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Abstract
Matching donations from deceased patients to pa-
tients on the waiting list account for over 85% of all
kidney transplants performed in Australia. We pro-
pose a simple mechanisms to perform this matching
and compare this new mechanism with the more
complex algorithm currently under consideration
by the Organ and Tissue Authority in Australia. We
perform a number of experiments using real world
data provided by the Organ and Tissue Authority
of Australia. We find that our simple mechanism is
more efficient and fairer in practice compared to the
other mechanism currently under consideration.

1 Introduction
Kidney disease costs the Australian economy billions of dol-
lars every year in medical costs, welfare payments, and lost
income. On 1st February 2016, there were 1083 people on
the waiting list for a kidney transplant. Over the course of
2016, 1448 people received a kidney from a deceased donor,
whilst a further 265 people received a kidney from a living
donor. Just 44 of these came from paired exchanges. Paired
exchange represents less than 3% of all transplants. Deceased
donors provide the majority of transplanted organs, and will
do so till we have xenotransplants or can grow organs.

Matching deceased donors to people on the waiting list is
becoming increasingly difficult as road safety improves. In
1989, the mean age of deceased donors was 32 years. In 2014,
this had increased to 46 years. Medicine has also advanced so
that older organs can now be successfully transplanted. The
oldest donor in 1989 was 69. In 2014, it was 80. We have
therefore started to work with the Organ and Tissue Author-
ity, the statutory body in Australia that allocates organs to
develop a new mechanism that explicitly takes account of the
age of the organs and of the recipients for the first time. The
mechanism currently in use will offer an old organ to a young
patient. A lot of time is then wasted as transplant surgeons re-
ject offered organs till the older organ is accepted for a lower
ranked and hence older patient.

It has been decided that the quality of the organ is to be
measured by the Kidney Donor Patient Index (KDPI). This is
an integer from 0 to 100 that is calculated from the age of the
donor, their diabetic status, cause of death and other factors.

A donor with a KDPI of X% has an expected risk of graft fail-
ure greater than X% of all kidney donors. The quality of the
recipient is to be measured by the Expected Post-Transplant
Survival (EPTS) score. This is also an integer from 0 to 100
that is calculated from the age of the recipient, their diabetic
status, the number of prior organ transplants and their time
on dialysis. A recipient with a lower EPTS is expected to
have more years of graft function from high-longevity kid-
neys compared to candidates with higher EPTS scores. The
goal of our collaboration with the Organ and Tissue Author-
ity is to design a new mechanism that is fair and efficient,
matching organs so that their KDPI is as close as possible to
the EPTS score of their allocated patient.

This work fits into a broader research programme to de-
velop models and mechanisms for resource allocation prob-
lems that reflect the richness and complexity of the real world
[Walsh, 2015; Aziz et al., 2016]. One of the fundamental fea-
tures of the organ matching problem is that it is online. We
must match organs as they arrive, before we know what or-
gans or patients will arrive in the future. At the end of the
year, we could find the best allocation in polynomial time by
computing a maximum weight matching over the weighted
bipartite graph. However, we cannot wait till the end of the
year; we must allocate and transplant organs as they arrive.
There are many other domains where we allocate resources
in a similar online manner. A food bank might start allocat-
ing and distributing food to charities as soon as it is donated.
There may be neither the time nor warehouse space to store
the food. An observatory might start allocating time on an ex-
pensive telescope before all requests have come in. This work
offers a case study in how we can efficiently and fairly solve
online allocation problems [Albers, 2003]. Insights from this
research may prove valuable in many domains.

2 Mechanisms
We propose a very simple mechanism that minizes the differ-
ence between KDPI and EPTS.

MIN: Allocate an arriving organ to a compatible patient that
minimizes |KDPI−EPTS|, tie-breaking by time on the
waiting list and then randomly.

We will compare this with the mechanism proposed by the
Organ and Tissue authority before we started the collabora-
tion, but not yet implemented.



BOX: This mechanism ranks patients according to a lexico-
graphical scoring function. The most important terms in
the scoring function ensure a match between compati-
ble types. The least important terms tie-break accord-
ing to features like time on the waiting list. The mid-
dle term orders matches as: (1) KDPI ≤ 50 and EPTS≤
25; (2) EPTS− 25 < KDPI; (3) EPTS− 25 ≤ KDPI <
EPTS− 50; (4) EPTS− 50 ≤ KDPI < EPTS− 75; (5)
EPTS−75≤ KDPI.
The ordering can be viewed graphically (Figure 1). It
favours matches in a rectangular box to the bottom left,
then above the upper left diagonal, and then towards the
lower right diagonal.
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Figure 1: The BOX mechanism: the ordering is induced by a
lexicographical scoring function with five key regions.

3 Online Organ Matching
Online organ matching occurs in a series of time steps. At
each time step, either a set of organs arrives, or a set of pa-
tients arrive or depart. Organs are matched as soon as they ar-
rive, whilst arriving patients are simply added to the waiting
list. In practice, organs tend to arrive in pairs as each deceased
donor typically donates both their kidneys. Patients depart the
waiting list when they are matched to an arriving organ, re-
ceive a transplant elsewhere, become sick or die. In Australia,
the size of the waiting list remains roughly constant over time.
In practice, many more patients are on dialysis but are not put
on the waiting list due to health and age issues.

We employ a simple model of organ matching where each
arriving organ has an associated blood type, KDPI and state
while each patient has an associated blood type, EPTS and
state. The EPTS of a patient slowly increases over time as
they spend longer on dialysis. We only permit matches of a
compatible type (e.g. organs coming from a donor of blood
type O can be matched to recipients of any blood type,
whilst organs coming from a donor of blood type AB can
be matched only to recipients of blood type AB). We focus
on compatibility by blood type, but in the real world this con-
sists of additional factors (e.g. HLA type, for a more nuanced
discussion see the data and simulators from www.srtr.
org/). We will consider mechanisms that match only within
a state, as well as mechanisms that match nationwide. A sec-

ondary goal of our work is to measure the benefits of match-
ing across state boundaries, currently under consideration by
the Organ and Tissue Authority.

We define the quality of a matching of an organ to a pa-
tient in two ways. At the level of the individual, the utility of
a match is simply 100−KDPI. A patient wants the youngest
possible organ. At the level of society, the welfare of a match
is 100−|KDPI−EPTS|. To maximize the benefit to society
of a limited supply of organs, we want the KDPI to be as
close as possible to EPTS. As we consider randomized mech-
anisms, we can compute such measures as utility and welfare
both ex post and ex ante.

4 Desirable Axioms for Allocation
An axiomatic study of algorithms is a corner stone of game
theory [Maschler et al., 2013] and computational social
choice [Brandt et al., 2016]. For instance, both the MIN and
BOX mechanisms are anonymous: identical patients added
to the waiting list at the same time are treated identically. We
say a mechanism satisfies participation if a patient cannot
increase their expected utility by joining the waiting list at a
later date. Unfortunately, the online nature of organ matching
means that no mechanism can satisfy participation.
Theorem 1 No mechanism for online organ matching satis-
fies participation.
Proof. Suppose two patients join the waiting list at the first
time step, an organ with a KDPI of 50 arrives at the second
time step, and one with a KDPI of 0 at the third. Both patients
have an incentive to delay their participation and wait till after
the first organ is allocated before joining the waiting list. �

A fundamental and desirable property of an allocation of
organs is efficiency. In this setting all agents have the same
utility value over the organs. If you lower the KDPI of the or-
gan matched to one patient, you must inevitably increase the
KDPI of an organ matched to some other patient. Therefore
all allocations are efficient in terms of utility. We consider
also efficiency in terms of welfare. An online allocation is
welfare efficient if and only if there is no other online alloca-
tion in which one patient has greater welfare and none of the
other patients have lower welfare. A mechanism is welfare ef-
ficient if and only if it only returns online allocations that are
welfare efficient. Note that we limit our discussion to online
allocations. Organs can only be matched to patients that are
actually present on the waiting list as we cannot match to a
patient yet to join the waiting list.
Example 1 Suppose we have one patient on the waiting list
with an EPTS of 100, and an organ with a KDPI of 0 arrives
and is matched to this patient. Suppose a new patient now
arrives with an EPTS of 0, followed by an organ with a KDPI
of 100, that is again matched with the only patient on the
waiting list. This is the only possible online allocation so it
is welfare efficient. But in an offline setting, this allocation
is not welfare efficient. We could match the first patient with
the second organ, and the second patient with the first organ,
increasing the welfare of both patients.

Another desirable property of online mechanisms is that
they do not lead to starvation. In online settings this is typ-
ically handled by giving higher priority to agents the longer



Figure 2: Visualization of the results of one run of our algorithm for both the MIN and BOX algorithms with both the State
and Federal restrictions. MIN performs significantly better than BOX in terms of minimizing |KDPI−EPTS| and the Federal
exchange outperforms the State exchanges in ensuring better outcomes for all patients.

they wait. In all the proposed mechanisms, wait time is only
used for tie-breaking between agents. It is possible in the
worst case for patients never to be matched. However, we do
not observe this in practice with the historical distribution of
patients and organs. Both mechanisms under consideration
may never match patients on the list.

5 Experiments
From an axiomatic perspective, online organ matching ap-
pears to be a challenging problem. In this section, we run
some experiments using historical data to determine whether
such properties are nevertheless achieved in practice. The Sci-
entific Registry of Transplant Recipients publishes detailed
models of expected donations and transplant survival times
for the US Market, see www.srtr.org/. In what follows
we generate patients and kidneys using some of the same
techniques but tuned for the Australian market. We do not
go into as much detail on post transplant survival as we are
more concerned with the properties of the initial allocation.
Subjecting this allocation to optimization under the expecta-
tion of future survival times is an interesting avenue for future
work with some work beginning in the kidney exchange liter-
ature already [Dickerson and Sandholm, 2015].

Data Generation. Since we have only one historical data
set, we first need to build a simulator that is as realistic as pos-
sible so we can run thousands of experiments with realistic
data. We use two different sources of data to ensure that our
model is based on real world assumptions. Our data for gen-
eration and testing comes from two sources, both provided by
the Organ and Tissue Authority of Australia.

Public ANZDATA: Long run statistics published by www.
anzdata.org.au. This aggregates details about kid-
ney donation in Australia and New Zealand.

Research ANZDATA: Detailed data from 2010–2014, en-
abling us to create more fidelity for our random simula-
tors. This data includes the waiting list at a single point
in the year and information on all kidneys donated in
2010-2014. The distributions and quality of patients and
kidneys in this dataset is designed to meet the random
pattern observed over 10 years of historical data.

Cross checking data from the Australian Bureau of Statis-
tics; the Public and Research sets; and Wikipedia, we deter-
mined the probability distribution over the Blood Type and
State of donors and patients. We generate both patients and
donors according to these statistical distributions. We gen-
erate the patients for the waiting list using the population
proportions provided by both the historical data and national
statistics; These distributions match to within 1%.

In order to simulate the arrival of kidneys over the course of
a year we use a Poisson process to simulate the arrival times
of patients to donate kidneys over the course of a year. Death
is typically modeled as an independent random variable, e.g.,
the arrival of bodies to morgues is a standard case study in
modeling random processes with Poisson processes. We use
the long run average from both data sources of 340 donors a
year. This gives us µ = 340/365 and defines a probability distri-
bution we can sample from for the number of patients arriving
in a day, P(x) = e−µ ·µx/x!. Each donor that arrives can donate
one or two kidneys. The long run average from our datasets
is 1.72 kidneys transplanted per deceased donor. Therefore,
each patient that arrives donates one kidney with probability
0.28 and two with probability 0.72.

The waiting list in Australia remains about the same length
over time with the historical average ≈ 1200 people. Every-
one who receives a transplant is removed from the list and
new individuals are added. On average 150 patients are re-
moved from the waiting list randomly throughout the year for
a number of reasons including death and off list transplant.
We model removal from the list again as Poisson process
with µ = 150/365; we uniformly at random draw a patient from
the set of patients to remove when necessary. In addition, the
EPTS of patients degrades over the course of the year with
about 180 people being removed from the waiting list every
year because their EPTS has become too high. To simulate
this, we “age” each patient by incrementing their EPTS every
30 days they are on the list by increasing it between 0 – 1
point, uniformly at random.

We generate EPTS and KDPI according to the distributions
provided to us for the years 2010–2014. We generate a num-
ber between 0–100 in bands of 10 using the historic distribu-
tions. We then add 0–9 to this number uniformly at random.



We do this both for EPTS and KDPI. Our simulator, along
with one for the US kidney exchange market, is available at
www.preflib.org [Mattei and Walsh, 2013].

Experimental Treatments and Evaluation. For our ex-
periments we generate an initial list of patients and kidneys
and then simulate the arrivals, departures, and donations by
stepping through a simulated 8 years. We repeat this process
1000 times to gain confidence in the statistics we report here
[Cohen, 1995]. We use the first four years of data to burn in
our simulator, so that the exchange has reached a steady state,
and report statistics based on the latter four years of data. The
same list of kidneys and patients (their order of arrival) are
used for all of the treatments (both mechanisms and both state
and federal exchanges). Hence, the difference in statistics are
generated only by the particular matching strategy.

For all experiments we enforce basic blood type compati-
bility. That is, A can donate to A and AB, B to B and AB, AB
to AB, and O can donate to anyone. We also differentiate be-
tween two treatments regarding the level the exchange takes
place at. In a Federal exchange, a kidney can be transplanted
to any state in Australia. We enforce that in the case of a tie,
the kidney goes to the instate patient. In a State exchange all
exchanges are run within states only. Organs not able to be
transplanted in state due to type restrictions are then matched
to any patient outside the state where the kidney originated.

Ideally we would transplant every organ into a patient such
that KDPI and EPTS are equivalent. This gives us a notion of
optimality that is defined by the line y = x. We use two er-
ror metrics to judge how well our points match this idealized
line. Note that since we have regression through the origin
here we must be careful with computing our statistics [Cohen,
1995]. Firstly, the Coefficient of Determination (R2), if we
treat KDPI as a dependent variable w.r.t. ETPS then we can
use R2 to get an indication of the proportion of the variance
of KDPI that is predictable from EPTS. If we want to ensure
that KDPI and EPTS are perfectly correlated (x = y) then we
would get an R2 = 1. We compute: R2 = 1− ∑i(EPTSi−KDPIi)

2

∑i(KDPIi−KDPI)2 .

Secondly, we use the Standard Error of the Regression (s),
since s is expressed in the same units as the independent vari-
able (KDPI) it gives us an intuitive measure of how how much
KDPI varies, on average, from EPTS. Since we are forcing
our regression through the origin we only have one degree of

freedom in the model giving s =
√

1
n−1 ∑i(KDPIi−EPTSi)2.

6 Results and Discussion
Figure 2 shows the results for one run which are typical of
all the runs. Here we can see that, no matter the state, the
patient results are better for the MIN algorithm and Federal
matching. MIN outperforms BOX by a statistically significant
margin for both the R2 measure and s for all 1000 instances
that we tested. For the MIN algorithm, Federal significantly
outperforms State, across all 1000 instances as well.

One concern with the Federal v. State treatments on the
practical level is the flow of organs out of a state will exceed
the flow of organs into a state. In effects, states do not want
to lose organs to other states. When tracking organ flow we
use the term inflow to mean organs that come into a particular

state or type and outflow to mean organs that move to a dif-
ferent state or type. A flow between organ types means that,
for instance, an O kidney was donated to an AB patient. Fig-
ure 3 illustrates the flow of organs between states and we can
see that the majority of organs are exchanged within the state
with the exception of Western Australia. The cost in terms of
efficiency to the overall system, illustrated in Figure 2, is a
much greater concern than organ flows.

Figure 3: Average over 1000 iterations of the flow of organs
between states and blood types; error bars represent one stan-
dard deviation. The majority of organs are transplanted within
the state of donation.

Time on List. One of the main concerns for patients is the
amount of time that they expect to spend on the waiting list.
To investigate this we computed the mean waiting time in
days by EPTS, the results for all states and for NSW/ACT are
broken out in Figure 4a. We have omitted variance/error bars
for this graph as they completely overlap. In general, the vari-
ance is constant for each of the mechanisms and treatments
with the MIN mechanism having a lower variance of about
±200 days while the BOX mechanism has a higher variance
of about±600 days. We observe that the variance for the BOX
algorithm is strictly higher than the variance for the MIN al-
gorithm across all treatments.

Looking at Figure 4a we see that the MIN mechanism has
a lower mean waiting time versus BOX except for patients
with very high EPTS. This gap closes for patients with higher
EPTS, likely due to the fewer organs that are donated with
very high EPTS. It is interesting to note that the State v. Fed-
eral question is roughly negligible for mean time on list. Con-
sequently, Federal exchanges increase patient welfare with-
out a significant impact on waiting time. The BOX has large
equivalence classes between patients, illustrated in Figure 1.
We conjectured that these large equivalence classes would
give lower wait times as the mechanisms tie-break based on
the time on the waiting list. However, this is not the behavior
that we see in the data except for those high EPTS patients.

In Figure 4b we slice the mean waiting time data along
the blood type axis. This reveals another interesting property
of online organ matching: different blood types get treated
very differently. Those patients with type O blood, the most
common amongst the types, track very closely to the waiting
times see in Figure 4a while those with type AB blood have
strictly lower waiting times. This is due to the small number
of AB patients that require transplants and their ability to ac-



(a) Mean time on list for all states (left) and for NSW/ACT (right). (b) Mean time on list for type O (left) and type AB (right).

Figure 4: In (a) we see that MIN gives lower average waiting times and that the difference between State and Federal exchanges
is negligible. In (b) Blood type O is the most common and thus the waiting times track closely to the overall mean while the
rarest blood type AB does not.

cept kidneys of any type.
Efficiency. To investigate the efficiency of the various mech-
anisms in practice we investigate the number of Pareto swaps
[Brandt et al., 2016], i.e., between kidney/patient pairs such
that the welfare of one of the pairs is increased while the other
is not decreased. To do this we took, for each of the 1000 iter-
ations, the complete set of transplants and checked to see for
each kidney/patient if there exists another kidney/patient that
arrives later in time that would enable a Pareto swap. Since
one kidney/patient pair may be involved in multiple poten-
tial swaps, and a welfare efficient matching would only use
at most one of these swaps per patient, we also compute the
number of unique kidney/patient pairs that could be part of
a Pareto improving swap. We also track the average increase
in welfare over the set of potential swaps per instance. These
values are reported in Table 1 over the 1000 trials.

The metric we compute is a worst case one. We do not take
into account the aging factor for the later swap. Hence, the
number of swaps reported is an upper bound and would be
lower, in reality, if we aged the patient participating in the
swap. Additionally, kidneys need to be matched on the same
day they are donated so these swaps are not even realistically
possible. In the experiments for MIN, there were no improv-
ing swaps possible on the same day (though there were some
for BOX). We report improving swaps that could have hap-
pened on any day to give an upper bound on the worst case
that could happen if we could store the kidneys.

Mean Number
of Swaps

Mean Number
of Patients

Mean Gain
in Welfare

MIN
Federal 3.90 (3.4) 3.59 (3.0) 0.1 (0.01)
State 314.12 (53.9) 181.4 (22.6) 3.81 (0.85)

BOX
Federal 24,548.6 (2,233.1) 937.83 (30.87) 14.18 (0.34)
State 23,555.6 (2,173.6) 934.62 (29.79) 14.18 (0.32)

Table 1: Mean number of Pareto improving swaps per patient,
mean number of patients who could participate in a swap,
and mean gain in welfare (standard deviation) for the four
treatments. The MIN, Federal algorithm achieves the greatest
efficiency and lowest frequency of opportunities for Pareto
improving trades amongst the patients.

The lower the numbers across the board in Table 1 for
the MIN algorithm shows that it is doing much better in
terms of welfare efficiency than BOX. It is encouraging to
see that the Federal exchanges result in significantly fewer
patients who would benefit from a Pareto swap. Additional
evidence for the quality of the MIN algorithm can be seen in
the CDF of |KDPI−EPTS| over all 1000 runs seen in Fig-
ure 5; the clear winner is MIN with the Federal treatment.
There is a vanishingly small probability of observing a value
of |KDPI−EPTS| larger than 10. Turning to the right side of
5, we see that, in fact, most of the efficiency loss is due to AB
organ transplants. As there are so few AB organs, it is hard to
match them in way that maximizes welfare.

Figure 5: Cumulative distribution function (CDF) of |KDPI−
EPTS|. The vertical axis shows the percentage of patients
who have a |KDPI−EPTS| below the value on the horizontal
axis. With the MIN, Federal treatment, 99% of agents receive
an organ where |KDPI − EPTS| < 5. Agents with a higher
|KDPI−EPTS| are almost all waiting for a rare AB organ.

Participation. We examined if patients can strategically de-
lay entrance into the market to improve their outcome. To do
this we took, for each of the 1000 iterations, the complete
set of transplants made during that iteration and checked if
a patient could receive a kidney for which they had higher
utility by declaring a later arrival time. We took each patient
p and checked if, in a future time step, a compatible kidney
arrives of better quality for p. If so, we check if p (1) could
have arrived before p′ who received the better kidney and (2)



p would have had priority greater than or equal to that of p′
where priority is determined by |KDPI−EPTS| for the MIN
algorithm and by placement in the same equivalence class for
the BOX algorithm. If so than we say p could have delayed
for an improvement in utility. This is a worst case measure,
we assume that p has full knowledge of all the kidneys that
arrive in the future and p wins tie breakers against p′.

Mean Num.
Patients De-
lay Improves

Mean Num.
of Improve-
ments/Patient

Mean Max
Improvement
in KDPI

MIN
Federal 138.2 (20.5) 2.7 (0.34) 3.0 (1.25)
State 269.3 (24.1) 2.5 (0.31) 9.2 (2.45)

BOX
Federal 960.5 (29.9) 169.5 (7.1) 50.9 (0.93)
State 928.8 (31.6) 40.6 (2.1) 49.6 (1.00)

Table 2: The mean number of patients who can delay and
improve their received organ, the mean number of improve-
ments per patient, and the mean of the maximum improve-
ment a patient could see for all 1000 iterations (standard de-
viation) for the four algorithmic treatments. The MIN, Fed-
eral algorithm often achieves allocations where KDPI=EPTS
which affords few opportunities for strategic participation.

Our results for participation are shown in Table 2, standard
deviations over 1000 runs in parenthesis. The MIN algorithm
is much less susceptible to manipulation from arriving later.
This is due to the large equivalence classes that are crated
by the BOX mechanism, which offer more opportunities for
optimistic manipulation. Additionally, the magnitude of the
improvement in KDPI of the transplanted kidney is enormous
for the BOX mechanism, indicating that arriving later can sig-
nificantly increase patient utility. Interestingly, we see an in-
crease in the number of patients that could manipulate in the
MIN, State treatment. This is likely due to the smaller pools
of patients and donors which leads to an increased disparity
between EPTS and KDPI of patient and donor, illustrated in
Figure 2, leading to an increase in the delay opportunity.

7 Related work
Online problems have been studied in computer science for
decades, the primary application area is online scheduling
[Albers, 2003]. Mechanism design concerns have been ex-
tensively addressed in the online scheduling literature [Porter,
2004] though online allocation has received less attention.

Online matching markets without money have been a
common area of study in computer science. Gujar and
Parkes [2010] study an online matching market where there is
no money, much like organ allocation, though only one side
of their market is dynamic. Another online matching market
was studied by Bosek et al. [2014]. In their model the market
incrementally increases in size and at each increase, a new
maximum stable matching must be found. In our work we
are not concerned with stability but fairness. Additionally, in
online organ matching, unlike general online matching, all
agents have a shared preference model and both sides of the
market are dynamic. Finally, Aleksandrov et al. [2015] con-
sider the online allocation problem faced by foodbanks. In

the foodbank problem, each charity is allocated multiple in-
divisible goods, not just one in organ matching. Additionally,
each charity can have arbitrary preferences, in organ match-
ing these preferences are shared. Finally, in the foodbank
problem, the charities being allocated items are fixed while
in organ matching both sides are dynamic.

Kidney exchanges have been extensively studied in the
economics [Roth et al., 2005; 2004], medical [Montgomery
et al., 2006], and computer science literatures [Dickerson et
al., 2012]. Axiomatic and fairness concerns have received at-
tention in the computer science literature in both theory and
practice [Dickerson et al., 2014]. Kidney exchanges have also
been studied in online settings [Awasthi and Sandholm, 2009]
and in predictive settings using machine learning techniques
[Dickerson and Sandholm, 2015]. Additional work in com-
puter science has also focused on strategyproof mechanisms
for kidney exchange at the patient and hospital level [Ashlagi
et al., 2015] and on merging kidney exchanges with other or-
gans such as lungs [Luo and Tang, 2015] and livers [Dick-
erson and Sandholm, 2016]. However, as we have pointed
out, the majority of kidney donations are performed from de-
ceased patients and the online version of the deceased donor
has historically received little attention.

A related line of work is determining what factors should
be included in the scores such as KDPI and EPTS. Bertsimas
et al. [2013] study the problem of using data driven methods
for finding national organ allocation policies. In general, they
adopt a statistical approach that designs policies that work
well on average based on historical data. By comparison, we
have taken a more axiomatic approach. The Organ and Tissue
Authority in Australia wish to use a new mechanism based
solely on blood/tissue type and KDPI/EPTS. This prevents
an approach like Bertsimas et al. [2013] where we compute
weights for terms going into KDPI/EPTS.

8 Conclusions
We have proposed a new mechanism, MIN for the online
matching of deceased organs to donors. We have compared
this with the current mechanism, BOX under consideration
by the Organ and Tissue authority of Australia. By running
experiments on historic data, we find that the MIN algorithm
outperforms the proposed BOX mechanism. There are sev-
eral directions for future work. We would, for example, like
to consider axiomatic properties like strategy-proofness, fair-
ness with respect to blood types, and states as well as issues
like egalitarian and utilitarian welfare. Additionally our em-
pirical evaluation of post-transplant success could incorporate
more complex features like those found in the SRTR.

Acknowledgements
Data61 is supported by the Australian Government through
the Department of Communications and the Australian Re-
search Council through the ICT Centre of Excellence Pro-
gram. Abdallah Saffidine is the recipient of an ARC DECRA
Fellowship (DE 150101351). Toby Walsh is supported by the
European Research Council and by AOARD Grant FA2386-
12-1-4056.



References
[Albers, 2003] S. Albers. Online algorithms: A survey.

Mathematical Programming, 97(1-2):3–26, 2003.
[Aleksandrov et al., 2015] M. Aleksandrov, H. Aziz,

S. Gaspers, and T. Walsh. Online fair division: Analysing
a food bank problem. In Proc. 24th IJCAI, 2015.

[Ashlagi et al., 2015] I. Ashlagi, F. Fischer, I. A. Kash, and
A. D. Procaccia. Mix and match: A strategyproof mecha-
nism for multi-hospital kidney exchange. Games and Eco-
nomic Behavior, 91:284–296, 2015.

[Awasthi and Sandholm, 2009] P. Awasthi and T. Sandholm.
Online stochastic optimization in the large: Application to
kidney exchange. In Proc. 21st IJCAI, 2009.

[Aziz et al., 2016] H. Aziz, C. Cahan, C. Gretton, P. Kilby,
N. Mattei, and T. Walsh. A study of proxies for shapley
allocations of transport costs. JAIR, 56:573–611, 2016.

[Bertsimas et al., 2013] D. Bertsimas, V. F. Farias, and
N. Trichakis. Fairness, efficiency, and flexibility in or-
gan allocation for kidney transplantation. Operations Re-
search, 61(1):73–87, 2013.

[Bosek et al., 2014] B. Bosek, D. Leniowski, P. Sankowski,
and A. Zych. Online bipartite matching in offline time. In
Proc. 55th FOCS Symposium, pages 384–393, 2014.

[Brandt et al., 2016] F. Brandt, V. Conitzer, U. Endriss,
J. Lang, and A. D. Procaccia, editors. Handbook of Com-
putational Social Choice. Cambridge University Press,
2016.

[Cohen, 1995] P. R. Cohen. Empirical Methods for Artificial
Intelligence. MIT Press, 1995.

[Dickerson and Sandholm, 2015] J. P. Dickerson and
T. Sandholm. Futurematch: Combining human value
judgments and machine learning to match in dynamic
environments. In Proc. 29th AAAI, pages 622–628, 2015.

[Dickerson and Sandholm, 2016] J. P. Dickerson and
T. Sandholm. Multi-organ exchange: The whole is greater
than the sum of its parts. JAIR, 2016.

[Dickerson et al., 2012] J. P. Dickerson, A. D. Procaccia, and
T. Sandholm. Optimizing kidney exchange with transplant
chains: Theory and reality. In Proc. 11th AAMAS, pages
711–718, 2012.

[Dickerson et al., 2014] J. P. Dickerson, A. D. Procaccia, and
T. Sandholm. Price of fairness in kidney exchange. In
Proc. 13th AAMAS, pages 1013–1020, 2014.

[Gujar and Parkes, 2010] S. Gujar and D. Parkes. Dynamic
matching with a fall-back option. In Proc. 19th ECAI,
pages 263–268, 2010.

[Luo and Tang, 2015] S. Luo and P. Tang. Mechanism de-
sign and implementation for lung exchange. In Proc. 24th
IJCAI, pages 209–215, 2015.

[Maschler et al., 2013] M. Maschler, E. Solan, and S. Zamir.
Game Theory. Cambridge University Press, 2013.

[Mattei and Walsh, 2013] N. Mattei and T. Walsh. Preflib:
A library for preferences, HTTP://WWW.PREFLIB.ORG. In
Proc. 3rd ADT, 2013.

[Montgomery et al., 2006] R. A. Montgomery, S. E. Gen-
try, W. H. Marks, D. S. Warren, J. Hiller, J. Houp, A. A.
Zachary, J. K. Melancon, W. R. Maley, H. Rabb, C. Simp-
kins, and D. L. Segev. Domino paired kidney donation:
a strategy to make best use of live non-directed donation.
The Lancet, 368(9533):419, 2006.

[Porter, 2004] R. Porter. Mechanism design for online real-
time scheduling. In Proc. 5th ACM-EC, pages 61–70,
2004.

[Roth et al., 2004] A. E. Roth, T. Sönmez, and M. U. Ünver.
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