
Flow-Based Propagators for the SEQUENCE
and Related Global Constraints?

Michael Maher1, Nina Narodytska1, Claude-Guy Quimper2, and Toby Walsh1

1 NICTA and UNSW, Sydney, Australia
2 Ecole Polytechnique de Montreal, Montreal, Canada

Abstract. We propose new filtering algorithms for the SEQUENCE constraint
and some extensions of the SEQUENCE constraint based on network flows. We
enforce domain consistency on the SEQUENCE constraint in O(n2) time down
a branch of the search tree. This improves upon the best existing domain con-
sistency algorithm by a factor of O(log n). The flows used in these algorithms
are derived from a linear program. Some of them differ from the flows used to
propagate global constraints like GCC since the domains of the variables are en-
coded as costs on the edges rather than capacities. Such flows are efficient for
maintaining bounds consistency over large domains and may be useful for other
global constraints.

1 Introduction

Graph based algorithms play a very important role in constraint programming, espe-
cially within propagators for global constraints. For example, Regin’s propagator for
the ALLDIFFERENT constraint is based on a perfect matching algorithm [1], whilst his
propagator for the GCC constraint is based on a network flow algorithm [2]. Both these
graph algorithms are derived from the bipartite value graph, in which nodes represent
variables and values, and edges represent domains. For example, the GCC propagator
finds a flow in such a graph in which each unit of flow represents the assignment of
a particular value to a variable. In this paper, we identify a new way to build graph
based propagators for global constraints: we convert the global constraint into a linear
program and then convert this into a network flow. These encodings contain several nov-
elties. For example, variables domain bounds can be encoded as costs along the edges.
We apply this approach to the SEQUENCE family of constraints. Our results widen the
class of global constraints which can be propagated using flow-based algorithms. We
conjecture that these methods will be useful to propagate other global constraints.

2 Background

A constraint satisfaction problem (CSP) consists of a set of variables, each with a finite
domain of values, and a set of constraints specifying allowed combinations of values

? NICTA is funded by the Australian Government as represented by the Department of Broad-
band, Communications and the Digital Economy and the Australian Research Council.

for subsets of variables. We use capital letters for variables (e.g. X , Y and S), and
lower case for values (e.g. d and di). A solution is an assignment of values to the vari-
ables satisfying the constraints. Constraint solvers typically explore partial assignments
enforcing a local consistency property using either specialized or general purpose prop-
agation algorithms. A support for a constraint C is a tuple that assigns a value to each
variable from its domain which satisfies C. A bounds support is a tuple that assigns
a value to each variable which is between the maximum and minimum in its domain
which satisfies C. A constraint is domain consistent (DC) iff for each variable Xi, every
value in the domain of Xi belongs to a support. A constraint is bounds consistent (BC)
iff for each variable Xi, there is a bounds support for the maximum and minimum value
in its domain. A CSP is DC/BC iff each constraint is DC/BC. A constraint is monotone
iff there exists a total ordering ≺ of the domain values such that for any two values v,
w if v ≺ w then v is substitutable for w in any support for C.

We also give some background on flows. A flow network is a weighted directed
graph G = (V, E) where each edge e has a capacity between non-negative integers l(e)
and u(e), and an integer cost w(e). A feasible flow in a flow network between a source
(s) and a sink (t), (s, t)-flow, is a function f : E → Z+ that satisfies two conditions:
f(e) ∈ [l(e), u(e)], ∀e ∈ E and the flow conservation law that ensures that the amount
of incoming flow should be equal to the amount of outgoing flow for all nodes except
the source and the sink. The value of a (s, t)-flow is the amount of flow leaving the sink
s. The cost of a flow f is w(f) =

∑
e∈E w(e)f(e). A minimum cost flow is a feasible

flow with the minimum cost. The Ford-Fulkerson algorithm can find a feasible flow in
O(φ(f)|E|) time. If w(e) ∈ Z, ∀e ∈ E, then a minimum cost feasible flow can be
found using the successive shortest path algorithm in O(φ(f)SPP) time, where SPP
is the complexity of finding a shortest path in the residual graph. Given a (s, t)-flow f
in G(V, E), the residual graph Gf is the directed graph (V,Ef), where Ef is

{e with cost w(e) and capacity 0..(u(e)− f(e)) | e = (u, v) ∈ E, f(e) < u(e)}
⋃

{e with cost − w(e) and capacity 0..(f(e)− l(e)) | e = (u, v) ∈ E, l(e) < f(e)}
There are other asymptotically faster but more complex algorithms for finding either
feasible or minimum-cost flows [3].

In our flow-based encodings, a consistency check will correspond to finding a fea-
sible or minimum cost flow. To enforce DC, we therefore need an algorithm that, given
a minimum cost flow of cost w(f) and an edge e checks if an extra unit flow can be
pushed (or removed) through the edge e and the cost of the resulting flow is less than
or equal to a given threshold T . We use the residual graph to construct such an algo-
rithm. Suppose we need to check if an extra unit flow can be pushed through an edge
e = (u, v). Let e′ = (u, v) be the corresponding arc in the residual graph. If w(e) = 0,
∀e ∈ E, then it is sufficient to compute strongly connected components (SCC) in the
residual graph. An extra unit flow can be pushed through an edge e iff both ends of
the edge e′ are in the same strongly connected component. If w(e) ∈ Z, ∀e ∈ E, the
shortest path p between v and u in the residual graph has to be computed. The minimal
cost of pushing an extra unit flow through an edge e equals w(f) + w(p) + w(e). If
w(f) + w(p) + w(e) > T , then we cannot push an extra unit through e. Similarly, we
can check if we can remove a unit flow through an edge.

2

3 The SEQUENCE Constraint

The SEQUENCE constraint was introduced by Beldiceanu and Contejean [4]. It con-
strains the number of values taken from a given set in any sequence of k variables. It
is useful in staff rostering to specify, for example, that every employee has at least 2
days off in any 7 day period. Another application is sequencing cars along a produc-
tion line (prob001 in CSPLib). It can specify, for example, that at most 1 in 3 cars
along the production line has a sun-roof. The SEQUENCE constraint can be defined in
terms of a conjunction of AMONG constraints. AMONG(l, u, [X1, . . . , Xk], v) holds iff
l ≤ |{i|Xi ∈ v}| ≤ u. That is, between l and u of the k variables take values in v.
The AMONG constraint can be encoded by channelling into 0/1 variables using Yi ↔
(Xi ∈ v) and l ≤ ∑k

i=1 Yi ≤ u. Since the constraint graph of this encoding is Berge-
acyclic, this does not hinder propagation. Consequently, we will simplify notation and
consider AMONG (and SEQUENCE) on 0/1 variables and v = {1}. If l = 0, AMONG
is an ATMOST constraint. ATMOST is monotone since, given a support, we also have
support for any larger assignment [5]. The SEQUENCE constraint is a conjunction of
overlapping AMONG constraints. More precisely, SEQUENCE(l, u, k, [X1, . . . , Xn], v)
holds iff for 1 ≤ i ≤ n− k + 1, AMONG(l, u, [Xi, . . . , Xi+k−1], v) holds. A sequence
like Xi, . . . , Xi+k−1 is a window. It is easy to see that this decomposition hinders prop-
agation. If l = 0, SEQUENCE is an ATMOSTSEQ constraint. Decomposition in this case
does not hinder propagation. Enforcing DC on the decomposition of an ATMOSTSEQ
constraint is equivalent to enforcing DC on the ATMOSTSEQ constraint [5].

Several filtering algorithms exist for SEQUENCE and related constraints. Regin and
Puget proposed a filtering algorithm for the Global Sequencing constraint (GSC) that
combines a SEQUENCE and a global cardinality constraint (GCC) [6]. Beldiceanu and
Carlsson suggested a greedy filtering algorithm for the CARDPATH constraint that can
be used to propagate the SEQUENCE constraint, but this may hinder propagation [7].
Regin decomposed GSC into a set of variable disjoint AMONG and GCC constraints [8].
Again, this hinders propagation. Bessiere et al. [5] encoded SEQUENCE using a SLIDE
constraint, and give a domain consistency propagator that runs in O(ndk−1) time. van
Hoeve et al. [9] proposed two filtering algorithms that establish domain consistency.
The first is based on an encoding into a REGULAR constraint and runs in O(n2k) time,
whilst the second is based on cumulative sums and runs in O(n3) time down a branch
of the search tree. Finally, Brand et al. [10] studied a number of different encodings of
the SEQUENCE constraint. Their asymptotically fastest encoding is based on separation
theory and enforces domain consistency in O(n2 log n) time down the whole branch of
a search tree. One of our contributions is to improve on this bound.

4 Flow-based Propagator for the SEQUENCE Constraint

We will convert the SEQUENCE constraint to a flow by means of a linear program
(LP). We shall use SEQUENCE(l, u, 3, [X1, . . . , X6], v) as a running example. We can

3

formulate this constraint simply and directly as an integer linear program:

l ≤ X1 + X2 + X3 ≤ u,

l ≤ X2 + X3 + X4 ≤ u,

l ≤ X3 + X4 + X5 ≤ u,

l ≤ X4 + X5 + X6 ≤ u

where Xi ∈ {0, 1}. By introducing surplus/slack variables, Yi and Zi, we convert this
to a set of equalities:

X1 + X2 + X3 − Y1 = l, X1 + X2 + X3 + Z1 = u,

X2 + X3 + X4 − Y2 = l, X2 + X3 + X4 + Z2 = u,

X3 + X4 + X5 − Y3 = l, X3 + X4 + X5 + Z3 = u,

X4 + X5 + X6 − Y4 = l, X4 + X5 + X6 + Z4 = u

where Yi, Zi ≥ 0. In matrix form, this is:




1 1 1 0 0 0 −1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 1 0 0 0 0 0 0
0 1 1 1 0 0 0 0 −1 0 0 0 0 0
0 1 1 1 0 0 0 0 0 1 0 0 0 0
0 0 1 1 1 0 0 0 0 0 −1 0 0 0
0 0 1 1 1 0 0 0 0 0 0 1 0 0
0 0 0 1 1 1 0 0 0 0 0 0 −1 0
0 0 0 1 1 1 0 0 0 0 0 0 0 1







X1

...
X6
Y1
Z1

...
Y4
Z4




=




l
u
l
u
l
u
l
u




This matrix has the consecutive ones property for columns: each column has a block
of consecutive 1’s or −1’s and the remaining elements are 0’s. Consequently, we can
apply the method of Veinott and Wagner [11] (also described in Application 9.6 of [3])
to simplify the problem. We create a zero last row and subtract the ith row from i + 1th
row for i = 1 to 2n. These operations do not change the set of solutions. This gives:




1 1 1 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0
−1 0 0 1 0 0 0 −1 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 −1 0 0 1 0 0 0 0 −1 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 −1 0 0 1 0 0 0 0 0 −1 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 −1 −1 −1 0 0 0 0 0 0 0 −1







X1

...
X6
Y1
Z1

...
Y4
Z4




=




l
u−l
l−u
u−l
l−u
u−l
l−u
u−l
−u




This matrix has a single 1 and −1 in each column. Hence, it describes a network
flow problem [3] on a graph G = (V, E) (that is, it is a network matrix). Each row
in the matrix corresponds to a node in V and each column corresponds to an edge in
E. Down each column, there is a single row i equal to 1 and a single row j equal to
-1 corresponding to an edge (i, j) ∈ E in the graph. We include a source node s and
a sink node t in V . Let b be the vector on the right hand side of the equation. If bi is
positive, then there is an edge (s, i) ∈ E that carries exactly bi amount of flow. If bi is
negative, there is an edge (i, t) ∈ E that caries exactly |bi| amount of flow. The bounds

4

on the variables, which are not expressed in the matrix, are represented as bounds on
the capacity of the corresponding edges.

The graph for the set of equations in the example is given in Figure 1. A flow
of value 4u − 3l in the graph corresponds to a solution. If a feasible flow sends a
unit flow through the edge labeled with Xi then Xi = 1 in the solution; otherwise
Xi = 0. Each even numbered vertex 2i represents a window. The way the incoming
flow is shared between yj and zj reflects how many variables Xi in the j’th window are
equal to 1. Odd numbered vertices represent transitions from one window to the next
(except for the first and last vertices, which represent transitions between a window and
nothing). An incoming X edge represents the variable omitted in the transition to the
next window, while an outgoing X edge represents the added variable.

1 2 3 4 5 6

X1[0,1]

7 8

X2 [0,1]

X3 [0,1]

9

X4 [0,1]

X5 [0,1]
X6 [0,1]

[l] [u
-l
]

[u
-l][u

-l]

[u
-l
]

[u-l]
[u

-l
]

[u-l] [u
]

4
u

-3
l

z1y1 z2 z3 z4y2 y3 y4

4
u

-3
l

Fig. 1. A flow graph for SEQUENCE(l, u, 3, [X1, . . . , X6], v)

Theorem 1. For any constraint SEQUENCE(l, u, k, [X1, . . . , Xn], v), there is an equiv-
alent network flow graph G = (V,E) with 5n − 4k + 5 edges, 2n − 2k + 3 + 2
vertices, a maximum edge capacity of u, and an amount of flow to send equal to
f = (n − k)(u − l) + u. There is a one-to-one correspondence between solutions
of the constraint and feasible flows in the network.

The time complexity of finding a maximum flow of value f is O(|E|f) us-
ing the Ford-Fulkerson algorithm [12]. Faster algorithms exist for this prob-
lem. For example, Goldberg and Rao’s algorithm finds a maximum flow in
O(min(|V |2/3, |E|1/2)|E| log(|V |2/|E| + 2) log C) time where C is the maximum
capacity upper bound for an edge [13]. In our case, this gives O(n3/2 log n log u) time
complexity. We follow Régin [1, 2] in the building of an incremental filtering algorithm
from the network flow formulation. A feasible flow in the graph gives us a support for
one value in each variable domain. Suppose Xk = v is in the solution that corresponds
to the feasible flow where v is either zero or one. To obtain a support for Xk = 1 − v,
we find the SCC of the residual graph and check if both ends of the edge labeled with

5

Xk are in the same strongly connected component. If so, Xk = 1−v has a support; oth-
erwise 1− v can be removed from the domain of Xk. Strongly connected components
can be found in linear time, because the number of nodes and edges in the flow network
for the SEQUENCE constraint is linear in n by Theorem 1. The total time complexity
for initially enforcing DC is O(n((n − k)(u − l) + u)) if we use the Ford-Fulkerson
algorithm or O(n3/2 log n log u) if we use Goldberg and Rao’s algorithm.

Still following Régin [1, 2], one can make the algorithm incremental. Suppose dur-
ing search Xi is fixed to value v. If the last computed flow was a support for Xi = v,
then there is no need to recompute the flow. We simply need to recompute the SCC in
the new residual graph and enforce DC in O(n) time. If the last computed flow is not
a support for Xi = v, we can find a cycle in the residual graph containing the edge
associated to Xi in O(n) time. By pushing a unit of flow over this cycle, we obtain a
flow that is a support for Xi = v. Enforcing DC can be done in O(n) after computing
the SCC. Consequently, there is an incremental cost of O(n) when a variable is fixed,
and the cost of enforcing DC down a branch of the search tree is O(n2).

5 Soft SEQUENCE Constraint

Soft forms of the SEQUENCE constraint may be useful in practice. The ROADEF 2005
challenge [14], which was proposed and sponsored by Renault, puts forward a vio-
lation measure for the SEQUENCE constraint which takes into account by how much
each AMONG constraint is violated. We therefore consider the soft global constraint,
SOFTSEQUENCE(l, u, k, T, [X1, . . . , Xn], v). This holds iff:

T ≥
n−k+1∑

i=1

max(l −
k−1∑

j=0

(Xi+j ∈ v),
k−1∑

j=0

(Xi+j ∈ v)− u, 0) (1)

As before, we can simplify notation and consider SOFTSEQUENCE on 0/1 variables and
v = {1}.

We again convert to a flow problem by means of a linear program, but this time with
an objective function. Consider SOFTSEQUENCE(l, u, 3, T, [X1, . . . , X6], v). We intro-
duce variables, Qi and Pi to represent the penalties that may arise from violating lower
and upper bounds respectively. We can then express this SOFTSEQUENCE constraint as
follows. The objective function gives a lower bound on T .

Minimize
4∑

i=1

(Pi + Qi) subject to :

X1 + X2 + X3 − Y1 + Q1 = l, X1 + X2 + X3 + Z1 − P1 = u,

X2 + X3 + X4 − Y2 + Q2 = l, X2 + X3 + X4 + Z2 − P2 = u,

X3 + X4 + X5 − Y3 + Q3 = l, X3 + X4 + X5 + Z3 − P3 = u,

X4 + X5 + X6 − Y4 + Q4 = l, X4 + X5 + X6 + Z3 − P4 = u

where Yi, Zi, Pi and Qi are non-negative. In matrix form, this is:

6

Minimize
∑4

i=1(Pi + Qi) subject to:




1 1 1 0 0 0 −1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0
0 1 1 1 0 0 0 0 −1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 −1 0 0 0 0
0 0 1 1 1 0 0 0 0 0 −1 0 0 0 0 0 0 0 1 0 0 0
0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 −1 0 0
0 0 0 1 1 1 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 1 0
0 0 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 −1







X1

...
X6
Y1
Z1

...
Y4
Z4
Q1
P1

...
Q4
P4




=




l
u
l
u
l
u
l
u




If we transform the matrix as before, we get a minimum cost network flow problem:

Minimize
∑4

i=1(Pi + Qi) subject to:




1 1 1 0 0 0 −1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 −1 −1 0 0 0 0 0 0
−1 0 0 1 0 0 0 −1 −1 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 −1 −1 0 0 0 0
0 −1 0 0 1 0 0 0 0 −1 −1 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 −1 −1 0 0
0 0 −1 0 0 1 0 0 0 0 0 −1 −1 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 −1 −1
0 0 0 −1 −1 −1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 1







X1

...
X6
Y1
Z1

...
Y4
Z4
Q1
P1

...
Q4
P4




=




l
u−l
l−u
u−l
l−u
u−l
l−u
u−l
−u




The flow graph G = (V, E) for this system is presented in Figure 2. Dashed edges
have cost 1, while other edges have cost 0. The minimal cost flow in the graph corre-
sponds to a minimal cost solution to the system of equations

Theorem 2. For any constraint SOFTSEQUENCE(l, u, k, T, [X1, . . . , Xn], v), there is
an equivalent network flow graph. There is a one-to-one correspondence between solu-
tions of the constraint and feasible flows of cost less than or equal to max(dom(T)).

Using Theorem 2, we construct a DC filtering algorithm for the SOFTSEQUENCE
constraint. The SOFTSEQUENCE constraint is DC iff the following conditions hold:

– value 1 belongs to dom(Xi), i = 1, . . . , n iff there exists a feasible flow of cost at
most max(dom(T)) that sends a unit flow through the edge labeled with Xi.

– value 0 belongs to dom(Xi), i = 1, . . . , n iff there exists a feasible flow of cost at
most max(dom(T)) that does not send any flow through the edge labeled with Xi.

– there exists a feasible flow of cost at most min(dom(T)).

The minimal cost flow can be found in O(|V ||E| log log U log |V |C) =
O(n2 log n log log u) time [3]. Consider the edge (u, v) in the residual graph associ-
ated to variable Xi and let k(u,v) be its residual cost. If the flow corresponds to an

7

1 2 3 4 5 6

X1[0,1]

7 8

X2 [0,1]

X3 [0,1]

9

X4 [0,1]

X5 [0,1]
X6 [0,1]

[l] [u
-l
]

[u
-l][u

-l]

[u
-l
]

[u-l]

[u
-l
]

[u-l]
[u

]

4
u

-3
l

z1y1 z2 z3 z4y2 y3 y4

4
u

-3
l

q1 q2 q3 q4
p1 p2 p3 p4

Fig. 2. A flow graph for SOFTSEQUENCE(l, u, 3, T, [X1, . . . , X6])

assignment with Xi = 0, pushing a unit of flow on (u, v) results in a solution with
Xi = 1. Symmetrically, if the flow corresponds to an assignment with Xi = 1, pushing
a unit of flow on (u, v) results in a solution with Xi = 0. If the shortest path in the
residual graph between v and u is k(v,u), then the shortest cycle that contains (u, v)
has length k(u,v) + k(v,u). Pushing a unit of flow through this cycle results in a flow of
cost c + k(u,v) + k(v,u) which is the minimum-cost flow that contains the edge (u, v).
If c + k(u,v) + k(v,u) > max(dom(T)), then no flows containing the edge (u, v) exist
with a cost smaller or equal to max(dom(T)). The variable Xi must therefore be fixed
to the value taken in the current flow. Following Equation 1, the cost of the variable T
must be no smaller than the cost of the solution. To enforce BC on the cost variable, we
increase the lower bound of dom(T) to the cost of the minimum flow in the graph G.

To enforce DC on the X variables efficiently we can use an all pairs shortest path
algorithm on the residual graph [15]. This takes O(n2 log n) time using Johnson’s al-
gorithm [12]. This gives an O(n2 log n log log u) time complexity to enforce DC on
SOFTSEQUENCE. The penalty variables used for SOFTSEQUENCE arise directly out of
the problem description and occur naturally in the LP formulation. We could also view
them as arising through the methodology of [16], where edges with costs are added to
the network graph for the hard constraint to represent the softened constraint.

6 Generalized SEQUENCE Constraint

To model real world problems, we may want to have different size or positioned win-
dows. For example, the window size in a rostering problem may depend on whether
it includes a weekend or not. An extension of the SEQUENCE constraint proposed in
[9] is that each AMONG constraint can have different parameters (start position, l, u,
and k). More precisely, GEN-SEQUENCE(p1, . . . , pm, [X1, X2, . . . , Xn], v) holds iff
AMONG(li, ui, ki, [Xsi , . . . , Xsi+ki−1], v) for 1 ≤ i ≤ m where pi = 〈li, ui, ki, si〉.
Whilst the methods in Section 4 easily extend to allow different bounds l and u for each
window, dealing with different windows is more difficult. In general, the matrix now

8

does not have the consecutive ones property. It may be possible to re-order the windows
to achieve the consecutive ones property. If such a re-ordering exists, it can be found
and performed in O(m + n + r) time, where r is the number of non-zero entries in the
matrix [17]. Even when re-ordering cannot achieve the consecutive ones property there
may, nevertheless, be an equivalent network matrix. Bixby and Cunningham [18] give a
procedure to find an equivalent network matrix, when it exists, in O(mr) time. Another
procedure is given in [19]. In these cases, the method in Section 4 can be applied to
propagate the GEN-SEQUENCE constraint in O(n2) time down the branch of a search
tree.

Not all GEN-SEQUENCE constraints can be expressed as network flows. Consider
the GEN-SEQUENCE constraint with n = 5, identical upper and lower bounds (l and
u), and 4 windows: [1,5], [2,4], [3,5], and [1,3]. We can express it as an integer linear
program:




1 1 1 1 1
−1 −1 −1 −1 −1
0 1 1 1 0
0 −1 −1 −1 0
0 0 1 1 1
0 0 −1 −1 −1
1 1 1 0 0
−1 −1 −1 0 0







X1
X2
X3
X4
X5


 ≥




l
−u
l
−u
l
−u
l
−u


 (2)

Applying the test described in Section 20.1 of [19] to Example 2, we find that the matrix
of this problem is not equivalent to any network matrix.

However, all GEN-SEQUENCE constraint matrices satisfy the weaker property of
total unimodularity. A matrix is totally unimodular iff every square non-singular sub-
matrix has a determinant of +1 or−1. The advantage of this property is that any totally
unimodular system of inequalities with integral constants is solvable in Z iff it is solv-
able in R.

Theorem 3. The matrix of the inequalities associated with GEN-SEQUENCE constraint
is totally unimodular.

In practice, only integral values for the bounds li and ui are used. Thus the consis-
tency of a GEN-SEQUENCE constraint can be determined via interior point algorithms
for LP in O(n3.5 log u) time. Using the failed literal test, we can enforce DC at a cost
of O(n5.5 log u) down the branch of a search tree for any GEN-SEQUENCE constraint.
This is too expensive to be practical. We can, instead, exploit the fact that the matrix for
each GEN-SEQUENCE constraint has the consecutive ones property for rows (before
the introduction of slack/surplus variables). Corresponding to the row transformation
for matrices with consecutive ones for columns is a change-of-variables transformation
into variable Sj =

∑j
i=1 Xi for matrices with consecutive ones for rows. This gives the

dual of a network matrix. This is the basis of an encoding of SEQUENCE in [10] (de-
noted there CD). Consequently that encoding extends to GEN-SEQUENCE. Adapting
the analysis in [10] to GEN-SEQUENCE, we can enforce DC in O(nm + n2 log n) time
down the branch of a search tree.

In summary, for a compilation cost of O(mr), we can enforce DC on a
GEN-SEQUENCE constraint in O(n2) down the branch of a search tree, when it has
a flow representation, and in O(nm + n2 log n) when it does not.

9

7 A SLIDINGSUM Constraint

The SLIDINGSUM constraint [20] is a generalization of the SEQUENCE constraint
from Boolean to integer variables, which we extend to allow arbitrary windows.
SLIDINGSUM ([X1, . . . , Xn], [p1, . . . , pm]) holds iff li ≤

∑si+ki−1
j=si

Xi ≤ ui holds
where pi = 〈li, ui, ki, si〉 is, as with the generalized SEQUENCE, a window. The con-
straint can be expressed as a linear program P called the primal where W is a matrix
encoding the inequalities. Since the constraint represents a satisfaction problem, we
minimize the constant 0. The dual D is however an optimization problem.

min 0


W
−W

I
−I


 X ≥




l
−u
a
−b







P

min
[−l u −a b

]
Y[

WT −WT I −I
]
Y = 0
Y ≥ 0




D (3)

Von Neumann’s Strong Duality Theorem states that if the primal and the dual prob-
lems are feasible, then they have the same objective value. Moreover, if the primal is
unsatisfiable, the dual is unbounded. The SLIDINGSUM constraint is thus satisfiable
if the objective function of the dual problem is zero. It is unsatisfiable if it tends to
negative infinity.

Note that the matrix WT has the consecutive ones property on the columns. The
dual problem can thus be converted to a network flow using the same transformation as
with the SEQUENCE constraint. Consider the dual LP of our running example:

Minimize −∑4
i=1 liYi +

∑4
i=1 uiY4+i −

∑5
i=1 aiY8+i +

∑5
i=1 biY13+i subject to:

(1 0 0 1 −1 0 0 −1 1 0 0 0 0 −1 0 0 0 0
1 1 0 1 −1 −1 0 −1 0 1 0 0 0 0 −1 0 0 0
1 1 1 1 −1 −1 −1 −1 0 0 1 0 0 0 0 −1 0 0
1 1 1 0 −1 −1 −1 0 0 0 0 1 0 0 0 0 −1 0
1 0 1 0 −1 0 −1 0 0 0 0 0 1 0 0 0 0 −1

)(
Y1

...
Y18

)
=

(
0
...
0

)

Our usual transformation will turn this into a network flow problem:

Minimize −∑4
i=1 liYi +

∑4
i=1 uiY4+i −

∑5
i=1 aiY8+i +

∑5
i=1 biY13+i subject to:




1 0 0 1 −1 0 0 −1 1 0 0 0 0 −1 0 0 0 0
0 1 0 0 0 −1 0 0 −1 1 0 0 0 1 −1 0 0 0
0 0 1 0 0 0 −1 0 0 −1 1 0 0 0 1 −1 0 0
0 0 0 −1 0 0 0 1 0 0 −1 1 0 0 0 1 −1 0
0 −1 0 0 0 1 0 0 0 0 0 −1 1 0 0 0 1 −1
−1 0 −1 0 1 0 1 0 0 0 0 0 −1 0 0 0 0 1




(
Y1

...
Y18

)
=

(
0
...
0

)

The flow associated with this example is given in Figure 3. There are n + 1 nodes
labelled from 1 to n + 1 where node i is connected to node i + 1 with an edge of cost
−ai and node i + 1 is connected to node i with an edge of cost bi. For each window pi,
we have an edge from si to si + ki with cost −li and an edge from si + ki to si with
cost ui. All nodes have a null supply and a null demand. A flow is therefore simply a
circulation i.e., an amount of flow pushed on the cycles of the graph.

10

1 2 3 4 5 6

 u
4 u

3

u
2

u
1

-l
2

-l
3

 -l
4

-l
1

b
1

-a
1

b
2

-a
2

b
3

-a
3

b
4

-a
4

b
5

-a
5

Fig. 3. Network flow associated to the SLIDINGSUM constraint posted on the running example.

Theorem 4. The SLIDINGSUM constraint is satisfiable if and only there are no nega-
tive cycles in the flow graph associated with the dual linear program.

Proof. If there is a negative cycle in the graph, then we can push an infinite amount of
flow resulting in a cost infinitely small. Hence the dual problem is unbounded, and the
primal is unsatisfiable. Suppose that there are no negative cycles in the graph. Pushing
any amount of flow over a cycle of positive cost results in a flow of cost greater than
zero. Such a flow is not optimal since the null flow has a smaller objective value. Push-
ing any amount of flow over a null cycle does not change the objective value. Therefore
the null flow is an optimal solution and since this solution is bounded, then the primal
is satisfiable. Note that the objective value of the dual (zero) is in this case equal to the
objective value of the primal. ut

Based on Theorem 4 we build a BC filtering algorithm for the SLIDINGSUM con-
straint. The SLIDINGSUM constraint is BC iff the following conditions hold:

– value ai is the lower bound of a variable Xi, i = 1, . . . , n iff ai is the smallest
value in the domain of Xi such that there are no negative cycles through the edge
weighted with −ai and labeled with the lower bound of Xi.

– value bi is the upper bound of a variable Xi, i = 1, . . . , n iff bi is the greatest
value in the domain of Xi such that there are no negative cycles through the edge
weighted with bi and labeled with the upper bound of Xi

The flow graph has O(n) nodes and O(n + m) edges. Testing whether there is a
negative cycle takes O(n2 + nm) time using the Bellman-Ford algorithm. We find for
each variable Xi the smallest (largest) value in its domain such that assigning this value
to Xi does not create a negative cycle. We compute the shortest path between all pairs
of nodes using Johnson’s algorithm in O(|V |2 log |V |+ |V ||E|) time which in our case
gives O(n2 log n + nm) time. Suppose that the shortest path between i and i + 1 has
length s(i, i + 1), then for the constraint to be satisfiable, we need bi + s(i, i + 1) ≥ 0.
Since bi is a value potentially taken by Xi, we need to have Xi ≥ −s(i, i + 1). We
therefore assign min(dom(Xi)) ← max(min(dom(Xi)),−s(i, i + 1)). Similarly, let
the length of the shortest path between i + 1 and i be s(i + 1, i). For the constraint to
be satisfiable, we need s(i + 1, i) − ai ≥ 0. Since ai is a value potentially taken by

11

Xi, we have Xi ≤ s(i + 1, i). We assign max(Xi) ← min(max(Xi), s(i + 1, i)). It
is not hard to prove this is sound and complete, removing all values that cause negative
cycles. Following [10], we can make the propagator incremental using the algorithm
by Cotton and Maler [21] to maintain the shortest path between |P | pairs of nodes in
O(|E| + |V | log |V | + |P |) time upon edge reduction. Each time a lower bound ai is
increased or an upper bound bi is decreased, the shortest paths can be recomputed in
O(m + n log n) time.

8 Experimental Results

To evaluate the performance of our filtering algorithms we carried out a series of ex-
periments on random problems. The experimental setup is similar to that in [10]. The
first set of experiments compares performance of the flow-based propagator FB on
single instance of the SEQUENCE constraint against the HPRS propagator3 (the third
propagator in [9]), the CS encoding of [10], and the AMONG decomposition (AD) of
SEQUENCE. The second set of experiments compares the flow-based propagator FBS

for the SOFTSEQUENCE constraint and its decomposition into soft AMONG constraints.
Experiments were run with ILOG 6.1 on an Intel Xeon 4 CPU, 2.0 Ghz, 4G RAM. Boost
graph library version 1.34.1 was used to implement the flow-based algorithms.

500 1000 2000 3000 4000 5000
0

100

200
∆ = 1, k =7

AD
CS
HPRS
FB

500 1000 2000 3000 4000 5000
0

100

200
∆ = 1, k =15

T
im

e(
se

c)

500 1000 2000 3000 4000 5000
0

100

200
∆ = 1, k =50

The number of variables (n)

500 1000 2000 3000 4000 5000
0

100

200
∆ = 5, k =7

500 1000 2000 3000 4000 5000
0

100

200
∆ = 5, k =15

T
im

e(
se

c)

500 1000 2000 3000 4000 5000
0

100

200
∆ = 5, k =50

The number of variables (n)

Fig. 4. Randomly generated instances with a single SEQUENCE constraints for different combinations of ∆ and k.

8.1 The SEQUENCE constraint

For each possible combination of n ∈ {500, 1000, 2000, 3000, 4000, 5000}, k ∈
{5, 15, 50}, ∆ = u − l ∈ {1, 5}, we generated twenty instances with random lower
bounds in the interval (0, k − ∆). We used random value and variable ordering and a
time out of 300 sec. We used the Ford-Fulkerson algorithm to find a maximum flow. Re-
sults for different values of ∆ are presented in Tables 1, 2 and Figure 4. Table 1 shows
results for tight problems with ∆ = 1 and Table 2 for easy problems with ∆ = 5.

3 We would like to thank Willem-Jan van Hoeve for providing us with the implementation of
the HPRS algorithm.

12

To investiage empirically the asymptotic growth of the different propagators, we plot
average time to solve 20 instances against the instance size for each combination of
parameters k and ∆ in Figure 4. First of all, we notice that the CS encoding is the best
on hard instances (∆ = 1) and the AD decomposition is the fastest on easy instances
(∆ = 5). This result was first observed in [10]. The FB propagator is not the fastest
one but has the most robust performance. It is sensitive only to the value of n and not to
other parameters, like the length of the window(k) or hardness of the problem(∆). As
can be seen from Figure 4, the FB propagator scales better than the other propagators
with the size of the problem. It appears to grow linearly with the number of variables,
while the HPRS propagator display quadratic growth.

Table 1. Randomly generated instances with a single SEQUENCE constraint and ∆ = 1. Number of instances solved in
300 sec / average time to solve. We omit results for n ∈ {1000, 3000, 4000} due to space limitation. The summary rows
include all instances.

n k AD CS HPRS FB

500 7 8 / 2.13 20 / 0.13 20 / 0.35 20 / 0.30
15 6 / 0.01 20 / 0.09 20 / 0.30 20 / 0.29
50 2 / 0.02 20 / 0.07 20 / 0.26 20 / 0.28

2000 7 4 / 0.04 20 / 4.25 20 / 18.52 20 / 4.76
15 0 /0 20 / 1.84 20 / 15.19 20 / 4.56
50 1 /0 20 / 1.16 20 / 13.24 20 / 4.42

5000 7 1 /0 20 / 64.05 15 / 262.17 20 / 36.09
15 0 /0 20 / 24.46 17 / 211.17 20 / 34.59
50 0 /0 20 / 8.24 19 / 146.63 20 / 31.66

TOTALS
solved/total 37 /360 360 /360 351 /360 360 /360

avg time for solved 0.517 9.943 60.973 11.874
avg bt for solved 17761 429 0 0

Table 2. Randomly generated instances with a single SEQUENCE constraint and ∆ = 5. Number of instances solved in
300 sec / average time to solve. We omit results for n ∈ {1000, 3000, 4000} due to space limitation. The summary rows
include all instances.

n k AD CS HPRS FB

500 7 20 / 0.01 20 / 0.58 20 / 0.15 20 / 0.44
15 20 / 0.01 20 / 0.69 20 / 0.25 20 / 0.44
50 18 / 0.02 20 / 0.20 20 / 0.37 20 / 0.42

2000 7 20 / 0.07 20 / 32.41 20 / 7.19 20 / 6.62
15 20 / 0.07 20 / 39.71 20 / 14.89 20 / 6.63
50 5 / 5.19 20 / 9.52 20 / 13.71 20 / 6.94

5000 7 20 / 0.36 0 /0 20 / 109.18 20 / 46.42
15 20 / 0.36 6 / 160.99 17 / 215.97 20 / 45.97
50 9 / 0.48 20 / 108.34 11 / 210.53 20 / 44.88

TOTALS
solved/total 296 /360 308 /360 345 /360 360 /360

avg time for solved 0.236 52.708 50.698 16.200
avg bt for solved 888 1053 0 0

8.2 The Soft SEQUENCE constraint

We evaluated performance of the soft SEQUENCE constraint on random problems. For
each possible combination of n ∈ {50, 100}, k ∈ {5, 15, 25}, ∆ = {1, 5} and m ∈ {4}
(where m is the number of SEQUENCE constraints), we generated twenty random in-
stances. All variables had domains of size 5. An instance was obtained by selecting ran-
dom lower bounds in the interval (0, k−∆). We excluded instances where

∑m
i=1 li ≥ k

13

to avoid unsatisfiable instances. We used a random variable and value ordering, and a
time-out of 300 sec. All SEQUENCE constraints were enforced on disjoint sets of cardi-
nality one. Instances with ∆ = 1 are hard instances for SEQUENCE propagators [10], so
that any DC propagator could solve only few instances. Instances with ∆ = 5 are much
looser problems, but they are still hard do solve because each instance includes four
overlapping SEQUENCE constraints. To relax these instances, we allow the SEQUENCE
constraint to be violated with a cost that has to be less than or equal to 15% of the
length of the sequence. Experimental results are presented in Table 3. As can be seen
from the table, the FBS algorithms is competitive with the decomposition into soft
AMONG constraints on relatively easy problems and outperforms the decomposition on
hard problems in terms of the number of solved problems.

We observed that the flow-based propagator for the SOFTSEQUENCE constraint
(FBS) is very slow. Note that the number of backtracks of FBS is three order of mag-
nitudes smaller compared to ADS . We profiled the algorithm and found that it spends
most of the time performing the all pairs shortest path algorithm. Unfortunately, this is
difficult to compute incrementally because the residual graph can be different on every
invocation of the propagator.

Table 3. Randomly generated instances with 4 soft SEQUENCEs. Number of instances solved in 300 sec / average time to
solve.

∆ = 1 ∆ = 5
n k ADS FBS ADS FBS

50 7 6 / 19.30 7 / 27.91 20 / 0.01 20 / 2.17
15 8 / 36.07 13 / 20.41 11 / 49.49 10 / 30.51
25 6 / 0.73 10 / 23.27 10 / 6.40 10 / 7.41

100 7 1 /0 3 / 7.56 19 / 10.50 18 / 16.51
15 0 /0 5 / 6.90 3 / 0.01 3 / 7.20
25 0 /0 5 / 4.96 5 / 19.07 5 / 23.99

TOTALS
solved/total 21 /120 43 /120 68 /120 66 /120

avg time for solved 19.463 18.034 13.286 13.051
avg bt for solved 245245 343 147434 128

9 Conclusion

We have proposed new filtering algorithms for the SEQUENCE constraint and several
extensions including the soft SEQUENCE and generalized SEQUENCE constraints which
are based on network flows. Our propagator for the SEQUENCE constraint enforces do-
main consistency in O(n2) time down a branch of the search tree. This improves upon
the best existing domain consistency algorithm by a factor of O(log n). We also intro-
duced a soft version of the SEQUENCE constraint and propose an O(n2 log n log log u)
time domain consistency algorithm based on minimum cost network flows. These al-
gorithms are derived from linear programs which represent a network flow. They differ
from the flows used to propagate global constraints like GCC since the domains of the
variables are encoded as costs on the edges rather than capacities. Such flows are ef-
ficient for maintaining bounds consistency over large domains. Experimental results
demonstrate that the FB filtering algorithm is more robust than existing propagators.
We conjecture that similar flow based propagators derived from linear programs may
be useful for other global constraints.

14

References

1. Régin, J.C.: A filtering algorithm for constraints of difference in csps. In: Proc. of the 12th
National Conf. on AI (AAAI’94). Volume 1. (1994) 362–367

2. Régin, J.C.: Generalized arc consistency for global cardinality constraint. In: Proc. of the
12th National Conf. on AI (AAAI’96). (1996) 209–215

3. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applica-
tions. Prentice Hall (1993)

4. Beldiceanu, N., Contejean, E.: Introducing global constraints in CHIP. Mathematical and
Computer Modelling 12 (1994) 97–123

5. Bessiere, C., Hebrard, E., Hnich, B., Kiziltan, Z., Walsh, T.: The slide meta-constraint.
Technical report (2007)

6. Régin, J.C., Puget, J.F.: A filtering algorithm for global sequencing constraints. In: Proc. of
the 3th Int. Conf. on Principles and Practice of Constraint Programming. (1997) 32–46

7. Beldiceanu, N., Carlsson, M.: Revisiting the cardinality operator and introducing cardinality-
path constraint family. In: Proc. of the Int. Conf. on Logic Programming. (2001) 59–73

8. Régin, J.C.: Combination of among and cardinality constraints. In: Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimization Problems, Second
International Conference. Volume 3524., Springer (2005) 288–303

9. Hoeve, W.J.v., Pesant, G., Rousseau, L.M., Sabharwal, A.: Revisiting the sequence con-
straint. In: Proc. of the 12th Int. Conf. on Principles and Practice of Constraint Programming.
(2006) 620–634

10. Brand, S., Narodytska, N., Quimper, C.G., Stuckey, P., Walsh, T.: Encodings of the sequence
constraint. In: Proc. of the 13th Int. Conf. on Principles and Practices of Constraint Program-
ming. Volume 4741. (2007) 210–224

11. A.F. Veinott, J., Wagner, H.: Optimal capacity scheduling I. Operations Research 10(4)
(1962) 518–532

12. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, Second
Edition. The MIT Press (2001)

13. Goldberg, A.V., Rao, S.: Beyond the flow decomposition barrier. J. ACM 45 (1998) 753–782
14. Solnon, C., Cung, V.D., Nguyen, A., Artigues, C.: The car sequencing problem: overview of

state-of-the-art methods and industrial case-study of the ROADEF’2005 challenge problem.
European Journal of Operational Research (EJOR) (2008) In press.

15. Régin, J.C.: Arc consistency for global cardinality constraints with costs. In: Proceedings of
the 5th International Conference on Principles and Practice of Constraint Programming (CP
’99), Springer-Verlag (1999) 390–404

16. van Hoeve, W.J., Pesant, G., Rousseau, L.M.: On global warming: Flow-based soft global
constraints. J. Heuristics 12(4-5) (2006) 347–373

17. Booth, K., Lueker, G.: Testing for the consecutive ones property, interval graphs and graph
planarity using PQ-tree algorithms. Journal of Computer and Systems Sciences 13 (1976)
335–379

18. Bixby, R., Cunningham, W.: Converting linear programs to network problems. Mathematics
of Operations Research 5 (1980) 321–357

19. Schrijver, A.: Theory of linear and integer programming. John Wiley & Sons, Inc. (1986)
20. Beldiceanu, N.: Global constraint catalog. T-2005-08, SICS Technical Report (2005)
21. Cotton, S., Maler, O.: Fast and flexible difference constraint propagation for DPLL(T). In:

Proc. of Theory and Applications of Satisfiability Testing (SAT-2006). (2006) 170–183

15

