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Abstract. Fault tolerant solutions [12] and supermodels [8] are solu-
tions with strong properties of stability. In this paper, we study super so-
lutions, the generalization of supermodels to the constraint satisfaction
and optimization framework. We explore two different approaches to find
super solutions. In the first, we reformulate a constraint problem so that
the only solutions are super solutions. In the second, we introduce notions
of super consistency and enforce them during search. We also propose
a branch and bound algorithm for finding the most robust solution, in
case no super solutions exist. Finally, we run extensive experiments to
compare the different approaches and study the difficulty of finding su-
per solutions. We show that super MAC, a new search algorithm for
finding super solutions outperforms the other techniques.

1 Introduction

Many Al problems may be modelled as constraint satisfaction and optimization
problems. However, the real world is subject to change: machines may break,
drivers may get sick, stock prices increase or decrease, etc. In such cases, our
solutions to the problems may ”break”. In this context, one may want a solution
to be robust, that is able to remain valid despite changes.

Uncertainty and robustness can be incorporated into constraint solving in
many different ways. Some have considered robustness as a property of the al-
gorithm, whilst others as a property of the solution (see, for example, dynamic
CSPs [1] [7] [10], partial CSPs [5], dynamic and partial CSPs [9], stochastic CSPs
[11], and branching CSPs [3]). In dynamic CSPs, for instance, we can reuse pre-
vious work in finding solutions, though there is nothing special or necessarily
robust about the solutions returned. In branching and stochastic CSPs, on the
other hand, we find solutions which are robust to the possible changes. However
both these frameworks assume significant information about the likely changes
(e.g. the stochastic CSP framework assumes we have independent probabilities
for the values taken by the stochastic variables). In this paper we generalize a
definition of solution robustness introduced in SAT [8] to constraint program-
ming. This definition allows us to estimate the robustness of solutions without
any additional knowledge.
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Solution stability' is the ability of a solution to share as many values as pos-
sible with a new solution if a change occurs. For example, a stable solution in
a trip planning problem would not require cancelling a flight because of a train
drivers’ strike: the plan should change locally and in small proportion. Where
large changes to a solution introduce additional expenses or reorganization, sta-
bility is valuable. Moreover, stability can help us find a new solution. Stability
can then be seen as a particular form of robustness.

Fault tolerant solutions [12] and supermodels [8] are examples of solutions
that exhibit strong properties of stability: a solution is fault tolerant if any of its
values can be replaced by another one. For each part of our trip we need at least
two different ways to get from one point to another (we can replace the train
by a bus). Supermodels are models of SAT formula that can be repaired once a
small number of variables have changed by changing only a few other variables.
Supermodels are a powerful way to capture robustness and stability of solutions.
Supermodels are computed offline, in advance of any changes. A supermodel
guarantees the existence of a reasonably small repair in case of a small change in
the future. Supermodels do not require any particular knowledge about future
changes. However, supermodels have only been studied for SAT problems. In
this paper, we generalize the concept of supermodels to constraint satisfaction
problems (CSPs). We conjecture that constraint programming is in many ways
a better framework for supermodels: they will be more likely, and they will more
likely be useful. The definition of supermodels given in [8] has to be modified to
deal with CSPs. From now on, we will refer to supermodels for SAT problems,
whereas super solutions will denote stable solutions to CSPs. Note that our
definition of super solutions (section 2) reduces to the definition of supermodels
if the SAT variables are considered as CSP variables with binary domains.

2 Super Solutions

Supermodels were introduced in [8] as a framework to measure inherent degrees
of solution stability. An (a, b)-supermodel of a SAT problem is a model (a satisfy-
ing assignment) with the additional property that if we modify the values taken
by the variables in a set of size at most a (breakage variables), another model
can be obtained by flipping the values of the variables in a disjoint set of size at
most b (repair variables). A necessary but not sufficient condition that need to
be satisfied in order to find a supermodel is the absence of backbone variables.
A backbone variable is a variable that takes the same value in all solutions. The
presence of a backbone variable in a SAT problem makes it impossible to find
any (a,b)-supermodels as that particular variable has no alternative.

There are a number of ways we could generalize the definition of supermodels
from SAT to constraint satisfaction as variables now can have more than two
values. A break could be either “losing” the current assignment for a variable
and then freely choosing an alternative value, or replacing the current assignment
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with some other value. Since the latter is stronger and therefore less useful, we
propose the following definition.

Definition 1. A solution S to a CSP is (a,b)-super solution iff the loss of the
values of at most a variables in S can be repaired by assigning other values to
these variables, and modifying the assignment of at most b other variables.

A number of properties follow immediately, for example, a (¢, d)-super solu-
tion is a (a, b)-super solution if (a < cor d <b) and c+d < a+ b,

We will focus mostly on (1,0)-super solutions in the rest of the paper. They
are called fault tolerant solutions and described in [12]. Deciding if a SAT prob-
lem has an (a,b)-supermodel is NP-complete [8]. It is not difficult to show that
deciding if a CSP has an (a, b)-super solution is also NP-complete, even when
restricted to binary constraints.

Theorem 1. Deciding if a CSP has an (a,b)-super solution is NP-complete for
any fized a.

Proof. To see it is in NP, we need a polynomial witness that can be checked in
polynomial time. This is simply an assignment which satisfies the constraints,
and, for each of the O(n®) (which is polynomial for fixed a) possible breaks, the
a + b repair values.

To show completeness, we show how to map a binary CSP onto a new binary
problem in which the original has a solution iff the new problem has an (a,b)-
supersolution. We duplicate the domains of each of the variables, and extend
the constraints so that the behave equivalently on the new values. For example,
suppose we have a constraint C'(X,Y") which is only satisfied by C'(m,n). Then
we extend the constraint so that is satisfied by just C(m,n), C(m/,n), C(m,n')
and C(m',n') where m' and n' are the duplicated values for m and n. Clearly,
this binary CSP has a solution iff the original problem also has. In addition,
any break of a variables can be repaired by replacing the a corresponding values
with their primed values (or unpriming them if they are already primed) as well
as any b other values.

3 Motivational Example

The approach taken in this paper, whilst it concerns repairs, is a proactive
approach. A super solution is a solution to the deterministic, regular, CSP which
we expect may change before we come to apply the solution. The changes occur
after we have found a solution and must then be tackled. We aim to ensure that
any break (loss of one value) will be repairable if it eventually occurs.

Let us consider the following CSP:  X,Y,Z € {1,2,3} X <Y AY <Z
The solutions to this CSP are shown in Figure 1, as well as the subsets of solutions
that are (1, 1)-super solutions and (1,0)-super solutions for this problem.

The solution (1,1,1) is not a (1,0)-super solution. The reason is that if X
loses its value 1, we cannot find a repair value for X that is consistent with Y



| solutions  [(1,1)-super solutions|(1, 0)-super solutions]

(17171)7 (17172) (17172>7 (17173) (17273>
(1,1,3), (1,2,2)| (1,2,2),(1,2,3) (1,2,2)
(17273)7 (1737 3) (17373>7 (27272) (27 27 3>
(27272)7 (2727 3) (27 273>7 (27373)

(2,3,3), (3,3,3)

Fig. 1. solutions, (1, 1)-super solutions, and (1, 0)-super solutions for the problem X <
Y < Z.

and Z because neither (2,1,1) nor (3,1,1) are solutions to the problem. Also,
solution (1,1, 1) is not a (1, 1)-super solution because when X loses its value 1, we
cannot repair it by changing the value assignment of at most another variable,
i.e., there exists no repair solution when X breaks because none of (2,1,1),
(3,1,1), (2,2,1), (2,3,1), (2,1,2), and (2,1,3) is a solution to our problem. On
the other hand, (1,2, 3) is a (1, 0)-super solution because when X breaks we have
the repair solution (2,2,3), when Y breaks we have the repair solution (1,1, 3),
and when Z breaks we have the repair solution (1,2,2). We therefore have a
theoretical basis to prefer the solution (1,2, 3) to (1,1, 1), the former being more
“robust” or “stable”. Note that all algorithms introduced in this paper provide
offline (that is, in advance) the repairs as well as the solution. Hence finding and
applying the repairs online takes constant time.

The way a given problem is modelled influences the super solutions. For
instance, consider the encoding in SAT of this problem. One way to encode
this is to add a Booloean variable z; for every value ¢ that X can take, x; =
True means that X = i. In our case, {z1, 2,23}, {y1,¥2,y3} and {z1, 22,23}
However, such an encoding has no (1,0)-supermodel. Any variable y; standing
for an assignment of y is in conflict with at least one other assignment on z
or z. Moreover, one y; must be set to True, since any solution gives a value
to y. Therefore the variable in conflict with y; must be set to False. If the
assignment of this variable is modified, i.e, flipped to True, then at least y; must
be reassigned to False. Intuitively, in any encoding, the likelihood of finding an
(a, b)-super solution will decrease with the number of variables and increase with
the domain size. Moreover, the meaning of a super solution depends also on the
model. For example, if a variable is a country and a value is a colour, the loss
of a given value is equivalent to the loss of the given colour. On the other hand
if every possible colouring of that country is encoded by a Boolean variable, the
loss of a value means either that the colour is now forbidden or that this colour
must be used. The CSP framework gives more freedom to choose what variables
and values stand for, and therefore what being a super solution means.

4 Reformulation Approach to Finding Super Solutions

One possible approach to finding super solutions is to add further variables
and constraints to the CSP that would eliminate those solutions that are not



super solutions. In [12] a definition of fault tolerant solutions is given which
matches exactly the definition of (1,0)-super solutions: two reformulations of
CSP are given in [12] such that any solution of the reformulation corresponds
to a fault tolerant solution of the original CSP. In the following subsections, we
review those reformulation approaches and propose a new one, which we call the
cross-domains representation.

4.1 Boolean Reformulation

The first approach in [12], associates a Boolean variable z, to each value v of
each variable X in a given CSP. Assigning this variable to 1 corresponds to
the assignment X = v in the CSP. Every disallowed tuple =(X = v,Y = w)
translates into the conflict clause which forbids the assignment (1,1) for the two
corresponding variables. Finally, whereas in the original CSP any variable must
implicitly be given exactly one value, here exactly two variables must be satisfied
for every CSP variable. This model allows only fault tolerant solution, but not
all of them and it is shown through the following CSP:

X=[1,2,Y =[1,2, X +Y <4
This CSP translates into the following Boolean CSP (or SAT problem):
X; =X, = X3 €0,1]

(1
(21, 22) € {(1, 1)}, (y1,92) € {(1
(3327?/2) € {(07 0)7 (07 1)7 (17 0)

)
1D} (2)
}3)

In (1) the Boolean variabless associated to the different assignments are given.
In (2) exactly two of the Booleans variables must be true for each corresponding
CSP variable, while in (3), the only disallowed tuple (X = 2,Y = 2) is encoded.
The solution (1,1) is a fault tolerant solution of the original CSP, since for
X or Y, the value 2 can replace the value 1. However, this Boolean CSP has
no solution. This reformulation does not therefore give all the fault tolerant
solutions.

4.2 Adding Extra Variables and Constraints

The second approach proposed in [12] simply duplicates the variables. The ad-
ditional variables have the same domain as the original variables, and are linked
with the same constraints to the same neighbourhood. A not_equal constraint is
also posted between each original variable and its duplicate. The assignment to
the original part of the CSP gives then the solution, while the duplicated part
gives the repair for each variable. We refer to the reformulation of a CSP P with
this encoding as P+P.



4.3 Cross-Domains Reformulation

We now present our last reformulation approach. Let S = (v1,v2) be a (1,0)-
super solution on two variables X; and X,. If vy is lost, then there must be a
value in r; € D(X;) that can repair vy, that is (r;,v2) is a compatible pair.
Symmetrically, there must exists 7y such that (vy,r2) is allowed. Now consider
the following subproblem involving two variables:

’01\\ i V2 .
I vy v2 means (vi,vz) is allowed.
| ; |

1 2

Since it satisfies the criteria above, S = (v1, v2) is a super solution whilst any
other tuple is not. One may suspect that values r1,rs,41,i2 do not participate
in any super solution and hence can be pruned. However r; and rs are essential
for providing support to v; and ve. So, we cannot simply reason about extending
partial instantiations of values, unless we keep the information about the values
that can be used as repair. So, let us instead think of the domain of the variables
as pairs of values (v, ), the first element corresponding to the super value (which
is part of a super solution), the second corresponding to the repair value (which
can repair the former). We call Px P the reformulation of a CSP P = {X,D,(}
such that any domain becomes its own cross-product (minus the doublons), D;
becomes D;x D; — {(v,v)|v € D;}. The constraints are built as follows, two pairs
(v1,7r1) and (va,r2) are compatible iff

— vy and vy are compatible (the solution must be consistent at the first place),
— vy and 7o are compatible (in case of break involving vs, 2 can be a repair),
— w9 and r; are compatible.

The new domain CD(X) and CD(Y) of variable X and Y are

{{v1, 1), (v1, 1), (r1,v1), (ra, ), in, 01), (i, ) }

{(v2,72), (U2, 02), (r2, 02), (12, 02), (P2, v2), (i2,72)}
and the only one allowed tuple is S = ((v1,r1), (v2,r2)). The example below
shows the cross-domain representation of the CSP given in section 3 (X <Y <
Z,D(X)=D(Y) = D(Z) =[1,2,3]). On this augmented CSP, arc consistency
will prune all the pairs that are inconsistent. The process of reformulating with
the cross-domain representation and enforcing a local consistency can therefore
be seen as enforcing a local super consistency. A super solution of the original
CSP can be extracted by keeping only the first element of every pair.

Since the constraint graph of this CSP is a tree, successively enforcing arc-
consistency and assigning a variable leads to a solution without backtrack-
ing. The possible solutions to this augmented CSP are: ((1,2),(2,1),(2,3)),
(1,2), (2,1),(3.2)), ((1,2), (2,3), (3,2)) and ((2,1), (2,3), (3,2)). The first corre-
sponds to (1,2,2), the second and the third to (1,2, 3) and the fourth to (2,2, 3)
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5 Finding Super Solutions Via Search

5.1 Super Consistency

Local consistency allows backtrack-based search algorithms such as MAC to
detect unsatisfiable subproblems earlier. Local consistency can also be used to
develop efficient algorithms for finding super solutions. We shall introduce three
ways of incorporating local consistency into a search algorithm for seeking su-
per solutions. The first (AC+), a naive approach, augments the traditionnal
arc-consistency by a further condition, achieving a very low level of filtering.
The second (arc-consistency on P x P) allows us to infer all possible local infor-
mation, just as in arc-consistency in a regular CSP [4]. However this comes at
a high computational cost, though polynomial. The third (super AC) approach
gives less inference, but is a good tradeoff between the amount of pruning and
complexity. Informally, a consistent closure of a CSP contains only partial so-
lutions for a given level of locallity. However, the situation with super solutions
is a little bit more tricky because values that do not get used in any local su-
per solution can still be essential as a repair and thus cannot be simply pruned.
Throughout the rest of this paper we will refer only to (1,0)-super solutions,
and thus to (1, 0)-super arc-consistency.

5.2 Arc-Consistency+

If S is a super solution, then for every variable, at least two values are consistent
with all the others values of S. Consequently, being arc consistent and having
non-singleton domains is a necessary condition of satisfiability. AC+ can then
be defined as follows: for a CSP P = {X',D,C}: AC+(P) & AC(P)AVD €
D,|D| > 1. Whilst AC+ is usually too weak to give good results, it is the basis
for an algorithm for the associated optimization problem (section 6).

5.3 Arc-Consistency on PxXP

PxP has the interesting property of having exactly the same topology as the
original problem P. Moreover, each pair {(value, repair) is explicitly represented,
therefore, arc consistency on PxP makes all the possible inference, regarding
arcs. The proof that AC on P x P is the tightest filtering introduced in this paper
follows in section 5.5. As a corollary, tree and treewidth bounded tractable classes
of CSPs are also tractable for finding (1, 0)-super solutions, through cross-domain



representation, since any tree structure is conserved by the transformation. In a
similar way, if P is binary and Boolean, then P+ P is binary and Boolean, and
hence tractable.

5.4 A Notion of Super Consistency

Arc Consistency on PxP allows us to infer all that can be inferred locally.
In other words, we will prune any value in a cross-domain that is not locally
consistent. However, this comes at high cost, maintaining arc-consistency will
be O(d*) where d is the initial domain size. We therefore propose an alternative
that does less inference, but at a much lower (for example, quadratic) cost. The
main reason for the high cost is the size of the cross-domains. A cross-domain
is quadratic in the size of the original domain since it explicitly represents the
repair value for each super value. Here we will simulate (most of) the inference
performed by super consistency, but will only look at one value at a time, and
not pairs. We will divide the domain of the variable into two separate sets of
domains: the ”super domain” (SD) where only super values are represented and
a "repair domain” (RD) where repair values are stored.

— A value v is in the super domain of X iff for any other variable Y, there
exists v’ in super domain of ¥ and r in repair domain of Y such that (v,v")
and (v,r) are allowed and (v’ # 7).

— A value v is in repair domain of X iff for any other variable Y, there exists
v’ in super domain of Y such that (v,v') is allowed.

The definition of super arc-consistency translates in a straightforward way
into a filtering algorithm. The values are marked as either super or repair, and
when looking for support of a super value, an additional and different support
marked either as super or repair is required. The complexity of checking the
consistency of an arc increases only by a factor of 2 and thus remains in O(d?).
An algorithm that maintains such a consistency would branch only on the values
in super domains and would fail if either the super domains becomes empty
or the repair domains becomes singleton. The low cost of achieving super arc-
consistency comes at the price of achieving a lower level of consistency compared
to maintaining arc-consistency on Px P, as shown in Figure 4. Moreover, the
consistency must be maintained also on the domains of the variables already
assigned. The super domain of an assigned variable is reduced to the chosen
value and cannot change, but the repair domain can wipe out because of an
assignment in the future. Figure 2 depicts an algorithm enforcing super AC on
the CSP X <Y < Z. The first Figure shows the microstructure of the CSP. In
the following Figure, super consitency is established: Y = 1 and Y = 3 have only
one support, respectively on X and Z, thus they cannot be in super domain.
Furthermore X = 3 and Z = 1 have each only one support on Y, respectively
Y =1 and Y = 3, which are not in the super domain. Hence X =3 and Z =1
are pruned. Y = 2 is the only value remaining in SD(Y") and is thus assigned. In
the last Figure, X is assigned to 2. As a result, Y = 1 is no longer supported and



is pruned. Since it was the second support for Z =2 on Y, Z = 2 is no longer
in the super domain anymore. Z = 3 is the only value remaining in SD(Z) and
is assigned.

Fig. 2. Left: The microstructure of the CSP, Middle: its super consistent closure, Right:
a super solution is reached after assigning X = 2.

e v is an assigned value (SD = {v})

m v is in super domain (v € SD) and in repair domain( v € RD)

m v is in repair domain (v € RD)

o Vv is pruned

5.5 Theoretical Properties

For the theorem and the proof below, we use the notation (x)(P) to denote that
the problem P is “consistent” for the filtering (x). We compare AC on PxP,
AC on P+P, AC+ and super AC.

Theorem 2 (level of filtering). For any subproblem P, AC(PxP) = su-
per AC(P) = AC(P+P) < AC+(P).

Proof. (1) AC(P+P) = AC+H(P): Suppose that P is not AC+, then in the arc
consistent closure of P, there exists at least one domain D; such that |D;| < 1.
P+P contains P and then in its arc consistant closure, we have |D;| < 1 as
well. X; is linked to a duplicate of itself which domain D) is then equal to D;
and therefore singleton (with the same value) or empty. However, recall that we
force X; # X|, thus P+P is not AC.

(2) AC+(P) = AC(P+P): Suppose we have AC(P) and any domain D
in P is such that |[D| > 1, now consider P+P. The original constraints are
AC since P is AC. The duplicated constraints are AC since they are identiqual
to the original ones. The not_equal constraints between original and duplicated
variables are AC since any variable has at least 2 values.

(3) super AC(P) = AC+H(P): Suppose that P is not AC+, then there
exists two variables X, Y such that any value of X has at most one support on Y,
therefore the corresponding super domain is wiped-out, and P is not super AC.

(4) super AC(P) ¢ ACH(P): See counterexample in Figure 3.

(5) AC(PxP) = super AC(P): Suppose that AC(Px P), then for any two
variables X,Y there exist two pairs (v1,rl) € D(X) x D(X), (v2,r2) € D(Y) x
D(Y), such that (v1,r2),(rl,v2) and (vl,v2) are allowed tuples. Therefore vl
belongs to the super domain of X and vl and r1 belong to the repair domain



of X. Thus, the super domain of X is not empty and the repair domain of X is
not singleton. Therefore, P is super AC.
(6) AC(PxP) # super AC(P): See counterexample in Figure 4. o

Fig. 3. The first graph shows the microstructure of a simple CSP, two variables and
3 values each, allowed combinations are linked. P is AC+ since the network is arc-
consistent and every domain contains 3 values. However, P is not super AC since
the greyed values (in the second graph) are not in super domains, they have only
one support. In the second step, the whitened variables (in the third graph) are also
removed from both repair and super domains since they don’t have a support in a
super domain.

Fig. 4. The first graph shows the microstructure of a simple CSP, three variables and
four values each, allowed combinations are linked. P is super AC since the super do-
mains are of size 2 (black values), and the repair domains are of size 4 (black and grey
values). The second graph shows P x P, which is not arc-consistent.

5.6 Super Search Algorithms

MAC+. This algorithm establishes AC+ at each node. That is, establishes
AC and backtracks if a domain wipes out or becomes singleton. In the MAC
algorithm, we only prune future variables, since the values assigned to past
variables are guaranteed to have a support in each future variable. Here, this
also holds, but the condition on the size of the domains may be violated for
an assigned variable because of an assignment in the future. Therefore, firstly
arc-consistency must be established on the whole network, and not only on the
future variables. Secondly variables are not assigned in a regular way (which is
usually equivalent to reducing its domain to the chosen value) but one value
is marked as super value, that is added to the current partial solution, and
unassigned values are kept in the domain: they are possible repairs so far. The
algorithm can be informally described as follows:

— Choose a variable X

— Assign a value v € D(X) to X, but keep the unassigned values in D(X)

— For all Y # X, backtrack if Y has not at least two supports for v

— Revise the constraints as the MAC algorithm, and backtrack if the size of
any domain falls bellow 2.



Super MAC. We give the pseudo code of super MAC in Figure 5. This algo-
rithm is very similar to MAC algorithm, the super domains (SD) and repair do-
mains (RD), are both equal to the original domains for the first call. Most of
the differences are grouped in the procedure revise-Dom. The values are pruned
according to the rules described in section 5.4 (loop 1), and the algorithm back-
tracks if a super domain wipes out or a repair domain becomes singleton (line
2). Note that, as for MAC+, the consistency is also established on the domains
of the assigned variables, (super AC loop 1).

We have established an ordering relation on the different filterings. However,
for the two algorithms above, the process of assigning a value to a variable in the
current solution doesn’t lead to the same subproblem as in a regular algorithm.
Whereas for a regular backtrack algorithm, the domains of the assigned variables
are reduced to the chosen value, some unassigned values are still in their domain
(but marked only as “repair”) for the algorithms above. We have proved that a
problem P is AC+ iff P+P is AC. However, consider the subproblem P’ induced
by the assignment of X by MAC+. P'+P’ may have more than one variable
in X, whereas the corresponding assignment in P+ P leaves only one value in
the domain of X (see Figure 6). Therefore the ordering on the consistencies
doesn’t hold for the number of backtracks of the algorithms themselves. However,
MAC(Px P) never backtracks when any other algorithm doesn’t, and MAC+
always backtracks when any other algorithm does. Therefore any solution found
by MAC(Px P) will eventually be found by other algorithms, and MAC+ will
find any solution found by another algorithm. We prove that MAC+ is correct
and MAC(Px P) is complete. Hence all four algorithms are correct and complete.

Theorem 3. For any given CSP P, the sets of solutions of MAC+(P), of su-
per MAC(P), of MAC(PxP), and of MAC(P+P) are the same and is the set
of all super solutions to P.

Proof. MAC+ is correct: suppose that S is not a super solution, then there
exists a variable X assigned to v in S, such that Yw € D(X),v # w, w cannot
replace v in S. Therefore when all the variables are assigned, and thus, remain
in the domains only the values that are arc-consistent with the current solution,
D(X) = {v} and then S is not returned by MAC+.

MAC(PxP) is complete: let S be a super solution, for any variables X,Y", let
vl be the value assigned to X in S, and r1 one of its possible repairs. Similarly
v2 is the value assigned to Y and r2 its repair. It’s easy to see that the pairs
(vl,r1) and (v2,r2) are super arc-consistent, i.e, (v1,v2), (vl,r2) and (rl,v2)
are allowed tuples. a

6 Finding the Most Robust Solutions

Finding super solutions may be difficult because (1) from a theoretical per-
spective, the existence of a backbone variable guarantees the non-existence of
super solutions, and (2) from an experimental perspective (see next section),
it is quite rare, even if we have no backbone variables, to have super solutions



Algorithm 1: super MAC

Data : CSP: P ={X,8D,RD,(}, solution: S = (), variables: V = X
Result : Boolean // 35 a (1, 0)-super solution
if V = 0 then return True;
choose X; € V;
foreach v; € SD; do
save SD and RD;
SD; + {Ui};
if super AC(P,{X;}) then
| if super MAC(P, S U {v;},V — {X;}) then return True;
end
restore SD and RD;
end
return False;

Algorithm 2: super AC

Data : CSP: P={X,8D,RD,(C}, Stack: {X;}
Result : Boolean // P is super arc consistent
while Stack is not empty do
pop X; from Stack;
1 foreach C;; € C do
switch revise-Dom(SD;, RD;,SD;, RD;) do

case not-cons

| return False;

case pruned
| push X on Stack;

endsw

end
end
return True;

Procedure revise-Dom(SD;, RD;,SD;, RD;) : {pruned,not-cons,nop}

1 foreach v; € SD; do
if Avi € SD;,v; € RD; such that (vi,v;) € Cij A {(vi,v;) € Cij Avi # vj
then
| SDi « SDj —{v;};
end
end
foreach v; € RD; do
if Av; € SD; such that (vi,v;) € C;; then
| RDj — RDj — {Uj};

end

end

if at least one value has been pruned then return pruned;
2 if |SD;| =0V |RD;| < 2 then return not-cons;

return nop;

Fig. 5. super MAC algorithm
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Fig. 6. Left: A CSP P, P is still AC+ after assigning X to 1. Middle: P+P, each
variable has a duplicate which must be different, the constraints linking those variables
are not represented here, the constraints on X' are exactly the same as the ones on
X. Right: When the same assignment, X = 1 is done in P+P, we have the following
propagation X' #1 Y #A#1ANZ #1 =Y ' #2AZ" # 2. Now consider (Y : 1) and
(Z : 2) they are not allowed, the network is no longer arc-consistent.

where all variables can be repaired. To cure both problems, we propose find-
ing the "most robust” solution that is as close as possible to a super solution.
An optimal solution is defined as a solution that is as close as possible to a
super solution.

For a given solution S, a variable is said to be repairable iff
there exist at least a value in its domain different from the one assigned in S,
and compatible with all other values in S.

The optimal solution is a solution where the number of repairable variables is
maximal. Such an optimal robust solution is guaranteed to exist. If the prob-
lem is satisfiable, we will have a solution where, in the worst case, none of the
variables are repairable. We hope, of course, to find some of the variables are
repairable. For example, our experiments show that satisfiable instances at the
phase transition and beyond have a core of roughly n/5 repairable variables. To
find such solutions, we propose a branch and bound algorithm that finds an op-
timal robust solution. The algorithm implemented is very similar to MAC+ (see
5.6), where arc-consistency is established on the non-assigned as well as on the
assigned variables. The current lower bound computed by the algorithm is the
number of singleton domains, the initial upper bound is . Indeed, each singleton
domain corresponds to an unrepairable variable, since no other value is consistent
with the rest of the solution. The rest is a typical branch and bound algorithm.
The first solution (or the proof of unsatisfiability) needs exactly the same time
as the underlying MAC algorithm. Afterwards, it will continue branching and
discovering better solutions. It can therefore be considered as an incremental
anytime algorithm. We refer to it as super B&B.

For optimization problems, the optimal solution may not be a super solution.
We can look for either the most repairable optimal solution or the super solution
with the best value for the objective function. More generally, an optimization
problem then becomes a multi-criterion optimization problem, where we are
optimizing the number of repairable variables and the objective function.



7 Experimental Results

Due to the lack of space, this section gives only some observations from our
experiments, the interested reader is pointed to the technical report [2]. Our
aims were firstly to study the difficulty of finding super solutions, rather than
solutions. As expected, for a given density, the phase transition for MAC begins
at a tightness much larger than the end of the phase transition for super MAC.
That means that a hard problem is very likely not to have a super solution.
Moreover, the highest point of the phase transition peak is orders of magnitude
greater for finding super solutions than for finding solutions. However, we found
that, on the bandwidth problem, for instance, by slightly relaxing the problem (in
that case the optimality criterion) super solutions can be found, or alternatively,
optimal non-super solutions with a relatively high number of repairable variables.

We present here the comparison between MAC on Px P, super MAC, MAC+
and MAC on P+P, on two classes of random problem instances at the phase
transition: (50 variables, 15 values, 100 constraints, 114 disallowed tuples per
constraint) and (100 variables, 6 values, 250 constraints, 10 disallowed tuples
per constraint). Figure 7 gives the cpu time, and the number of backtracks of
these algorithms. We observe that (1) MAC on PxP effectively prunes more
than all other methods, but is not practical when the domain size is too big, and
(2) super MAC outperforms all other algorithms, in terms of runtime, as soon
as the size of the problem increases.

| MAC+ |MAC on P+P|MAC on P><P|super MAC|
(n=50d =15 p1 = 0.08 p> = 0.5)

CPU time (5) 738 13 53 1.8
backtracks 152601000 111836 192 2047
time out (3000 5)| 12% 0% 0% 0%
{n=100d =6 p1 =0.05 ps = 0.27)=
CPU time (5) 2257 130 35 1.2
backtracks 173134000 3786860 619 6487
time out (3000 s)]  66% 7% 0% 0%

Fig. 7. Results at the phase transition. * only 50 instances of this class were given to MAC+

8 Conclusion

Summary. We have studied the properties of supermodels within a CSP frame-
work. We introduced the notion of super consistency, and based upon it, a search
algorithm, super MAC is developed to solve the problem, which outperforms the
other methods studied here. We also propose super B&B as an optimzation al-
gorithm which finds the most robust solution that is as close as possible to a
super solution.



Related work. Supermodels [8] and fault tolerant solutions [12] have been
discussed earlier. Neighborhood interchangeability [6] and substitutability are
closely related to our work, but whereas, for a given problem, interchangeability
is a property of the values and works for all solutions, reparability is a property
of the values according to a certain solution (it can be seen either as a property of
a variable, or of the value given to this variable into a solution). Therefore those
properties are incomparable. For instance, by definition if no solutions exists,
then any two values are interchangeable whilst there is no repairable variable.
On the other hand consider a CSP with two variables X,Y and the following
solutions: (1,1),(1,2),(2,1),(2,3). This problem has two super solutions, (1, 1)
and (2,1). The value X =1 is repairable in both super solutions by X = 2, and
vice versa, but neither X = 2 is substitutable to X = 1, since (1,2) is solution
and not (2,2), nor X = 1 is substitutable to X = 2, since (2, 3) is solution and
(1, 3) is not.

Future directions. The problem of seeking super solutions becomes harder
when multiples repairs are allowed, i.e, for (1,b)-super solutions. We aim to
generalize the idea of super consistency to (1,b)-super solutions. In a similar
direction, we would like to explore tractable classes of (1,b)-super CSPs. Fur-
thermore, as with dynamic CSPs, we wish to consider the loss of n-ary no-goods
and not just unary no-goods.
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