by k the position of the
[j, i] element of M in its row-wise linearization. We clone each column of M once and
put each cloned column right after its original column. We obtain a new matrixM c. We
show that M c is smaller than Bcgl in the Gray code ordering to obtain a contradiction.

As Bl[j, i] = 1 and M [j, i] = 0 then Bcgl[j, 2i − 1] = 1 and M c[j, 2i − 1] = 0
because the matrices Bcgl and M c are obtained from Bl and M by cloning each column
and putting each clone right after its original column. AsBl andM coincide on the first
k− 1 positions then Bcgl and M c coincide in the first 2k− 2 positions. By transforming
Bl andM toBcgl andM c, we duplicated each value in positions from 1 to k−1. Hence,
the total number of ones in positions from 1 to 2k − 2 in Bcgl[j, i] and M c[j, i] is even.
Therefore, the value zero precedes the value one at position 2k − 1 in the Gray code
ordering. By assumption, the value in the position 2k−1 inBcgl, which isBcgl[j, 2i−1],
is 1, and the position 2k − 1 in M c, which is M c[j, 2i− 1], is 0. Hence, M c is smaller
than Bcgl in the Gray code ordering. 2

We conjecture that row and column symmetry will be intractable to break for other
simple orderings. However, each such ordering may require a new proof.

6 Other Symmetry Breaking Constraints

Despite these negative theoretical results, there is still the possibility for other orderings
on assignments to be useful when breaking symmetry in practice. It is interesting there-
fore to develop propagation algorithms for different orderings. Propagation algorithms
are used to prune the search space by enforcing properties like domain consistency. A



constraint is domain consistent (DC) iff when a variable is assigned any value in its
domain, there exist compatible values in the domains of the other variables.

6.1 Gray Code Constraint

We give an efficient encoding for the new global constraint
Gray([X1, . . . , Xn], [Y1, . . . , Yn]) that ensures 〈X1, . . . , Xn〉 is before or equal
in position to 〈Y1, . . . , Yn〉 in the Gray code ordering where Xi and Yj are 0/1
variables. We encode the transition relation of an automaton with 0/1/-1 state variables,
Q1 to Qn+1 that reads a sequence 〈X1, Y1, . . . , Xn, Yn〉 and ensures that the two
sequences are ordered appropriately. We consider the following decomposition where
1 ≤ i ≤ n:

Q1 = 1, Qi 6= 1 ∨Xi ≤ Yi, Qi 6= −1 ∨Xi ≥ Yi,
Xi = Yi ∨Qi+1 = 0, Xi = 0 ∨ Yi = 0 ∨Qi+1 = −Qi.

We can show that this decomposition not only preserves the semantics of the con-
straint but also does not hinder propagation.

Proposition 6 Unit propagation on this decomposition enforces domain consistency on
Gray([X1, . . . , Xn], [Y1, . . . , Yn]) in O(n) time.

Proof: (Correctness) Qi = 0 as soon as the two vectors are ordered correctly. Qi = 1
iff Xi and Yi are ordered in the Gray code ordering with 0 before 1. Qi = −1 iff the ith
bits, Xi and Yi are ordered in the Gray code ordering with 1 before 0. Qi+1 stays the
same polarity as Qi iff Xi = Yi = 0 and flips polarity iff Xi = Yi = 1.

(Completeness) This follows from the completeness of CNF encoding of the cor-
responding automaton [34] and the fact that unit propagation on this set of constraints
enforces DC on a table constraint that encodes the transition relation.

(Complexity) There are O(n) disjuncts in the decomposition. Hence unit propaga-
tion takes O(n) time. In fact, it is possible to show that the total time to enforce DC
down a branch of the search tree is O(n). 2

Note that this decomposition can be used to break symmetry with the Gray code
ordering in a SAT solver.

6.2 Snake-Lex Constraint

For row and column symmetry, we can break symmetry with the DOUBLELEX con-
straint that lexicographically orders rows and columns, or the SNAKELEX constraint.
This is based on the smallest row and column permutation of the matrix according
to an ordering on assignments that linearizes the matrix in a snake-like manner [14].
The (columnwise) SNAKELEX constraint can be enforced by a conjunction of 2m − 1
lexicographical ordering constraints on pairs of columns and n−1 lexicographical con-
straints on pairs of intertwined rows. To obtain the rowwise SNAKELEX constraint,
we transpose the matrix and then order as in the columnwise SNAKELEX. Note that
DOUBLELEX and SNAKELEX only break a subset of the row and colum symmetries.



However, they are very useful in practice. It was shown in [12], that enforcing DC on
the DOUBLELEX constraint is NP-hard. Hence we typically decompose it into sepa-
rate row and column constraints. Here, we show that enforcing DC on the SNAKELEX
constraint is also NP-hard. It is therefore also reasonable to propagate SNAKELEX by
decomposition.

Proposition 7 Enforcing DC on the SNAKELEX constraint is NP-hard.

Proof: (Sketch) A full proof is in the online technical report. Let X be a n by m
matrix of Boolean variables. The main idea is to embed X in to a specially constructed
matrix in such a way that enforcing DC on the DOUBLELEX constraint onX (which we
already know is NP-hard) is equivalent to enforcing DC on the SNAKELEX constraint
on this larger matrix. 2

7 Experimental Results

We tested two hypotheses that provide advice to the modeller when breaking symmetry.

1. other orderings besides the lexicographical ordered can be effective when breaking
symmetry in practice;

2. symmetry breaking should align with the branching heuristic, and with the objec-
tive function.

All our experiments report the time to find an optimal solution and prove it optimal.
We believe that optimisation is often a more realistic setting in which to illustrate the
practical benefits of symmetry breaking, than satisfaction experiments which either find
one or all solutions. Breaking symmetry in optimisation problems is important as we
must traverse the whole search space when proving optimality. All our experiments used
the BProlog 7.7 constraint solver. This solver took second place in the ASP 2011 solver
competition. The three sets of experiments took around one CPU month on a MacBook
Pro with an Intel Core i5 2 core 2.53 GHz processor, with 4GB of memory. The three
domains were chosen as representative of optimisation problems previously studied in
symmetry breaking. We observed similar results in these as well as other domains.

7.1 Maximum density still life problem

This is prob032 in CSPLib [35]. This problem arises in Conway’s Game of Life, and
was popularized by Martin Gardner. Given a n by n submatrix of the infinite plane, we
want to find and prove optimal the pattern of maximum density which does not change
from generation to generation. For example, an optimal solution for n = 3 is:

• •
• •
• •



This is a still life as every live square has between 2 and 3 live neighbours, and every
dead square does not have 3 live neighbours. We use the simple 0/1 constraint model
from [36]. This problem has the 8 symmetries of the square as we can rotate or reflect
any still life to obtain a new one. Bosch and Trick argued that “. . . The symmetry embed-
ded in this problem is very strong, leading both to algorithmic insights and algorithmic
difficulties. . . ”.

Our first experiment used the default search strategy to find and prove optimal the
still life of maximum density for a given n. The default strategy instantiates variables
row-wise across the matrix. Our goal here is to compare the different symmetry break-
ing methods with an “out of the box” solver. We then compare the impact of the branch-
ing heuristic on symmetry breaking. We broke symmetry with either the lexicographical
or Gray code orderings, finding the smallest (lex, gray) or largest (anti-lex, anti-gray)
solution in each symmetry class. In addition, we linearized the matrix either row-wise
(row), column-wise (col), snake-wise along rows (snake), snake-wise along columns
(col-snake), or in a clockwise spiral (spiral). Table 1 gives results for the 20 different
symmetry breaking methods constructed by using 1 of the 4 possible solution orderings
and the 5 different linearizations, as well with no symmetry breaking (none).

Symmetry breaking n = 4 5 6 7 8
none 176 1,166 12,205 231,408 5,867,694

gray row 91 446 5,702 123,238 2,507,747
anti-lex row 84 424 5,473 120,112 2,416,266

anti-gray col-snake 68 500 5,770 72,691 2,332,085
gray spiral 86 541 6,290 120,051 2,311,854
gray snake 80 477 5,595 120,601 2,264,184

anti-lex col-snake 79 660 4,735 66,371 2,254,325
anti-lex spiral 81 507 6,174 119,262 2,241,660
anti-lex col 74 718 3,980 68,330 2,215,936

anti-lex snake 68 457 5,379 117,479 2,206,189
lex spiral 48 434 4,025 90,289 2,028,624

lex col-snake 77 359 5,502 76,400 2,003,505
lex col 80 560 4,499 83,995 2,017,935
lex row 33 406 2,853 87,781 1,982,698

lex snake 35 407 2,965 86,331 1,980,498
anti-gray col 70 522 5,666 75,930 1,925,613

gray col 65 739 3,907 87,350 1,899,887
gray col-snake 62 693 3,833 82,736 1,880,506
anti-gray row 26 269 2,288 38,476 1,073,659

anti-gray spiral 27 279 2,404 40,224 1,081,006
anti-gray snake 28 262 2,203 38,383 1,059,704

Table 1. Backtracks required to find and prove optimal the maximum density still life of size n
by n using the default branching heuristic. Column winner is in emphasis.

We make some observations about these results. First, the Lex-Leader method (lex
row) is beaten by many methods. For example, the top three methods all use the anti-
Gray code ordering. Second, lex tends to work better than anti-lex, but anti-gray better
than gray. We conjecture this is because anti-gray tends to align better with the maxi-
mization objective than gray, but anti-lex is too aggressive as the maximum density still
life can have more dead cells than alive cells. Third, although we eliminate all 7 non-



identity symmetries, the best method is only about a factor 6 faster than not breaking
symmetry at all.

To explore the interaction between symmetry breaking and the branching heuristic,
we report results in Table 2 using branching heuristics besides the default row-wise
variable ordering. We used the best symmetry breaking method for the default row-
wise branching heuristic (anti-gray snake), the worst symmetry breaking method for
the default branching heuristic (gray row), a standard method (lex row), as well as no
symmetry breaking (none). We compared the default branching heuristic (row heuristic)
with branching heuristics that instantiate variables column-wise (col heuristic), snake-
wise along rows (snake heuristic), snake-wise along columns (col-snake heuristic), in
a clockwise spiral from top left towards the middle (spiral-in heuristic), in an anti-
clockwise spiral from the middle out to the top left (spiral-out heuristic), by order of
degree (degree heuristic), and by order of the number of attached constraints (constr
heuristic). Note that there is no value in reporting results for domain ordering heuristics
like fail-first as domains sizes are all binary.

Branching/SymBreak none gray row lex row anti-gray snake
spiral-out heuristic 196,906,862 24,762,297 194,019,848 222,659,696
spiral-in heuristic 65,034,993 18,787,751 12,662,207 9,292,164
constr heuristic 5,080,541 2,816,355 3,952,445 8,590,077
degree heuristic 6,568,195 2,024,955 6,528,018 7,053,908

col-snake heuristic 5,903,851 1,895,920 1,849,702 2,127,122
col heuristic 5,867,694 2,212,104 1,634,016 1,987,864

snake heuristic 5,903,851 1,868,303 2,043,473 1,371,200
row heuristic 5,867,694 2,507,747 1,982,698 1,059,704

Table 2. Backtracks required to find the 8 by 8 still life of maximum density and prove optimality
for different branching heuristics and symmetry breaking constraints. Overall winner is in bold.

We make some observations about these results. First, the symmetry breaking
method with the best overall performance (anti-gray snake + row heuristic) had the
worst performance with a different branching heuristic (anti-gray snake + spiral-out
heuristic). Second, we observed good performance when the branching heuristic aligned
with the symmetry breaking (e.g. anti-gray snake + snake heuristic). Third, a bad com-
bination of branching heuristic and symmetry breaking constraints (e.g. anti-gray snake
+ spiral-out heuristic) was worse than all of the branching heuristics with no symmetry
breaking constraints. Fourth, the default row heuristic was competitive. It was best or
not far from best in every column.

7.2 Low autocorrelation binary sequences

This is prob005 in CSPLib [35]. The goal is to find the binary sequence of length nwith
the lowest autocorrelation. We used a standard model from one of the first studies into
symmetry breaking [19]. This model contains a triangular matrix of 0/1 decision vari-
ables, in which the sum of the kth row equals the kth autocorrelation. Table 3 reports
results to find the sequence of lowest autocorrelation and prove it optimal. We used
the default variable ordering heuristic (left2right) that instantiates variables left to right



from the beginning of the sequence to the end. The model has 7 non-identity symme-
tries which leave the autocorrelation unchanged. We can reverse the sequence, we can
invert the bits, we can invert just the even bits, or we can do some combination of these
operations. We broke all 7 symmetries by posting the constraints that, within its sym-
metry class, the sequence is smallest in the lexicographical or Gray code orderings (lex,
gray) or largest (anti-lex, anti-gray). In addition, we also considered symmetry breaking
constraints that took the variables in reverse order from right to left (rev), alternated the
variables from both ends inwards to the middle (outside-in), and from the middle out to
both ends (inside-out).

Symmetry breaking n = 12 14 16 18 20 22 24
none 2,434 9,487 36,248 126,057 474,915 1,725,076 7,447,186

anti-gray outside-in 2,209 6,177 18,881 92,239 310,473 1,223,155 4,966,068
gray outside-in 1,351 5,040 19,152 68,272 350,790 903,441 4,526,114
lex outside-in 869 3,057 11,838 43,669 262,935 557,790 3,330,931

gray 704 2,400 10,158 36,854 158,080 468,317 3,048,723
lex 707 2,408 10,178 36,885 158,132 468,390 3,047,241

gray rev 699 1,790 9,892 25,551 147,911 329,897 2,706,466
anti-lex outside-in 1,262 2,704 14,059 67,848 179,219 544,116 2,579,981

anti-gray 1,036 2,226 9,889 45,375 167,916 606,977 2,436,236
anti-lex 1,522 3,087 10,380 51,162 281,789 920,543 2,415,736
lex rev 634 1,751 7,601 23,218 127,438 299,877 2,160,463

anti-lex rev 549 1,707 9,398 32,638 117,367 398,822 2,092,787
gray inside-out 662 1,582 6,557 25,237 89,365 248,135 1,667,262
lex inside-out 640 1,549 6,478 25,049 88,978 247,558 1,665,054
anti-gray rev 1,007 1,661 6,894 29,689 86,198 312,038 1,422,693

anti-gray inside-out 412 1,412 5,934 22,942 82,673 245,259 1,271,986
anti-lex inside-out 629 1,320 4,558 19,811 138,337 291,050 927,321

Table 3. Backtracks required to find the n bit binary sequence of lowest autocorrelation and prove
optimality with the default branching heuristic.

We make some observations about these results. First, the best two symmetry break-
ing methods both look at variables starting from the middle and moving outwards to
both ends (inside-out). By comparison, symmetry breaking constraints that reverse this
ordering of variables (outside-in) perform poorly. We conjecture this is because the
middle bits in the sequence are more constrained, appearing in more autocorrelations,
and so are more important to decide early in search. Second, although we only elimi-
nate 7 symmetries, the best method offers a factor of 8 improvement in search over not
breaking symmetry.

To explore the interaction between symmetry breaking and branching heuristics,
we report results in Table 4 to find the optimal solution and prove optimality using
different branching heuristics. We used the best two symmetry breaking methods for
the default left to right branching heuristic (anti-gray inside-out, and anti-lex inside-
out), the worst symmetry breaking method for the default branching heuristic (anti-
gray outside-in), a standard symmetry breaking method (lex), the Gray code alternative
(gray), as well as no symmetry breaking (none). We compared the default branching
heuristic (left2right heuristic) with branching heuristics that instantiate variables right
to left (right2left heuristic), alternating from both ends inwards to the middle (outside-in
heuristic), from the middle alternating outwards to both ends (inside-out heuristic), by
order of degree (degree heuristic), and by order of the number of attached constraints



(constr heuristic). Note that all domains are binary so there is again no value for a
heuristic like ff that considers domain size.

Branching/SymBreak none anti-gray gray lex anti-gray anti-lex
outside-in inside-out inside-out

left2right heuristic 1,725,076 1,223,155 468,317 468,390 245,259 291,050
right2left heuristic 1,725,076 322,291 329,897 299,877 224,540 269,628

degree heuristic 2,024,484 603,857 329,897 400,228 500,415 268,173
constr heuristic 2,024,484 1,624,765 349,025 313,817 1,097,303 297,616

inside-out heuristic 1,786,741 2,787,164 1,406,831 1,055,918 326,938 268,206
outside-in heuristic 2,053,179 364,469 284,417 284,526 2,044,042 2,767,059

Table 4. Backtracks required to find the 22 bit sequence of lowest autocorrelation and prove
optimality with different branching heuristics and symmetry breaking constraints.

We make some observations about these results. First, the best overall performance
is observed when we break symmetry with the anti-Gray code ordering (anti-gray
inside-out + right2left heuristic). Second, we observe better performance when the sym-
metry breaking constraint aligns with the branching heuristic than when it goes against
it (e.g. anti-gray outside-in + outside-in heuristic is much better than anti-gray outside-
in + inside-out heuristic). Third, the default heuristic (left2right) is again competitive.

7.3 Peaceable armies of queens

The goal of this optimisation problem is to place the largest possible equal-sized armies
of white and black queens on a chess board so that no white queen attacks a black
queen or vice versa [37]. We used a simple model from an earlier study of symmetry
breaking [38]. The model has a matrix of 0/1/2 decision variables, in which Xij = 2 iff
a black queen goes on square (i, j),Xij = 1 iff a white queen goes on square (i, j), and
0 otherwise. Note that our model is now ternary, unlike the binary models considered
in the two previous examples. However, the Gray code ordering extends from binary
to ternary codes in a straight forward. Similarly, we can extend the decomposition to
propagate Gray code ordering constraints on ternary codes.

Table 5 reports results to find the optimal solution and prove optimality for peace-
able armies of queens. This model has 15 non-identity symmetries, consisting of any
combination of the symmetries of the square and the symmetry that swaps white queens
for black queens. We broke all 15 symmetries by posting constraints to ensure that we
only find the smallest solution in each symmetry class according to the lexicographi-
cal or Gray code orderings (lex, gray), or the largest solution in each symmetry class
according to the two orders (anti-lex, anti-gray). We also considered symmetry break-
ing constraints that take the variables in row-wise order (row), in column-wise order
(col), in a snake order along the rows (snake), in a snake order along the columns (col-
snake), or in a clockwise spiral (spiral). We again used the default variable ordering that
instantiates variables in the lexicographical row-wise order.

We make some observations about these results. First, finding the largest solution in
each symmetry class (anti-gray and anti-lex) is always better than finding the smallest
(gray and lex). We conjecture that this is because symmetry breaking lines up better
with the objective of maximizing the number of queens on the board. Second, sym-
metry breaking in a “conventional” way (lex, row) is beaten by half of the symmetry



Symmetry breaking n = 3 4 5 6 7 8
none 19 194 2,588 37,434 679,771 19,597,858

lex col-snake 13 98 1,014 8,638 199,964 5,299,787
lex col 23 87 1,042 10,792 198,032 5,197,013

gray col 26 101 1,118 9,763 214,391 5,008,279
gray col-snake 13 100 1,059 8,973 205,453 4,877,014

gray spiral 18 104 913 10,795 169,725 4,690,071
lex spiral 18 93 887 10,694 169,293 4,674,458
gray row 19 73 680 6,975 116,725 3,705,591

gray snake 19 81 685 7,070 117,489 3,683,558
lex snake 19 80 661 7,043 117,590 3,682,438
lex row 19 73 679 6,880 115,999 3,652,269

anti-gray spiral 8 43 466 4,381 108,214 2,402,049
anti-gray snake 8 47 472 4,333 106,317 2,367,290
anti-gray row 8 44 452 4,326 105,837 2,357,024

anti-lex col-snake 18 59 560 4,513 70,950 2,346,875
anti-lex col 18 57 485 4,373 69,484 2,291,512
anti-lex row 9 29 315 3,417 101,530 2,037,336

anti-lex snake 9 34 314 3,366 100,472 2,010,354
anti-lex spiral 9 30 326 3,432 105,717 2,007,586

anti-gray col-snake 19 40 471 4,061 71,079 1,709,744
anti-gray col 19 40 385 4,317 70,632 1,698,492

Table 5. Backtracks required to solve the n by n peaceable armies of queens problem to optimal-
ity with the default branching heuristic.

breaking methods. In particular, all 10 methods which find the largest solution up to
symmetry in the Gray order (anti-gray) or lexicographical ordering (anti-lex) beat the
“conventional” method (lex row). Third, ordering the variables row-wise in the sym-
metry breaking constraint is best for lex, but for every other ordering (anti-lex, gray,
anti-gray) ordering variables row-wise is never best. In particular, anti-lex spiral beats
anti-lex row and all other anti-lex methods, gray snake beats gray row and all other
gray methods, and anti-gray col beats anti-gray row and all other anti-gray methods.
Fourth, a good symmetry breaking method (e.g. anti-gray col) offers up to a 12-fold
improvement over not breaking the 15 non-identity symmetries.

To explore the interaction between symmetry breaking and branching heuristics, we
report results in Table 6 using different branching heuristics. We used the best symmetry
breaking method for the default row-wise branching heuristic (anti-gray col), the worst
symmetry breaking method for the default branching heuristic (lex col-snake), a stan-
dard method (lex row), the Gray code alternative (gray row), as well as no symmetry
breaking (none). We compared the same branching heuristics as with the maximum den-
sity still life problem. As domains are now not necessarily binary, we also included the
ff heuristic that order variables by their domain size tie-breaking with the row heuristic
(ff heuristic). Given the good performance of the spiral and ff heuristics individually, we
also tried a novel heuristic that combines them together, branching on variables by order
of the domain size and tie-breaking with the spiral-in heuristic (ff-spiral heuristic).

We make some observations about these results. First, the best symmetry breaking
constraint with the default branching heuristic (anti-gray col + row heuristic) was either
very good or very bad with the other branching heuristics. It offers the best overall
performance in this experiment (viz. anti-gray col + spiral-in heuristic), and is the best
of all the symmetry breaking methods for 5 other heuristics. However, it also the worst
of all the symmetry breaking methods with 4 other heuristics. Second, aligning the
branching heuristic with the symmetry breaking constraint at best offers middle of the
road performance (e.g. lex row + row heuristic) but can also be counter-productive



Branching/SymBreak none lex col-snake gray row lex row anti-gray col
col-snake heuristic 20,209,357 4,270,637 6,372,404 5,836,975 7,363,488

col heuristic 19,597,858 4,384,086 6,338,413 5,775,781 6,811,345
spiral-out heuristic 8,196,693 4,894,264 5,099,899 5,126,074 6,478,506

degree heuristic 19,597,858 3,129,599 4,216,463 4,343,792 6,351,547
snake heuristic 20,209,357 5,261,095 4,258,903 4,221,336 1,946,556
constr heuristic 7,305,061 2,757,360 2,650,590 2,645,054 1,789,444
row heuristic 19,597,858 5,299,787 3,705,591 3,652,269 1,698,492
ff heuristic 12,826,856 3,371,419 2,495,788 2,521,351 1,309,529

ff-spiral heuristic 13,400,485 2,447,867 3,147,237 2,162,657 1,222,607
spiral-in heuristic 15,577,982 1,787,653 2,387,067 2,430,499 1,193,988

Table 6. Backtracks required to solve the 8 by 8 peaceable armies of queens problem to optimality
for different branching heuristics and symmetry breaking constraints.

(e.g. anti-gray col + col heuristic). Third, the spiral-in heuristic offer some of the best
performance. This heuristic provided the best overall result, and was always in the top 2
for every symmetry breaking method. Recall that the spiral-in heuristic was one of the
worst heuristics on the maximum density still life problem. We conjecture that this is
because it delays constraint propagation on the still life problem constraints but not on
the constraints in the peaceable armies of queens problem. Fourth, a bad combination
of branching heuristic and symmetry breaking constraints is worse than not breaking
symmetry if we have a good branching heuristic (e.g. none + constr heuristic beats
anti-gray col + col-snake heuristic).

These results support both our hypotheses. Other orderings besides the simple lex-
icographical ordering can be effective for breaking symmetry, and symmetry breaking
should align with both the branching heuristic and the objective function. Unfortunately,
as the last example demonstrated, the interaction between problem constraints, symme-
try breaking and branching heuristic can be complex and difficult to predict. Overall,
the Gray code ordering appears useful. Whilst it is conceptually similar to the lexi-
cographical ordering, it looks at more than one bit at a time. This is reflected in the
automaton for the Gray code ordering which has more states than that required for the
lexicographical ordering.

8 Conclusions

We have argued that in general breaking symmetry with a different ordering over as-
signments than the usual lexicographical ordering does not improve the computational
complexity of breaking with symmetry. Our argument had two parts. First, we argued
that under modest assumptions we cannot reduce the worst case complexity from that of
breaking symmetry with a lexicographical ordering. These assumptions are satisfied by
the Gray code and Snake-Lex orderings. Second, we proved that for the particular case
of row and column symmetries, breaking symmetry with the Gray code or Snake-Lex
ordering is intractable (as it was with the lexicographical ordering). We then explored
algorithms to break symmetry with other orderings. In particular, we gave a linear time
propagator for the Gray code ordering constraint, and proved that enforcing domain
consistency on the SNAKELEX constraint, like on the DOUBLELEX constraint, is NP-
hard. Finally, we demonstrated that other orderings have promise in practice. We ran
experiments on three standard benchmark domains where breaking symmetry with the
Gray code ordering was often better than with the Lex-Leader or Snake-Lex methods.
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