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Abstract The FOCUS constraint expresses the notion that solutions are concentrated. In
practice, this constraint suffers from the rigidity of its semantics. To tackle this issue, we
propose three generalizations of the FOCUS constraint. We provide for each one a complete
filtering algorithm. Moreover, we propose ILP and CSP decompositions.
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1 Introduction

Many discrete optimization problems have constraints on the objective function. Being
able to represent such constraints is fundamental to deal with many real world industrial
problems. Constraint programming is a paradigm to express and filter such constraints.
In particular, several constraints have been proposed for obtaining well-balanced solu-
tions [9, 11, 17]. Recently, the FOCUS constraint [12] was introduced to express the
opposite notion. It captures the concept of concentrating the high values in a sequence of
variables to a small number of intervals. We recall its definition. Throughout this paper,
X = [x0, x1, . . . , xn−1] is a sequence of integer variables and si,j is a sequence of indices
of consecutive variables in X, such that si,j = [i, i + 1, . . . , j ], 0 ≤ i ≤ j < n. For
each variable x, we denote by D(x) the domain of x and finally, we let |E| be the size of a
collection E.

Definition 1 ([12]) Let yc be a variable. Let k and len be two integers, 1 ≤ len ≤ |X|. An
instantiation of X ∪ {yc} satisfies FOCUS (X, yc, len, k) iff there exists a set SX of disjoint
sequences of indices si,j such that three conditions are all satisfied:

1. |SX| ≤ yc

2. ∀xl ∈ X, xl > k ⇔ ∃si,j ∈ SX such that l ∈ si,j
3. ∀si,j ∈ SX, j − i + 1 ≤ len

Example 1 Let k = 0, D(yc) = {2}, X = [x0, .., x5], D(x0) = {1}, D(x1) = {3}, D(x2) =
{1}, D(x3) = {0}, D(x4) = {1}, D(x5) = {0}. If len = 6, then FOCUS (X, yc, len, k)
is satisfied since we can have 2 disjoint sequences of length ≤ 6 of consecutive variables
with a value strictly positive, i.e., 〈x0, x1, x2〉, and 〈x4〉. If len = 2, FOCUS (X, yc, len, k)
becomes violated since it is impossible to include all the strictly positive variables in X with
only 2 sequences of length ≤ 2.

FOCUS can be used in various contexts including cumulative scheduling problems
where some excesses of capacity can be tolerated to obtain a solution [12]. In a cumula-
tive scheduling problem, we are scheduling activities, and each activity consumes a certain
amount of some resource. The total quantity of the resource available is limited by a capac-
ity. Excesses can be represented by variables [4]. In practice, excesses might be tolerated
by, for example, renting a new machine to produce more resource. Suppose the rental price
decreases proportionally to its duration: it is cheaper to rent a machine during a single
interval than to make several rentals. On the other hand, rental intervals have generally a
maximum possible duration. FOCUS can be set to concentrate (non null) excesses in a
small number of intervals, each of length at most len.

Unfortunately, the usefulness of FOCUS is hindered by the rigidity of its semantics.
For example, we might be able to rent a machine from Monday to Sunday but not use it
on Friday. It is a pity to miss such a solution with a smaller number of rental intervals
because FOCUS imposes that all the variables within each rental interval take a high value.
Moreover, a solution with one rental interval of two days is better than a solution with a
rental interval of four days. Unfortunately, FOCUS only considers the number of disjoint
sequences, and does not consider their length.
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Consider a simple example of a resource R with a capacity equal to 3. We use a sequence
of variables [x0, .., x9] to model the amount of consumed capacity at time unit i (e.g.,
one day). Suppose that some activities are already scheduled on R such that the current
assignment of [x0, .., x9] is:

[x0, .., x9] : 4 2 4 2 2 0 0 0 0 0

In this example, the first day requires a capacity equal to 4, the second requires 2, etc. The
standard capacity constraints are exceeded in x0 and x2.

Suppose that an additional activity has to be scheduled on this resource. The new activ-
ity has a duration of 5 days, each of which consumes 2 units of capacity. The followings
sequence (denoted S1) shows the new resource consumption if we start the new activity at
x1. The bold values show the new capacity requirement after adding the new activity.

[x0, .., x9] 4 4 6 4 4 2 0 0 0 0

The new sequence S1 satisfies FOCUS (X, [1, 1], 5, 3) since we have only one subsequence
where the capacity constraints are all exceeded (i.e. 〈x0, x1, x2, x3, x4〉). However, there is
no possible way to satisfy the constraint if the length is equal to 3. FOCUS (X, [1, 1], 3, 3)
is violated.

Consider now a form of relaxation by allowing some variables in the sub-sequences to
have values that do not exceed capacity. In this case, a solution is possible if we start the
additional activity at x5 (denoted S2). That is:

[x0, .., x9] : 4 2 4 2 2 2 2 2 2 2

The unique subsequence in S2 where some capacity constraints are exceeded is 〈x0, x1, x2〉.
Relaxing FOCUS in this sense might be very useful in practice.

Consider now again FOCUS (X, [2, 2], 5, 3). The two solutions S1 and S2 satisfy the
constraint. Notice that there is 6 capacity excesses in S1 (i.e., in x0, x1, x2, x3, x4) and only 2
in S2 (i.e., in x0 and x2). Therefore, one might prefer S2 since we have less capacity excesses
although the project ends later. Restricting the length subsequences to be at most 2 in this
example will prune the first solution.

We tackle those issues in this paper by means of three generalizations of FOCUS.
SPRINGYFOCUS tolerates within each sequence si,j ∈ SX some values v ≤ k. To
keep the semantics of grouping high values, their number is limited in each si,j by an
integer argument. SPRINGYFOCUS adds a variable to count the length of sequences,
equal to the number of variables taking a value v > k. The most generic one, WEIGHT-
EDSPRINGYFOCUS, combines the semantics of SPRINGYFOCUS and WEIGHT-
EDFOCUS. Propagating such constraints, i.e. complementary to an objective function, is
well-known to be important [10, 18]. We present and experiment with filtering algorithms
and decompositions therefore for each constraint. One of the decompositions highlights a
relation between SPRINGYFOCUS and a tractable Integer Linear Programming (ILP)
problem.

The rest of this paper is organized as follows : We give in Section 2 a short background
on Constraint Programming and Network Flows. Next, in Sections 3, 4 and 5, we present
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three generations of the FOCUS constraint (denoted by SPRINGYFOCUS, WEIGHT-
EDFOCUS, and WEIGHTEDSPRINGYFOCUS respectively). In particular, we provide
complete filtering algorithms as well as ILP formulations and CSP decompositions. Finally,
we evaluate, in Section 6, the impact of the new filtering compared to decompositions.

2 Background

A constraint satisfaction problem (CSP) is defined by a set of variables, each with a finite
domain of values, and a set of constraints specifying allowed combinations of values for
subsets of variables. For each variable x, we denote by min(x) (respectively max(x)) the
minimum (respectively maximum) value in D(x). Given a constraint C, we denote by
Scope(C) the set of variables constrained by C. A solution is an assignment of values to the
variables satisfying the constraints.

Constraint solvers typically explore partial assignments enforcing a local consistency
property using either specialized or general purpose filtering algorithms [16]. A filtering
algorithm (called also a propagator) is usually associated with one constraint, to remove
values that cannot belong to an assignment satisfying this constraint. A local consistency
formally characterizes the impact of filtering algorithms. The two most used local consisten-
cies are domain consistency (DC) and bound consistency (BC). A support for a constraint
C is a tuple that assigns a value to each variable in Scope(C) from its domain which satis-
fies C. A bounds support for a constraint C is a tuple that assigns a value to each variable
in Scope(C) which is between the maximum and minimum in its domain which satisfies C.
A constraint C is domain consistent (DC) if and only if for each variable xi ∈Scope(C),
every value in the current domain of xi belongs to a support. A constraint C is bounds con-
sistent (BC) if and only if for each variable xi ∈Scope(C), there is a bounds support for
the maximum and minimum value in its current domain. A CSP is DC/BC if and only if
each constraint is DC/BC. Regarding FOCUS, a complete filtering algorithm (i.e. achieving
domain consistency) is proposed in [12] running in O(n) time complexity.

A flow network is a weighted directed graph G = (V ,E) where each edge e has a
capacity between non-negative integers l(e) and u(e), and an integer cost w(e). A feasible
flow in a flow network between a source (s) and a sink (t), (s, t)-flow, is a function f : E →
Z

+ satisfying two conditions: f (e) ∈ [l(e), u(e)], ∀e ∈ E and the flow conservation law
that ensures that the amount of incoming flow should be equal to the amount of outgoing
flow for all nodes except the source and the sink. The value of a (s, t)-flow is the amount of
flow leaving the sink s. The cost of a flow f is w(f ) = ∑

e∈E w(e)f (e). A minimum cost
flow is a feasible flow with the minimum cost [1].

3 Springy FOCUS

3.1 Definition

In Definition 1, each sequence in SX contains exclusively values v > k. In many practical
cases, this property is too strong.

Consider one simple instance of the problem in the introduction (depicted in Fig. 1) for
a given resource of capacity 3. Each variable xi ∈ X represents the resource consumption
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and is defined per unit of time (e.g., one day). Initially, 4 activities are fixed (drawing A) as
follows:

1. Activity 1 starts at day 0 and requires 4 units of capacity during one day
2. Activity 2 starts at day 1 and requires 2 units of capacity during one day
3. Activity 3 starts at day 2 and requires 4 units of capacity during one day
4. Activity 4 starts at day 3 and requires 2 units of capacity during two days

Suppose now that an additional activity with 2 units of capacity and a duration of 5
days remains to be scheduled. Suppose also that the domain of the starting time of the new
activity is D(st) = [1, 5]. If FOCUS(X, yc = 1, 5, 3) is imposed then this activity must
start at day 1 (solution B). We have one 5 day rental interval.

Assume now that the new machine may not be used every day. Solution (C) gives one
rental of 3 days instead of 5. Furthermore, if len = 4 the problem will have no solution using
FOCUS, while this latter solution still exists in practice. This is paradoxical, as relaxing the
condition that sequences in the set SX of Definition 1 take only values v > k deteriorates the
concentration power of the constraint. Therefore, we propose a soft relaxation of FOCUS,
where at most h values less than k are tolerated within each sequence in SX.

Definition 2 Let yc be a variable and k, len, h be three integers, 1 ≤ len ≤ |X|, 0 ≤ h <

len−1. An instantiation of X∪{yc} satisfies SPRINGYFOCUS (X, yc, len, h, k) iff there
exists a set SX of disjoint sequences of indices si,j such that four conditions are all satisfied:

1. |SX| ≤ yc

2. ∀xl ∈ X, xl > k ⇒ ∃si,j ∈ SX such that l ∈ si,j
3. ∀si,j ∈ SX, j − i + 1 ≤ len, xi > k and xj > k.
4. ∀si,j ∈ SX, |{l ∈ si,j , xl ≤ k}| ≤ h

3.2 Filtering algorithm

Bounds consistency (BC) on SPRINGYFOCUS is equivalent to domain consistency: any
solution can be turned into a solution that only uses the lower bound min(xl) or the upper

Fig. 1 Introducing SPRINGYFOCUS Example of a resource with capacity equal to 3. Each day is rep-
resented by one unit in the horizontal axis. The capacity usage is represented by the vertical axis. A
Problem with 4 fixed activities: activity 1 scheduled on day 0 with 4 units of capacity; activity 2 sched-
uled on day 1 with 2 units of capacity; activity 3 scheduled on day 2 with 4 units of capacity; and activity
4 scheduled on days 3 and 4 with 2 units of capacity each. An additional activity of length 5 should
start from time 1 to 5 (i.e. the domain of the starting time of the new activity is D(st)=[1,5]). B Solution
satisfying FOCUS(X, [1, 1], 5, 3), with a new machine rented for 5 days. C Practical solution violating
FOCUS(X, [1, 1], 5, 3), with a new machine rented for 3 days but not used on the second day
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bound max(xl) of the domain D(xl) of each xl ∈ X (this observation was made for
FOCUS [12]). Thus, we propose a BC algorithm. The first step is to traverse X from x0 to
xn−1, to compute the minimum possible number of disjoint sequences in SX (a lower bound
for yc), the focus cardinality, denoted f c(X). We give a formal definition.

Definition 3 Focus cardinality
Let X be a sequence of variables subject to SPRINGYFOCUS(X, yc, len, h, k). The focus
cardinality of any subsequence s ⊂ X, denoted fc(s), is defined as follows:

f c(s) = min
ω∈D(yc)

SPRINGYFOCUS(s, yω
c , len, h, k)is satisfiable | D(yω

c ) = {ω}

Definition 4 Given xl ∈ X, we consider three quantities.

1. p(xl, v≤) is the focus cardinality of [x0, x1, . . . , xl], assuming xl ≤ k, and ∀si,j ∈
S[x0,x1,...,xl ], j 
= l.

2. pS(xl, v≤), 0 < l < n−1, is the focus cardinality of [x0, x1, . . . , xj ], where l < j < n,
assuming xl ≤ k and ∃i, 0 ≤ i < l, si,j ∈ S[x0,x1,...,xj ]. pS(x0, v≤) = pS(xn−1, v≤) =
n + 1.

3. p(xl, v>) is the focus cardinality of [x0, x1, . . . , xl] assuming xl > k.

Any quantity is equal to n+1 if the domain D(xl) of xl makes impossible the considered
assumption.

We shall use the above notations throughout the paper.

Property 1 f c(X) = min(p(xn−1, v≤), p(xn−1, v>)).

Proof By construction from Definitions 2 and 4.

To compute the quantities of Definition 4 for xl ∈ X we use two additional measures.

Definition 5 plen(xl) is the minimum length of a sequence in S[x0,x1,...,xl ] contain-
ing xl among instantiations of [x0, x1, . . . , xl] where the number of sequences is
f c([x0, x1, . . . , xl]). plen(xl) = 0 if ∀si,j ∈ S[x0,x1,...,xl ], j 
= l.

Definition 6 card(xl) is the minimum number of values v ≤ k in the current sequence in
S[x0,x1,...,xl ], equal to 0 if ∀si,j ∈ S[x0,x1,...,xl ], j 
= l. card(xl) assumes that xl > k. It has to
be decreased it by one if xl ≤ k.

Proofs of following recursive Lemmas 1 to 4 omit the obvious cases where quantities
take the default value n + 1.

Lemma 1 (initialization) p(x0, v≤) = 0 if min(x0) ≤ k, and n+1 otherwise; pS(x0, v≤) =
n + 1; p(x0, v>) = 1 if max(x0) > k and n + 1 otherwise; plen(x0) = 1 if max(x0) > k

and 0 otherwise; card(x0) = 0.
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Proof From item 4 of Definition 2, a sequence in SX cannot start with a value v ≤ k. Thus,
pS(x0, v≤) = n + 1 and card(x0) = 0. If x0 can take a value v > k then by Definition 4,
p(x0, v>) = 1 and plen(x0) = 1.

We now consider a variable xl ∈ X, 0 < l < n.

Lemma 2 (p(xl, v≤)) If min(xl) ≤ k then p(xl, v≤) = min(p(xl−1, v≤), p(xl−1, v>)),
else p(xl, v≤) = n + 1.

Proof If min(xl) ≤ k then pS(xl−1, v≤) must not be considered: it would imply that a
sequence in SX ends by a value v ≤ k for xl−1. From Property 1, the focus cardinality of
the previous sequence is min(p(xl−1, v≤), p(xl−1, v>)).

Lemma 3 (pS(xl, v≤)) If min(xi) > k, pS(xi, v≤) = n + 1. Otherwise, if plen(xi−1) ∈
{0, len − 1, len} ∨ card(xi−1) = h then pS(xi, v≤) = n + 1, else pS(xi, v≤) =
min(pS(xi−1, v≤), p(xi−1, v>)).

Proof If min(xi) ≤ k we have three cases to consider. (1) If either plen(xi−1) = 0 or
plen(xi−1) = len then from item 3 of Definition 2 a sequence in SX cannot start with a
value vi ≤ k: pS(xi, v≤) = n + 1. (2) If plen(xi−1) = len − 1 then from Definition 2
the current variable xi cannot end the sequence with a value vi ≤ k. (3) Otherwise, from
item 3 of Definition 2, p(xi−1, v≤) is not considered. Thus, from Property 1, pS(xi, v≤) =
min(pS(xi−1, v≤), p(xi−1, v>)).

Lemma 4 (p(xl, v>)) If max(xl) ≤ k then p(xl, v>) = n + 1. Otherwise, If
plen(xl−1) ∈ {0, len}, p(xl, v>) = min(p(xl−1, v>)+1, p(xl−1, v≤)+1), else p(xl, v>) =
min(p(xl−1, v>), pS(xl−1, v≤), p(xl−1, v≤) + 1).

Proof If plen(xl−1) ∈ {0, len} a new sequence has to be considered: pS(xl−1, v≤) must
not be considered, from item 3 of Definition 2. Thus, p(xl, v>) = min(p(xl−1, v>) +
1, p(xl−1, v≤)+1). Otherwise, either a new sequence has to be considered (p(xl−1, v≤)+1)
or the value is equal to the focus cardinality of the previous sequence ending in xl−1.

Proposition 1 (plen(xl)) If min(pS(xl−1, v≤), p(xl−1, v>)) < p(xl−1, v≤) + 1 ∧
plen(xl−1) < len then plen(xl) = plen(xl−1) + 1. Otherwise, if p(xl, v>)) < n + 1 then
plen(xl) = 1, else plen(xl) = 0.

Proof By construction from Definition 5 and Lemmas 1,2,3,4.

Proposition 2 (card(xl)) If plen(xl) = 1 then card(xl) = 0. Otherwise, if p(xl, v>) =
n + 1 then card(xl) = card(xl−1) + 1, else card(xl) = card(xl−1).

Proof By construction from Definition 5,6 and Lemmas 1 and 4.
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Algorithm 1 implements the lemmas with pre[l][0][0] = p(xl, v≤), pre[l][0][1] =
pS(xl, v≤), pre[l][1] = p(xl, v>), pre[l][2] = plen(xl), pre[l][3] = card(xl).

The principle of Algorithm 2 is the following. First, lb = f c(X) is computed with xn−1.
We execute Algorithm 1 from x0 to xn−1 and conversely (arrays pre and suf ). We thus
have for each quantity two values for each variable xl . To aggregate them, we implement
regret mechanisms directly derived from Propositions 1 and 2,, according to the parameters
len and h. Line 4 is optional but it avoids some work when the variable yc is fixed, thanks
to the same property as FOCUS (see [12]). Algorithm 2 performs a constant number of
traversals of the set X. Its time complexity is O(n), which is optimal.

3.3 Integer Linear Programming formulation

In this section we present a new Integer Linear Programming (ILP) formulation of
SPRINGYFOCUS. This connection highlights a relation between SPRINGYFOCUS
and a tractable ILP problem. It adds one more constraint to a bag of constraints that can be
propagated using shortest path or network flow reformulations [6, 13, 14].

We first present a bounds disentailment technique. We use the following notations
from [12].

Definition 7 ([12]) Given an integer k, a variable xl ∈ X is:

– Penalizing, (Pk), iff min(xl) > k.
– Neutral, (Nk), iff max(xl) ≤ k.
– Undetermined, (Uk), otherwise.

We say xl ∈ Pk iff xl is labelled Pk , and similarly for Uk and Nk .

The main observation behind the reformulation is that we can relax the requirement of
disjointness of sequences in SX (Definition 2) and find a solution of the SPRINGYFO-
CUS constraint. This solution can be transformed into a solution where sequences in SX
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are disjoint as we can truncate the overlaps. If we drop the requirement of disjointness of
sequences in SX then we only need to consider at most n possible sequences si,i+leni−1,
i ∈ {0, 1, . . . , n − 1}, xi and xi+leni−1 are not neutral, and leni is the maximal possible
length of a sequence that starts at the ith position. Note that leni does not have to be equal
to len as si,i+leni−1 can cover at most h variables that take values less than or equal to k.
We call the set of these sequences So

X.

Example 2 Consider X = [x0, x1 . . . , x8] and SPRINGYFOCUS (X, [3,3], 3, 1, 0) with
D(x0) = D(x2) = D(x5) = D(x7) = D(x8) = {1}, D(x1) = D(x3) = D(x4) =
0 and D(x6) = {0, 1}. There are 9 sequences to consider as there are 9 variables. We
have 5 valid sequences that are schematically shown in black in Fig. 2a. Hence, So

X =
{s0,2, s5,7, s6,8, s7,8, s8,8}. The remaining 4 sequences, s1,2, s2,3, s3,3 and s4,6, are discarded,
as a sequence should not start(finish) at a neutral variable. We highlighted invalid sequences
in grey.

We denote the SPRINGYFOCUS constraint without the disjointness requirement
SPRINGYFOCUSOVERLAP. More formally we define SPRINGYFOCUSOVER-
LAP as follows.

Definition 8 Let yc be a variable and k, len, h be three integers, 1 ≤ len ≤ |X|,
0 ≤ h < len − 1. An instantiation of X ∪ {yc} satisfies SPRINGYFOCUSOVER-
LAP(X, yc, len, h, k) iff there exists a set SX ⊆ So

X of sequences (not necessary disjoint)
of indices si,j such that four conditions are all satisfied:

1. |SX| ≤ yc

2. ∀xl ∈ X, xl > k ⇒ ∃si,j ∈ SX such that l ∈ si,j
3. ∀si,j ∈ SX, j − i + 1 ≤ len, xi > k and xj > k

4. ∀si,j ∈ SX, |{l ∈ si,j , xl ≤ k}| ≤ h

Fig. 2 The set of possible sequences in SX from Example 2
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Lemma 5 SPRINGYFOCUS(X, yc, len, h, k) has a solution iff SPRINGYFOCUS
OVERLAP(X, yc, len, h, k) has a solution.

Proof ⇐ Let I [X∪{yc}] be a solution of PRINGYFOCUSOVERLA.We order sequences
in SX by their starting points and process them in this order. Let si,i+leni−1 and sj,j+lenj −1
be the first two consecutive sequences in SX that overlap. We update SX . First, we remove
sj,j+lenj −1: SX = SX \ {sj,j+lenj −1}. Consider a sequence si+leni ,j+lenj −1. By definition,
xj+lenj −1 > k. If si+leni ,j+lenj −1 has a prefix that contains only neutral variables then we
cut it from the sequence and obtain si′,j+lenj −1. We add this sequence to our set: SX =
SX ∪ {si′,j+lenj −1}. So, we cut the prefix of sj,j+lenj −1 to avoid the overlap and made sure
that the new sequence does not start or end at a neutral variable. This does not change the
cardinality |SX|. We continue this procedure for the rest of the sequences. The updated set
SX covers the same set of penalizing variables as the original set and all sequences are
disjoint.

⇒ Let I [X ∪ {yc}] be a solution of SPRINGYFOCUS. We extend each sequence to its
maximal length to the right. This gives a solution of PRINGYFOCUSOVERLAP.

Example 3 Consider SPRINGYFOCUSOVERLAP from Example 2. SX =
{s0,2, s5,7, s7,8} is a possible solution (dashed lines in Fig. 2a). We can cut the prefix of s7,8
to avoid an overlap between s5,7 and s7,8. We obtain s8,8 which does not start or finish at a
neutral variable. Hence, SX = (

SX ∪ {s8,8}
) \ {s7,8} = {s0,2, s5,7, s8,8}.

Thanks to Lemma 5 we build an ILP reformulation for SPRINGYFOCUSOVERLAP,
solve this ILP and transform to a solution of the SPRINGYFOCUS constraint. We intro-
duce one Boolean variable svi for each sequence in So

X . We can write an integer linear
program:

Minimize
∑

i:si,i+leni
∈So

X

svi (1)

∑

{svi :xj ∈si,i+leni−1}
svi ≥ 1 ∀xj ∈ Pk (2)

svi ∈ {0, 1} ∀svi . (3)

Lemma 6 SPRINGYFOCUSOVERLAP (X, yc, len, h, k) is satisfiable iff the ILP sys-
tem 1–3 has a solution of cost less than or equal to max(yc).

Proof ⇐ Suppose the system described by (1)–(3) has a solution I [sv]. We define S =
{si,i+leni

|svi = 1}. Equation 2 ensures that at least one sequence covers a penalizing
variable. Equation 1 ensures that the number of selected sequences is at most max(yc).

As the rest of uncovered variables in X are undetermined or neutral variables, we can
construct an assignment based on SX . We set all undetermined variables covered by SX to
1 and all undetermined variables uncovered by SX to 0. This assignment clearly satisfies
SPRINGYFOCUSOVERLAP(X, yc, len, h, k).

⇒ Suppose there is a solution of the SPRINGYFOCUSOVERLAP(X, yc, len, h, k)
constraint I [X ∪ {yc}] and SX = {si1,j1 , . . . , sip,jp } be the set of corresponding sequences.
We set variable svi to 1 iff si,i+leni−1 ∈ SX . This assignment satisfies (1)–(3).

Next we note that the ILP system (1)–(3) has the consecutive ones properties on columns.
This means that the corresponding matrix can be transformed to a network flow matrix
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using a procedure described by Veinott and Wagner [19]. We consider the transformation
on SPRINGYFOCUS from Example 5. This transformation is similar to the one used to
propagate the SEQUENCE constraint [6].

Example 4 Consider SPRINGYFOCUS from Example 2. We build an ILP that corre-
sponds to an equivalent SPRINGYFOCUSOVERLAP constraint using (1)–(3). Note that
we do not introduce variables sv1, sv2, sv3 and sv4 for discarded sequences s1,3, s2,3, s3,3
and s4,6 :

Minimize
∑

i∈{0,5,6,7,8}
svi (4)

sv0 ≥ 1 (5)

sv5 ≥ 1 (6)

sv5 + sv6 + sv7 ≥ 1, (7)

sv6 + sv7 + sv8 ≥ 1, (8)

where svi ∈ {0, 1}. By introducing surplus/slack variables, zi , we convert this to a set of
equalities:

Minimize
∑

i∈{0,5,6,7,8}
svi (9)

sv0 − z0 = 1 (10)

sv5 − z1 = 1 (11)

sv5 + sv6 + sv7 − z2 = 1, (12)

sv6 + sv7 + sv8 − z3 = 1, (13)

In matrix form, this is:

⎛

⎜
⎜
⎝

1 0 0 0 0 −1 0 0 0
0 1 0 0 0 0 −1 0 0
0 1 1 1 0 0 0 −1 0
0 0 1 1 1 0 0 0 −1

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

sv0
...

sv8
z0
...

z3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=
⎛

⎜
⎝

1
...

1

⎞

⎟
⎠

We append a row of zeros to the matrix and subtract the ith row from i + 1th row for i = 1
to 4. These operations do not change the set of solutions. This gives:

⎛

⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 −1 0 0 0
−1 1 0 0 0 1 −1 0 0
0 0 1 1 0 0 1 −1 0
0 −1 0 0 1 0 0 1 −1
0 0 −1 −1 −1 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

sv0
...

sv8
z0
...

z3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
0
0
0
0

−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

The corresponding network flow graph is shown in Fig. 2b. The dashed arcs have cost zero
and solid arcs have cost one. Capacities are shown on arcs. We number nodes from 0 to 4
as we have 4 equations in the transformed ILP. We highlighted in grey a possible solution
of cost 3. This solution corresponds to the solution from Example 3.
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As the right hand side (RHS) of the ILP system (1)–(2) is a unit vector, the RHS in the
transformed ILP is a vector (1, 0, . . . , 0,−1). In other words, we need to consume one unit
of flow that enters the first node in the graph and leaves the last node in the graph. Hence,
the problem of finding a min cost flow is equivalent to the problem of finding a shortest path
in this graph from 0th to mth node, where m is the number of equations in ILP. Moreover, a
shortest path can be found in linear time.

Lemma 7 Let G be a directed graph that corresponds to the SPRINGY
FOCUS(X, yc, len, h, k). A shortest path from 0th to mth node can be found in O(n) time.

Proof We show that there exists a shortest path from 0th to mth node that does not contain
arcs (i+1, i), i ∈ {0, 1, . . . , m−1}. We call these arcs backward arcs and call the remaining
arcs – forward arcs.

First, we observe that each node in G has an outgoing arc, because the ith node, i ∈
{0, . . . , m − 1} corresponds to the ith penalizing variable in the constraint and a sequence
that starts at a penalizing variable is in So

X .
Let π be a shortest path from 0 to m node that uses a backward arc. Consider the first

occurrence of a sequence of backward arcs in π : π = (0, . . . , j, i′, . . . , i, g, f, . . . , m),
where i′, . . . , i is a path using only backward arcs. As (i, g) is present in G then
(i′, g′), g ≤ g′ is present in G. Hence, we can modify the path π to π =
(0, . . . , j, i′, g′, π ′, f, . . . , m), where (g′, π ′, f ) is a path that uses backward arcs to reach
f from g′ if (g′, f ) /∈ G. As the weight π ′ is 0, the weight of the updated path π is
the same as the weight of the original path. Then we apply the same argument to g′ and
so on.

Hence, we can use a simple greedy algorithm to find the shortest path. We start at the 0th
node and select the longest outgoing arc (0, i). In the node i, we again select the longest arc
until will reach the mth node. As we know that there exists a shortest path that only uses
forward arcs the greedy algorithm is optimal.

The same ILP reformulation can be done for the FOCUS constraint [12], which is a
special case of SPRINGYFOCUS. For these two constraints, we can use such a bounds
disentailment procedure to obtain a O(n2) filtering algorithm by successively applying the
program to the two bounds of the domain of each variable in X.

4 Weighted FOCUS

We present WEIGHTEDFOCUS, that extends FOCUS with a variable zc limiting the
the sum of lengths of all the sequences in SX, i.e., the number of variables covered by a
sequence in SX .

4.1 Definition

WEIGHTEDFOCUS distinguishes between solutions that are equivalent with respect to
the number of sequences in SX but not with respect to their length, as Fig. 3 shows.

Definition 9 Let yc and zc be two integer variables and k, len be two integers, such
that 1 ≤ len ≤ |X|. An instantiation of X ∪ {yc} ∪ {zc} satisfies WEIGHTEDFOCUS
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Fig. 3 The same initial configuration of Fig. 1 (a) Problem with 4 fixed activities and one activity of
length 5 that can start from time 3 to 5 (i.e., D(st)=[3,5]). We assume D(yc) = {2}, len = 3 and k = 0.
b Solution satisfying WEIGHTEDFOCUS with zc = 4. (C) Solution satisfying WEIGHTEDFOCUS
with zc = 2

(X, yc, len, k, zc) iff there exists a set SX of disjoint sequences of indices si,j such that four
conditions are all satisfied:

1. |SX| ≤ yc

2. ∀xl ∈ X, xl > k ⇔ ∃si,j ∈ SX such that l ∈ si,j
3. ∀si,j ∈ SX, j − i + 1 ≤ len
4.

∑
si,j ∈SX

|si,j | ≤ zc.

It should be noted that there are some similarities between WEIGHTEDFOCUS and
STRETCH [8]. Indeed given a sequence of variables, the STRETCH constraint restricts
the occurrences of consecutive identical values. The particular case of WEIGHTEDFO-
CUS with Boolean variables is similar to a very specific case of STRETCH with Boolean
variables, where only the occurrences of consecutive 1s is bounded. However, STRETCH
does not restrict the number of such subsequences. Even though, the semantics behind
STRETCH is quite different as the limitation of consecutive values is usually for many
values along with many patterns whereas inWEIGHTEDFOCUS the restriction in only
for values greater than a threshold. One limitation of WEIGHTEDFOCUS compared
to STRETCH is that we do not restrict the minimum size of subsequences with excess.
Another limitation is the non-penalization of the extra resource consumption at each unit of
time. That is, if k = 2, then excess of type x = 10 might be very costly compared to two
excess of the type x = 5.

4.2 Filtering algorithm

Dynamic Programming (DP) principle Given a partial instantiation IX ofX and a set of
sequences SX that covers all penalizing variables in IX , we consider two terms: the number
of variables in Pk and the number of undetermined variables, in Uk , covered by SX . We
want to find a set SX that minimizes the second term. Given a sequence of variables si,j ,
the cost cst (si,j ) is defined as cst (si,j ) = |{p|xp ∈ Uk, xp ∈ si,j }|. We denote cost of SX ,
cst (SX), the sum cst (SX) = ∑

si,j ∈SX
cst (si,j ). Given IX we consider |Pk| = |{xi ∈ Pk}|.

We have:
∑

si,j ∈S |si,j | = ∑
si,j ∈S cst (si,j ) + |Pk|.

We start with explaining the main difficulty in building a propagator for WEIGHTED-
FOCUS. The constraint has two optimization variables in its scope (i.e. yc and zc) and we
might not have a solution that optimizes both variables simultaneously.
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Example 5 Consider the set X = [x0, x1, . . . , x5] with domains [1, {0, 1}, 1, 1, {0, 1}, 1]
and WEIGHTEDFOCUS(X, [2, 3], 3, 0, [0, 6]), solution SX = {s0,2, s3,5}, zc = 6,
minimizes yc = 2, while solution SX = {s0,1, s2,3, s5,5}, yc = 3, minimizes zc = 4.

Example 5 suggests that we need to fix one of the two optimization variables and only
optimize the other one. Our algorithm is based on a dynamic program [3]. For each prefix
of variables [x0, x1, . . . , xj ] and given a cost value c, it computes a cover of focus cardi-
nality, denoted Sc,j , which covers all penalized variables in [x0, x1, . . . , xj ] and has cost
exactly c. If Sc,j does not exist we assume that Sc,j = ∞. Sc,j is not unique as Example 6
demonstrates.

Example 6 Consider X = [x0, x1, . . . , x7] and WEIGHTEDFOCUS (X, [2, 2], 5,
0, [7, 7]), with D(xi) = {1}, i ∈ I, I = {0, 2, 3, 5, 7} and D(xi) = {0, 1}, i ∈ {0, 1, . . . 7} \
I . Consider the subsequence of variables [x0, . . . , x5] and S1,5. There are several sets of
minimum cardinality that cover all penalized variables in the prefix [x0, . . . , x5] and has
cost 2, e.g. S1

1,5 = {s0,2, s3,5} or S2
1,5 = {s0,4, s5,5}. Assume we sort sequences by their

starting points in each set. We note that the second set is better if we want to extend the last
sequence in this set as the length of the last sequence s5,5 is shorter compared to the length
of the last sequence in S1

1,5, which is s3,5.

Example 6 suggests that we need to put additional conditions on Sc,j to take into account
that some sets are better than others. We can safely assume that none of the sequences in
Sc,j starts at undetermined variables as we can always set it to zero. Hence, we introduce a
notion of an ordering between sets Sc,j and define conditions that this set has to satisfy.

Ordering of sequences in Sc,j We introduce an order over sequences in Sc,j . Given a
set of sequences in Sc,j , we sort them by their starting points. We denote last (Sc,j ) the last
sequence in Sc,j in this order. If xj ∈ last (Sc,j ) then |last (Sc,j )| is, naturally, the length of
last (Sc,j ), otherwise |last (Sc,j )| = ∞.

Ordering of sets Sc,j , c ∈ [0,max(zc)], j ∈ {0, 1, . . . , n−1} We define a comparison
operation between two sets Sc,j and Sc′,j ′ :

– Sc,j < Sc′,j ′ iff |Sc,j | < |Sc′,j ′ | or |Sc,j | = |Sc′,j ′ | and |last (Sc,j )| < |last (Sc′,j ′)|.
– Sc,j = Sc′,j ′ iff |Sc,j | = |Sc′,j ′ | and |last (Sc,j )| = |last (Sc′,j ′)|.

Note that we do not take account of cost in the comparison as the current definition is
sufficient for us. Using this operation, we can compare all sets Sc,j and S′

c,j of the same cost
for a prefix [x0, . . . , xj ]. We say that Sc,j is optimal iff satisfies the following 4 conditions.

Proposition 3 (Conditions on Sc,j )

1. Sc,j covers all Pk variables in [x0, x1, . . . , xj ],
2. cst (Sc,j ) = c,
3. ∀sh,g ∈ Sc,j , xh /∈ Uk ,
4. Sc,j is the first set in the order among all sets that satisfy conditions 1–3.
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As can be seen from definitions above, given a subsequence of variables x0, . . . , xj , Sc,j

is not unique and might not exist. However, if |Sc,j | = |Sc′,j ′ |, c = c′ and j = j ′, then
last (Sc,j ) = last (Sc′,j ′).

Example 7 Consider WEIGHTEDFOCUS from Example 6. Consider the subsequence
[x0, x1]. S0,1 = {s0,0}, S1,1 = {s0,1}. Note that S2,1 does not exist. Consider the subsequence
[x0, . . . , x5]. We have S0,5 = {s0,0, s2,3, s5,5}, S1,5 = {s0,4, s5,5} and S2,5 = {s0,3, s5,5}.
By definition, last (S0,5) = s5,5, last (S1,5) = s5,5 and last (S2,5) = s5,5. Consider the
set S1,5. Note that there exists another set S′

1,5 = {s0,0, s2,5} that satisfies conditions 1–
3. Hence, it has the same cardinality as S1,5 and the same cost. However, S1,5 < S′

1,5 as
|last (S1,5)| = 1 < |last (S′

1,5)| = 3.

Bounds disentailment Each cell in the dynamic programming table fc,j , c ∈ [0, zU
c ],

j ∈ {0, 1, . . . , n − 1}, where zU
c = max(zc) − |Pk|, is a pair of values qc,j and lc,j , fc,j =

{qc,j , lc,j }, stores information about Sc,j . Namely, qc,j = |Sc,j |, lc,j = |last (Sc,j )| if
last (Sc,j ) 
= ∞ and ∞ otherwise. We say that fc,j /qc,j / lc,j is a dummy (takes a dummy
value) iff fc,j = {∞,∞}/qc,j = ∞/lc,j = ∞. If y1 = ∞ and y2 = ∞ then we assume
that they are equal. We introduce a dummy variable x−1, D(x−1) = {0} and a row f−1,j ,
j = −1, . . . , n − 1 to keep uniform notations.

Algorithm 3 gives pseudocode for the propagator. The intuition behind the algorithm is
as follows. We emphasize again that by cost we mean the number of covered variables in
Uk .

If xj ∈ Pk then we do not increase the cost of Sc,j compared to Sc,j−1 as the cost only
depends on undetermined variables. Hence, the best move for us is to extend last (Sc,j−1)

or start a new sequence if it is possible. This is encoded in lines 9 and 10 of the algorithm.
Fig. 4a gives a schematic representation of these arguments.

If xj ∈ Uk then we have two options. We can obtain Sc,j from Sc−1,j−1 by increasing
cst (Sc−1,j−1) by one. This means that xi will be covered by last (Sc,j ). Alternatively, from
Sc,j−1 by interrupting last (Sc,j−1). This is encoded in line 12 of the algorithm (Fig. 4b).
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Fig. 4 Representation of one step of algorithm 3

If xj ∈ Nk then we do not increase the cost of Sc,j compared to Sc,j−1. Moreover, we
must interrupt last (Sc,j−1), line 14 (Fig. 4c, ignore the gray arc).

First we prove a property of the dynamic programming table. We define a comparison
operation between fc,j and fc′,j ′ induced by a comparison operation between Sc,j and Sc′,j ′ :

– fc,j < fc′,j ′ if (qc,j < qc′,j ′) or (qc,j = qc′,j ′ and lc,j < lc′,j ′ ).
– fc,j = fc′,j ′ if (qc,j = qc′,j ′ and lc,j = lc′,j ′ ).

In other words, as in a comparison operation between sets, we compare by the cardinality
of sequences, |Sc,j | and |Sc′,j ′ |, and, then by the length of the last sequence in each set,
last (Sc,j ) and last (Sc′,j ′).

First, we prove two technical results.

Lemma 8 Consider SPRINGYFOCUS([x0, . . . , xn−1], yc, len, k, zc). Let f be dynamic
programming table returned by Algorithm 3. Then the non-dummy values of fc,j are con-
secutive in each column, so that there do not exist c, c′, c′′, 0 ≤ c < c′ < c′′ ≤ zU

c , such
that fc′,j is dummy and fc,j , fc′′,j are non-dummy.

Proof We prove by induction on the length of the sequence. The base case is trivial as
f0,−1 = {0, 0} and fc,−1 = {∞,∞}, c ∈ [−1] ∪ [1, zU

c ]. Suppose the statement holds for
j − 1 variables.

Suppose there exist c, c′, c′′, 0 ≤ c < c′ < c′′ ≤ zU
c , such that fc′,j is dummy and

fc,j , fc′′,j are non-dummy.

Case 1 Consider the case xj ∈ Pk . By Algorithm 3, lines 9 and 10, qc,j ∈ [qc,j−1, qc,j−1+
1], qc′,j ∈ [qc′,j−1, qc′,j−1 + 1] and qc′′,j ∈ [qc′′,j−1, qc′′,j−1 + 1]. As fc′,j is dummy
and fc,j , fc′′,j are non-dummy, fc′,j−1 must be dummy and fc,j−1, fc′′,j−1 must be non-
dummy. This violates induction hypothesis.

Case 2 Consider the case xj ∈ Uk . By Algorithm 3, line 12, qc,j = min(qc−1,j−1, qc,j−1),
qc′,j = min(qc′−1,j−1, qc′,j−1) and qc′′,j = min(qc′′−1,j−1, qc′′,j−1). As fc′,j is dummy,
then both fc′−1,j−1 and fc′,j−1 must be dummy. As fc,j is non-dummy, then one of
fc−1,j−1 and fc,j−1 is non-dummy. As fc′′,j is non-dummy, then one of fc′′−1,j−1 and
fc′′,j−1 is non-dummy. We know that c−1 < c ≤ c′−1 < c′ ≤ c′′−1 < c′′ or c < c′ < c′′.
This leads to violation of induction hypothesis.

Case 3 Consider the case xj ∈ Nk . By Algorithm 3, line 14, qc,j = qc,j−1, qc′,j = qc′,j−1
and qc′′,j = qc′′,j−1. Hence, fc′,j−1 is dummy and fc,j−1, fc′′,j−1 are non-dummy. This
leads to violation of induction hypothesis.
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Proposition 4 Consider SPRINGYFOCUS([x0, . . . , xn−1], yc, len, k, zc). Let f be
dynamic programming table returned by Algorithm 3. The elements of the first row are
non-dummy: f0,j , j = −1, . . . , n are non-dummy.

Proof We prove by induction on the length of the sequence. The base case is trivial as
f0,−1 = {0, 0}. Suppose the statement holds for j − 1 variables.

Case 1 Consider the case xj ∈ Pk . As f0,j−1 is non-dummy then by Algorithm 3, lines 9–
10, f0,j is non-dummy.

Case 2 Consider the case xj ∈ Uk . Consider the condition (l−1,j−1 ∈ [1, len)∧ q−1,j−1 =
q0,j−1) ∨ (q0,j−1 = ∞) at line 12. By the induction hypothesis, q0,j−1 
= ∞. By the
initialization procedure of the dummy row, q−1,j−1 = ∞. Hence, this condition does not
hold and, by line 12, f0,j is non-dummy.

Case 3 Consider the case xj ∈ Nk . As f0,j−1 is non-dummy then by Algorithm 3, line 13,
f0,j is non-dummy.

We can now prove an interesting monotonicity property of Algorithm 3.

Lemma 9 Consider SPRINGYFOCUS (X, yc, len, k, zc). Let f be dynamic programming
table returned by Algorithm 3. Non-dummy elements fc,j are monotonically non increasing
in each column, so that fc′,j ≤ fc,j , 0 ≤ c < c′ ≤ zU

c , j = [0, . . . , n − 1].

Proof By transitivity and consecutivity of non-dummy values (Lemma 8) and the result that
all elements in the 0th row are non-dummy (Proposition 4), it is sufficient to consider the
case c′ = c + 1.

We prove by induction on the length of the sequence. The base case is trivial as f0,−1 =
{0, 0} and fc,0 are dummy, c ∈ [0, zU

c ]. Suppose the statement holds for j − 1 variables.
Consider the variable xj . Suppose, by contradiction, that fc,j < fc+1,j . Then either

qc,j < qc+1,j or qc,j = qc+1,j , lc,j < lc+1,j . By induction hypothesis, we know that
fc,j−1 ≥ fc+1,j−1, hence, either qc,j−1 > qc+1,j−1 or qc,j−1 = qc+1,j−1, lc,j−1 ≥
lc+1,j−1.

We consider three cases depending on whether xj is a penalizing variable, an undeter-
mined variable or a neutral variable.

Case 1 Consider the case xj ∈ Pk . If qc,j−1 = ∞ then qc+1,j−1 = ∞ by the
induction hypothesis. Hence, by Algorithm 3, line 9, fc,j and fc+1,j are dummy and
equal. Suppose qc,j−1 
= ∞. Then we consider four cases based on relative values of
qc,j ′ , qc+1,j ′ , lc,j ′ , lc+1,j ′ , j ′ ∈ {j − 1, j}.

– Case 1a Suppose qc,j < qc+1,j and qc,j−1 > qc+1,j−1. By Algorithm 3, lines 9 and 10,
qc,j ≥ qc,j−1 and qc+1,j ≤ qc+1,j−1 + 1. Hence, qc,j < qc+1,j implies qc+1,j−1 <

qc,j < qc+1,j−1 + 1. We derive a contradiction.
– Case 1b Suppose qc,j < qc+1,j and qc,j−1 = qc+1,j−1, lc,j−1 ≥ lc+1,j−1. By Algo-

rithm 3, lines 9 and 10, qc,j ≥ qc,j−1 and qc+1,j ≤ qc+1,j−1 + 1. Hence, qc,j < qc+1,j
implies qc+1,j−1 = qc,j−1 ≤ qc,j < qc+1,j ≤ qc+1,j−1 + 1. Hence, qc+1,j−1 =
qc,j−1 = qc,j and qc+1,j = qc+1,j−1 + 1. As qc,j−1 = qc,j then lc,j−1 ∈ [1, len) by
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Algorithm 3 line 9. As qc+1,j = qc+1,j−1+1 then lc+1,j−1 ∈ {len, ∞} by Algorithm 3
line 10. This leads to a contradiction as lc,j−1 ≥ lc+1,j−1.

– Case 1c Suppose qc,j = qc+1,j , lc,j < lc+1,j and qc,j−1 > qc+1,j−1. Symmetric to
Case 1b.

– Case 1d Suppose qc,j = qc+1,j , lc,j < lc+1,j and qc,j−1 = qc+1,j−1, lc,j−1 ≥
lc+1,j−1. By Algorithm 3, lines 9 and 10, qc,j ≥ qc,j−1 and qc+1,j ≤ qc+1,j−1 + 1.
Hence, qc,j = qc+1,j implies qc+1,j−1 = qc,j−1 ≤ qc,j = qc+1,j ≤ qc+1,j−1 + 1.
Therefore, either qc,j = qc,j−1 ∧ qc+1,j = qc+1,j−1 or qc,j = qc,j−1 + 1 ∧ qc+1,j =
qc+1,j−1 + 1.

If qc,j = qc,j−1 and qc+1,j = qc+1,j−1 then lc,j−1 ∈ [1, len) and lc+1,j−1 ∈
[1, len) by Algorithm 3 line 9. Hence, lc,j = lc,j−1 + 1 and lc+1,j = lc+1,j−1 + 1. As
lc,j−1 ≥ lc+1,j−1, then lc,j ≥ lc+1,j . This leads to a contradiction with the assumption
lc,j < lc+1,j .

If qc,j = qc,j−1+1 ∧ qc+1,j = qc+1,j−1+1 then lc,j−1 ∈ {len, ∞} and lc+1,j−1 ∈
{len, ∞} by Algorithm 3 line 10. Hence, lc,j = 1 and lc+1,j = 1. This leads to a
contradiction with the assumption lc,j < lc+1,j .

Case 2 Consider the case xj ∈ Uk . If qc,j−1 = ∞ then qc+1,j−1 = ∞ by the induction
hypothesis. Hence, by Algorithm 3, line 12, fc,j and fc+1,j are dummy and equal.

Suppose qc,j−1 
= ∞. Then we consider four cases based on relative values of
qc,j ′ , qc+1,j ′ , lc,j ′ , lc+1,j ′ , j ′ ∈ {j − 1, j}.

– Case 2a Suppose qc,j < qc+1,j and qc,j−1 > qc+1,j−1. By Algorithm 3, line 12, we
know that qc+1,j−1 ≤ qc+1,j ≤ qc,j−1 and qc,j−1 ≤ qc,j ≤ qc−1,j−1. By induction
hypothesis, qc+1,j−1 ≤ qc,j−1 ≤ qc−1,j−1. Hence, if qc,j ≤ qc+1,j then qc,j−1 ≤
qc,j ≤ qc+1,j ≤ qc,j−1. Therefore, if qc,j < qc+1,j then we derive a contradiction.

– Case 2b Identical to Case 2b.
– Case 2c Suppose qc,j = qc+1,j , lc,j > lc+1,j and qc,j−1 > qc+1,j−1. As qc,j−1 
=

qc+1,j−1 then qc+1,j−1 = qc+1,j (line 12). We also know qc,j−1 ≤ qc,j ≤ qc+1,j ≤
qc,j−1 from Case 1a. Putting everything together, we get qc,j−1 ≤ qc,j ≤ qc+1,j−1 <

qc,j−1. This leads to a contradiction.
– Case 2d Suppose qc,j = qc+1,j , lc,j < lc+1,j and qc,j−1 = qc+1,j−1, lc,j−1 ≥

lc+1,j−1. As we know from Case 1a qc+1,j−1 ≤ qc+1,j ≤ qc,j−1, qc,j−1 ≤ qc,j ≤
qc−1,j−1 and qc,j−1 ≤ qc,j ≤ qc+1,j ≤ qc,j−1. Hence, qc+1,j−1 = qc+1,j = qc,j−1 =
qc,j .

Consider two subcases. Suppose qc,j−1 < qc−1,j−1. Then lc,j = ∞ (line 12).
Hence, our assumption lc,j < lc+1,j is false.

Suppose qc,j−1 = qc−1,j−1. If lc−1,j−1 = len then lc,j = ∞ (line 12). Hence, our
assumption lc,j < lc+1,j is false. Therefore, lc−1,j−1 ∈ [1, len) and lc,j−1 = lc−1,j−1+
1. By induction hypothesis as qc+1,j−1 = qc,j−1 = qc−1,j−1 then lc+1,j−1 ≤ lc,j−1 ≤
lc−1,j−1. Hence, lc,j−1 ∈ [1, lc−1,j−1] ⊆ [1, len). Therefore, lc+1,j = lc,j−1 + 1 ≤
lc−1,j−1 + 1 = lc,j−1. This contradicts our assumption lc,j < lc+1,j .

Case 3 Consider the case xj ∈ Nk . This case follows immediately from Algorithm 3,
line 14, and the induction hypothesis.

Lemma 10 Consider WEIGHTEDFOCUS(X, yc, len, k, zc). The dynamic programming
table fc,j = {qc,j , lc,j }c ∈ [0, zU

c ], j = 0, . . . , n − 1, is correct in the sense that if fc,j
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exists and it is non-dummy then a corresponding set of sequences Sc,j exists and satisfies
conditions 1–4. The time complexity of Algorithm 3 is O(nmax(zc)).

Proof We start by proving correctness of the algorithm. We use induction on the length
of the sequence. Given fc,j we can reconstruct a corresponding set of sequences Sc,j by
traversing the table backward.

The base case is trivial as x1 ∈ Pk , f0,0 = {1, 1} and fc,0 = {∞,∞}. Suppose the
statement holds for j − 1 variables.

Case 1 Consider the case xj ∈ Pk . Note, that the cost can not be increased on seeing xj ∈
Pk as cost only depends on covered undetermined variables. By the induction hypothesis,
Sc,j−1 satisfies conditions 1–4. The only way to obtain Sc,j from Sc′,j−1, c′ ∈ [0, zU

c ],
is to extend last (Sc,j−1) to cover xj or start a new sequence if |last (Sc,j−1)| = len. If
Sc,j−1 does not exist then Sc,j does not exist. The algorithm performs this extension (lines 9
and 10). Hence, Sc,j satisfies conditions 1–4.

Case 2 Consider the case xj ∈ Uk . In this case, there exist two options to obtain Sc,j

from from Sc′,j−1, c′ ∈ [0, zU
c ]. The first option is to cover xj . Hence, we need to extend

last (Sc−1,j−1). Note that we should not start a new sequence if last (Sc−1,j−1) = len as it
is never optimal to start a sequence on seeing a neutral variable.

The second option is not to cover xj . Hence, we need to interrupt last (Sc,j−1).
By Lemma 9 we know that fc,j−1 ≤ fc−1,j−1, 0 < c ≤ C. By the induction hypothesis,

Sc,j−1 and Sc−1,j−1 satisfy conditions 1–4. Hence, Sc,j−1 ≤ Sc−1,j−1.
Consider two cases. Suppose |Sc,j−1| < |Sc−1,j−1|. In this case, it is optimal to interrupt

last (Sc,j−1).
Suppose |Sc,j−1| = |Sc−1,j−1| and |last (Sc,j−1)| ≤ |last (Sc−1,j−1)|. If

|last (Sc−1,j−1)| < len then it is optimal to extend last (Sc−1,j−1). If |last (Sc−1,j−1)| =
len then it is optimal to interrupt last (Sc,j−1), otherwise we would have to start a new
sequence to cover an undetermined variable xj , which is never optimal. If Sc,j−1 and
Sc−1,j−1 do not exist then Sc,j does not exist. If Sc,j−1 does not exist then case analysis is
similar to the analysis above.

This case-based analysis is exactly what Algorithm 3 does in line 12. Hence, Sc,j satisfies
conditions 1–4.

Case 3 Consider the case xj ∈ Nk . Note that the cost can not be increased on seeing xj ∈
Nk as cost only depends on covered undetermined variables. By the induction hypothesis,
Sc,j−1 satisfies conditions 1–4. The only way to obtain Sc,j from Sc′,j−1, c′ ∈ [0, zU

c ], is
to interrupt last (Sc,j−1). If Sc,j−1 does not exist then Sc,j does not exist. The algorithm
performs this extension in line 14. Hence, Sc,j satisfies conditions 1–4.

Regarding the worst case time complexity, it is clear that this algorithm requires
O(nmax(zc)) = O(n2) as we have O(nmax(zc)) elements in the table and we only need
to inspect a constant number of elements to compute f (c, j).

Example 8 Table 1 shows an execution of Algorithm 3 on WEIGHTEDFOCUS from
Example 6. Note that |P0| = 5. Hence, zU

c = max(zc) − |P0| = 2. As can be seen
from the table, the constraint has a solution as there exists a set S2,7 = {s0,3, s5,7} such
that |S2,7| = 2.
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Table 1 An execution of Algorithm 3 on WEIGHTEDFOCUS from Example 6. Dummy values fc,j are
removed

D(x0) D(x1) D(x2) D(x3) D(x4) D(x5) D(x6) D(x7)

c [1, 1] [0, 1] [1, 1] [1, 1] [0, 1] [1, 1] [0, 1] [1, 1]

0 {1, 1} {1,∞} {2, 1} {2, 2} {2,∞} {3, 1} {3,∞} {4, 1}
1 {1, 2} {1, 3} {1, 4} {1,∞} {2, 1} {2,∞} {3, 1}
zU

c = 2 {1, 5} {2, 1} {2, 2} {2, 3}

Bounds consistency To enforce BC on the sequence [x0, x1, . . . , xn−1], we compute an
additional DP table b, bc,j , c ∈ [0, zU

c ], j ∈ [−1, n−1] on the reverse sequence of variables
(i.e. [xn−1, . . . , x1, x0]).

Lemma 11 Consider WEIGHTEDFOCUS(X, yc, len, k, zc). Bounds consistency can be
enforced in O(nmax(zc)) time.

Proof We build dynamic programming tables f and b. We will show that to check if xi = v

has a support it is sufficient to examine O(zU
c ) pairs of values fc1,i−1 and bc2,n−i−2, c1, c2 ∈

[0, zU
c ] which are neighbour columns to the ith column. It is easy to show that if we consider

all possible pairs of elements in fc1,i−1 and bc2,n−i−2 then we determine if there exists a
support for xi = v. There are O(zU

c × zU
c ) such pairs. The main part of the proof shows that

it sufficient to consider O(zU
c ) such pairs. Next, we provide a formal proof.

Consider dynamic programming tables f and b and a variable-value pair xi = v. We
will show that to check if xi = v has a support it is sufficient to examine O(zU

c ) pairs of
values fc1,i−1 and bc2,n−i−2, c1, c2 ∈ [0, zU

c ]. We introduce two dummy variables x−1 and
xn, D(x−1) = D(xn) = 0 to keep uniform notations.

Consider a variable-value pair xi = v, v > k. Note that it is sufficient to find a support
one value v, v > k as all values greater than k are indistinguishable. Due to Lemma 10
it is sufficient to consider only elements in the neighbouring columns to the ith column in
f and b. Namely, the (i − 1)th column in f and (n − i − 2) in b. The reason for that is
that elements in these columns fc1,i−1 and bc2,n−i−2, c1, c2 ∈ [0, zU

c ] correspond to sets
of sequences, Sc1,i−1 and Sc2,n−i−2, that are optimal with respect to conditions 1–4 for
the prefix [x0, . . . , xj−1] and the suffix [xj+1, . . . , xn−1], respectively. The main goal is to
check whether we can ‘glue’ the corresponding partial covers Sc1,i−1, Sc2,n−i−2 with xi = v

into a single cover S over all variables that satisfies the constraint. To glue Sc1,i−1, Sc2,n−i−2
and xi = v into a single cover we have few options:

– The first and the most expensive option is to create a new sequence s′ of length 1 to
cover xi . Then the union S = Sc1,i−1 ∪ Sc2,n−i−2 ∪ {s′} forms a cover s.t. cst (S) =
c1 + c2 + 1 and |S| = |Sc1,i−1| + |Sc2,n−i−2| + 1.

– The second option is to extend last (Sc1,i−1) to the right by one if |last (Sc1,i−1)| <

len. Hence, the updated set S′
c1,i−1 is identical to Sc1,i−1 except the last sequence is

increased by one element on the right. Then the union S = S′
c1,i−1 ∪ Sc2,n−i−2 forms a

cover: cst (S) = c1 + c2 + 1 and |S| = |Sc1,i−1| + |Sc2,n−i−2|.
– The third option is to extend last (Sc2,n−i−2) to the left by one if |last (Sc2,n−i−2)| <

len. This case is symmetric to the previous case.
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– The fourth and the cheapest option is to glue last (Sc1,i−1), xv and last (Sc2,n−i−2) to a
single sequence if |last (Sc1,i−1)|+|last (Sc2,n−i−2)| < len. Hence, S′

c1,i−1 = Sc1,i−1 \
last (Sc1,i−1), S′

c2,n−i−2 = Sc2,n−i−2 \ last (Sc2,n−i−2) and s′ is a concatenation of
last (Sc1,i−1), x = v and last (Sc2,n−i−2)]. Then the union S = S′

c1,i−1∪S′
c2,n−i−2∪{s′}

forms a cover: cst (S) = c1 + c2 + 1 and |S| = |Sc1,i−1| + |Sc2,n−i−2| − 1.

We can go over all pairs fc1,i−1 and bc2,n−i−2, c1, c2 ∈ [0, zU
c ] and check the four cases

above. If obtained cover S is such that cst (S) ≤ zU
c and |S| ≤ max(yc) then we have

found a support for xi = v. Otherwise, xi = v does not have a support due to Lemma 10.
However, if we need to consider all pairs fc1,i−1 and bc2,n−i−2, c1, c2 ∈ [0, zU

c ] then finding
a support takes O((zU

c )2) time. We show next that it is sufficient to consider a linear number
of pairs. We observe that in all four options above the cost of resulting cover S is c1+c2+1.
Therefore, we only need to consider pairs fc1,i−1 and bc2,n−i−2 such that c1 + c2 + 1 ≤ zU

c .
Therefore, for each fc1,i−1 it is sufficient to consider only one element bc2,n−i−2 such that
bc2,n−i−2 is non-dummy and c2 is the maximum value that satisfies inequality c1+c2+1 ≤
zU

c .
We prove by contradiction. Suppose, there exists a pair fc1,i−1 and bc′

2,n−i−2 such that

c1 + c′
2 + 1 ≤ zU

c and Sc1,i−1 and Sc′
2,n−i−2 can be extended to a support. However,

Sc1,i−1 and Sc2,n−i−2 can not be extended to a support for xi = v, c1 + c2 + 1 ≤ zU
c

and c′
2 < c2. By Lemma 9, we know bc′

2,n−i−2 ≤ bc2,n−i−2. However, in this case,
|Sc1,i−1| + |Sc2,n−i−2| ≤ |Sc1,i−1| + |Sc′

2,n−i−2| ≤ max(yc) + 1. In the case of equality,
we know that last (Sc2,n−i−2) < last (Sc′

2,n−i−2). Hence, if Sc1,i−1 and Sc′
2,n−i−2 can be

extended to a support then Sc1,i−1 and Sc2,n−i−2 can be extended to a support. This leads to
a contradiction.

Note that we do not need to search for each fc1,i−1 as we can find its pair bc2,n−i−2
in O(1) due to consecutivity property of non-dummy values in each column (Lemma 8).
Hence, we need O(zU

c ) = O(max(zc)) time to check for support for xi = v.
Consider a variable-value pair xi = v, v ≤ k. Note that it is sufficient to find a support

for one value v, v ≤ k as all values less than or equal to k are indistinguishable. We again
consider all pairs in the neighbouring columns, fc1,i−1 and bc2,n−i−2 and consider how to
‘glue’ the corresponding partial covers Sc1,i−1, Sc2,n−i−2 with xi = v into a single cover S

over all variables to satisfy the constraint. In this case, there is only one option to join Sc1,i−1
and Sc2,n−i−2. Then union S = Sc1,i−1 ∪ Sc2,n−i−2 forms a cover: cst (S) = c1 + c2 and
|S| = |Sc1,i−1|+|Sc2,n−i−2|. We can go over all pairs fc1,i−1 and bc2,n−i−2, c1, c2 ∈ [0, zU

c ]
to check if such a pair exists. We again show that it is sufficient to consider a linear number
of pairs. We observe that in all four options above the cost of resulting cover S is c1 + c2.
Therefore, we only need to consider pairs fc1,i−1 and bc2,n−i−2 such that c1 + c2 ≤ zU

c .
Therefore, for each fc1,i−1 it is sufficient to consider only one element bc2,n−i−2 such that
bc2,n−i−2 is non-dummy and c2 is the maximum value that satisfies inequality c1+c2 ≤ zU

c .
We prove by contradiction. Suppose, there exists a pair fc1,i−1 and bc′

2,n−i−2 such that

c1 + c′
2 ≤ zU

c and Sc1,i−1 and Sc′
2,n−i−2 can be extended to a support. However, Sc1,i−1

and Sc2,n−i−2 can not be extended to a support for xi = v, c1 + c2 ≤ zU
c and c′

2 < c2. By
Lemma 9, we know bc′

2,n−i−2 ≤ bc2,n−i−2. However, in this case, |Sc1,i−1| + |Sc2,n−i−2| ≤
|Sc1,i−1| + |Sc′

2,n−i−2| ≤ max(yc). In the case of equality, we know that last (Sc2,n−i−2) <

last (Sc′
2,n−i−2). Hence, if Sc1,i−1 and Sc′

2,n−i−2 can be extended to a support then Sc1,i−1
and Sc2,n−i−2 can be extended to a support. This leads to a contradiction.
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Complexity We compute the tables f and b. Then we check for a support for two values
v1 and v2, v1 ≤ k and v2 > k, in D(xi) in O(max(zc)) time for each variable xi , i =
0, . . . , n − 1. Hence, the time complexity to enforce domain consistency is O(nmax(zc)).

In particular, to check a support for a variable-value pair xi = v, v > k, for each fc1,i−1
it is sufficient to consider only one element bc2,n−i−2 such that bc2,n−i−2 is non-dummy
and c2 is the maximum value that satisfies inequality c1 + c2 + 1 ≤ zU

c . To check a support
for a variable-value pair xi = v, v ≤ k, for each fc1,i−1 it is sufficient to consider only
one element bc2,n−i−2 such that bc2,n−i−2 is non-dummy and c2 is the maximum value that
satisfies inequality c1 + c2 ≤ zU

c .

Example 9 Table 2 shows an execution of Algorithm 3 on the reversed sequence of variables
x of FOCUS from Example 6.

Consider, for example, the variable x4. To check if x4 = 1 has as a support we need to
consider two pairs: f0,3, b1,5 and f1,3, b0,5.

Consider the first pair: f0,3 = {2, 2} and b1,5 = {1, 3}. As |S0,3| + |S1,5| = 2 + 1 =
max(yc) + 1 = 3, we check whether we can merge last (S0,3), x4 = 1, and last (S1,5).
Hence, |last (S0,3)| + |last (S1,5)| = 2 + 3 = len = 5. Therefore, we cannot merge
last (S0,3), xi = 1 and last (S1,5) into a single sequence s′ of length 5.

Consider the second pair: f1,3 = {1, 4} and b0,5 = {2, 1}. As |S1,3| + |S0,5| =
1 + 2 = max(yc) + 1 = 3, x4 = 1, we check whether we can merge last (S1,3) and
last (S0,5). As |last (S1,3)| + |last (S0,5)| = 4 + 1 is equal to len = 5, we cannot merge
last (S1,3), xi = 1 and last (S0,5) into a single sequence s′ of length at most 5. The sec-
ond pair cannot be used to build a support for x4 = 1. Hence, x4 = 1 does not have
a support.

To check if x4 = 0 has as support we need to consider pairs: f0,3, b2,5 and f1,3, b1,5.
Consider the first pair: f0,3 = {2, 2} and b2,5 = {2, 1}. We have |S0,3| + |S2,5| = 2 + 2 =
max(yc) = 4. Hence, x4 = 0 has a support.

We observe a useful property of the constraint. If there exists fc,n−1 such that c <

max(zc) and qc,n−1 < max(yc) then the constraint is BC. This follows from the observation
that given a solution of the constraint SX , changing a variable value can increase cst (SX)

and |SX| by at most one.

Decomposition with O(n) variables and constraints Alternatively we can decompose
WEIGHTEDFOCUS using O(n) additional variables and constraints.

Table 2 An execution of Algorithm 3 on the reverse sequence of variables in WEIGHTEDFOCUS from
Example 6. Dummy values fc,j are removed

D(x0) D(x1) D(x2) D(x3) D(x4) D(x5) D(x6) D(x7)

c [1, 1] [0, 1] [1, 1] [1, 1] [0, 1] [1, 1] [0, 1] [1, 1]

0 {4, 1} {3,∞} {3, 2} {3, 1} {2,∞} {2, 1} {1,∞} {1, 1}
1 {3, 1} {2,∞} {2, 2} {2, 1} {1,∞} {1, 3} {1, 2}
zU

c = 2 {2, 4} {2, 3} {2, 1} {1, 5} {1, 4}
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Given FOCUS(X, yc, len, k), let zc be a variable and B = [b0, b1, . . . , bn−1] be a set of
variables such that ∀bl ∈ B,D(bl) = {0, 1}. We can decompose WEIGHTEDFOCUS as
follows:

WEIGHTEDFOCUS(X, yc, len, k, zc)⇔ FOCUS(X, yc, len, k)∧[∀l, 0 ≤ l < n, [(xl ≤
k) ∧ (bl = 0)] ∨ [(xl > k) ∧ (bl = 1)]] ∧ ∑

l∈{0,1,...,n−1} bl ≤ zc.
Enforcing BC on each constraint of the decomposition is weaker than BC on WEIGHT-

EDFOCUS. Given xl ∈ X, a value may have a unique support for FOCUS which
violates

∑
l∈{0,1,...,n−1} bl ≤ zc, and conversely. Consider n = 5, D(x0) = D(x2) = {1},

D(x3) = {0}, and D(x1) = D(x4) = {0, 1}, D(yc) = {2}, D(zc) = {3}, k = 0 and len = 3.
Value 1 for x4 corresponds to this case.

Another interesting approach for solving WEIGHTEDFOCUS is to reformulate it
as an integer linear program. If the constructed ILP is tractable as was the case for
SPRINGYFOCUS, then we can obtain an alternative filtering algorithm for WEIGHT-
EDFOCUS. However, the approach that we used in Section 3.3 does not work for
WEIGHTEDFOCUS. Recall that in Section 3.3 it was sufficient to consider O(n)

possible sequences with distinct starting points. It is essential that sequences have dis-
tinct starting points as this ensures that the resulting ILP has the consecutive ones
property. By relaxing the disjointness requirement, we used these sequences to find a
solution of SPRINGYFOCUSOVERLAP and transform it into a solution of SPRINGY-
FOCUS. The following example shows that the same approach does not work for
WEIGHTEDFOCUS.

Example 10 Consider variables X = [x0, x1, . . . , x5] with domains [1,{0,1},1,1, {0,1}, 1]
and WEIGHTEDFOCUS (X, [2, 3], 3, 0, [0, 4]). Following approach in Section 3.3, we
consider six sequences So

X = {s0,2, s1,3, s2,4, s3,5, s4,6, s5,6, s6,6}. The cost of any solution
that uses sequences from So

X is 6. However, there exists a solution of WEIGHTEDFOCUS
with cost 4: SX = {s0,1, s2,3, s5,5}, yc = 3 and zc = 4.

5 Weighted springy FOCUS

We consider a further generalization of the FOCUS constraint that combines FOCUS and
WEIGHTEDFOCUS. We prove that we can propagate this constraint in O(nmax(zc))

time, which is same as enforcing BC on WEIGHTEDFOCUS.

5.1 Definition and filtering algorithm

Definition 10 Let yc and zc be two variables and k, len, h be three integers, such that
1 ≤ len ≤ |X| and 0 < h < len − 1. An instantiation of X ∪ {yc} ∪ zc satisfies WEIGHT-
EDSPRINGYFOCUS(X, yc, len, h, k, zc) iff there exists a set SX of disjoint sequences of
indices si,j such that five conditions are all satisfied:

1. |SX| ≤ yc

2. ∀xl ∈ X, xl > k ⇒ ∃si,j ∈ SX such that l ∈ si,j

3. ∀si,j ∈ SX, |{l ∈ si,j , xl ≤ k}| ≤ h
4. ∀si,j ∈ SX, j − i + 1 ≤ len, xi > k and xj > k.
5.

∑
si,j ∈SX

|si,j | ≤ zc.
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We can again partition cost of S into two terms.
∑

si,j ∈S |si,j | = ∑
si,j ∈S cst (si,j ) +

|Pk|. However, cst (si,j ) is the number of undetermined and neutral variables covered si,j ,
cst (si,j ) = |{p|xp ∈ Uk ∪ Nk, xp ∈ si,j }| as we allow to cover up to h neutral variables.

The propagator is again based on a dynamic program that for each prefix of variables
[x0, x1, . . . , xj ] and given cost c computes a cover Sc,j of minimum cardinality that covers
all penalized variables in the prefix [x0, x1, . . . , xj ] and has cost exactly c. We face the
same problem of how to compare two sets S1

c,j and S2
c,j of minimum cardinality. The issue

here is how to compare last (S1
c,j ) and last (S2

c,j ) if they cover a different number of neutral
variables. Luckily, we can avoid this problem due to the following monotonicity property. If
last (S1

c,j ) and last (S2
c,j ) are not equal to infinity then they both end at the same position j .

Hence, if last (S1
c,j ) ≤ last (S2

c,j ) then the number of neutral variables covered by last (S1
c,j )

is no larger than the number of neutral variables covered by last (S2
c,j ). Therefore, we can

define order on sets Sc,j as we did in Section 4 for WEIGHTEDFOCUS.
Our bounds disentailment detection algorithm for WEIGHTEDSPRINGYFOCUS

mimics Algorithm 3. We show a pseudocode for it in Algorithm 4.

We highlight two non-trivial differences between Algorithm 4 and Algorithm 3. The
first difference is that each cell in the dynamic programming table fc,j , c ∈ [0, zU

c ],
j ∈ {0, 1, . . . , n − 1}, where zU

c = max(zc) − |Pk|, is a triple of values qc,j , lc,j and
hc,j , fc,j = {qc,j , lc,j , hc,j }. The new parameter hc,j stores the number of neutral vari-
ables covered by last (Sc,j ). The second difference is in the way we deal with neutral
variables. If xj ∈ Nk then we have two options now. We can obtain Sc,j from Sc−1,j−1 by
increasing cst (Sc−1,j−1) by one and increasing the number of covered neutral variables by
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last (Sc,j−1) (Fig. 4c, the gray arc). Alternatively, we can obtain Sc,j from Sc,j−1 by inter-
rupting last (Sc,j−1) (Fig. 4c, the black arc). BC can be enforced using two modifications
of the corresponding algorithm for WEIGHTEDFOCUS.

Lemma 12 Consider WEIGHTEDSPRINGYFOCUS(X, yc, len, h, k, zc). BC can be
enforced in O(nmax(zc)) time.

Proof The main idea is identical to the proof of the WEIGHTEDFOCUS constraint.
We only highlight the differences between the WEIGHTEDFOCUS constraint and the
WEIGHTEDSPRINGYFOCUS constraint.

Consider a variable-value pair xi = v, v > k. The only difference is in the fourth
option. We denote h(si,j ) the number of neutral variables covered by si,j . Similarly, h(S) =∑

si,j∈S
h(si,j ).

– The fourth and the cheapest option is to glue last (Sc1,i−1), xv and last (Sc2,n−i−2) to
a single sequence if |last (Sc1,i−1)| + |last (Sc2,n−i−2)| < len and h(last (Sc1,i−1)) +
h(last (Sc2,n−i−2)) ≤ h. Hence, S′

c1,i−1 = Sc1,i−1 \ last (Sc1,i−1), S′
c2,n−i−2 =

Sc2,n−i−2 \ last (Sc2,n−i−2) and s′ is a concatenation of last (Sc1,i−1), x = v and
last (Sc2,n−i−2)]. Then the union S = S′

c1,i−1 ∪ S′
c2,n−i−2 ∪ {s′} forms a cover:

cst (S) = c1 + c2 + 1, |S| = |Sc1,i−1| + |Sc2,n−i−2| − 1 and h(S) = h(last (Sc1,i−1)) +
h(last (Sc2,n−i−2)).

The rest of the proof is analogous to WEIGHTEDFOCUS.
Consider a variable-value pair xi = v, v ≤ k. The main difference is that we have

the second option to build a support. Namely, we glue Sc1,i−1, xi and Sc2,n−i−2. Hence,
if c1 + c2 + 1 ≤ zU

c , |last (Sc1,i−1)| + |last (Sc2,n−i−2)| < len and h(last (Sc1,i−1)) +
h(last (Sc2,n−i−2)) < h then we can build a support for xi = v. The rest of the proof is
analogous to WEIGHTEDFOCUS.

5.2 Decomposition

WEIGHTEDSPRINGYFOCUS can be encoded using the cost-REGULAR constraint
[5]. Indeed, one can use two states ᵀ0 and ᵀ1 (in addition to the initial state) as follows.
The state ᵀ0 captures all values v ≤ k not included in any subsequence in SX . The set
of states ᵀ1 captures the values belonging to a subsequence in SX . The transition between
ᵀ0 and ᵀ1 is quite straightforward following the semantic of WEIGHTEDSPRINGYFO-
CUS, however, the automaton is non-deterministic as on seeing v ≤ k in ᵀ1, it either
covers the variable or interrupts the last sequence. The automaton needs 3 counters to
compute len, yc and h. Hence, the time complexity of this encoding is O(n4). Unfortu-
nately the non-deterministic cost-REGULAR is not implemented in any constraint solver
to our knowledge. In fact REGULAR [7] and cost-REGULAR [5] are defined only with
deterministic automatons. A possible way to deal with our non-deterministic situation is to
transform it into a deterministic automaton. However this transformation is known to be
exponential in the worst case. The worst case time complexity O(n4) is likely to get worse,
however, domain consistency is guaranteed. In contrast, our algorithm takes just O(n2)

time.
WEIGHTEDSPRINGYFOCUS can also be decomposed using the GCC constraint

[14]. We define the following variables for all i ∈ [0,max(yc) − 1] and j ∈ [0, n − 1]:
Si the start of the ith sub-sequence. D(Si ) = {0, .., n + max(yc)}; Ei the end of the ith
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sub-sequence. D(Ei ) = {0, .., n + max(yc)}; Tj the index of the subsequence in SX con-
taining xj . D(Tj ) = {0, ..,max(yc)}; Zj the index of the subsequence in SX containing xj

s.t. the value of xj is less than or equal to k. D(Zj ) = {0, ..,max(yc)}; lastc the cardinality
of SX . D(lastc) = {0, ..,max(yc)}; Card, a vector of max(yc) variables having {0, .., h} as
domains.

WeightedSpringyFocus(X, yc, len, h, k, zc) ⇔
(xj ≤ k) ∨ Zj = 0; (xj ≤ k) ∨ Tj > 0;
(xj > k) ∨ (Tj = Zj ); (Tj ≤ lastc);
(Tj 
= i) ∨ (j ≥ Si−1); (Tj 
= i) ∨ (j ≤ Ei−1);
(i > lastc) ∨ (Tj = i)∨ (j < Si−1) ∨ (j > Ei−1);
∀q ∈ [1,max(yc) − 1] : q ≥ lastc ∨ Sq > Eq−1;
∀q ∈ [0,max(yc) − 1] : q ≥ lastc ∨ Eq ≥ Sq;
∀q ∈ [0,max(yc) − 1] : q ≥ lastc ∨ len > (Eq − Sq);

lastc ≤ yc; Gcc([T0, .., Tn−1], {0}, [n − zc]);
Gcc([Z0, .., Zn−1], {1, ..,max(yc)}, Card);

The main advantage of this decomposition is that it uses constraints that are available
in most existing solvers. However, it hinders propagation, that is, Bound Consistency is
no longer guaranteed. Consider the same example showing that WEIGHTEDFOCUS is
stronger than the first decomposition using FOCUS. Let n = 5, h = 0, k = 0, len = 3,
D(x0) = D(x2) = {1}, D(x3) = {0}, D(x1) = D(x4) = {0, 1}, D(yc) = {2}, and D(zc) =
{3}. Enforcing Bound Consistency using the above decomposition will keep the domain of
x4 equal to {0, 1} whereas the value 1 has no support.

6 Experiments

6.1 Protocol

We use the Choco-2.1.5 solver on Intel Xeon E5-2640 processors (2.50GHz) under Linux.
The source code as well as the reproduction steps are available at http://siala.github.io/focus/
focus-details.pdf. We compare the propagators of our global constraints (denoted by F) of
WEIGHTEDFOCUS and WEIGHTEDSPRINGYFOCUS against two decompositions
with generic constraints (denoted by D1 and D2). For each benchmark, the comparison
is performed using the same search strategies for the different constraint models. The
first decomposition (D1) is restricted to WEIGHTEDFOCUS and uses FOCUS as we
explained in Section 4. Te second decomposition (D2) is shown in Section 5.2 and uses
constraints available in most CP solvers (such as GCC ). We do not present experiments
for the propagator of SPRINGYFOCUS because this propagator is linear in the number
of variables and does not involve complex data structures, which leads to a behaviour simi-
lar to the case of FOCUS (see [12]). Although it makes an interesting connection between
ILP and our framework, the ILP formulation of SPRINGYFOCUS cannot outperform this
propagator.

We use the following presentation protocol for all tables. First, we give the number
of solved instances (#sol). Then, we report the CPU time (Time), the number of nodes
(Nodes), and the speed of exploration in terms of nodes explored per second (Nodes/s). In
particular, we report the average (avg.) and the standard deviation (dev.) for these statistics

http://siala.github.io/focus/focus-details.pdf
http://siala.github.io/focus/focus-details.pdf
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across all successful runs. The best results are shown with bold face fonts w.r.t. the number
of solutions (#sol).

6.2 Sports League Scheduling (SLS)

We extend a single round-robin problem with n = 2p teams. Each week each team plays
a game either at home or away. Each team plays exactly once all the other teams during
a half-season (in practice, the second half of the season is symmetric). We minimize the
number of breaks (a break for one team is two consecutive home or two consecutive away
games), while fixed weights in {0, 1} are assigned to all games: games with weight 1 are
important for TV channels. The goal is to group consecutive weeks where at least one
game is important (sum of weights > 0), to increase the price of TV broadcast packages.
Packages are limited to 5 weeks and should be as short as possible. These requirements are
expressed either using WEIGHTEDFOCUS or using its decomposition. The concentration
of important matches into packages is obtained by minimizing yc, while for each such value
of yc we obtain the global minimum length for packages by minimizing the sum of lengths.

Model In our model, inverse-channelling and ALLDIFFERENT constraints with the
strongest propagation level express that each team plays once against each other team. With
respect to the sport scheduling part (independently from the weights and WEIGHTEDFO-
CUS constraint or its decomposition), our model is inspired from Régin’s paper on sport
league scheduling [15], although some differences exist, in order to best fit with the avail-
able propagators of Choco-2.1.5. A pseudo-code of the model of the whole problem is
provided in Fig. 5. We use the procedure GETCOLUMN(Integer[][] m, k) for extracting the
kth column of the matrix given as argument.

INPUT:
Int n ; // number of teams, indexed from
Int[][] wl ; // size: n × n list of weights per possible couple of team
Int max( yc ), max( zc ) // WEIGHTEDFOCUS

MODEL:
IntVar[][] opponents; // size: n × (n − 1) , domain for each team: all other team numbers
IntVar[][] place; // size: n × (n − 1) , domain: {0,1} (away or home)
IntVar[][] breaks; // size: n × (n − 2) , domain: {0, 1} (no break, or break)
IntVar[] sum breaks by team; // size: n
IntVar obj number of breaks;
IntVar [][] match weights; // size: n × (n − 1) , domain: {0,1}
IntVar [] sum weights by day; // size: n-1
IntVar yc , zc ; // WEIGHTEDFOCUS

int len , k ; // WEIGHTEDFOCUS

0..n − 1, ALLDIFFERENT(opponents[ ]);
0..n − 2, ALLDIFFERENT(getColumn(opponents, k ));
0..n − 1, 0 − 2, opponents[ ][k ] = j opponents[j ][k ] =
0..n − 1, 0 − 2, places[ ][k ] = 0 opponents[ ][k ] = j place[j ][k ] = 1;
0..n − 1, 0 − 2, places[ ][k ] = 1 opponents[ ][k ] = j place[j ][k ] = 0;
0..n − 1, 0 − 3, breaks[ ][j ] = (place[ ][j ]=place[ ][j + 1 ]);
0..n − 1, sum breaks by team[ ] = sum of breaks of each team;

obj number of breaks = 0 ..n−1 sum breaks by team[ ];
0..n − 2 sum weights by day[ ] = sum of weights of each day;
0..n − 1, k 0..n − 2, opponents[i][k ] = j match weights[ ][k ] = wl [ ][ j];

WEIGHTEDFOCUS(sum weights by day, yc , len , k , zc );

// reification

Fig. 5 Model of the SLS benchmark
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Search strategy We use the following search strategy: assign first the sum of breaks by
team, then the breaks and then the places, using for each group the DomOverWDeg variable
selection strategy with the lowest values assigned first [2]. We fix the matches of the first
team and then minimize zc while the number of breaks is at its theoretical minimum (n − 2)
and we arbitrary fix the maximum value of yc.

In our context, using DomOverWDeg does not affect the comparison between the decom-
position and the global constraint approach. Using a static search strategy leads to poor
results concerning the sport league scheduling part of the problem, but this part is common
to the decomposition and the global constraint models. Regarding TV broadcast packages,
the results with WEIGHTEDFOCUS are almost the same with DomOverWDeg and if
we use a static search strategy for the variables expressing weights and sum of weights.
Using the decomposition approach, the results are better with DomOverWDeg. We present
the results obtained for each model using DomOverWDeg in Table 3 and using a static
branching (lexicographic exploration with minimum value) in Table 4 .

We consider the results with 16, 18, and 20 teams, on sets of 50 instances with 10 random
important games and a limit of 400K backtracks. max(yc) = 3 and we search for one
solution with h ≤ 7 (instances n-1), h ≤ 6 (n-2) and h ≤ 5 (n-3). Note that the models with
18 and 20 teams are not shown in Table 4 because no solution was found with the static
branching.

Table 3 shows clearly that the model using the global propagator dominates the decom-
position on this problem. The difference of resolved instances between the two models
increases with the instance size. For example with instances 20 3 the filtering algorithm
solves 39 instances out of 50 whereas the decomposition solves only 29 of the instances.
The new filtering does not require additional amount of time, and in fact it is faster than the
average CPU time of the decomposition in general.1

There are many cases where the shape of the search tree differs between the two meth-
ods in terms of nodes. For instance, with 18 1, enforcing domain consistency deplores 1876
nodes whereas the decomposition explores at least three times this number (i.e. 6040). The
extra filtering of the global constraint does help a lot by pruning more unsatisfiable subtrees
which guides the heuristic towards solutions. It should be noted, however, that the decompo-
sition explores faster the search tree. This behaviour is expected as decomposition leads to
simpler filtering that is likely to be faster in general. It should be noted also that the standard
deviation in almost all the cases was smaller with the complete filtering.

Regarding the results with the static branching, one can confirm that the models behave
poorly as expected (Table 4). However, the performances trend is the same. More impor-
tantly, the results of the complete filtering are more robust than the decomposition. Take
for instance the results of 16 2. The standard deviation of the nodes is 37 using the global
constraint and 1749 using the decomposition.

6.3 Cumulative scheduling with rentals

Given a horizon of n days and a set of time intervals [si , ei], i ∈ {1, 2, . . . , p}, a company
needs to rent a machine between li and ui times within each time interval [si , ei]. We assume
that the cost of the rental period is proportional to its length. On top of this, each time the
machine is rented we pay a fixed cost.

1Recall that the average CPU includes only the runtime of the successful runs.
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INPUT:
Int n ; // size of the sequence
Int m; // number of among constraints
Int[] s, e, l, u; // four vectors of m integers used for the among constraints.
Int len, h ; // used for WEIGHTEDSPRINGYFOCUS

MODEL:
IntVar[] X; // size: n , domain {0, 1}
IntVar yc, zc ; // used for WEIGHTEDSPRINGYFOCUS

= e [d ]
= s [d ] X [i] u [d]; // the set of AMONG constraints

WEIGHTEDSPRINGYFOCUS(X, yc , len , h , 0, zc );

Fig. 6 Model of the cumulative scheduling with rentals problem

Model The problem is stated in a very simple way by bucketing time with {0,1} vari-
ables indicating whether a machine is rented or not for covering this time point. We define
a conjunction of one WEIGHTEDSPRINGYFOCUS(X, yc, len, h, 0, zc) with a set of
AMONG constraints. The decision version of the problem is presented in Fig. 6. The goal
is to build a schedule for rentals that satisfies all demand constraints and minimizes simul-
taneously the number of rental periods and their total length. Therefore, we build a Pareto
frontier over two cost variables, as Fig. 7 shows for one of the instances of this problem.
More specifically, we start by minimizing yc, then immediately try to minimize zc while
fixing yc to its minimum. Afterwards, we repeatedly increment yc by 1 then try to find the
correspondent minimal value of zc. The process stops when either a maximum number of
iterations is reached or no improvement on zc is obtained.

Search strategy We use again two different search strategies: DomOverWDeg and static
lexicographical exploration; both with the lowest values assigned first.

Figure 7 confirms the gain of flexibility illustrated by Fig. 1 in Section 3: allowing h = 1
variable with a low cost value into each sequence leads to new solutions, with significantly
lower values for the target variable yc.

We generated instances having a fixed length of sub-sequences of size 20 (i.e., len = 20),
50 % as a probability of posting an Among constraint for each (i, j) s.t. j ≥ i + 5 in the

Fig. 7 Pareto frontier for scheduling with rentals
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sequence. Each set of instances corresponds to a unique sequence size ({40, 43, 45, 47, 50})
with 20 different seeds.

We summarize these tests in Tables 5 and 6. Results with decomposition are very poor.
We therefore do not show them in these tables.

The performances in this problem with DomOverWDeg are very similar to the sports
league scheduling problem. The global filtering completely outperforms the decomposition
with GCC as we said. Regarding the first decomposition (D1), it behaves relatively well on
the first four sets 40, 43, 45, 47 and slightly worse than the global constraint in the set 50
(i.e. only 14 solved instances compared to 17 instances with F).

Using the static branching on this particular problem was very beneficial. There is no
significant performance differences betweens the two models F and D1. Indeed, they find
the same number of solution in all instances with h = 0. The average runtime is slightly but
constantly better with the global filtering. The number of nodes is also smaller. However,
overall, there was no significant difference between the two models.

It should be noted that in both branching strategies, the standard deviation is better with
the global constraint than the decomposition.

6.4 Sorting chords

We need to sort n distinct chords. Each chord is a set of at most p notes played simultane-
ously. The goal is to find an ordering that minimizes the number of notes changing between
two consecutive chords (Fig. 8).

Model The full description and a CP model is in [12]. Figure 6 provides a pseudo-code for
this problem. The main difference here is that instead of minimizing either zc or yc, we build
a Pareto frontier over these two cost variables (the same way performed with the previous
benchmark), using WEIGHTEDSPRINGYFOCUS and its decompositions. We generated 4
sets of instances distinguished by the numbers of chords ({14, 16, 18, 20}). We fixed the
length of the subsequences and the maximum notes for all the sets then changed the seed
for each instance.

Search strategy As in the Sports League Scheduling benchmark, we present the results
obtained for each model, i.e., the model that uses WEIGHTEDSPRINGYFOCUS and
the models with its decompositions. The search strategy is DomOverWDeg with the lowest
values assigned first (Table 7). The static branching performs very poorly on these instances
and is therefore not shown here.

INPUT:
Int n; // number chords, indexed from 0 to n − 1
Int[][] costMatrix; // size: matrix of costs between pairs of chords
Int len , h , k; // WEIGHTEDSPRINGYFOCUS

MODEL:
IntVar[] Chords; // size: , domain {0, 1, . . . , − 1}
IntVar[] Costs; // size: − 1, domain: all possible costs
Int nChange; // threshold from which a cost is considered as high
IntVar yc , zc; // WEIGHTEDSPRINGYFOCUS

0..n − 2, TABLE(Chords[ ], Chords[ + 1], Costs[ ]); // cost of each pair
ALLDIFFERENT(Chords);
WEIGHTEDSPRINGYFOCUS(Costs, yc , len , h , k , zc );

Fig. 8 Model of the sorting chords benchmark
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The main observation from Table 7 is that when h = 0, the first decomposition D1

performs as good as the complete filtering in general. With 16 and 18 chords, D1 finds an
additional solution compared to the complete filtering F. The average nodes, and the average
nodes explored per second are very similar in both models. The standard deviation is also
very similar with all statics in general.

The decomposition using GCC performs much better than the previous problem but it is
outperformed by WEIGHTEDSPRINGYFOCUS. For example, on instances with h = 2
using 18 chords, it finds 9 solutions whereas the complete filtering finds 25.

7 Conclusion

We have presented flexible tools for capturing the concept of concentrating costs. Our
contribution highlights the expressive power of constraint programming, in comparison
with other paradigms where such a concept would be very difficult to represent. We have
shown a connection between our constraint and ILP. Our experiments have demonstrated
the effectiveness of the proposed new filtering algorithms.
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18. Schaus, P., Van Hentenryck, P., & Régin, J.-C. (2009). Scalable load balancing in nurse to patient assign-
ment problems. In Proc. CPAIOR, volume 5547 of Lecture Notes in Computer Science (pp. 248–262).
Springer.

19. Wagner, A., & Harvey, M. (1962). Optimal capacity scheduling I. Operations Research, 10(4), 518–532.


	Three generalizations of the FOCUS constraint
	Abstract
	Introduction
	Background
	Springy FOCUS
	Definition
	Filtering algorithm
	Integer Linear Programming formulation

	Weighted FOCUS
	Definition
	Filtering algorithm
	Dynamic Programming (DP) principle
	Ordering of sequences in Sc,j
	Ordering of sets Sc,j, c [0,max(zc)], j {0,1,…,n-1}
	Bounds disentailment
	Bounds consistency
	Complexity
	Decomposition with O(n) variables and constraints



	Weighted springy FOCUS
	Definition and filtering algorithm
	Decomposition

	Experiments
	Protocol
	Sports League Scheduling (SLS)
	Model
	Search strategy


	Cumulative scheduling with rentals
	Model
	Search strategy


	Sorting chords
	Model
	Search strategy



	Conclusion
	References


