
Interleaved and Discrepancy Based SearchPedro Meseguer1 and Toby Walsh2Abstract. We present a detailed experimental comparisonof interleaved depth-�rst search and depth-bounded discrep-ancy search, two tree search procedures recently developedwith the same goal: to reduce the cost of heuristic mistakesat the top of the tree. Our comparison uses an abstract heur-istic model, and three di�erent concrete problem classes: bin-ary constraint satisfaction, quasigroup completion and num-ber partitioning problems. Results indicate that both searchstrategies often reduce search. In addition, they show thattheir e�ciency depends on a trade-o� between the number ofdiscrepancies (branch points against the heuristic) consideredat the top of the tree, and the overhead of expanding branchesfrom these discrepancies. If the number of discrepancies islarge, the overhead can outweigh the bene�ts.1 INTRODUCTIONBy de�nition, heuristics sometimes make mistakes. Whensearching a tree with depth-�rst search (Dfs), mistakes madeat the top of the tree can be very costly to undo. For in-stance, Crawford and Baker identi�ed early mistakes as thecause of the poor performance for a Davis-Putnam procedureon Sadeh's scheduling benchmarks [2]. On some problems, asolution was found almost immediately. On other problems,an initial bad guess by the heuristic would lead to searching asubtree with the order of 270 nodes. To tackle situations likethis, Meseguer has proposed interleaved depth-�rst search [9].At the same time, and for exactly the same reasons, Walshproposed depth-bounded discrepancy search [14]. Both aresystematic search strategies that reduce the cost of early mis-takes. How do these search strategies compare, and when canwe prefer one over the other?2 BACKGROUNDA discrepancy is any branch point in a search tree where wego against the heuristic. For convenience, we assume that leftbranches follow the heuristic. Any other branch breaks theheuristic and is a discrepancy. For convenience, we call this aright branch. Limited discrepancy search (Lds) explores theleaf nodes in increasing order of the number of discrepanciestaken to reach them [6]. On the kth iteration, Lds visits all leafnodes with up to k discrepancies. Within each iteration, Lds1 IIIA, CSIC, Bellaterra, Spain. pedro@iiia.csic.es. Supportedby the Spanish CICYT project TIC96-0721-C02-02.2 Department of Computer Science, University of Strathclyde,26 Richmond Street, Glasgow, Scotland, tw@cs.strath.ac.uk.Also a member of the cross-university APES research group,http://www.cs.strath.ac.uk/ apes/. Supported by EPSRCgrant GR/K/65706.

explores branches with discrepancies high in the tree beforethose branches with discrepancies lower down.Korf has proposed a small improvement to Lds, called Ildsthat uses (an upper limit on) the maximum depth of the tree[7]. On the kth iteration, Ilds visits only those leaf nodesat the depth limit with exactly k discrepancies. Lds is lesse�cient since, on the kth iteration, it re-visits all those leafnodes with between 0 and k � 1 discrepancies. Within eachiteration, Ilds explores branches with discrepancies low in thetree before those paths with discrepancies higher up. Apartfrom this small bias within each iteration, Lds and Ilds treatall discrepancies alike. However, we often expect heuristicsto be less informed and to make more mistakes at the topof the search tree. Given a limited amount of search, it maytherefore pay to explore discrepancies at the top of the searchtree before those at the bottom. This is the motivation behinddepth-bounded discrepancy search and interleaved depth-�rstsearch.Depth-bounded discrepancy search (Dds) biases search todiscrepancies high in the tree by means of an iteratively in-creasing depth bound [14]. Discrepancies below this boundare prohibited. On the 0th iteration, Dds explores the left-most branch. On the i + 1th iteration, Dds explores thosebranches on which discrepancies occur at a depth of i or less.As in Ilds, we are careful not to re-visit leaf nodes visitedon earlier iterations. This is surprisingly easy to enforce. Atdepth i on the i + 1th iteration, we take only right branchessince left branches would take us to leaf nodes visited on anearlier iteration. At lesser depths, we can take both left andright branches. And at greater depths, we always follow theheuristic left. Search is terminated when the increasing boundis greater than the depth of the deepest leaf node. Note thatLds, Ilds and Dds all re-visit interior nodes. For example,when exhaustively traversing a binary tree of depth n, Ildsand Dds both visit approximately 2n+2 nodes, compared toDfs which visits just 2n+1 nodes [14]. Of course, our hope isthat a solution is found before the whole tree is visited.Interleaved depth-�rst search (Idfs) also biases search todiscrepancies high in the tree. Idfs searches in parallel severalsubtrees (called active) at certain tree levels (called parallel).Idfs traverses depth-�rst the current active subtree until it�nds a leaf. If it is a goal, search terminates. Otherwise, thestate of the current subtree is recorded so that it can be re-sumed later, and Idfs switches to the earliest parallel level,where it selects another active subtree and repeats the pro-cess. At each level active subtrees form a circular queue. Thereare two versions of Idfs. Pure Idfs interleaves search amongall successor subtrees of any internal node at any level of thetree, i.e., all levels are parallel and, for each level, all sub-c
 1998 Pedro Meseguer and Toby WalshSubmitted to ECAI 98January 22, 1998

trees are active. Limited Idfs interleaves search at the parallellevels among a limited number of active subtrees at each par-allel level. Typically, parallel levels are at the top of the tree,to cover early discrepancies as these can be very costly forDfs to recover. While pure Idfs requires exponential space,limited Idfs uses linear space providing the number of activesubtrees is bounded. Idfs simulates parallel Dfs on the activesubtrees using a single processor.
S

A
B

C

D
E

F

a
b

c
d

e
f

g
h

i

G
H

I

j
k

l
m

n
ñ

o
p

q

J
K

L

r
s

t
u

v
w

x
y

z

D
F

S	

 1

 2

 3

 4

 5

 6

7

 8

 9

 1

0
 1

1
 1

2

13

14

15

16

17

18

 1
9

 2
0

 2
1

 2

2
 2

3
 2

4

25

26

27

L
D

S	

 1

 6

 7

 4

 1

6
 1

7

 5

 1
8

 1
9

 2

 1

2
 1

3

 8

 2

0
 2

1

 9

 2
2

 2
3

3

14

15

 1
0

 2
4

 2
5

11

26

27

IL
D

S	

 1

 2

 3

 4

 8

 9

5

10

11

6

12

13

 1
4

 2
0

 2
1

 1

5
 2

2
 2

3

7

16

17

 1

8
 2

4
 2

5

19

26

27

D
D

S	

 1

 1
0

 1
1

4

12

13

 5

 1
4

 1
5

 2

 1

6
 1

7

 6

 1

8
 1

9

 7

 2
0

 2
1

3

22

23

 8

 2
4

 2
5

 9

 2

6
 2

7

P
ur

e
ID

F
S

 1

 1
0

 1
9

4

13

22

 7

 1
6

 2
5

2

11

20

 5

 1

4
 2

3

 8

 1
7

 2
6

 3

 1

2
 2

1

 6

 1

5
 2

4

 9

 1
8

 2
7

L
im

 I
D

F
S

1

 4

 7

 1
0

 1
3

 1
6

19

22

25

 2

 5

 8

 1

1
 1

4
 1

7

 2
0

23

26

 3

 6

 9

 1
2

 1
5

 1
8

21

24

27

Figure 1. Order in which leaf nodes are visited for a completebinary tree of depth 3.3 DYNAMICITYDfs starts at the leftmost leaf node in the search tree andmoves in an ordered manner to the rightmost leaf node.Within a single iteration of Dds and Ilds, leaf nodes are alsoexplored from left to right. By comparison, within a singleiteration of Lds, leaf nodes are explored from right to left.Each iteration of Dds or Ilds can be seen as a simple restric-tion on the backtracking performed by Dfs. In Ilds, we allowbacktracking at any interior nodes whose discrepancy count isstrictly less than the bound, and prohibit it once the boundis met. In Dds, we allow backtracking at any interior nodeabove the depth bound, and prohibit it at deeper nodes. Thepure and limited versions of Idfs are much more dynamic.They jump to leaf nodes both to the left and to the right.If we ignore the order in which branches are explored withineach iteration of Dds, then pure Idfs and Dds explore thetree in the same order. The only di�erence is that Dds tradesspace (pure Idfs uses exponential space) for time (unlike Idfs,Dds revisits interior nodes). It is easy to modify pure Idfs torequire linear space, at the cost of revisiting nodes. However,this is very expensive in time. Successive branches searchedby pure Idfs share no nodes in common other than the root.We therefore have to backtrack from each leaf node back tothe root, and then follow a path down the other side of thetree. For a binary tree of depth n, the cost to search the treeexhaustively goes from O(2n) to O(n:2n).4 HEURISTIC MODEL OF SEARCHIn [14], Dds, Ilds and Dfs were compared using Harvey andGinsberg's abstract model of heuristic search [4, 6]. In thismodel, nodes in a binary search tree are labelled good if theyare above a goal leaf node and bad otherwise. The model hasthree parameters: m, the mistake probability (the probabilitythat, at a good node, a randomly selected child is bad); p, theheuristic probability (the probability that, at a good node, theheuristic chooses a good node �rst); and n, the depth of thetree (which is assumed to be uniform). We therefore began

our experimental studies by comparing the performance ofIdfs on this model.In Figure 2, as in [6, 14], we plot the probability of �ndinga goal for m = 0:2, p = 0:95 and n = 30 computed for anensemble of 100,000 trees. Such trees have approximately abillion leaf nodes, of which just over a million are goals. Withabout 1 in 1000 leaf nodes being goals, the problems are relat-ively easy. On these problems, the performance of pure Idfsis very similar to that of Dds. Most of the success of lim-ited Idfs comes from exploring the �rst branches in the act-ive subtrees. Once we have expanded the �rst branch withineach active subtree, backtracking between active subtrees onlyslowly increases the probability of success. If we have the spaceavailable, it may be more productive to increase the numberof active subtrees. However, as we see shall see in our laterexperiments, we must be careful that the resulting increase inoverheads does not outweigh the bene�ts.
0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

pr
ob

ab
ili

ty
 o

f s
uc

ce
ss

number of branches explored

DDS
pure IDFS

lim ILDFS 16as
lim ILDFS 8as
lim ILDFS 4as
lim ILDFS 2as

ILDS
DFSFigure 2. Probability of success on trees of height 30, withm = 0:2 and p = 0:95. With limited Idfs, \as" is the number ofactive subtrees.We next considered a slightly more di�cult search problem.In Figure 3, as in [6, 14], we plot the probability of �ndinga goal for m = 0:1, p = 0:95 and n = 100 computed froman ensemble of 10,000 trees. Such trees have approximately1030 leaf nodes, of which about 1 in 38,000 are goals. Ddsand pure Idfs again o�ered the largest probability of success.As before, increasing the number of active subtrees availableto limited Idfs improves performance considerably. On thisproblem, limited Idfs performed as well as Ilds when thenumber of parallel levels was increased from 4 to 8.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200

pr
ob

ab
ili

ty
 o

f s
uc

ce
ss

number of branches explored

DDS
Pure IDFS

ILDS
lim ILDFS

DFSFigure 3. Probability of success on trees of height 100, withm = 0:1 and p = 0:95. Limited Idfs uses 16 active subtrees.Draft 2 Pedro Meseguer and Toby Walsh

5 BINARY CSPSAs in [9], our �rst experimental problem domain is therandom binary constraint problem (CSP) class de�ned byhn;m; p1; p2i where n is the number of variables, m is thecommon cardinality of their domains, p1 is the connectivity(the ratio between the number of constraints and the max-imum number of possible constraints), and p2 is the constrainttightness (the proportion of forbidden value pairs between twoconstrained variables). Each problem has exactly p1n(n�1)=2constraints, each of which rules out exactly p2m2 value pairs.The constrained variables and their nogoods are randomlyselected from an uniform distribution [10].We used a forward checking algorithm (Fc), substitutingthe original Dfs strategy with Ilds, Dds and limited Idfsusing 2, 4 and 8 active subtrees at the �rst tree level. As in[9], we use the lowest support heuristic for variable selectionand the highest support heuristic for value selection [8]. Wesolved instances of three qualitatively di�erent classes fromsparse 100 variable problems to highly connected 30 variableproblems. For each, we have selected 5 di�erent tightnessesto the left of the complexity peak, from very easy to quitedi�cult problems, and solved one hundred soluble instancesof each problem type. Results are presented in Tables 1 to 3 interms of the mean branches explored and the mean numberof visited nodes. This last parameter is correlated with themean CPU time.Of the three classes tested, Ilds and Dds dominate Dfs onh100; 6; 305=4950; p2i, very sparse problems with a large num-ber of variables. Heuristic mistakes are more likely to occurin large and very sparsely connected problems, for which thecost of recovering mistakes by Dfs is very high even for easyproblems. With the other two classes, Dfs is not mistaken sofrequently and at such high cost. For easy to medium di�-culty problems, the three algorithms explore a similar numberof branches, which implies that Dfs visits a lower number ofnodes. With the hard problems, Ilds and Dds make moremistakes than Dfs.Idfs is the best algorithm in this experiment, explor-ing fewer branches and visiting fewer nodes than Dfs forall the problem types, Unlike discrepancy-based algorithms,which do not discriminate between non leftmost nodes at atree level, limited Idfs keeps the heuristic ranking of nodesand selects active subtrees according to this ranking. Lim-ited Idfs thereby concentrates search on some tree parts,while discrepancy-based algorithms perform a more scatteredsampling of the search tree. If the quality of the heuristic isgood, this focus appears to pay o� compared to the moreexploratory strategies like Ilds and Dds.6 QUASIGROUPSOur next problem domain is quasigroup completion. A quasig-roup is a Latin square, a n by n multiplication table in whichevery element appears just once in each row and column.Quasigroup completion is the NP-complete problem of �llingin the blank entries in a partially �lled Latin square. Thereare several practical applications for quasigroup completionincluding the design of statistical experiments to reduce sys-tematic dependencies, and time-tabling (e.g. scheduling asports tournament). Gomes and Selman have recently pro-

mean branches Dfs Ilds Dds Limited Idfs36p2 2 as. 4 as.9 1 1 1 1 110 2130 1 1 1 111 5526 4 2 2 212 11764 56 44 19 1613 56880 1525 8494 1049 470mean nodes Dfs Ilds Dds Limited Idfs36p2 2 as. 4 as.9 100 102 102 102 10210 4669 112 116 109 11511 15687 156 163 126 14712 37731 874 1112 202 24313 138454 13627 81496 4858 2358Table 1. Fc algorithm solving random instances of theh100;6; 305=4950;p2i class.mean branches Dfs Ilds Dds Limited Idfs144p2 4 as. 6 as.44 7 9 7 5 546 35 36 26 16 848 164 148 199 68 5550 1030 1558 2063 662 52852 14445 22620 67741 6977 7161mean nodes Dfs Ilds Dds Limited Idfs144p2 4 as. 6 as.44 74 162 199 114 13246 199 507 601 169 15648 774 1686 3447 402 37050 4566 13694 25835 3006 245252 62031 146339 549928 30249 31070Table 2. Fc algorithm solving random instances of theh50;12;250=1225;p2i class.mean branches Dfs Ilds Dds Limited Idfs225p2 4 as. 8 as.69 16 12 11 10 1072 58 62 47 28 3575 379 378 381 148 12778 1584 2061 2334 1049 117581 8778 27385 67705 8447 9326mean nodes Dfs Ilds Dds Limited Idfs225p2 4 as. 8 as.69 89 139 188 95 12272 259 584 635 172 23675 1502 2909 3920 644 59378 6120 12469 18179 4078 459681 32678 120507 332768 31562 34867Table 3. Fc algorithm solving random instances of theh30;15;174=435;p2i class.posed quasigroup completion as a benchmark domain for con-straint satisfaction algorithms since it has many of the ad-vantages of both random and structured problems [5]. Thequasigroup provides a regular structure but this is perturbedby randomly �lling some of the entries.A quasigroup completion problem can be represented asa binary CSP with n2 variables, each with a domain of sizen. As the search tree is O(nn2) in the worst case, it quicklybecomes prohibitively to explore the tree completely. Indeed,Gomes and Selman have shown that search costs with Dfsare best characterized by a heavy-tailed distribution that hasno moments (that is, one with an in�nite mean and variance)[5]. Are interleaved and discrepancy based search strategiesable to eliminate such heavy-tailed behaviour?To help answer this question, we solved some quasigroupcompletion problems with the Fc algorithm adapted to searchwith Ilds, Dds and Idfs. We used the Brelaz heuristic tochoose a variable to assign [1], and Geelen's promise heuristicto pick a value for it [3]. At each problem size, we generated1,000 problems and cut o� search if more than 10,000 brancheshad been explored. In Tables 4 and 5, we report results forDraft 3 Pedro Meseguer and Toby Walsh

quasigroup completion problems with 30 percent of the initialentries assigned. We obtained similar results with 10 and 20percent of entries assigned.n Dfs Ilds Dds Limited Idfs95% 99% 95% 99% 95% 99% 95% 99%8 6 122 5 13 3 8 8 5910 63 � 10 24 3 7 4 282612 1101 � 14 29 5 8 5 2214 � � 24 41 7 11 7 2116 � � 31 56 10 16 11 3518 � � 43 76 15 24 22 7120 � � 59 95 25 40 49 161Table 4. 95 and 99 percentiles in the branches explored by theFc algorithm to complete a n by n quasigroup with 30 percent ofentries pre-assigned. Limited Idfs used 2 parallel levels with n2active subtrees. � indicates that the branch limit was reached.n Dfs Ilds Dds Limited Idfs95% 99% 95% 99% 95% 99% 95% 99%8 74 717 96 193 84 172 101 54510 425 � 198 334 177 279 180 2198912 7654 � 334 678 368 573 361 66214 � � 636 1257 696 1115 673 100616 � � 1010 1869 1415 2287 1405 219518 � � 1721 3509 2688 4468 2643 378620 � � 2728 5220 5535 8643 4896 6584Table 5. 95 and 99 percentiles in the nodes visited by the Fcalgorithm to complete a n by n quasigroup with 30 percent ofentries pre-assigned. � indicates that the branch limit wasreached, and over 60,000 nodes are visited.All the problems in these experiments were soluble. Indeed,most problems were very easy to solve. The median numberof branches explored using Dfs was typically 1. Nevertheless,Dfs failed to solve a considerable fraction of problems withinthe branch limit. Both Ilds and Dds reduce signi�cantly (ifnot eliminate completely) the long tail in the distribution ofsearch costs seen with Dfs. Limited Idfs also reduces the longtail, although results for the 99 percentile suggest that it maystill persist. However, increasing the number of active subtreesreduces (if not eliminates completely) the poor performancein the 99 percentile. We conclude therefore that interleavedand discrepancy based search strategies are all e�ective attackling search problems with heavy-tailed distributions.7 NUMBER PARTITIONINGIn [7], Korf compared Ilds, Lds and Dfs on number par-titioning problems using the Ckk algorithm. We thus usednumber partitioning as the �nal problem domain in our ex-perimental comparison. Given a bag of n numbers, we wishto �nd a partition into two bags that minimizes �, the di�er-ence between the sums of the bags. For problems with perfectpartitions (that is, those in which � � 1), Korf observed thatboth Ilds and Lds outperformed Dfs, with little to choosebetween them [7]. For problems without perfect partitions,we must traverse the entire search tree to prove optimality.As a consequence, Ilds and Dds search the same numberof branches as Dfs and limited Idfs, but increase the num-ber of nodes visited. Because Lds re-visits leaf nodes, it doeseven worse, increasing both the number of branches and thenumber of nodes visited. We therefore restricted our exper-iments to under-constrained problems which have a perfect

partition and on which discrepancy based strategies may of-fer advantages. For over-constrained problems which lack aperfect partition, Dfs and limited Idfs inevitably search theleast number of nodes, and are clearly the search strategies ofchoice.In Table 6, we report the median number of branches ex-plored by the Ckk algorithm to partition 2n numbers drawnat random from (0; 2n]. At each n, we solved 1,000 problems.Results are similar for the mean number of branches, and forother percentiles. On the larger problems, Ilds explores anorder of magnitude fewer branches than Dfs. This supportsthe hypothesis underlying Ilds that branching heuristics of-ten make just a few mistakes. On the larger problems, Ddsexplores even fewer branches than Ilds. This supports the hy-pothesis underlying Dds that these branching mistakes tendto occur high in the search tree. This is con�rmed by the res-ults for Idfs. Increasing the number of active subtrees, whichincreases the height of some of the discrepancies taken, de-creases the number of branches explored.n Dfs Ilds Dds limited Idfs4 as. 16 as. 64 as.5 1 1 1 1 1 110 1 1 1 1 1 115 11 7 3 3 3 320 266 29 29 197 99 2925 5325 443 354 4521 3249 240530 105647 6037 5531 94494 84020 69722Table 6. Median branches explored by the Ckk algorithm topartition 2n numbers drawn randomly from (0;2n].In Table 7, we report the median number of nodes visitedby the Ckk algorithm to solve the same problems as in Table6. Results are similar for other percentiles. The time takento solve a problem is closely related to the number of nodesvisited. Although Dds explores the least number of branchesof all the search strategies, in some cases more than an orderof magnitude less than Dfs, it actually visits the most nodes.How do we explain this?n Dfs Ilds Dds limited Idfs4 as. 16 as. 64 as.5 7 7 7 8 8 810 17 17 17 18 18 1815 46 68 81 82 82 8220 565 472 1007 568 742 106925 10691 5287 14553 10526 8117 803330 211343 69628 260654 213949 192230 160626Table 7. Median nodes visited by the Ckk algorithm topartition 2n numbers drawn randomly from (0;2n].To traverse exhaustively a binary tree of depth n, Dds andIlds both visit approximately 2n+2 nodes compared to the2n+1 nodes visited by Dfs [14]. At worst, we might thereforeexpect Dds and Ilds to double the number of nodes visited.Given that Dds can explore over an order of magnitude fewerbranches than Dfs, this overhead might appear to be veryworthwhile. Unfortunately, the overhead is very unevenly dis-tributed. During the �rst few iterations, Dds expands manynodes and throws them away immediately. By comparison,Dds is much less wasteful during later iterations, and it isthese iterations that dominate the asymptotic analysis givenin [14]. The real wastefulness of Dds at the start of search isthus disguised. Ilds is just as wasteful asDds when traversingDraft 4 Pedro Meseguer and Toby Walsh

the entire tree. However, its overhead is more evenly distrib-uted. As a consequence, Ilds often explores more branchesthan Dds but visits fewer nodes.We observe a similar e�ect with limited Idfs. Increasing thenumber of active subtrees decreases the number of branchesexplored. However, this may have only a small impact on thenumber of nodes visited. Indeed, in a few cases, the numberof nodes visited actually increases (e.g. at n = 20). Since eachactive subtree is expanded down to the bottom of the searchtree, increasing the number of active subtrees increases theoverhead. As with Dds, this overhead may outweigh muchof the bene�t of reducing the number of branches explored.In both interleaved and discrepancy based search, we see aninteresting tension. On one hand, we want to bias searchtowards discrepancies high in the search tree as this tendsto decrease the number of branches explored. On the otherhand, biasing search to discrepancies high in the search treeincreases the overhead, o�setting much of the bene�t of redu-cing the number of branches explored. One way to tackle thisproblem would be to use parallel hardware. For instance, aparallel version of Dds with n processors exploring di�erentbranches would expand each branch in essentially constanttime, eliminating completely the overhead8 RELATED WORKSpeckenmeyer et al. prove that the expected number of solu-tions down one branch for random 3-sat problems at a ratioof clauses to variables of 4 is much greater than down theother branch [12]. They argue that this non-uniform distri-bution of solutions explains the superlinear speedup observedfor parallel backtracking on highly satis�able problems in [13].Motivated by this result, they show good performance for asequential version of the Davis-Putnam procedure which, likeIdfs, interleaves search between di�erent subtrees.Rao and Kumar also report superlinear speedup for parallelbacktracking on a variety of di�erent domains including then-queens problem, the 15 puzzle, and test-pattern generationfor digital circuits [11]. They prove that the average speedup islinear when solutions are distributed uniformly, and superlin-ear when solutions are distributed non-uniformly. They arguethat average case superlinear speedup implies that parallelDfs time-sliced on a single processor will dominate sequen-tial Dfs. Our results with Idfs con�rm that, with care in thechoice of the number of active subtrees, such dominance canbe achieved in practice.9 CONCLUSIONSWe have performed a detailed experimental comparison ofinterleaved and discrepancy based search strategies, using avariety of di�erent domains, and a mixture of random andstructured problems. We have shown that interleaved and dis-crepancy based search strategies often reduce search, mostespecially on large and lightly constrained problems. In ad-dition, they reduce (if not eliminate completely) the heavy-tailed distribution reported in [5].Our results highlight a tension common to interleaved anddiscrepancy based search strategies. Biasing search to discrep-ancies high in the search tree tends to decrease the number

of branches explored, but increases the overhead in expand-ing branches down to the bottom of the search tree. Withunder-constrained problems and search strategies like Dds orIdfs with many active subtrees, this overhead can outweighthe bene�ts. As a consequence, it may be more e�ective touse a search procedure which explores more branches but hassmaller overheads (for example, Ilds or limited Idfs with justa few active subtrees).REFERENCES[1] D. Brelaz, `New methods to color the vertices of agraph', Commincations of ACM, 22, 251{256, (1979).[2] J.M. Crawford and A.B. Baker, `Experimental Res-ults on the Application of Satis�ability Algorithms toScheduling Problems', in Proceedings of the 12th Na-tional Conference on AI, pp. 1092{1097, (1994).[3] P.A. Geelen, `Dual viewpoint heuristics for binary con-straint satisfaction problems', in Proceedings of the 10thECAI, pp. 31{35, (1992).[4] M. L. Ginsberg and W. D. Harvey, `Iterative broaden-ing', Arti�cial Intelligence, 55(2-3), 367{383, (1992).[5] C. Gomes and B. Selman, `Problem structure in thepresence of perturbations', in Proceedings of the 14thNational Conference on AI, pp. 221{226, (1997).[6] W. D. Harvey and M. L. Ginsberg, `Limited discrepancysearch', in Proceedings of the 14th IJCAI, (1995).[7] R. Korf, `Improved limited discrepancy search', in Pro-ceedings of the 13th AAAI, (1996).[8] J. Larrosa and P. Meseguer, `Pptimization-based heur-istics for maximal constraint satisfaction', in Principlesand Practices of Constraint Programming - CP95, pp.103{120, (1995).[9] P. Meseguer, `Interleaved depth-�rst search', in Proceed-ings of the 15th IJCAI, pp. 1382{1387, (1997).[10] P. Prosser, `Binary constraint satisfaction problems:Some are harder than others', in Proceedings of the 11thECAI, pp. 95{99, (1994).[11] V.N. Rao and V. Kumar, `On the e�ciency of parallelbacktracking', IEEE Transactions on Parallel and Dis-tributed Systems, 4(4), 427{437, (1993).[12] E. Speckenmeyer, M. Bohm, and P. Heusch, `On theimbalance of distributions of solutions of CNF-formulasand its impact on satis�ability solvers', in DIMACSSeries in Discrete Mathematics and Theoretical Com-puter Science Vol. 35, ed., Du et al., 669{676, (1997).[13] E. Speckenmeyer, B. Monien, and O. Vornberger, `Su-perlinear speedup for parallel backtracking', in Pro-ceedings Supercomputing 1987 (ICS'87), pp. 985{993.Springer-Verlag LNCS 292, (1987).[14] T. Walsh, `Depth-bounded discrepancy search', in Pro-ceedings of 15th IJCAI, (1997).
Draft 5 Pedro Meseguer and Toby Walsh

