
Super CSPsEmmanuel Hebrard, Brahim Hni
h, and Toby Walsh?Cork Constraint Computation CentreUniversity College Corkfe.hebrard, brahim, twg�4
.u

.ieAbstra
t. Fault tolerant solutions [12℄ and supermodels [8℄ are solu-tions with strong properties of stability. In this paper, we study super so-lutions, the generalization of supermodels to the
onstraint satisfa
tionand optimization framework. We explore two di�erent approa
hes to �ndsuper solutions. In the �rst, we reformulate a
onstraint problem so thatthe only solutions are super solutions. In the se
ond, we introdu
e notionsof super
onsisten
y and enfor
e them during sear
h. We also proposea bran
h and bound algorithm for �nding the most robust solution, in
ase no super solutions exist. Finally, we run extensive experiments to
ompare the di�erent approa
hes and study the diÆ
ulty of �nding su-per solutions. We show that super MAC, a new sear
h algorithm for�nding super solutions outperforms the other te
hniques.1 Introdu
tionMany AI problems may be modelled as
onstraint satisfa
tion and optimizationproblems. However, the real world is subje
t to
hange: ma
hines may break,drivers may get si
k, sto
k pri
es in
rease or de
rease, et
. In su
h
ases, oursolutions to the problems may "break". In this
ontext, one may want a solutionto be robust, that is able to remain valid despite
hanges.Un
ertainty and robustness
an be in
orporated into
onstraint solving inmany di�erent ways. Some have
onsidered robustness as a property of the al-gorithm, whilst others as a property of the solution (see, for example, dynami
CSPs [1℄ [7℄ [10℄, partial CSPs [5℄, dynami
 and partial CSPs [9℄, sto
hasti
 CSPs[11℄, and bran
hing CSPs [3℄). In dynami
 CSPs, for instan
e, we
an reuse pre-vious work in �nding solutions, though there is nothing spe
ial or ne
essarilyrobust about the solutions returned. In bran
hing and sto
hasti
 CSPs, on theother hand, we �nd solutions whi
h are robust to the possible
hanges. Howeverboth these frameworks assume signi�
ant information about the likely
hanges(e.g. the sto
hasti
 CSP framework assumes we have independent probabilitiesfor the values taken by the sto
hasti
 variables). In this paper we generalize ade�nition of solution robustness introdu
ed in SAT [8℄ to
onstraint program-ming. This de�nition allows us to estimate the robustness of solutions withoutany additional knowledge.? All authors are supported by the S
ien
e Foundation Ireland.

Solution stability1 is the ability of a solution to share as many values as pos-sible with a new solution if a
hange o

urs. For example, a stable solution ina trip planning problem would not require
an
elling a
ight be
ause of a traindrivers' strike: the plan should
hange lo
ally and in small proportion. Wherelarge
hanges to a solution introdu
e additional expenses or reorganization, sta-bility is valuable. Moreover, stability
an help us �nd a new solution. Stability
an then be seen as a parti
ular form of robustness.Fault tolerant solutions [12℄ and supermodels [8℄ are examples of solutionsthat exhibit strong properties of stability: a solution is fault tolerant if any of itsvalues
an be repla
ed by another one. For ea
h part of our trip we need at leasttwo di�erent ways to get from one point to another (we
an repla
e the trainby a bus). Supermodels are models of SAT formula that
an be repaired on
e asmall number of variables have
hanged by
hanging only a few other variables.Supermodels are a powerful way to
apture robustness and stability of solutions.Supermodels are
omputed o�ine, in advan
e of any
hanges. A supermodelguarantees the existen
e of a reasonably small repair in
ase of a small
hange inthe future. Supermodels do not require any parti
ular knowledge about future
hanges. However, supermodels have only been studied for SAT problems. Inthis paper, we generalize the
on
ept of supermodels to
onstraint satisfa
tionproblems (CSPs). We
onje
ture that
onstraint programming is in many waysa better framework for supermodels: they will be more likely, and they will morelikely be useful. The de�nition of supermodels given in [8℄ has to be modi�ed todeal with CSPs. From now on, we will refer to supermodels for SAT problems,whereas super solutions will denote stable solutions to CSPs. Note that ourde�nition of super solutions (se
tion 2) redu
es to the de�nition of supermodelsif the SAT variables are
onsidered as CSP variables with binary domains.2 Super SolutionsSupermodels were introdu
ed in [8℄ as a framework to measure inherent degreesof solution stability. An (a; b)-supermodel of a SAT problem is a model (a satisfy-ing assignment) with the additional property that if we modify the values takenby the variables in a set of size at most a (breakage variables), another model
an be obtained by
ipping the values of the variables in a disjoint set of size atmost b (repair variables). A ne
essary but not suÆ
ient
ondition that need tobe satis�ed in order to �nd a supermodel is the absen
e of ba
kbone variables.A ba
kbone variable is a variable that takes the same value in all solutions. Thepresen
e of a ba
kbone variable in a SAT problem makes it impossible to �ndany (a; b)-supermodels as that parti
ular variable has no alternative.There are a number of ways we
ould generalize the de�nition of supermodelsfrom SAT to
onstraint satisfa
tion as variables now
an have more than twovalues. A break
ould be either \losing" the
urrent assignment for a variableand then freely
hoosing an alternative value, or repla
ing the
urrent assignment1 sometimes also referred to as \similarity" in the literature

with some other value. Sin
e the latter is stronger and therefore less useful, wepropose the following de�nition.De�nition 1. A solution S to a CSP is (a; b)-super solution i� the loss of thevalues of at most a variables in S
an be repaired by assigning other values tothese variables, and modifying the assignment of at most b other variables.A number of properties follow immediately, for example, a (
; d)-super solu-tion is a (a; b)-super solution if (a �
 or d � b) and
+ d � a+ b,We will fo
us mostly on (1; 0)-super solutions in the rest of the paper. Theyare
alled fault tolerant solutions and des
ribed in [12℄. De
iding if a SAT prob-lem has an (a; b)-supermodel is NP-
omplete [8℄. It is not diÆ
ult to show thatde
iding if a CSP has an (a; b)-super solution is also NP-
omplete, even whenrestri
ted to binary
onstraints.Theorem 1. De
iding if a CSP has an (a; b)-super solution is NP-
omplete forany �xed a.Proof. To see it is in NP, we need a polynomial witness that
an be
he
ked inpolynomial time. This is simply an assignment whi
h satis�es the
onstraints,and, for ea
h of the O(na) (whi
h is polynomial for �xed a) possible breaks, thea+ b repair values.To show
ompleteness, we show how to map a binary CSP onto a new binaryproblem in whi
h the original has a solution i� the new problem has an (a; b)-supersolution. We dupli
ate the domains of ea
h of the variables, and extendthe
onstraints so that the behave equivalently on the new values. For example,suppose we have a
onstraint C(X;Y) whi
h is only satis�ed by C(m;n). Thenwe extend the
onstraint so that is satis�ed by just C(m;n), C(m0; n), C(m;n0)and C(m0; n0) where m0 and n0 are the dupli
ated values for m and n. Clearly,this binary CSP has a solution i� the original problem also has. In addition,any break of a variables
an be repaired by repla
ing the a
orresponding valueswith their primed values (or unpriming them if they are already primed) as wellas any b other values.3 Motivational ExampleThe approa
h taken in this paper, whilst it
on
erns repairs, is a proa
tiveapproa
h. A super solution is a solution to the deterministi
, regular, CSP whi
hwe expe
t may
hange before we
ome to apply the solution. The
hanges o

urafter we have found a solution and must then be ta
kled. We aim to ensure thatany break (loss of one value) will be repairable if it eventually o

urs.Let us
onsider the following CSP: X;Y; Z 2 f1; 2; 3g X � Y ^ Y � ZThe solutions to this CSP are shown in Figure 1, as well as the subsets of solutionsthat are (1; 1)-super solutions and (1; 0)-super solutions for this problem.The solution h1; 1; 1i is not a (1; 0)-super solution. The reason is that if Xloses its value 1, we
annot �nd a repair value for X that is
onsistent with Y

solutions (1; 1)-super solutions (1; 0)-super solutionsh1; 1; 1i, h1; 1; 2i h1; 1; 2i, h1; 1; 3i h1; 2; 3ih1; 1; 3i, h1; 2; 2i h1; 2; 2i, h1; 2; 3i h1; 2; 2ih1; 2; 3i, h1; 3; 3i h1; 3; 3i, h2; 2; 2i h2; 2; 3ih2; 2; 2i, h2; 2; 3i h2; 2; 3i, h2; 3; 3ih2; 3; 3i, h3; 3; 3iFig. 1. solutions, (1; 1)-super solutions, and (1; 0)-super solutions for the problem X �Y � Z.and Z be
ause neither h2; 1; 1i nor h3; 1; 1i are solutions to the problem. Also,solution h1; 1; 1i is not a (1; 1)-super solution be
ause whenX loses its value 1, we
annot repair it by
hanging the value assignment of at most another variable,i.e., there exists no repair solution when X breaks be
ause none of h2; 1; 1i,h3; 1; 1i, h2; 2; 1i, h2; 3; 1i, h2; 1; 2i, and h2; 1; 3i is a solution to our problem. Onthe other hand, h1; 2; 3i is a (1; 0)-super solution be
ause when X breaks we havethe repair solution h2; 2; 3i, when Y breaks we have the repair solution h1; 1; 3i,and when Z breaks we have the repair solution h1; 2; 2i. We therefore have atheoreti
al basis to prefer the solution h1; 2; 3i to h1; 1; 1i, the former being more\robust" or \stable". Note that all algorithms introdu
ed in this paper provideo�ine (that is, in advan
e) the repairs as well as the solution. Hen
e �nding andapplying the repairs online takes
onstant time.The way a given problem is modelled in
uen
es the super solutions. Forinstan
e,
onsider the en
oding in SAT of this problem. One way to en
odethis is to add a Booloean variable xi for every value i that X
an take, xi =True means that X = i. In our
ase, fx1; x2; x3g, fy1; y2; y3g and fz1; z2; z3g.However, su
h an en
oding has no (1; 0)-supermodel. Any variable yi standingfor an assignment of y is in
on
i
t with at least one other assignment on xor z. Moreover, one yi must be set to True, sin
e any solution gives a valueto y. Therefore the variable in
on
i
t with yi must be set to False. If theassignment of this variable is modi�ed, i.e,
ipped to True, then at least yi mustbe reassigned to False. Intuitively, in any en
oding, the likelihood of �nding an(a; b)-super solution will de
rease with the number of variables and in
rease withthe domain size. Moreover, the meaning of a super solution depends also on themodel. For example, if a variable is a
ountry and a value is a
olour, the lossof a given value is equivalent to the loss of the given
olour. On the other handif every possible
olouring of that
ountry is en
oded by a Boolean variable, theloss of a value means either that the
olour is now forbidden or that this
olourmust be used. The CSP framework gives more freedom to
hoose what variablesand values stand for, and therefore what being a super solution means.4 Reformulation Approa
h to Finding Super SolutionsOne possible approa
h to �nding super solutions is to add further variablesand
onstraints to the CSP that would eliminate those solutions that are not

super solutions. In [12℄ a de�nition of fault tolerant solutions is given whi
hmat
hes exa
tly the de�nition of (1; 0)-super solutions: two reformulations ofCSP are given in [12℄ su
h that any solution of the reformulation
orrespondsto a fault tolerant solution of the original CSP. In the following subse
tions, wereview those reformulation approa
hes and propose a new one, whi
h we
all the
ross-domains representation.4.1 Boolean ReformulationThe �rst approa
h in [12℄, asso
iates a Boolean variable xv to ea
h value v ofea
h variable X in a given CSP. Assigning this variable to 1
orresponds tothe assignment X = v in the CSP. Every disallowed tuple :(X = v; Y = w)translates into the
on
i
t
lause whi
h forbids the assignment (1,1) for the two
orresponding variables. Finally, whereas in the original CSP any variable mustimpli
itly be given exa
tly one value, here exa
tly two variables must be satis�edfor every CSP variable. This model allows only fault tolerant solution, but notall of them and it is shown through the following CSP:X = [1; 2℄; Y = [1; 2℄; X + Y < 4This CSP translates into the following Boolean CSP (or SAT problem):X1 = X2 = X3 2 [0; 1℄ (1)(x1; x2) 2 f(1; 1)g; (y1; y2) 2 f(1; 1)g (2)(x2; y2) 2 f(0; 0); (0; 1); (1; 0)g (3)In (1) the Boolean variabless asso
iated to the di�erent assignments are given.In (2) exa
tly two of the Booleans variables must be true for ea
h
orrespondingCSP variable, while in (3), the only disallowed tuple hX = 2; Y = 2i is en
oded.The solution h1; 1i is a fault tolerant solution of the original CSP, sin
e forX or Y , the value 2
an repla
e the value 1. However, this Boolean CSP hasno solution. This reformulation does not therefore give all the fault tolerantsolutions.4.2 Adding Extra Variables and ConstraintsThe se
ond approa
h proposed in [12℄ simply dupli
ates the variables. The ad-ditional variables have the same domain as the original variables, and are linkedwith the same
onstraints to the same neighbourhood. A not equal
onstraint isalso posted between ea
h original variable and its dupli
ate. The assignment tothe original part of the CSP gives then the solution, while the dupli
ated partgives the repair for ea
h variable. We refer to the reformulation of a CSP P withthis en
oding as P+P .

4.3 Cross-Domains ReformulationWe now present our last reformulation approa
h. Let S = hv1; v2i be a (1; 0)-super solution on two variables X1 and X2. If v1 is lost, then there must be avalue in r1 2 D(X1) that
an repair v1, that is hr1; v2i is a
ompatible pair.Symmetri
ally, there must exists r2 su
h that hv1; r2i is allowed. Now
onsiderthe following subproblem involving two variables:r1i1 r2i2v1 v2 v1 v2 means (v1; v2) is allowed.Sin
e it satis�es the
riteria above, S = hv1; v2i is a super solution whilst anyother tuple is not. One may suspe
t that values r1; r2; i1; i2 do not parti
ipatein any super solution and hen
e
an be pruned. However r1 and r2 are essentialfor providing support to v1 and v2. So, we
annot simply reason about extendingpartial instantiations of values, unless we keep the information about the valuesthat
an be used as repair. So, let us instead think of the domain of the variablesas pairs of values hv; ri, the �rst element
orresponding to the super value (whi
his part of a super solution), the se
ond
orresponding to the repair value (whi
h
an repair the former). We
all P�P the reformulation of a CSP P = fX ;D; Cgsu
h that any domain be
omes its own
ross-produ
t (minus the doublons), Dibe
omes Di�Di�fhv; vijv 2 Dig. The
onstraints are built as follows, two pairshv1; r1i and hv2; r2i are
ompatible i�{ v1 and v2 are
ompatible (the solution must be
onsistent at the �rst pla
e),{ v1 and r2 are
ompatible (in
ase of break involving v2, r2
an be a repair),{ v2 and r1 are
ompatible.The new domain CD(X) and CD(Y) of variable X and Y arefhv1; r1i; hv1; i1i; hr1; v1i; hr1; i1i; hi1; v1i; hi1; r1igfhv2; r2i; hv2; i2i; hr2; v2i; hr2; i2i; hi2; v2i; hi2; r2igand the only one allowed tuple is S = hhv1; r1i; hv2; r2ii. The example belowshows the
ross-domain representation of the CSP given in se
tion 3 (X � Y �Z;D(X) = D(Y) = D(Z) = [1; 2; 3℄). On this augmented CSP, ar

onsisten
ywill prune all the pairs that are in
onsistent. The pro
ess of reformulating withthe
ross-domain representation and enfor
ing a lo
al
onsisten
y
an thereforebe seen as enfor
ing a lo
al super
onsisten
y. A super solution of the originalCSP
an be extra
ted by keeping only the �rst element of every pair.Sin
e the
onstraint graph of this CSP is a tree, su

essively enfor
ing ar
-
onsisten
y and assigning a variable leads to a solution without ba
ktra
k-ing. The possible solutions to this augmented CSP are: hh1; 2i; h2; 1i; h2; 3ii,hh1; 2i; h2; 1i; h3; 2ii, hh1; 2i; h2; 3i; h3; 2ii and hh2; 1i; h2; 3i; h3; 2ii. The �rst
orre-sponds to h1; 2; 2i, the se
ond and the third to h1; 2; 3i and the fourth to h2; 2; 3i

h1; 3ih2; 1ih2; 3ih3; 1i h1; 2ih1; 3ih2; 1ih2; 3ih3; 1ih3; 2i h1; 2ih1; 3ih2; 1ih2; 3ih3; 1ih3; 2ih3; 2ih1; 2i h1; 2ih2; 1i h2; 3ih3; 2ih2; 1ih2; 3i
5 Finding Super Solutions Via Sear
h5.1 Super Consisten
yLo
al
onsisten
y allows ba
ktra
k-based sear
h algorithms su
h as MAC todete
t unsatis�able subproblems earlier. Lo
al
onsisten
y
an also be used todevelop eÆ
ient algorithms for �nding super solutions. We shall introdu
e threeways of in
orporating lo
al
onsisten
y into a sear
h algorithm for seeking su-per solutions. The �rst (AC+), a naive approa
h, augments the traditionnalar
-
onsisten
y by a further
ondition, a
hieving a very low level of �ltering.The se
ond (ar
-
onsisten
y on P�P) allows us to infer all possible lo
al infor-mation, just as in ar
-
onsisten
y in a regular CSP [4℄. However this
omes ata high
omputational
ost, though polynomial. The third (super AC) approa
hgives less inferen
e, but is a good tradeo� between the amount of pruning and
omplexity. Informally, a
onsistent
losure of a CSP
ontains only partial so-lutions for a given level of lo
allity. However, the situation with super solutionsis a little bit more tri
ky be
ause values that do not get used in any lo
al su-per solution
an still be essential as a repair and thus
annot be simply pruned.Throughout the rest of this paper we will refer only to (1; 0)-super solutions,and thus to (1; 0)-super ar
-
onsisten
y.5.2 Ar
-Consisten
y+If S is a super solution, then for every variable, at least two values are
onsistentwith all the others values of S. Consequently, being ar

onsistent and havingnon-singleton domains is a ne
essary
ondition of satis�ability. AC+
an thenbe de�ned as follows: for a CSP P = fX ;D; Cg: AC+(P) , AC(P) ^ 8D 2D; jDj > 1. Whilst AC+ is usually too weak to give good results, it is the basisfor an algorithm for the asso
iated optimization problem (se
tion 6).5.3 Ar
-Consisten
y on P�PP�P has the interesting property of having exa
tly the same topology as theoriginal problem P . Moreover, ea
h pair hvalue; repairi is expli
itly represented,therefore, ar

onsisten
y on P�P makes all the possible inferen
e, regardingar
s. The proof that AC on P�P is the tightest �ltering introdu
ed in this paperfollows in se
tion 5.5. As a
orollary, tree and treewidth bounded tra
table
lassesof CSPs are also tra
table for �nding (1; 0)-super solutions, through
ross-domain

representation, sin
e any tree stru
ture is
onserved by the transformation. In asimilar way, if P is binary and Boolean, then P+P is binary and Boolean, andhen
e tra
table.5.4 A Notion of Super Consisten
yAr
 Consisten
y on P�P allows us to infer all that
an be inferred lo
ally.In other words, we will prune any value in a
ross-domain that is not lo
ally
onsistent. However, this
omes at high
ost, maintaining ar
-
onsisten
y willbe O(d4) where d is the initial domain size. We therefore propose an alternativethat does less inferen
e, but at a mu
h lower (for example, quadrati
)
ost. Themain reason for the high
ost is the size of the
ross-domains. A
ross-domainis quadrati
 in the size of the original domain sin
e it expli
itly represents therepair value for ea
h super value. Here we will simulate (most of) the inferen
eperformed by super
onsisten
y, but will only look at one value at a time, andnot pairs. We will divide the domain of the variable into two separate sets ofdomains: the "super domain" (SD) where only super values are represented anda "repair domain" (RD) where repair values are stored.{ A value v is in the super domain of X i� for any other variable Y , thereexists v0 in super domain of Y and r in repair domain of Y su
h that (v; v0)and (v; r) are allowed and (v0 6= r).{ A value v is in repair domain of X i� for any other variable Y , there existsv0 in super domain of Y su
h that (v; v0) is allowed.The de�nition of super ar
-
onsisten
y translates in a straightforward wayinto a �ltering algorithm. The values are marked as either super or repair, andwhen looking for support of a super value, an additional and di�erent supportmarked either as super or repair is required. The
omplexity of
he
king the
onsisten
y of an ar
 in
reases only by a fa
tor of 2 and thus remains in O(d2).An algorithm that maintains su
h a
onsisten
y would bran
h only on the valuesin super domains and would fail if either the super domains be
omes emptyor the repair domains be
omes singleton. The low
ost of a
hieving super ar
-
onsisten
y
omes at the pri
e of a
hieving a lower level of
onsisten
y
omparedto maintaining ar
-
onsisten
y on P�P , as shown in Figure 4. Moreover, the
onsisten
y must be maintained also on the domains of the variables alreadyassigned. The super domain of an assigned variable is redu
ed to the
hosenvalue and
annot
hange, but the repair domain
an wipe out be
ause of anassignment in the future. Figure 2 depi
ts an algorithm enfor
ing super AC onthe CSP X � Y � Z. The �rst Figure shows the mi
rostru
ture of the CSP. Inthe following Figure, super
onsiten
y is established: Y = 1 and Y = 3 have onlyone support, respe
tively on X and Z, thus they
annot be in super domain.Furthermore X = 3 and Z = 1 have ea
h only one support on Y , respe
tivelyY = 1 and Y = 3, whi
h are not in the super domain. Hen
e X = 3 and Z = 1are pruned. Y = 2 is the only value remaining in SD(Y) and is thus assigned. Inthe last Figure, X is assigned to 2. As a result, Y = 1 is no longer supported and

is pruned. Sin
e it was the se
ond support for Z = 2 on Y , Z = 2 is no longerin the super domain anymore. Z = 3 is the only value remaining in SD(Z) andis assigned.123 X Y Z 123 X Y Z 123 X Y ZFig. 2. Left: The mi
rostru
ture of the CSP, Middle: its super
onsistent
losure, Right:a super solution is rea
hed after assigning X = 2.v is prunedv is in repair domain (v 2 RD)v is in super domain (v 2 SD) and in repair domain(v 2 RD)v is an assigned value (SD = fvg)
5.5 Theoreti
al PropertiesFor the theorem and the proof below, we use the notation (x)(P) to denote thatthe problem P is \
onsistent" for the �ltering (x). We
ompare AC on P�P ,AC on P+P , AC+ and super AC.Theorem 2 (level of �ltering). For any subproblem P , AC(P�P)) su-per AC(P)) AC(P+P) , AC+(P).Proof. (1) AC(P+P)) AC+(P): Suppose that P is not AC+, then in the ar

onsistent
losure of P , there exists at least one domain Di su
h that jDij � 1.P+P
ontains P and then in its ar

onsistant
losure, we have jDij � 1 aswell. Xi is linked to a dupli
ate of itself whi
h domain D0i is then equal to Diand therefore singleton (with the same value) or empty. However, re
all that wefor
e Xi 6= X 0i , thus P+P is not AC.(2) AC+(P)) AC(P+P): Suppose we have AC(P) and any domain Din P is su
h that jDj > 1, now
onsider P+P . The original
onstraints areAC sin
e P is AC. The dupli
ated
onstraints are AC sin
e they are identiqualto the original ones. The not equal
onstraints between original and dupli
atedvariables are AC sin
e any variable has at least 2 values.(3) super AC(P)) AC+(P): Suppose that P is not AC+, then thereexists two variablesX;Y su
h that any value of X has at most one support on Y ,therefore the
orresponding super domain is wiped-out, and P is not super AC.(4) super AC(P) 6(AC+(P): See
ounterexample in Figure 3.(5) AC(P�P)) super AC(P): Suppose that AC(P�P), then for any twovariables X;Y there exist two pairs hv1; r1i 2 D(X)�D(X); hv2; r2i 2 D(Y)�D(Y), su
h that hv1; r2i; hr1; v2i and hv1; v2i are allowed tuples. Therefore v1belongs to the super domain of X and v1 and r1 belong to the repair domain

of X . Thus, the super domain of X is not empty and the repair domain of X isnot singleton. Therefore, P is super AC.(6) AC(P�P) 6(super AC(P): See
ounterexample in Figure 4. ut123 231 231Fig. 3. The �rst graph shows the mi
rostru
ture of a simple CSP, two variables and3 values ea
h, allowed
ombinations are linked. P is AC+ sin
e the network is ar
-
onsistent and every domain
ontains 3 values. However, P is not super AC sin
ethe greyed values (in the se
ond graph) are not in super domains, they have onlyone support. In the se
ond step, the whitened variables (in the third graph) are alsoremoved from both repair and super domains sin
e they don't have a support in asuper domain. 1234 h13ih14ih23ih24iFig. 4. The �rst graph shows the mi
rostru
ture of a simple CSP, three variables andfour values ea
h, allowed
ombinations are linked. P is super AC sin
e the super do-mains are of size 2 (bla
k values), and the repair domains are of size 4 (bla
k and greyvalues). The se
ond graph shows P�P , whi
h is not ar
-
onsistent.5.6 Super Sear
h AlgorithmsMAC+. This algorithm establishes AC+ at ea
h node. That is, establishesAC and ba
ktra
ks if a domain wipes out or be
omes singleton. In the MACalgorithm, we only prune future variables, sin
e the values assigned to pastvariables are guaranteed to have a support in ea
h future variable. Here, thisalso holds, but the
ondition on the size of the domains may be violated foran assigned variable be
ause of an assignment in the future. Therefore, �rstlyar
-
onsisten
y must be established on the whole network, and not only on thefuture variables. Se
ondly variables are not assigned in a regular way (whi
h isusually equivalent to redu
ing its domain to the
hosen value) but one valueis marked as super value, that is added to the
urrent partial solution, andunassigned values are kept in the domain: they are possible repairs so far. Thealgorithm
an be informally des
ribed as follows:{ Choose a variable X{ Assign a value v 2 D(X) to X , but keep the unassigned values in D(X){ For all Y 6= X , ba
ktra
k if Y has not at least two supports for v{ Revise the
onstraints as the MAC algorithm, and ba
ktra
k if the size ofany domain falls bellow 2.

Super MAC. We give the pseudo
ode of super MAC in Figure 5. This algo-rithm is very similar to MAC algorithm, the super domains (SD) and repair do-mains (RD), are both equal to the original domains for the �rst
all. Most ofthe di�eren
es are grouped in the pro
edure revise-Dom. The values are pruneda

ording to the rules des
ribed in se
tion 5.4 (loop 1), and the algorithm ba
k-tra
ks if a super domain wipes out or a repair domain be
omes singleton (line2). Note that, as for MAC+, the
onsisten
y is also established on the domainsof the assigned variables, (super AC loop 1).We have established an ordering relation on the di�erent �lterings. However,for the two algorithms above, the pro
ess of assigning a value to a variable in the
urrent solution doesn't lead to the same subproblem as in a regular algorithm.Whereas for a regular ba
ktra
k algorithm, the domains of the assigned variablesare redu
ed to the
hosen value, some unassigned values are still in their domain(but marked only as \repair") for the algorithms above. We have proved that aproblem P is AC+ i� P+P is AC. However,
onsider the subproblem P 0 indu
edby the assignment of X by MAC+. P 0+P 0 may have more than one variablein X , whereas the
orresponding assignment in P+P leaves only one value inthe domain of X (see Figure 6). Therefore the ordering on the
onsisten
iesdoesn't hold for the number of ba
ktra
ks of the algorithms themselves. However,MAC(P�P) never ba
ktra
ks when any other algorithm doesn't, and MAC+always ba
ktra
ks when any other algorithm does. Therefore any solution foundby MAC(P�P) will eventually be found by other algorithms, and MAC+ will�nd any solution found by another algorithm. We prove that MAC+ is
orre
tand MAC(P�P) is
omplete. Hen
e all four algorithms are
orre
t and
omplete.Theorem 3. For any given CSP P , the sets of solutions of MAC+(P), of su-per MAC(P), of MAC(P�P), and of MAC(P+P) are the same and is the setof all super solutions to P .Proof. MAC+ is
orre
t: suppose that S is not a super solution, then thereexists a variable X assigned to v in S, su
h that 8w 2 D(X); v 6= w, w
annotrepla
e v in S. Therefore when all the variables are assigned, and thus, remainin the domains only the values that are ar
-
onsistent with the
urrent solution,D(X) = fvg and then S is not returned by MAC+.MAC(P�P) is
omplete: let S be a super solution, for any variables X;Y , letv1 be the value assigned to X in S, and r1 one of its possible repairs. Similarlyv2 is the value assigned to Y and r2 its repair. It's easy to see that the pairshv1; r1i and hv2; r2i are super ar
-
onsistent, i.e, hv1; v2i, hv1; r2i and hr1; v2iare allowed tuples. ut6 Finding the Most Robust SolutionsFinding super solutions may be diÆ
ult be
ause (1) from a theoreti
al per-spe
tive, the existen
e of a ba
kbone variable guarantees the non-existen
e ofsuper solutions, and (2) from an experimental perspe
tive (see next se
tion),it is quite rare, even if we have no ba
kbone variables, to have super solutions

Algorithm 1: super MACData : CSP: P = fX ;SD;RD; Cg, solution: S = ;, variables: V = XResult : Boolean // 9S a (1; 0)-super solutionif V = ; then return True;
hoose Xi 2 V;forea
h vi 2 SDi dosave SD and RD;SDi fvig;if super AC(P; fXig) thenif super MAC(P; S [fvig;V � fXig) then return True;endrestore SD and RD;endreturn False;Algorithm 2: super ACData : CSP: P = fX ;SD;RD; Cg, Sta
k: fXigResult : Boolean // P is super ar

onsistentwhile Sta
k is not empty dopop Xi from Sta
k;1 forea
h Cij 2 C doswit
h revise-Dom(SDj ; RDj ; SDi; RDi) do
ase not-
onsreturn False;
ase prunedpush Xj on Sta
k;endswendendreturn True;Pro
edure revise-Dom(SDj; RDj ; SDi; RDi) : fpruned,not-
ons,nopg1 forea
h vj 2 SDj doif 6 9vi 2 SDi; v0i 2 RDi su
h that hvi; vji 2 Cij ^ hv0i; vji 2 Cij ^ vi 6= v0ithenSDj SDj � fvjg;endendforea
h vj 2 RDj doif 6 9vi 2 SDi su
h that hvi; vji 2 Cij thenRDj RDj � fvjg;endendif at least one value has been pruned then return pruned;2 if jSDj j = 0 _ jRDj j < 2 then return not-
ons;return nop; Fig. 5. super MAC algorithm

2112 12Z
X Y 1221 21

12 1212 XX' Y Y'Z'Z
1 XX' Y Y'Z'Z2 121

2
Fig. 6. Left: A CSP P , P is still AC+ after assigning X to 1. Middle: P+P , ea
hvariable has a dupli
ate whi
h must be di�erent, the
onstraints linking those variablesare not represented here, the
onstraints on X 0 are exa
tly the same as the ones onX. Right: When the same assignment, X = 1 is done in P+P , we have the followingpropagation X 0 6= 1 ! Y 6= 1 ^ Z 6= 1 ! Y 0 6= 2 ^ Z0 6= 2. Now
onsider (Y 0 : 1) and(Z : 2) they are not allowed, the network is no longer ar
-
onsistent.where all variables
an be repaired. To
ure both problems, we propose �nd-ing the "most robust" solution that is as
lose as possible to a super solution.An optimal solution is de�ned as a solution that is as
lose as possible to asuper solution.For a given solution S, a variable is said to be repairable i�there exist at least a value in its domain di�erent from the one assigned in S,and
ompatible with all other values in S.The optimal solution is a solution where the number of repairable variables ismaximal. Su
h an optimal robust solution is guaranteed to exist. If the prob-lem is satis�able, we will have a solution where, in the worst
ase, none of thevariables are repairable. We hope, of
ourse, to �nd some of the variables arerepairable. For example, our experiments show that satis�able instan
es at thephase transition and beyond have a
ore of roughly n=5 repairable variables. To�nd su
h solutions, we propose a bran
h and bound algorithm that �nds an op-timal robust solution. The algorithm implemented is very similar to MAC+ (see5.6), where ar
-
onsisten
y is established on the non-assigned as well as on theassigned variables. The
urrent lower bound
omputed by the algorithm is thenumber of singleton domains, the initial upper bound is n. Indeed, ea
h singletondomain
orresponds to an unrepairable variable, sin
e no other value is
onsistentwith the rest of the solution. The rest is a typi
al bran
h and bound algorithm.The �rst solution (or the proof of unsatis�ability) needs exa
tly the same timeas the underlying MAC algorithm. Afterwards, it will
ontinue bran
hing anddis
overing better solutions. It
an therefore be
onsidered as an in
rementalanytime algorithm. We refer to it as super B&B.For optimization problems, the optimal solution may not be a super solution.We
an look for either the most repairable optimal solution or the super solutionwith the best value for the obje
tive fun
tion. More generally, an optimizationproblem then be
omes a multi-
riterion optimization problem, where we areoptimizing the number of repairable variables and the obje
tive fun
tion.

7 Experimental ResultsDue to the la
k of spa
e, this se
tion gives only some observations from ourexperiments, the interested reader is pointed to the te
hni
al report [2℄. Ouraims were �rstly to study the diÆ
ulty of �nding super solutions, rather thansolutions. As expe
ted, for a given density, the phase transition for MAC beginsat a tightness mu
h larger than the end of the phase transition for super MAC.That means that a hard problem is very likely not to have a super solution.Moreover, the highest point of the phase transition peak is orders of magnitudegreater for �nding super solutions than for �nding solutions. However, we foundthat, on the bandwidth problem, for instan
e, by slightly relaxing the problem (inthat
ase the optimality
riterion) super solutions
an be found, or alternatively,optimal non-super solutions with a relatively high number of repairable variables.We present here the
omparison between MAC on P�P , super MAC, MAC+and MAC on P+P , on two
lasses of random problem instan
es at the phasetransition: (50 variables, 15 values, 100
onstraints, 114 disallowed tuples per
onstraint) and (100 variables, 6 values, 250
onstraints, 10 disallowed tuplesper
onstraint). Figure 7 gives the
pu time, and the number of ba
ktra
ks ofthese algorithms. We observe that (1) MAC on P�P e�e
tively prunes morethan all other methods, but is not pra
ti
al when the domain size is too big, and(2) super MAC outperforms all other algorithms, in terms of runtime, as soonas the size of the problem in
reases.MAC+ MAC on P+P MAC on P�P super MAChn = 50 d = 15 p1 = 0:08 p2 = 0:5iCPU time (s) 788 43 53 1.8ba
ktra
ks 152601000 111836 192 2047time out (3000 s) 12% 0% 0% 0%hn = 100 d = 6 p1 = 0:05 p2 = 0:27i�CPU time (s) 2257 430 3.5 1.2ba
ktra
ks 173134000 3786860 619 6487time out (3000 s) 66% 7% 0% 0%Fig. 7. Results at the phase transition. � only 50 instan
es of this
lass were given to MAC+
8 Con
lusionSummary. We have studied the properties of supermodels within a CSP frame-work. We introdu
ed the notion of super
onsisten
y, and based upon it, a sear
halgorithm, super MAC is developed to solve the problem, whi
h outperforms theother methods studied here. We also propose super B&B as an optimzation al-gorithm whi
h �nds the most robust solution that is as
lose as possible to asuper solution.

Related work. Supermodels [8℄ and fault tolerant solutions [12℄ have beendis
ussed earlier. Neighborhood inter
hangeability [6℄ and substitutability are
losely related to our work, but whereas, for a given problem, inter
hangeabilityis a property of the values and works for all solutions, reparability is a propertyof the values a

ording to a
ertain solution (it
an be seen either as a property ofa variable, or of the value given to this variable into a solution). Therefore thoseproperties are in
omparable. For instan
e, by de�nition if no solutions exists,then any two values are inter
hangeable whilst there is no repairable variable.On the other hand
onsider a CSP with two variables X;Y and the followingsolutions: h1; 1i; h1; 2i; h2; 1i; h2; 3i. This problem has two super solutions, h1; 1iand h2; 1i. The value X = 1 is repairable in both super solutions by X = 2, andvi
e versa, but neither X = 2 is substitutable to X = 1, sin
e h1; 2i is solutionand not h2; 2i, nor X = 1 is substitutable to X = 2, sin
e h2; 3i is solution andh1; 3i is not.Future dire
tions. The problem of seeking super solutions be
omes harderwhen multiples repairs are allowed, i.e, for (1; b)-super solutions. We aim togeneralize the idea of super
onsisten
y to (1; b)-super solutions. In a similardire
tion, we would like to explore tra
table
lasses of (1; b)-super CSPs. Fur-thermore, as with dynami
 CSPs, we wish to
onsider the loss of n-ary no-goodsand not just unary no-goods.Referen
es1. A. De
hter and R. De
hter. Belief maintenan
e in dynami

onstraint networks.In Pro
eedings AAAI-88, pages 37{42, 1988.2. B. Hni
h E. Hebrard and T. Walsh. Super
sps. Te
hni
al Report APES-66-2003,APES Resear
h Group, 2003.3. D. W. Fowler and K. N. Brown. Bran
hing
onstraint satisfa
tion problems forsolutions robust under likely
hanges. In Pro
eedings CP-00, pages 500{504, 2000.4. E. C. Freuder. A suÆ
ient
ondition for ba
ktra
k-bounded sear
h. Journal of theACM, 32:755{761, 1985.5. E. C. Freuder. Partial Constraint Satisfa
tion. In Pro
eedings IJCAI-89, pages278{283, 1989.6. E. C. Freuder. Eliminating Inter
hangeable Values in Constraint Satisfa
tion Prob-lems. In Pro
eedings AAAI-91, pages 227{233, 1991.7. N. Jussien, R. Debruyne, and P. Boizumault. Maintaining ar
-
onsisten
y withindynami
 ba
ktra
king. In Pro
eedings CP-00, pages 249{261, 2000.8. A. Parkes M. Ginsberg and A. Roy. Supermodels and robustness. In Pro
eedingsAAAI-98, pages 334{339, 1998.9. I. Miguel. Dynami
 Flexible Constraint Satisfa
tion and Its Appli
ation to AIPlanning. PhD thesis, University of Edinburgh, 2001.10. T. S
hiex and G. Verfaillie. Nogood re
ording for stati
 and dynami

onstraintsatisfa
tion problem. IJAIT, 3(2):187{207, 1994.11. T. Walsh. Sto
hasti

onstraint programming. In Pro
eedings ECAI-02, 2002.12. R. Weigel and C. Bliek. On reformulation of
onstraint satisfa
tion problems. InPro
eedings ECAI-98, pages 254{258, 1998.

