Interleaved and Discrepancy Based Search

Pedro Meseguer! and Toby Walsh?

Abstract.
of interleaved depth-first search and depth-bounded discrep-

We present a detailed experimental comparison

ancy search, two tree search procedures recently developed
with the same goal: to reduce the cost of heuristic mistakes
at the top of the tree. Our comparison uses an abstract heur-
istic model, and three different concrete problem classes: bin-
ary constraint satisfaction, quasigroup completion and num-
ber partitioning problems. Results indicate that both search
strategies often reduce search. In addition, they show that
their efficiency depends on a trade-off between the number of
discrepancies (branch points against the heuristic) considered
at the top of the tree, and the overhead of expanding branches
from these discrepancies. If the number of discrepancies is
large, the overhead can outweigh the benefits.

1 INTRODUCTION

By definition, heuristics sometimes make mistakes. When
searching a tree with depth-first search (DFs), mistakes made
at the top of the tree can be very costly to undo. For in-
stance, Crawford and Baker identified early mistakes as the
cause of the poor performance for a Davis-Putnam procedure
on Sadeh’s scheduling benchmarks [2]. On some problems, a
solution was found almost immediately. On other problems,
an initial bad guess by the heuristic would lead to searching a
subtree with the order of 27° nodes. To tackle situations like
this, Meseguer has proposed interleaved depth-first search [9].
At the same time, and for exactly the same reasons, Walsh
proposed depth-bounded discrepancy search [14]. Both are
systematic search strategies that reduce the cost of early mis-
takes. How do these search strategies compare, and when can
we prefer one over the other?

2 BACKGROUND

A discrepancy is any branch point in a search tree where we
go against the heuristic. For convenience, we assume that left
branches follow the heuristic. Any other branch breaks the
heuristic and is a discrepancy. For convenience, we call this a
right branch. Limited discrepancy search (LDs) explores the
leaf nodes in increasing order of the number of discrepancies
taken to reach them [6]. On the kth iteration, LDs visits all leaf
nodes with up to k discrepancies. Within each iteration, LDs

1 IIIA, CSIC, Bellaterra, Spain. pedro@iiia.csic.es. Supported
by the Spanish CICYT project TIC96-0721-C02-02.

2 Department of Computer Science, University of Strathclyde,
26 Richmond Street, Glasgow, Scotland, tw@cs.strath.ac.uk.
Also a member of the cross-university APES research group,
http://www.cs.strath.ac.uk/ apes/. Supported by EPSRC
grant GR/K/65706.

© 1998 Pedro Meseguer and Toby Walsh
Submitted to ECAT 98
January 22, 1998

explores branches with discrepancies high in the tree before
those branches with discrepancies lower down.

Korf has proposed a small improvement to LDs, called ILDs
that uses (an upper limit on) the maximum depth of the tree
[7]. On the kth iteration, ILDs visits only those leaf nodes
at the depth limit with exactly & discrepancies. LDs is less
efficient since, on the kth iteration, it re-visits all those leaf
nodes with between 0 and k£ — 1 discrepancies. Within each
iteration, ILDS explores branches with discrepancies low in the
tree before those paths with discrepancies higher up. Apart
from this small bias within each iteration, LDs and ILDs treat
all discrepancies alike. However, we often expect heuristics
to be less informed and to make more mistakes at the top
of the search tree. Given a limited amount of search, it may
therefore pay to explore discrepancies at the top of the search
tree before those at the bottom. This is the motivation behind
depth-bounded discrepancy search and interleaved depth-first
search.

Depth-bounded discrepancy search (DDs) biases search to
discrepancies high in the tree by means of an iteratively in-
creasing depth bound [14]. Discrepancies below this bound
are prohibited. On the 0th iteration, DDs explores the left-
most branch. On the ¢ + 1th iteration, DDs explores those
branches on which discrepancies occur at a depth of ¢ or less.
As in ILDs, we are careful not to re-visit leaf nodes visited
on earlier iterations. This is surprisingly easy to enforce. At
depth 2 on the ¢ + 1th iteration, we take only right branches
since left branches would take us to leaf nodes visited on an
earlier iteration. At lesser depths, we can take both left and
right branches. And at greater depths, we always follow the
heuristic left. Search is terminated when the increasing bound
is greater than the depth of the deepest leaf node. Note that
Lps, ILDs and DDs all re-visit interior nodes. For example,
when exhaustively traversing a binary tree of depth n, ILDS
and DDs both visit approximately 2”12 nodes, compared to
Drs which visits just 2% nodes [14]. Of course, our hope is
that a solution is found before the whole tree is visited.

Interleaved depth-first search (IDFs) also biases search to
discrepancies high in the tree. IDFs searches in parallel several
subtrees (called active) at certain tree levels (called parallel).
IDFs traverses depth-first the current active subtree until it
finds a leaf. If it is a goal, search terminates. Otherwise, the
state of the current subtree is recorded so that it can be re-
sumed later, and IDFs switches to the earliest parallel level,
where it selects another active subtree and repeats the pro-
cess. At each level active subtrees form a circular queue. There
are two versions of IDFS. Pure IDFs interleaves search among
all successor subtrees of any internal node at any level of the
tree, i.e., all levels are parallel and, for each level, all sub-

Figure 1. Order in which leaf nodes are visited for a complete

binary tree of depth 3.

3 DYNAMICITY

DFs starts at the leftmost leaf node in the search tree and
moves in an ordered manner to the rightmost leaf node.
Within a single iteration of DDs and ILDS, leaf nodes are also
explored from left to right. By comparison, within a single
iteration of LDs, leaf nodes are explored from right to left.
Each iteration of DDs or ILDs can be seen as a simple restric-
tion on the backtracking performed by Drs. In ILDS, we allow
backtracking at any interior nodes whose discrepancy count is
strictly less than the bound, and prohibit it once the bound
is met. In DDs, we allow backtracking at any interior node
above the depth bound, and prohibit it at deeper nodes. The
pure and limited versions of IDFS are much more dynamic.
They jump to leaf nodes both to the left and to the right.

If we ignore the order in which branches are explored within
each iteration of DDs, then pure IDFs and DbDs explore the
tree in the same order. The only difference is that DDs trades
space (pure IDFs uses exponential space) for time (unlike IDFS,
Dps revisits interior nodes). It is easy to modify pure IDFs to
require linear space, at the cost of revisiting nodes. However,
this is very expensive in time. Successive branches searched
by pure IDFs share no nodes in common other than the root.
We therefore have to backtrack from each leaf node back to
the root, and then follow a path down the other side of the
tree. For a binary tree of depth n, the cost to search the tree
exhaustively goes from O(2") to O(n.2").

4 HEURISTIC MODEL OF SEARCH

In [14], DDs, ILDs and DFs were compared using Harvey and
Ginsberg’s abstract model of heuristic search [4, 6]. In this
model, nodes in a binary search tree are labelled good if they
are above a goal leaf node and bad otherwise. The model has
three parameters: m, the mistake probability (the probability
that, at a good node, a randomly selected child is bad); p, the
heuristic probability (the probability that, at a good node, the
heuristic chooses a good node first); and n, the depth of the
tree (which is assumed to be uniform). We therefore began

Draft

our experimental studies by comparing the performance of
IDFs on this model.

In Figure 2, as in [6, 14], we plot the probability of finding
a goal for m = 0.2, p = 0.95 and » = 30 computed for an
ensemble of 100,000 trees. Such trees have approximately a
billion leaf nodes, of which just over a million are goals. With
about 11in 1000 leaf nodes being goals, the problems are relat-
ively easy. On these problems, the performance of pure IDFs
is very similar to that of DDs. Most of the success of lim-
ited IDFS comes from exploring the first branches in the act-
ive subtrees. Once we have expanded the first branch within
each active subtree, backtracking between active subtrees only
slowly increases the probability of success. If we have the space
available, it may be more productive to increase the number
of active subtrees. However, as we see shall see in our later
experiments, we must be careful that the resulting increase in
overheads does not outweigh the benefits.

1 T T T T T

DDS —+—
pure IDFS —+-
lim ILDFS 16as -o
lim ILDFS 8as -
lim ILDFS das -+~
0.8 |- lim ILDFS 2as - - a8
ILDS -

DFS -+ o

) o

Iy o 4
/ PRSP S SIS
/ aAA-A-Ao Ao A A 3
[SR o

b o
|3 od

o

o

probability of success

/ o
e s
04 b i T) E
g R p3

e xe s

4 o
i o -

i B S
e

02

0 L L L L L

10 15 20
number of branches explored

Figure 2. Probability of success on trees of height 30, with
m = 0.2 and p = 0.95. With limited IDFs, “as” is the number of
active subtrees.

We next considered a slightly more difficult search problem.
In Figure 3, as in [6, 14], we plot the probability of finding
a goal for m = 0.1, p = 0.95 and » = 100 computed from
an ensemble of 10,000 trees. Such trees have approximately
1070 leaf nodes, of which about 1 in 38,000 are goals. Dps
and pure IDFS again offered the largest probability of success.
As before, increasing the number of active subtrees available
to limited IDFs improves performance considerably. On this
problem, limited IDFs performed as well as ILDS when the
number of parallel levels was increased from 4 to 8.

0.6 T T T

Pure IDFS —+-
ILDS -
05 [lim ILDFS -
DFS -=-

04

03

probability of success

02 - =

01 EoRVEVURUVVIVIVIVEVEVIVE G S \
xxxxxxxx 2R

100 150 200
number of branches explored

Figure 3. Probability of success on trees of height 100, with
m = 0.1 and p = 0.95. Limited IDFs uses 16 active subtrees.

Pedro Meseguer and Toby Walsh

5 BINARY CSPS

As in [9], our first experimental problem domain is the
random binary constraint problem (CSP) class defined by
(n,m,p1,p2) where n is the number of variables, m is the
common cardinality of their domains, p; is the connectivity
(the ratio between the number of constraints and the max-
imum number of possible constraints), and p is the constraint
tightness (the proportion of forbidden value pairs between two
constrained variables). Each problem has exactly pyn(n—1)/2
constraints, each of which rules out exactly p,m? value pairs.
The constrained variables and their nogoods are randomly
selected from an uniform distribution [10].

We used a forward checking algorithm (Fc), substituting
the original DFs strategy with ILDs, DDS and limited IDFs
using 2, 4 and 8 active subtrees at the first tree level. As in
[9], we use the lowest support heuristic for variable selection
and the highest support heuristic for value selection [8]. We
solved instances of three qualitatively different classes from
sparse 100 variable problems to highly connected 30 variable
problems. For each, we have selected 5 different tightnesses
to the left of the complexity peak, from very easy to quite
difficult problems, and solved one hundred soluble instances
of each problem type. Results are presented in Tables 1 to 3 in
terms of the mean branches explored and the mean number
of visited nodes. This last parameter is correlated with the
mean CPU time.

Of the three classes tested, ILDS and DDs dominate DFs on
(100, 6,305/4950, p2), very sparse problems with a large num-
ber of variables. Heuristic mistakes are more likely to occur
in large and very sparsely connected problems, for which the
cost of recovering mistakes by DFs is very high even for easy
problems. With the other two classes, DFs is not mistaken so
frequently and at such high cost. For easy to medium diffi-
culty problems, the three algorithms explore a similar number
of branches, which implies that DFs visits a lower number of
nodes. With the hard problems, ILDs and DDs make more
mistakes than DFs.

IDFs is the best algorithm in this experiment, explor-
ing fewer branches and visiting fewer nodes than DrFs for
all the problem types, Unlike discrepancy-based algorithms,
which do not discriminate between non leftmost nodes at a
tree level, limited IDFs keeps the heuristic ranking of nodes
and selects active subtrees according to this ranking. Lim-
ited IDFs thereby concentrates search on some tree parts,
while discrepancy-based algorithms perform a more scattered
sampling of the search tree. If the quality of the heuristic is
good, this focus appears to pay off compared to the more
exploratory strategies like ILDS and Dps.

6 QUASIGROUPS

Our next problem domain is quasigroup completion. A quasig-
roup is a Latin square, a n by n multiplication table in which
every element appears just once in each row and column.
Quasigroup completion is the NP-complete problem of filling
in the blank entries in a partially filled Latin square. There
are several practical applications for quasigroup completion
including the design of statistical experiments to reduce sys-
tematic dependencies, and time-tabling (e.g. scheduling a
sports tournament). Gomes and Selman have recently pro-

Draft

mean branches Drs TLDs Dbs Limited IDFs

36p2 2 as. 4 as.

9 1 1 1 1 1

10 2130 1 1 1 1

11 5526 4 2 2 2

12 11764 56 44 19 16

13 56880 1525 8494 1049 470

mean nodes Drs TLDs Dbs Limited IDFs

36p2 2 as. 4 as.

9 100 102 102 102 102

10 4669 112 116 109 115

11 15687 156 163 126 147

12 37731 874 1112 202 243

13 138454 13627 81496 4858 2358
Table 1. Fc algorithm solving random instances of the

(100,6,305/4950,p2) class.

mean branches Drs TLDs Dbs Limited IDFS

44p, 4 as. 6 as.

44 7 9 7 5 5

46 35 36 26 16 8

48 164 148 199 68 55

50 1030 1558 2063 662 528

52 14445 22620 67741 6977 7161

mean nodes Drs TLDs Dbs Limited IDFs

144po 4 as. 6 as.

44 74 162 199 114 132

46 199 507 601 169 156

48 774 1686 3447 402 370

50 4566 13694 25835 3006 2452

52 62031 146339 549928 30249 31070
Table 2. Fc algorithm solving random instances of the

(50,12,250/1225,p2) class.

mean branches Drs ILDs Dbs Limited IDFs

25po 4 as. 8 as.

69 16 12 11 10 10

72 58 62 47 28 35

75 379 378 381 148 127

78 1584 2061 2334 1049 1175

81 8778 27385 67705 8447 9326

mean nodes Drs ILDs Dbs Limited IDFs

225p2 4 as. 8 as.

69 89 139 188 95 122

72 259 584 635 172 236

75 1502 2909 3920 644 593

78 6120 12469 18179 4078 4596

81 32678 120507 332768 31562 34867
Table 3. Fc algorithm solving random instances of the

(30,15,174/435,p2) class.

posed quasigroup completion as a benchmark domain for con-
straint satisfaction algorithms since it has many of the ad-
vantages of both random and structured problems [5]. The
quasigroup provides a regular structure but this is perturbed
by randomly filling some of the entries.

A quasigroup completion problem can be represented as
a binary CSP with n? variables, each with a domain of size
n. As the search tree is O(n"Q) in the worst case, it quickly
becomes prohibitively to explore the tree completely. Indeed,
Gomes and Selman have shown that search costs with DFs
are best characterized by a heavy-tailed distribution that has
no moments (that is, one with an infinite mean and variance)
[5]. Are interleaved and discrepancy based search strategies
able to eliminate such heavy-tailed behaviour?

To help answer this question, we solved some quasigroup
completion problems with the Fc algorithm adapted to search
with ILDs, Dps and IDFs. We used the Brelaz heuristic to
choose a variable to assign [1], and Geelen’s promise heuristic
to pick a value for it [3]. At each problem size, we generated
1,000 problems and cut off search if more than 10,000 branches
had been explored. In Tables 4 and 5, we report results for

Pedro Meseguer and Toby Walsh

quasigroup completion problems with 30 percent of the initial
entries assigned. We obtained similar results with 10 and 20
percent of entries assigned.

n Drs TLDs Dbs Limited IDFS

95% 99% 95% 99% 95% 99% 95% 99%

8 6 122 5 13 8 8 59

10 63 * 10 24 3 7 4 2826
12 1101 * 14 29 5 8 5 22
14 * * 24 41 7 11 7 21
16 * * 31 56 10 16 11 35
18 * * 43 76 15 24 22 71
20 * * 59 95 25 40 49 161

Table 4. 95 and 99 percentiles in the branches explored by the

Fc algorithm to complete a n by n quasigroup with 30 percent of
entries pre-assigned. Limited IDFs used 2 parallel levels with n?
active subtrees. x indicates that the branch limit was reached.

n Drs TLDs Dbs Limited IDFs
95% 99% 95% 99% 95% 99% 95% 99%

8 74 717 96 193 84 172 101 545
10 425 * 198 334 177 279 180 21989
12 7654 * 334 678 368 573 361 662
14 * * 636 1257 696 1115 673 1006
16 * * 1010 1869 1415 2287 1405 2195
18 * * 1721 3509 2688 4468 2643 3786
20 * * 2728 5220 5535 8643 4896 6584
Table 5. 95 and 99 percentiles in the nodes visited by the Fc

algorithm to complete a n by n quasigroup with 30 percent of
entries pre-assigned. * indicates that the branch limit was
reached, and over 60,000 nodes are visited.

All the problems in these experiments were soluble. Indeed,
most problems were very easy to solve. The median number
of branches explored using DFs was typically 1. Nevertheless,
Drs failed to solve a considerable fraction of problems within
the branch limit. Both ILDS and DDs reduce significantly (if
not eliminate completely) the long tail in the distribution of
search costs seen with DFs. Limited IDFs also reduces the long
tail, although results for the 99 percentile suggest that it may
still persist. However, increasing the number of active subtrees
reduces (if not eliminates completely) the poor performance
in the 99 percentile. We conclude therefore that interleaved
and discrepancy based search strategies are all effective at
tackling search problems with heavy-tailed distributions.

7 NUMBER PARTITIONING

In [7], Korf compared TLDS, LDs and DFs on number par-
titioning problems using the CKK algorithm. We thus used
number partitioning as the final problem domain in our ex-
perimental comparison. Given a bag of n numbers, we wish
to find a partition into two bags that minimizes A, the differ-
ence between the sums of the bags. For problems with perfect
partitions (that is, those in which A < 1), Korf observed that
both ILDs and LDs outperformed DFs, with little to choose
between them [7]. For problems without perfect partitions,
we must traverse the entire search tree to prove optimality.
As a consequence, ILDS and DDs search the same number
of branches as DFs and limited IDFs, but increase the num-
ber of nodes visited. Because LDs re-visits leaf nodes, it does
even worse, increasing both the number of branches and the
number of nodes visited. We therefore restricted our exper-
iments to under-constrained problems which have a perfect

Draft

partition and on which discrepancy based strategies may of-
fer advantages. For over-constrained problems which lack a
perfect partition, DFs and limited IDFs inevitably search the
least number of nodes, and are clearly the search strategies of
choice.

In Table 6, we report the median number of branches ex-
plored by the CKK algorithm to partition 2» numbers drawn
at random from (0, 2"]. At each n, we solved 1,000 problems.
Results are similar for the mean number of branches, and for
other percentiles. On the larger problems, ILDS explores an
order of magnitude fewer branches than DFs. This supports
the hypothesis underlying ILDs that branching heuristics of-
ten make just a few mistakes. On the larger problems, DbDs
explores even fewer branches than ILDs. This supports the hy-
pothesis underlying DDs that these branching mistakes tend
to occur high in the search tree. This is confirmed by the res-
ults for IDFs. Increasing the number of active subtrees, which
increases the height of some of the discrepancies taken, de-
creases the number of branches explored.

n DrFs TLDs Dbps limited IDFs

4 as. 16 as. 64 as.

5 T T T T T T
10 1 1 1 1 1 1
15 11 7 3 3 3 3
20 266 29 29 197 99 29
25 5325 443 354 4521 3249 2405
30 105647 | 6037 | 5531 94494 84020 69722

Table 6. Median branches explored by the CKK algorithm to
partition 2n numbers drawn randomly from (0, 2"].

In Table 7, we report the median number of nodes visited
by the CKKk algorithm to solve the same problems as in Table
6. Results are similar for other percentiles. The time taken
to solve a problem is closely related to the number of nodes
visited. Although DDs explores the least number of branches
of all the search strategies, in some cases more than an order
of magnitude less than DFS, it actually visits the most nodes.
How do we explain this?

n Drs TLps Dps limited TDFS
4 as. 16 as. 64 as.
5 7 7 7 8 8 8
10 17 17 17 18 18 18
15 46 68 81 82 82 82
20 565 472 1007 568 742 1069
25 10691 5287 14553 10526 8117 8033
30 211343 69628 260654 213949 192230 160626
Table 7. Median nodes visited by the CKK algorithm to

partition 2n numbers drawn randomly from (0, 2"].

To traverse exhaustively a binary tree of depth n, DDs and
ILDS both visit approximately 2772 nodes compared to the
2" nodes visited by DFs [14]. At worst, we might therefore
expect DDs and ILDs to double the number of nodes visited.
Given that DDs can explore over an order of magnitude fewer
branches than DFs; this overhead might appear to be very
worthwhile. Unfortunately, the overhead is very unevenly dis-
tributed. During the first few iterations, DDs expands many
nodes and throws them away immediately. By comparison,
DbDs is much less wasteful during later iterations, and it is
these iterations that dominate the asymptotic analysis given
n [14]. The real wastefulness of DDS at the start of search is
thus disguised. ILDS is just as wasteful as DDS when traversing

Pedro Meseguer and Toby Walsh

the entire tree. However, its overhead is more evenly distrib-
uted. As a consequence, ILDS often explores more branches
than DDs but visits fewer nodes.

We observe a similar effect with limited IDFs. Increasing the
number of active subtrees decreases the number of branches
explored. However, this may have only a small impact on the
number of nodes visited. Indeed, in a few cases, the number
of nodes visited actually increases (e.g. at n = 20). Since each
active subtree 1s expanded down to the bottom of the search
tree, increasing the number of active subtrees increases the
overhead. As with DDs, this overhead may outweigh much
of the benefit of reducing the number of branches explored.
In both interleaved and discrepancy based search, we see an
interesting tension. On one hand, we want to bias search
towards discrepancies high in the search tree as this tends
to decrease the number of branches explored. On the other
hand, biasing search to discrepancies high in the search tree
increases the overhead, offsetting much of the benefit of redu-
cing the number of branches explored. One way to tackle this
problem would be to use parallel hardware. For instance, a
parallel version of DDs with n processors exploring different
branches would expand each branch in essentially constant
time, eliminating completely the overhead

8 RELATED WORK

Speckenmeyer et al. prove that the expected number of solu-
tions down one branch for random 3-SAT problems at a ratio
of clauses to variables of 4 is much greater than down the
other branch [12]. They argue that this non-uniform distri-
bution of solutions explains the superlinear speedup observed
for parallel backtracking on highly satisfiable problems in [13].
Motivated by this result, they show good performance for a
sequential version of the Davis-Putnam procedure which, like
IDFs, interleaves search between different subtrees.

Rao and Kumar also report superlinear speedup for parallel
backtracking on a variety of different domains including the
n-queens problem, the 15 puzzle, and test-pattern generation
for digital circuits [11]. They prove that the average speedup is
linear when solutions are distributed uniformly, and superlin-
ear when solutions are distributed non-uniformly. They argue
that average case superlinear speedup implies that parallel
DFs time-sliced on a single processor will dominate sequen-
tial DFs. Our results with IDFs confirm that, with care in the
choice of the number of active subtrees, such dominance can
be achieved in practice.

9 CONCLUSIONS

We have performed a detailed experimental comparison of
interleaved and discrepancy based search strategies, using a
variety of different domains, and a mixture of random and
structured problems. We have shown that interleaved and dis-
crepancy based search strategies often reduce search, most
especially on large and lightly constrained problems. In ad-
dition, they reduce (if not eliminate completely) the heavy-
tailed distribution reported in [5].

Our results highlight a tension common to interleaved and
discrepancy based search strategies. Biasing search to discrep-
ancies high in the search tree tends to decrease the number

Draft

of branches explored, but increases the overhead in expand-
ing branches down to the bottom of the search tree. With
under-constrained problems and search strategies like DDs or
IDFs with many active subtrees, this overhead can outweigh
the benefits. As a consequence, it may be more effective to
use a search procedure which explores more branches but has
smaller overheads (for example, ILDs or limited IDFs with just
a few active subtrees).

REFERENCES

[1] D. Brelaz, ‘New methods to color the vertices of a
graph’, Commincations of ACM, 22, 251-256, (1979).

[2] J.M. Crawford and A.B. Baker, ‘Experimental Res-
ults on the Application of Satisfiability Algorithms to
Scheduling Problems’; in Proceedings of the 12th Na-
tional Conference on Al pp. 1092-1097, (1994).

[3] P.A. Geelen, ‘Dual viewpoint heuristics for binary con-
straint satisfaction problems’, in Proceedings of the 10th
ECAI pp. 31-35, (1992).

[4] M. L. Ginsberg and W. D. Harvey, ‘Tterative broaden-
ing’, Artificial Intelligence, 55(2-3), 367-383, (1992).

[5] C. Gomes and B. Selman, ‘Problem structure in the
presence of perturbations’, in Proceedings of the 14th
National Conference on Al pp. 221-226, (1997).

[6] W.D. Harvey and M. L. Ginsberg, ‘Limited discrepancy
search’, in Proceedings of the 14th IJCAI (1995).

[7] R. Korf, ‘Tmproved limited discrepancy search’, in Pro-
ceedings of the 13th AAAT (1996).

[8] J. Larrosa and P. Meseguer, ‘Pptimization-based heur-
istics for maximal constraint satisfaction’, in Principles
and Practices of Constraint Programming - CP95, pp.
103-120, (1995).

[9] P. Meseguer, ‘Interleaved depth-first search’, in Proceed-
ings of the 15th IJCAI pp. 1382-1387, (1997).

[10] P. Prosser, ‘Binary constraint satisfaction problems:
Some are harder than others’, in Proceedings of the 11th
ECAI pp. 95-99, (1994).

[11] V.N. Rao and V. Kumar, ‘On the efficiency of parallel
backtracking’, IEEFE Transactions on Parallel and Dis-
tributed Systems, 4(4), 427-437, (1993).

[12] E. Speckenmeyer, M. Bohm, and P. Heusch, ‘On the
imbalance of distributions of solutions of CNF-formulas
and its impact on satisfiability solvers’, in DIMACS
Series in Discrete Mathematics and Theoretical Com-
puter Science Vol. 35, ed., Du et al., 669-676, (1997).

[13] E. Speckenmeyer, B. Monien, and O. Vornberger, ‘Su-
perlinear speedup for parallel backtracking’, in Pro-
ceedings Supercomputing 1987 (I1CS’87), pp. 985-993.
Springer-Verlag LNCS 292, (1987).

[14] T. Walsh, ‘Depth-bounded discrepancy search’, in Pro-
ceedings of 15th IJCAI (1997).

Pedro Meseguer and Toby Walsh

