
Manipulating Two Stage Voting Rules

Nina Narodytska and Toby Walsh

Abstract

We study the computational complexity of computing a manipulation of a two stage
voting rule. An example of a two stage voting rule is Black’s procedure. The first
stage of Black’s procedure selects the Condorcet winner if they exist, otherwise
the second stage selects the Borda winner. In general, we argue that there is no
connection between the computational complexity of manipulating the two stages
of such a voting rule and that of the whole. However, we also demonstrate that we
can increase the complexity of even a very simple base rule by adding a stage to the
front of the base rule. In particular, whilst Plurality is polynomial to manipulate,
we show that the two stage rule that selects the Condorcet winner if they exist
and otherwise computes the Plurality winner is NP-hard to manipulate with 3 or
more candidates, weighted votes and a coalition of manipulators. In fact, with any
scoring rule, computing a coalition manipulation of the two stage rule that selects
the Condorcet winner if they exist and otherwise applies the scoring rule is NP-hard
with 3 or more candidates and weighted votes. It follows that computing a coalition
manipulation of Black’s procedure is NP-hard with weighted votes. With unweighted
votes, we prove that the complexity of manipulating Black’s procedure is inherited
from the Borda rule that it includes. More specifically, a single manipulator can
compute a manipulation of Black’s procedure in polynomial time, but computing a
manipulation is NP-hard for two manipulators.

1 Introduction

There exist several voting procedures that work in stages. For example, Black’s procedure
is a two stage voting rule whose first stage elects the Condorcet winner, if one exists, and
otherwise moves to a second stage which elects the Borda winner [12]. As a second example,
the French presidential elections use a two stage runoff voting system. If there is a majority
winner in the first stage, then this candidate is the overall winner, otherwise we go to the
second stage where there is a runoff vote between the two candidates with the most votes
in the first round. Such two stage voting rules can inherit a number of attractive axiomatic
properties from their parts. For example, Black’s procedure inherits Condorcet consistency
from its first part, and properties like monotonicity, participation and the Condorcet loser
property from its second part. Inheriting such properties from its parts might be considered
an attractive feature of two stage voting rules. On the other hand, a less desirable property
of one of the base rules can infect the overall two stage rule. For instance, it has been
shown that, with single peaked votes, many types of control and manipulation problems
are polynomial for Black’s procedure [4]. This polynomiality is essentially inherited from
the first stage of the rule which selects the Condorcet winner (which must exist with sin-
gle peaked votes). Such vulnerability to manipulation and control might be considered an
undesirable property for a two stage voting rule. This raises several interesting questions
from the perspective of computational social choice. For example, with unrestricted votes
as opposed to single peaked votes, are two stage voting rules more or less computationally
difficult to manipulate than single stage voting rules? How does the computational com-
plexity of manipulating a two stage voting rule depend on the computational complexity of
manipulating the two rules that it composes? In this paper, we address such questions.

Our work builds upon recent research that looks at methods to combine together voting
rules. In [10], we considered a recursive combinator that successively eliminates the least



popular candidate(s). This captures voting rules proposed in the past like those of Nanson,
Baldwin or Coombs (all described in more detail in the next section). By comparison, we
consider here a sequential combinator where the first rule eliminates all but the most popular
candidates and the second rule then decides between those that remain. This captures
voting rules proposed in the past like Black’s procedure. Perhaps closest to this work is the
sequential combinator introduced in [11]. This is an intermediate position between the two
extremes of eliminating the least popular and all but the most popular candidates. Elkind
and Lipmaa’s combinator eliminates candidates by applying some given number of rounds
of the first rule before using the second rule to decide between the candidates that remain.
Even more recently, we have considered a parallel combinator that combines together the
opinions of two (or more) different voting rules [16]. This combinator applies both rules
simultaneously and compares their results. As well as proving computational properties of
existing voting rules like Black’s procedure, this paper strengthens the evidence that adding
multiple rounds to voting will often increase the computational resistance to manipulation.

2 Background

A profile is a sequence of n total orders over m candidates. A voting rule is a function map-
ping a profile onto a set of winners (strictly speaking this is a social choice correspondence).
We consider some of the most common voting rules.
Scoring rules: Given a scoring vector (w1, . . . , wm) of weights, the ith candidate in a vote
scores wi, and the winner is the candidate with highest total score over all the votes. The
Plurality rule has the weight vector (1, 0, . . . , 0), the Veto rule has the vector (1, 1, . . . , 1, 0),
and the Borda rule has the vector (m− 1,m− 2, . . . , 0).
Cup: The winner is the result of a series of pairwise majority elections between candidates.
Given the agenda, a binary tree in which the roots are labelled with candidates, we label
the parent of two nodes by the winner of the pairwise majority election between the two
children. The winner is the label of the root.
Black’s procedure: This rule has two stages. We first determine if there is a Condorcet
winner, a candidate that beats all others in pairwise majority comparisons. If there is, this
is the winner. Otherwise, we return the result of the Borda rule.
Single Transferable Vote (STV): This rule requires up to m− 1 rounds. In each round,
the candidate with the least number of voters ranking them first is eliminated until one of
the remaining candidates has a majority.
Nanson’s and Baldwin’s rules: These are iterated versions of the Borda rule. In Nanson’s
rule, we compute the Borda scores and eliminate any candidate with less than half the mean
score. We repeat until there is an unique winner. In Baldwin’s rule, we compute the Borda
scores and eliminate the candidate with the lowest score. We again repeat until there is an
unique winner.
Coombs’ rule: This is an iterated version of the Veto rule. We repeatedly eliminate the
candidate with the most vetoes until we have one candidate with a majority.

We consider both unweighted and integer weighted votes. A weighted votes can simply
be viewed as a block of identical unweighted votes.

3 Two stage voting rules

We consider a general class of two stage voting rules. Given voting rules X and Y , the rule
XThenY applies the voting Y to the profile constructed by eliminating all but the winning
candidates from the voting rule X. Both X and Y can themselves be two stage voting
rules giving us the possibility to construct multi-stage voting rules. For example, Black’s



procedure is CondorcetThenBorda where Condorcet is the multi-winner rule that elects
the Condorcet winner if it exists, and otherwise elects all candidates. As a second example,
Plurality with Runoff is TopTwoThenMajority where TopTwo is the multi-winner voting
rule that elects the candidates with the two most plurality votes. There are many possible
rules that we might choose to combine this way. Condorcet is an attractive choice for the
first rule as it guarantees that the resulting combination is Condorcet consistent. However,
there are other interesting choices including:

CondorcetLoser: This is the rule that elects all candidates except, when it exists, the
Condorcet loser.

CopelandSet: This is the rule that elects all candidates in the Copeland set. The Copeland
score of a candidate is the number of candidates that it beats less the number of
candidates that beats it. The Copeland set contains those candidates with the maximal
Copeland score. When there is a Condorcet winner, this is the only candidate in the
Copeland set.

SmithSet: This is the rule that elects all candidates in the Smith set. This is the smallest
non-empty set of candidates such that every candidate in the set beats every candidate
outside the set in pairwise elections. When there is a Condorcet winner, this is the only
candidate in the Smith set. Voting rules like Nanson’s and Kemeny are guaranteed to
pick candidates from the Smith set.

SchwartzSet: This is the rule that elects all candidates in the Schwartz set. The Schwartz
set is a subset of the Smith set and is the union of all the undominated sets. A set is
undominated if every candidate inside the set is pairwise unbeaten by every candidate
outside, and no non-empty proper subset satisfies this property. When there is a
Condorcet winner, this is the only candidate in the Schwartz set.

We can also consider recursive definitions. We suppose any recursion terminates when
either we have a single candidate left, or the set of candidates left does not reduce in
size. For example, we can recursively define STV by STV = PluralityLoserThenSTV
where PluralityLoser is the rule that elects all candidates but the candidate with the
fewest first place votes. As a second example, we can recursively define Baldwin’s rule by
Baldwin = BordaLoserThenBaldwin where BordaLoser is the multi-winner rule that
elects all candidates but the candidate with the lowest Borda score. Nanson’s rule can be
defined recursively in a similar way. As a third example, we can define Coombs’ rule by
Coombs = MajorityThen(V etoLoserThenCoombs) where Majority elects the candidate
with a majority of first place votes or, if there is no such candidate, elects all candidates,
and V etoLoser is the rule that elects all candidates but the candidate with the most last
placed votes.

4 Axiomatic and algebraic properties

It is interesting to consider which axiomatic properties are inherited from the base rules
being combined. For example, it is simple to see that we can inherit Condorcet consistency
or the Condorcet loser properties.

Proposition 1. For any voting rule X, the combinations CondorcetThenX,
CopelandSetThenX, SmithSetThenX and SchwartzSetThenX are Condorcet consis-
tent. Similarly, for any voting rule Y , the combination CondorcerLoserThenY satisfies
the Condorcet loser property.



With recursively defined rules, we can give a similar result. We say that a multi-winner
rule is Condorcet consistent if it includes the Condorcet winner in the set of winners, and
satisfies the Condorcet loser property if the set of winners never includes the Condorcet
loser.

Proposition 2. Suppose Y is recursively defined by Y = XThenY and X is Condorcet
consistent. Then Y is also Condorcet consistent. Similarly, if X satisfies the Condorcet
loser property then Y does also.

Note that the Borda loser is never the Condorcet winner. Hence, the multi-winner rule
BordaLoser is Condorcet consistent. Thus, it follows from Proposition 2 that Baldwin’s
rule (which is recursively defined using BordaLoser) is also Condorcet consistent.

There are also axiomatic properties which can be lost by combining together voting rules.
For example, the Borda loser rule which eliminates the lowest Borda scoring candidate is
monotonic since increasing one’s preference for a candidate can only prevent them from
being the Borda loser. However, Baldwin’s rule, which is the recursive version of the Borda
loser rule, is not monotonic. It will therefore be interesting to identify conditions under
which two stage voting rules are monotonic.

This combinator has a number of interesting algebraic properties. For example, the
Identity rule that returns all candidates is a left and right identity of the Then combinator.
Note that the Then combinator is neither commutative nor associative. If a voting rule is
recursively defined then it is idempotent (that is, XThenX = X). More complex algebraic
identities can be derived such as the following.

Proposition 3. If X is idempotent then XThen(XThenY ) = XThenY and
(YThenX)ThenX = YThenX.

More specialized properties can also be derived such as the following.

Proposition 4. SmithSetThenNanson = Nanson.

Proposition 5. If X is Condorcet consistent and only returns the Condorcet winner when
they exist then CondorcetThenX = X.

5 Complexity of manipulation

One of the main contributions of this paper is to consider the impact of two stage voting rules
on the computational complexity of computing a manipulation. As in previous studies (e.g.
[2, 6]), we consider manipulation with unweighted votes and a small number of manipulators,
and manipulation with weighted votes, a coalition of manipulators and a small number of
candidates. As is common in the literature, we break ties in favour of the manipulators.

5.1 Weighted votes, general results

With weighted votes, we first argue that is no connection in general between the com-
putational complexity of computing a manipulation of a two stage voting rule and the
computational complexity of manipulating its parts.

Proposition 6. There exist voting rules X and Y with the following properties for weighted
votes:

1. computing coalition manipulations of X, Y and XThenY are polynomial;

2. computing coalition manipulations of X and Y are polynomial but of XThenY is
NP-hard;



3. computing a coalition manipulation of X is polynomial and of Y is NP-hard, but of
XThenY is polynomial;

4. computing a coalition manipulation of X is polynomial, but of Y and XThenY are
NP-hard;

5. computing a coalition manipulation of X is NP-hard, but of Y and XThenY are
polynomial;

6. computing a coalition manipulation of X is NP-hard and of Y is polynomial, but of
XThenY is NP-hard;

7. computing coalition manipulations of X and Y are NP-hard but of XThenY is poly-
nomial;

8. computing coalition manipulations of X, Y and XThenY are NP-hard.

Proof: The NP-hardness results are derived from the NP-hardness of computing a coalition
manipulation of STV with 3 or more candidates [7].

1. Consider X = FirstRoundCup and Y = Cup. FirstRoundCup is the multi-winner
rule that runs one round of the Cup voting rule. Note that FirstRoundCupThenCup
is the Cup rule itself, and both FirstRoundCup and Cup are polynomial to manipulate
by a coalition even with weighted votes [7].

2. Consider X = TopTwo and Y = Majority where TopTwo elects the two candidates
with the two highest plurality scores. On 3 candidates, TopTwoThenMajority is
Plurality with runoff, which itself is equivalent STV which is NP-hard to manipulate
by a coalition of weighted voters when we have 3 or more candidates [7].

3. Consider X = Plurality′ and Y = STV where Plurality′ is the decisive form of
plurality that includes tie-breaking in some fixed order. Note that XThenY is again
Plurality′ which is polynomial to manipulate by a coalition even with weighted votes
[7].

4. Consider X = Identity and Y = STV where Identity is the identity rule that elects
all the candidates in the election. Note that XThenY is also STV .

5. Consider X = STV1 which is the multi-winner voting rule that elects both the STV
winner and the candidate with the lexicographically smallest label, and Y elects the
candidate with the lexicographically smallest label. Note that XThenY always elects
the candidate with the lexicographically smallest label. Such a rule is polynomial to
manipulate by a coalition even with weighted votes.

6. Consider X = STV and Y = Identity. Note that XThenY is again STV .

7. Consider X = STV2 and Y = STV3 where STV2 is the multi-winner rule that elects
the STV winner as well as those candidates with the lexicographically smallest and
largest names, and STV3 elects the plurality winner between the candidates with the
lexicographically smallest and largest names if there are 3 or fewer candidates and
otherwise elects the STV winner. Note that XThenY elects the plurality winner
between the candidates with the lexicographically smallest and largest names, and
computing a coalition manipulation of such a rule is polynomial even with weighted
votes.

8. Consider X = Y = STV ′ where STV ′ is the decisive form of STV where we tie-break
in favour of the manipulators. Note that XThenY is also STV ′.

♥



5.2 Weighted votes, specific rules

With weighted votes, we already know that several multi-stage voting rules are NP-hard
to manipulate including STV, Plurality with runoff, Baldwin’s rule (all with 3 candidates),
and Nanson’s rule (with 4 candidates) [7, 15]. We first show that computing a manipu-
lation of CondorcetThenX with weighted votes is NP-hard for any scoring rule X. This
contrasts to scoring rules in general where computing a coalition manipulation is NP-hard
for any rule that is not isomorphic to Plurality, but is polynomial for Plurality. This demon-
strates that adding the test for a Condorcet winner to give CondorcetThenX increases the
computational complexity of manipulation over that for the scoring rule X alone.

Proposition 7. Deciding whether there exists a coalitional manipulation for
CondorcetThenPlurality with weighted votes is NP-complete with 3 or more candi-
dates.

Proof: We reduce from the number partitioning problem with n numbers ki, i = 1, . . . , n,∑n
i=1 ki = 2K. We have n manipulators with the weight ki each.
Consider a non-manipulator profile. Suppose voters with total weight 2K cast (a, b, p)

and voters with total weight 2K cast (b, a, p). The candidate p is a Condorcet loser as it
loses to both a and b. Moreover, as a and b are tied, there is no Condorcet winner.

Note that if all manipulators put p in the first position then p wins under plurality. How-
ever, the manipulators have to make sure that they also do not make a or b the Condorcet
winner. Note that if a (b) gets a higher score than b (a) then a (b) is the Condorcet winner.
Therefore, the only way to prevent one of them from becoming the Condorcet winner is to
partition the total weight of votes between a and b. Thus, manipulators with a total weight
of K have to vote (p, a, b) and the remaining manipulators have to vote (p, b, a). Therefore,
there exists a manipulation iff there is a partition with the required sum K. ♥

Proposition 8. With weighted votes and any scoring rule X that is not isomorphic to
Plurality, computing a coalition manipulation of CondorcetThenX is NP-hard for 3 or
more candidates.

Proof: Without loss of generality, we consider a scoring rule which gives a score of α1 for
a candidate in 1st place in a vote, α2 for 2nd place, and 0 for 3rd place. We adapt the
reduction used in the proof of Theorem 6 in [8] for the NP-hardness of manipulating any
scoring rule that is not isomorphic to Plurality voting. The reduction is from the number
partitioning problem and constructs an election with a weight of 6α1K − 2 votes over the
candidates a, b and p (who the manipulators wish to make win). Within these votes, the
manipulators have a weight of 2(α1 + α2)K votes, and the rest are fixed. The number
partition problem is to divide a set of integers summing to 2K into two equal sums. There
is a manipulator of weight ki for every integer ki in the set being partitioned. We now add
6α1K − 1 triples of votes: (a, b, p), (b, p, a), (p, a, b). This has no impact on the differences
in the scores between the candidates. However, it creates a Condorcet cycle so that there
cannot be a Condorcet winner whatever the manipulators do with their votes. Hence, we
must pass to the second round where the winner is decided by the scoring rule X. As in the
proof of Theorem 6 in [8], there is a manipulation that makes p the winner of the scoring rule
X iff there is a partition into two equal sums. Thus, computing a coalition manipulation of
CondorcetThenX is NP-hard. ♥

It follows immediately that coalition manipulation of Black’s procedure, which is
CondorcetThenBorda is NP-hard with 3 or more candidates.

Corollary 1. With weighted votes, coalition manipulation of Black’s procedure is NP-hard
with 3 or more candidates.



5.3 Unweighted votes, general results

As with weighted votes, there is no connection in general between the computational com-
plexity of computing a manipulation of a two stage voting rule with unweighted votes and
the computational complexity of computing a manipulation of its parts.

Proposition 9. There exist voting rules X and Y with the following properties:

1. computing manipulations of X, Y and XThenY are polynomial;

2. computing manipulations of X and Y are polynomial but of XThenY is NP-hard;

3. computing a manipulation of X is polynomial and of Y is NP-hard, but of XThenY
is polynomial;

4. computing a manipulation of X is polynomial, but of Y and XThenY are NP-hard;

5. computing a manipulation of X is NP-hard, but of Y and XThenY are polynomial;

6. computing a manipulation of X is NP-hard and of Y is polynomial, but of XThenY
is NP-hard;

7. computing manipulations of X and Y are NP-hard but of XThenY is polynomial;

8. computing manipulations of X, Y and XThenY are NP-hard.

Proof: The NP-hardness results are derived from the NP-hardness of manipulating STV
with unweighted votes and a single manipulator [2].

1 Identical examples to the weighted case.

2 Consider the multi-winner voting rule X that eliminates the incumbent candidate, and
the rule Y that elects the plurality winner between the candidates that are preferred
by at least one voter to the incumbent or, if there are no such candidates, the STV
winner. Now X is polynomial to manipulate as it ignores the votes. Similarly, Y
is polynomial to manipulate since the manipulators should always put the candidate
that they wish to win in first place, and the incumbent anywhere else in their vote.
If all other voters prefer the incumbent to any other candidate, then this vote will
ensure that the manipulators’ preferred candidate wins. On the other hand, if the
other voters prefer one ore more candidates to the incumbent, then this is the best
vote for ensuring the manipulators’ preferred candidate is the plurality winner. Now
XThenY is NP-hard to manipulate. We adapt the reduction used in [2] to prove
that STV is NP-hard to manipulate by a single manipulator. We simply introduce an
additional candidate, the incumbent into the voting profile used in this proof.

3-8 Identical examples to the weighted case.

♥

5.4 Unweighted votes, specific rules

With unweighted votes, we already know that a number of specific multi-stage voting rules
are NP-hard to manipulate including STV [2], Nanson’s, Baldwin’s [15] and Coombs rules
[10] (all with a single manipulator). We can add to this list Black’s procedure. Like Borda
voting on which it is based, a single manipulator can compute a manipulation of Black’s
procedure in polynomial time, but coordinating two manipulators makes the problem NP-
hard.



Proposition 10. Manipulation of Black’s procedure with unweighted votes and two manip-
ulators is NP-hard.

Proof: We adapt the reduction used in the proof of Theorem 3.1 in [3] for the NP-
hardness of manipulating Borda voting. This reduction is from a special case of numerical
matching with target sums. It constructs an election with 5 votes, 3 fixed votes and 2
votes of the manipulators over the candidates 1 to m. We now add 6 sets of cyclic votes:
(1, 2, . . . ,m−1,m), (2, 3 . . . ,m, 1), . . . , (m−1,m, . . . ,m−3,m−2), (m, 1, . . . ,m−2,m−1).
This has no impact on the differences in the scores between the candidates. However,
it creates a Condorcet cycle so that there cannot be a Condorcet winner whatever the
manipulators do with their two votes. Hence, we must pass to the second round where
the winner is decided by the Borda rule. As in the proof of Theorem 3.1 in [17], there
is a manipulation that makes a chosen candidate the Borda winner iff there is a solution
to the numerical matching problem with target sums. Thus, computing a manipulation of
CondorcetThenBorda, which is Black’s procedure, is NP-hard. ♥

Proposition 11. Deciding whether one manipulator can make a candidate win for Black’s
procedure with unweighted votes is polynomial.

Proof: We consider several cases.
Suppose no Condorcet winner exists in the profile P of votes of the non-manipulators,

but there are a 6= p and b 6= p such that beatP (a, b) = beatP (b, a), where beatP (v1, v2) is the
number of times v1 beats v2 in P . In this case, p loses regardless of how the manipulator
votes as the manipulator’s vote must give an advantage of one vote to a or b. Hence, one of
a or b must be the Condorcet winner.

Suppose no Condorcet winner exists in P and there is no a 6= p and b 6= p such that
beatP (a, b) = beatP (b, a). Then the manipulator casts a vote using to the greedy rule. This
vote does not create a Condorcet winner that is different from p, hence it is optimum for
both the Condorcet criterion and Borda rule.

Suppose there is a Condorcet winner in P , a 6= p. If there is no b such that beatP (a, b) =
beatP (b, a)+1 then a is the winner regardless of the manipulator’s vote. Therefore, suppose
there exists a set B such that beatP (a, b) = beatP (b, a) + 1, b ∈ B. If there exists b such
that scoreP (a) ≥ scoreP (b) then a will be ranked below b in the manipulator’s vote that
is constructed based on the greedy algorithm (or we can swap a and b if their scores are
equal). Therefore,we assume that scoreP (a) < scoreP (b). Let b∗ be the candidate with the
minimum score scoreP , so that b∗ = argminb∈B(scoreP (b)). The manipulator must rank
a below b∗ to prevent a from being the Condorcet winner. This is equivalent to assuming
that scoreP (a) = scoreP (b∗) and using the greedy algorithm to construct the manipulator’s
vote. If this is a successful manipulation then we are done. If it is not then there is no way
to construct a successful manipulation. ♥

6 Multiple ballots

So far, we have assumed that voters vote only once. However, the Then combinator is
naturally sequential. We can therefore consider the case where voters are allowed to re-vote
in each round. For example, in the French presidential elections, voters re-vote in the second
stage. Such re-voting increases the potential for manipulation in two ways. First, as we
illustrate here, there are elections which can only be manipulated when the manipulators
vote differently in the two rounds. Of course, all those elections where manipulators can
change the result by strategically voting the same way in both rounds remain manipulable.
Second, as we also argue in the next section, the first round of voting reveals voters’ pref-
erences, thereby enabling manipulations to take place that require such knowledge. Third,



voters can vote strategically in the first round to give their preferred candidate an easier
contest in the second round.

If voters re-vote between rounds, we add “with re-voting” to its name. Hence, plurality
with runoff and re-voting is the two stage election rule used in French presidential elections
in which, unless there a majority in the first round, plurality is used in the first round to
select two candidates to go through to the runoff, and voters then re-vote in the second
round to decide the winner of the runoff. The following example demonstrates that there
exist elections where strategic voting with plurality with runoff is not possible, but is with
plurality with runoff and re-voting.

Example 1. Suppose we have 2 votes for (a, b, p), 2 votes for (b, a, p), 1 vote for (b, p, a), 2
votes for (p, a, b) and 2 manipulators whose preferences are (p, a, b). In addition, we suppose
in the event of a tie in the first round between all 3 candidates, the manipulators’ preferred
candidate p and a go through to the runoff. Note that if the manipulators vote truthfully,
then p and b have the most votes in the first round, and b wins the runoff by 5-4. To make
p the winner, the manipulators need a and p to be in the runoff. This is possible if and only
if one of the manipulators votes for a and the other votes for p in the first round. We then
have a 3-way tie and, according to the tie-breaking rule, a and p go through to the runoff. If
the manipulators do not re-vote in the runoff, a wins the runoff by 5-4. On the other hand,
if the manipulators can re-vote in the runoff, both can vote for p, and p will beat a by 5-4.

7 Revealed preferences

One of the strong assumptions made in much work on (the complexity of) manipulation
is that the manipulators know the other voters’ preferences [9]. There are many situations
where this is unrealistic. When we have re-voting, it is reasonable to suppose voters’ pref-
erences have been (partially) revealed by the first round of voting. This introduces new
opportunities for manipulation. Consider Black’s procedure with re-voting and a manipula-
tor who lacks any knowledge of the other voters’ preferences, so votes truthfully in the first
round. The following example demonstrates that this manipulator can vote strategically in
the second round based on the votes revealed in the first round.

Example 2. Suppose the first round reveals that there are 2 votes for (a, b, p), 2 votes for
(b, p, a), 1 vote for (p, a, b), and a single manipulator’s truthful vote for (p, b, a). There is
no Condorcet winner so all candidates go through to the second round. Without re-voting,
b has the highest Borda score in the second round and is the overall winner. On the other
hand, suppose the manipulator changes their vote in the second round to (p, a, b) based on
the preferences revealed in the first round. Then, assuming the other votes remain the same,
the Borda scores of all candidates are equal. If such a 3-way tie is broken in favour of the
manipulator, then the manipulator’s preferred candidate p now wins.

It is natural to consider more game theoretic behaviours in such two stage voting rules.
Re-voting can be viewed as a finite repeated sequential game so we can use concepts like
subgame perfect Nash equilibrium and backward induction to predict how agents will play
strategically in each round. An interesting open question is the computational complexity
of computing such strategic behaviour. This sort of strategic voting has already received
some attention in the literature. For example, Bag, Sabourian and Winter prove that a
class of voting rules which use repeated ballots and eliminate one candidate in each round
are Condorcet consistent [1]. They illustrate this class with the weakest link rule in which
the candidate with the fewest ballots in each round is eliminated.

It is also natural to consider iterated voting in multiple stage voting rules. After each
round of voting, we might suppose that agents change their vote according to a best response



strategy, starting perhaps from a truthful vote. We can also consider the situation where the
full preferences of the agents are revealed in each round of voting, as well as the situation
where only partially information is revealed like total Borda scores. However, unlike previous
studies like [14], candidates are also eliminated in each round.

8 Related work

As noted earlier, a number of well known voting rules like Black’s procedure and Plurality
with runoff are instances of this voting schema. However, there exist many other related
voting rules. For example, Conitzer and Sandholm [5] studied the impact on the computa-
tional complexity of manipulation of adding an initial round of the Cup rule to a voting rule
X. This initial round eliminates half the candidates and makes manipulation NP-hard to
compute for several voting rule including plurality and Borda. Consider the multi-winner
voting rule, Bisect which runs an election between given pairs of candidates, and returns
the winning half of the candidates. Then Conitzer and Sandholm’s study can be viewed as
of the two stage voting rule BisectThenX. Elkind and Lipmaa [11] extended this idea to
a general technique for combining two voting rules. The first voting rule is run for some
number of rounds to eliminate some of the candidates, before the second voting rule is ap-
plied to the candidates that remain. They proved that many such combinations of voting
rules are NP-hard to manipulate.

Beside STV, Nanson’s, Baldwin’s and Coombs rule, a number of other recur-
sively defined rules have been put forwards in the literature. For example, Tide-
man proposed the Alternative Smith rule [18]. This is recursively defined as
SmithSetThen(PluralityLoserThenAlternativeSmith). Other complex multi-stage rules
have also been proposed. For example, [13] has proposed a complex rule that computes the
Schwartz choice set, then iteratively applies Copeland’s procedure to this set until a fixed
point is reached. If several candidates remain at this point, the rule then selects the plurality
winners. If there are several such winners, the rule then chooses among then according to
the number of second place votes, and so on. If this still does not select a winner, a lottery
is then used amongst the candidates that remain.

We recently proposed a combinator for taking the consensus of two (or more) voting
rules. Given two voting rules X and Y , the combinator X + Y computes the winners of X
and Y and then recursively applies X + Y to this set. If X and Y are majority consistent
(that is, given an election with just two candidates, they both return the majority winner)
then X +Y is (XorY )ThenMajority where XorY returns the union of the winners of X
and Y .

9 Conclusions

We have considered voting rules which have multiple stages. For example, Black’s procedure
selects the Condorcet winner if they exist, otherwise in the second stage, it selects the
Borda winner. We denoted this as CondorcetThenBorda. Combining voting rules together
in this way can increase their resistance to manipulation. For example, whilst Plurality is
polynomial to manipulate with weighted votes, CondorcetThenPlurality is NP-hard with 3
or more candidates and a coalition of manipulators. A combination of voting rules can also
inherit computational resistance to manipulation from its part. For example, we proved
that computing a manipulation of Black’s procedure, which is CondorcetThenBorda, is
NP-hard with weighted or unweighted votes. There are many directions for future work.
For instance, it would also be interesting to consider the impact of such two stage voting on
other types of control, on bribery and on issues like the computation of possible winners.



Acknowledgements

NICTA is funded by the Department of Broadband, Communications and the Digital Econ-
omy, and the Australian Research Council. The authors are also supported by the Asian
Office of Aerospace Research and Development (AOARD).

References

[1] P.K. Bag, H. Sabourian, and E. Winter. Multi-stage voting, sequential elimination and
Condorcet consistency. Journal of Economic Theory, 144(3):1278 – 1299, 2009.

[2] J.J. Bartholdi and J.B. Orlin. Single transferable vote resists strategic voting. Social
Choice and Welfare, 8(4):341–354, 1991.

[3] N. Betzler, R. Niedermeier, and G.J. Woeginger. Unweighted coalitional manipulation
under the Borda rule is NP-hard. In T. Walsh, editor, Proceedings of the 22nd Inter-
national Joint Conference on Artificial Intelligence (IJCAI 2011). International Joint
Conference on Artificial Intelligence, 2011.

[4] F. Brandt, M. Brill, E. Hemaspaandra, and L.A. Hemaspaandra. Bypassing combina-
torial protections: Polynomial-time algorithms for single-peaked electorates. In M. Fox
and D. Poole, editors, Proceedings of the 24th AAAI Conference on Artificial Intelli-
gence (AAAI 2010). AAAI Press, 2010.

[5] V. Conitzer and T. Sandholm. Universal voting protocol tweaks to make manipulation
hard. In Proceedings of 18th IJCAI, pages 781–788. International Joint Conference on
Artificial Intelligence, 2003.

[6] V. Conitzer, T. Sandholm, and J. Lang. When are elections with few candidates hard
to manipulate. Journal of the Association for Computing Machinery, 54, 2007.

[7] V. Conitzer, T. Sandholm, and J. Lang. When are elections with few candidates hard
to manipulate. Journal of the Association for Computing Machinery, 54, 2007.

[8] V. Conitzer, T. Sandholm, and J. Lang. When are elections with few candidates hard
to manipulate. Journal of the Association for Computing Machinery, 54, 2007.

[9] V. Conitzer, T. Walsh, and L. Xia. Dominating manipulations in voting wih partial
information. In W. Burgard and D. Roth, editors, Proceedings of the Twenty-Fifth
AAAI Conference on Artificial Intelligence (AAAI 2011). AAAI Press, 2011.

[10] J. Davies, N. Narodytska, and T. Walsh. Eliminating the weakest link: Making manip-
ulation intractable? In Proceedings of the Twenty-Sixth AAAI Conference on Artificial
Intelligence (AAAI 2012). AAAI Press, 2012.

[11] E. Elkind and H. Lipmaa. Hybrid voting protocols and hardness of manipulation. In
Proceedings of the 16th Annual International Symposium on Algorithms and Computa-
tion (ISAAC’05), 2005.

[12] P.C. Fishburn. Condorcet social choice functions. SIAM Journal on Applied Mathe-
matics, 33(3):469–489, 1977.

[13] C.G. Hoag and G.H. Hallett. Proportional Representation. Macmillan, 1926.



[14] O. Lev and J.S. Rosenschein. Convergence of iterative voting. In The Eleventh In-
ternational Joint Conference on utonomous Agents and Multiagent Systems (AAMAS
2012), Valencia, Spain, June 2012.

[15] N. Narodytska, T. Walsh, and L. Xia. Manipulation of Nanson’s and Baldwin’s rules.
In W. Burgard and D. Roth, editors, Proceedings of the Twenty-Fifth AAAI Conference
on Artificial Intelligence (AAAI 2011). AAAI Press, 2011.

[16] N. Narodytska, T. Walsh, and L. Xia. Combining voting rules together. In Luc de Raedt,
editor, Proc. of the 20th European Conference on Artificial Intelligence (ECAI-2012),
Frontiers in Artificial Intelligence and Applications. IOS Press, 2012.

[17] B. Reilly. Social choice in the south seas: electoral innovation and the borda count in
the pacific island countries. International Political Review, 23(4):355–372, 2002.

[18] N. Tideman. Collective Decisions And Voting: The Potential for Public Choice. Ash-
gate, 2006.

Nina Narodytska and Toby Walsh
NICTA and UNSW
Sydney, Australia
Email: {nina.narodytska,toby.walsh}@nicta.com.au


