
Mechanisms for
Stability and Welfare:
Increasing Cooperation among

Self-interested Agents

Reshef Meir
School of Engineering and Applied Science

Harvard University

ii R. Meir

Published by

AI Access
AI Access is a not-for-profit publisher with a highly respected scientific board

that publishes open access monographs and collected works. Our text are
available electronically for free and in hard copy at close to cost. We welcome

proposals for new texts.

c©Reshef Meir 2014

ISBN 978-1-291-97962-6

AI Access
Managing editor: Toby Walsh
Monograph editor: Kristian Kersting
Collected works editor: Pascal Poupart
URL: aiaccess.org

Mechanisms for Stability and Welfare iii

Contents

Contents iii

1 Introduction 1
1.1 Background . 1

1.1.1 Voting mechanisms . 3
1.1.2 Auctions . 3
1.1.3 Mechanisms without money . 4
1.1.4 Taxes and subsidies . 4

1.2 Thesis Outline and Main Results . 5
1.3 Bibliographic Notes . 6

1.3.1 Papers not included in the thesis . 7

2 Preliminaries 9
2.1 Non-cooperative Games . 9

2.1.1 Mechanisms . 11
2.1.2 Voting rules . 11

2.2 Cooperative Games . 12
2.2.1 Coalition structures . 13
2.2.2 Subclasses of TU Games . 14

I Stability 17

3 The Cost of Stability 19
3.1 Introduction . 19

3.1.1 Results in this Chapter . 20
3.2 Preliminaries . 20

3.2.1 The Cost of Stability . 20
3.2.2 Cost of Stability: A Linear Programming Formulation 22

3.3 Bounds on the Cost of Stability . 23
3.3.1 The Cost of Stability in Profit-Sharing Games 23
3.3.2 The Cost of Stability of Expense-Sharing Games 24

3.4 The Cost of Stability and the Least Core . 26
3.4.1 The Strong Least Core . 27
3.4.2 The Weak Least Core . 29

3.5 The Cost of Stability in Games with Coalition Structures 29

iv R. Meir

3.5.1 Subsidizing the socially optimal coalition structure 30
3.6 Related Work . 31
3.7 Conclusion . 32

4 Subsidies, Stability, and Restricted Cooperation 33
4.1 Introduction . 33

4.1.1 Related Work . 34
4.1.2 Results in this chapter . 34

4.2 Preliminaries . 35
4.2.1 Interaction graphs and their treewidth . 35
4.2.2 Cost of stability and the degree of H . 36

4.3 Treewidth and the Cost of Stability . 36
4.3.1 Simple Games . 36
4.3.2 The General Case . 38
4.3.3 Tightness . 39

4.4 Pathwidth and the Cost of Stability . 40
4.5 Implications for Games on Graphs . 41
4.6 Structure and Computational Complexity . 41
4.7 Conclusion . 42

5 Convergence of Iterative Voting 45
5.1 Introduction . 45

5.1.1 Results in this Chapter . 46
5.2 Preliminaries . 46

5.2.1 Incentives . 47
5.2.2 Manipulation and Stability . 48
5.2.3 Game Dynamics . 49
5.2.4 Types of moves . 49

5.3 Deterministic Tie-Breaking . 50
5.3.1 Weighted voters . 51

5.4 Randomized Tie-Breaking . 51
5.5 Truth-Biased Agents . 52
5.6 Related Work . 53
5.7 Conclusion . 54

6 Stability Scores 57
6.1 Introduction . 57

6.1.1 Related work . 58
6.1.2 Results in this chapter . 59

6.2 Preliminaries . 59
6.3 Resource Selection Games . 60

6.3.1 Counting deviations: an example . 60
6.3.2 Bounding stability scores in two-step RSG 61
6.3.3 SRSGs with multiple steps . 62

6.4 Stability Scores in Ad Auctions . 62
6.4.1 Ad auctions: model and notations . 62
6.4.2 Deviations in VCG . 63

Mechanisms for Stability and Welfare v

6.4.3 Deviations in GSP . 64
6.5 Plurality Voting . 68
6.6 Conclusion . 69

II Welfare 71

7 Mechanism Design without Money I 73
7.1 Introduction . 73

7.1.1 Recent related work . 74
7.1.2 Results in this chapter . 75

7.2 Preliminaries . 75
7.2.1 Mechanisms . 75

7.3 Deterministic Mechanisms on a Line . 77
7.3.1 Descriptive and axiomatic characterizations 79

7.4 Deterministic Mechanisms on a Cycle . 79
7.4.1 Two agents on the cycle . 80
7.4.2 Multiple agents on the cycle . 82
7.4.3 Small cycles . 82
7.4.4 Implications of the main theorem . 83

7.5 Randomized Mechanisms for Metric Spaces . 84
7.5.1 Improving the upper bound for weighted agents 84

8 Mechanism Design without Money II 87
8.1 Introduction . 87

8.1.1 Previous work . 88
8.1.2 Results in this Chapter . 88

8.2 Preliminaries . 89
8.2.1 Binary classification . 89
8.2.2 The binary cube . 90

8.3 Embedding Line and Cycle Graphs in the Cube 90
8.3.1 Alternative characterization for SP mechanisms on lines 90
8.3.2 Full characterization of SP mechanism on the cycle 91

8.4 Binary Classification as Facility Location on a Cube 91
8.4.1 Transferring upper bounds and lower bounds across domains 92
8.4.2 A lower bound for classification . 93

8.5 Conclusion . 93

9 Parking Allocation and Online Matching 95
9.1 Introduction . 95

9.1.1 Related work . 96
9.1.2 Results in this chapter . 97

9.2 Preliminaries . 98
9.3 General Observations . 100
9.4 Parking at a Fixed Cost within the Maximal Distance 101

9.4.1 Two goals on an interval . 101
9.4.2 General structures . 103

vi R. Meir

9.5 Parking at a Cost that is Linear in the Distance . 104
9.5.1 Parking as a position auction . 105

9.6 Conclusion . 107

10 Conclusions and Future Work 109

III Appendices 113

A Proofs for Chapter 3 115
A.1 Proofs for Section 3.3 . 115
A.2 Proofs for Section 3.4 . 118
A.3 Proofs for Section 3.5 . 121

B Proofs for Chapter 4 123
B.1 Proofs for Section 4.3 . 124
B.2 Proofs for Section 4.4 . 125
B.3 Computational Complexity . 126

C Proofs for Chapter 5 129

D Proofs for Chapter 6 133
D.1 Proofs for Section 6.3 . 133
D.2 Proofs for Section 6.4 . 135

D.2.1 Characterizing pair deviations . 135
D.2.2 Counting pair deviations . 136
D.2.3 Counting deviations of large coalitions 139

D.3 Eliminating Group Deviations . 142
D.3.1 VCG with a reserve price . 142
D.3.2 GSP with a reserve price . 143

E Proofs for Chapter 7 145
E.1 Proofs for Section 7.3 . 145
E.2 Proofs for Section 7.4 . 147

E.2.1 Two agents . 148
E.2.2 Three agents . 151
E.2.3 Small cycles . 154

E.3 Proofs for Section 7.5 . 156

F Proofs for Chapter 8 161

G Proofs for Chapter 9 163
G.1 Proofs for Section 9.4 . 163
G.2 Proofs for Section 9.5 . 167

Bibliography 169

Acknowledgements

This monograph was submitted as the thesis for a PhD degree at the School of Computer Science
and Engineering of The Hebrew University in Jerusalem, Israel, under the supervision of Prof.
Jeffrey S. Rosenschein. The thesis won the Max Schlomiuk award from the Hebrew University
of Jerusalem, and received an Honourable Mention for the IFAAMAS Victor Lesser Distinguished
Dissertation Award.

I am grateful to my coauthors and to other people who enlightened me with their comments,
read the drafts, found errors, or otherwise contributed: Omri Abend, Noga Alon, Yossi Azar, Shaull
Almagor, Yoram Bachrach, Craig Boutilier, Niv Buchbinder, Yiling Chen, Vince Conitzer, Elad
Dokow, Edith Elkind, Piotr Faliszewski, Uri Feige, Moran Feldman, Amos Fiat, Kobi Gal, Nick
Jennings, Gil Kalai, Omer Lev, Kevin Leyton-Brown, Yoad Lewenberg, Tyler Lu, Zur Luria, Enrico
Malizia, Assaf Michaely, Noam Nisan, Renato Paes-Leme, Maria Polukarov, Nir Potchter, Tim
Roughgarden, Toumas Sandholm, Peter Stone, Lirong Xia, Yair Zick (who also made the great
figures in Chapter 4), Aviv Zohar, Michael Zuckerman, and a long list of anonymous referees.

I thank Ofek Birnholtz for saving me precious hours by scaring me off Facebook.

Special thanks to Ariel Procaccia, Michal Feldman and Ilan Nehama for countless hours of
discussions and numerous enlightening comments.

To Moshe Tennenholtz, my boss, who gave me the opportunity to spend my entire time on
research, and saw to it that this time will always be filled with open problems to work on. Microsoft
Research rocks!

To Jeff Rosenschein, my advisor, for being the perfect advisor for over 8 years, giving endless
support and just the right amount of guidance. Jeff is the main reason that my PhD was both an
important experience and fun (yes, grad school can be fun). Above all, I thank Jeff for opening the
gates of academia and showing me the path from being a student into being a scholar.

Last but certainly not least, my PhD is dedicated to my loving wife Adi, who on top of being
extremely supportive in high and low times, is a true companion to my intellectual and academic
life. With her philosophy, unyielding logic, and merciless comments on my half-baked ideas and
drafts, Adi makes me a better researcher. Adi, you earned this thesis.

2 R. Meir

Mechanisms for Stability and Welfare 3

Abstract

Too often an interaction among self-interested parties—be it human decision makers, firms, or auto-
mated agents—leads to an outcome that is not in the best interest of any of them. Examples include
group decisions that are biased due to personal interests, collapse of public projects, congestion of
roads and online networks, and so on.

In this thesis I look at such interactions as games, so that the loss of stability and welfare can be
measured and studied using the standard concepts of game theory (such as equilibrium and utility).
I then study and design mechanisms that alter these games in order to induce more cooperation,
stable outcomes, and higher utility for the participants—who are still assumed to each pursue their
best personal interests.

My research spans multiple domains, aiming for two primary goals. Part I of the thesis is about
mechanisms that increase stability. This part covers subsidies in cooperative games, restricted co-
operation with and without explicit social models, and iterative models of voting. New notions
of individual and coalitional stability are introduced, in order to better understand the likely out-
comes of studied interactions, and mechanisms are presented in order to achieve higher stability in
corresponding games.

Part II of the thesis is dedicated to welfare. I look for mechanisms that are truthful on the one
hand (i.e. where all participants are better off reporting their true preferences), and approximately
optimal on the other hand. I start with mechanisms for public facility location, supervised learning
and other domains, showing the best approximation ratio of the optimal outcome (for society) that
a truthful mechanism can achieve. Finally, several approximately optimal pricing mechanisms for
parking allocation are presented, that are practical and simple to implement.

In the closing chapter I discuss some of the global questions that arise throughout the work, and
suggest some directions that could promote the design of mechanisms for stability and welfare.

4 R. Meir

Mechanisms for Stability and Welfare 1

Chapter 1

Introduction

In the well-known Prisoner’s Dilemma, two people that behave in the only rational way end up in
the worst possible outcome (see Example 2.1 for details). Unfortunately, this example is a useful
analogy for many situations in real life, where individually rational behavior leads to problems for
society.

Game theory is a branch of mathematics that seeks to model situations of conflict as games,
which can in turn be formally analyzed. Even though important aspects of the actual interaction or
conflict might be abstracted away in the modeling process, the analysis of the formal model may
still help us to predict what players would or should do, as in the analogy of the Prisoner’s Dilemma
above. Mechanisms are games designed with a particular purpose, so that players interacting via
the mechanism will end up in a particular outcome that the designer sees as desirable.

Why are mechanisms required? Adam Smith’s [1776] “invisible hand” approach asserts that
when multiple self-interested parties each pursue their individual goals without any central inter-
vention, the parties will converge to a socially desirable state. In the language of game theory,
such an outcome can be thought of as a good equilibrium (see below). However, while decentral-
ized markets can sometimes lead to high welfare for the participants, Smith was overly optimistic.
Numerous events—like projects that collapse due to disagreements, and groups who fail to reach
a joint decision—show that interactions do not always converge, and an equilibrium may not be
reached.

Moreover, even the simple example of the Prisoner’s Dilemma vividly demonstrates that sta-
bility by itself is not a guaranty of a good outcome (in terms of welfare or in other terms). Some
equilibria may be better than others, and sometimes all equilibria are bad. Thus, competition often
quells cooperation, and outcomes may be undesirable and even disastrous for society.

This is where I see the main role of mechanism design, in injecting just the right amount of
intervention required to induce cooperation among self-interested parties. My approach in this
work is to analyze, to modify, and to develop new mechanisms for various problems, in order to
promote stability and social welfare. This approach will be described in detail after providing some
background on the origins and current state of mechanism design.

1.1 Background
Two if the most fundamental concepts to game theory are utility and self-interest—that is, the
assumptions that there is a single number that reflects the value of an outcome to each player,

2 R. Meir

and that every player acts strategically in order to maximize this value. A non-cooperative game
is simply a description of the utilities that follow from any combination of players’ actions [von
Neumann and Morgenstern, 1944].

Utilities facilitate the natural definition of the next key concept of game theory, which is equilib-
rium. The most studied type of equilibrium in non-cooperative games—Nash equilibrium (NE)—is
a state where no player can increase her utility by deviating from her current action, provided that
all other players also keep their current actions. Since in every non-equilibrium state there is at
least one player that can improve her utility, the common assumption is that players will end up in
an equilibrium state, if one exists.

Cooperative games are also founded on the basic concepts of utility and self-interest, but pro-
vide a different abstraction level that focuses on the utilities that coalitions of players may gain
by cooperating, and on how these gains should be shared. The prominent equilibrium notion in
cooperative games is the core, where all possible subcoalitions are satisfied with their share of the
gain.

Research in game theory focuses on characterizing and identifying equilibrium states in games,
on defining new solution concepts (typically various equilibrium notions, see Chapter 2), and on
studying the dynamics that lead the players to end up in one equilibrium state or another.

Mechanism design Mechanism design is sometimes called “reverse game theory” [Papadim-
itriou, 2005; Rahwan and Larson, 2009], as its starting point is a desired outcome, and the goal is
to design a game (or to modify an existing game) such that this outcome emerges as a prominent or
unique equilibrium.

Modern work in mechanism design started with the modeling of situations where a central
authority is trying to achieve some goal (typically maximizing the social welfare or its own rev-
enue), relying on information gathered from self-interested agents. Such mechanisms—for voting
procedures, resource allocation, auctions, etc.—induce games where players each report their in-
formation or preferences. As players may report false information in order to achieve a better
outcome for themselves, the designer tries to incentivize the players to report truthfully (or in some
other way that will support the designer’s goal), by properly setting the rules of the game (see, e.g.,
[Varian, 1995; Nisan, 2007; Hartline, 2011]).

A more general approach to mechanism design is not restricted to mechanisms that aggregate
information, but rather sees any game as a mechanism (see e.g., [Papadimitriou, 2001; Maskin,
2008]). Thus a game may be designed in order to elicit truthful information (as above), but also to
incentivize all kinds of behavior that the designer cannot directly control. The tools at the disposal
of the designer may include monetary payments (like taxes and bonuses), revealing or hiding in-
formation from players, restricting the actions available to players, etc. Indeed, the second, more
general approach is the one I follow in this thesis.

Computational mechanism design With the rapid delegation of decision making to automated
agents, the role of game theory and mechanism design within artificial intelligence is becoming
increasingly important. In particular, game-theoretic principles must be taken into account in the
design of systems and environments in which agents operate (human and automated alike) [Roth,
2002; Dash et al., 2003]. For example, crafting a proper protocol for negotiation among automated
agents can guarantee that they will reach a better agreement, and faster [Rosenschein and Zlotkin,
1994].

In the other direction, runtime considerations and other limitations of computerized and net-
worked systems are crucial in the implementation of mechanisms that interact with a large number
of agents. For example, algorithms for computing an equilibrium, for setting appropriate payments

Mechanisms for Stability and Welfare 3

or allocations, or for learning players’ behavior and preferences are an integral part of many mech-
anism design challenges. Furthermore, techniques from computer science (such as approximation)
appear to be useful in answering economic and game-theoretic questions. See [Nisan et al., 2007]
for detailed discussions.

1.1.1 Voting mechanisms

Voting procedures are perhaps the simplest and oldest form of mechanisms, with roots in the 18th
century and even before [de Borda, 1781; de Condorcet, 1785] (see, e.g., [McLean and Urken,
1995]). A voting or social choice mechanism is a function that aggregates the declared preferences
of all voters over a set of candidates or alternatives (e.g., referees of the Academy award voting
on movies), and selects a winner. In the most common voting rule, known as Plurality, every voter
reports her most preferred candidate, and the candidate with the highest number of votes wins.1 For
other voting rules and an overview of social choice theory from a computer science perspective, see
[Brandt et al., 2012].

While the model of voting is simple, it was proved by Gibbard [1973] and Satterthwaite [1975]
that in every reasonable voting rule there are situations where some voters are incentivized to misre-
port their preferences. Since then, there have been several studies applying game-theoretic solution
concepts to existing voting rules, aimed at understanding the relationship between preferences of a
population, their behavior, and the final outcome of elections.

Equilibrium analysis in voting Typically, a single voter is powerless to affect the outcome re-
gardless of her actions. As a result, almost every state is a Nash equilibrium, and therefore NE does
not give any meaningful prediction. Some solutions have been suggested to overcome this problem,
for example by taking into account uncertainty, or cooperation of several voters (see Section 5.6 for
an overview).

1.1.2 Auctions

Auctions are perhaps the most widely used and profitable application of mechanism design today.
Agents bid their value for the proposed item (or items), and the mechanism decides on an allocation
and payments based on these bids. A mechanism that guarantees both truthfulness and optimal so-
cial welfare is the Vickrey-Clarke-Groves (VCG) mechanism (see, e.g., [Nisan, 2007]), which sets
the payments in a way that perfectly aligns the incentives of each player with those of society. VCG
payments can be applied to most auction settings, and in fact to most games. Quite expectantly,
most research on auctions has focused on the revenue of the seller [Myerson, 1981; Riley, 1989;
Likhodedov and Sandholm, 2005; Hart and Nisan, 2012]. However there has also been work on
bidders’ welfare, see e.g. [Mirrokni et al., 2008; Bhawalkar and Roughgarden, 2011].

Within auction theory, much attention has been given to position auctions (or ad auctions),
where bidders compete over ad placements of different quality. The equilibrium outcomes of po-
sition auctions are well understood, especially when there is no uncertainty over bidders’ valua-
tions [Varian, 2007; Edelman et al., 2007; Lucier et al., 2012].

1Some political scientists oppose this assertion that Plurality is the most common rule, pointing to the fact that most
countries use voting procedures with several rounds, partitions to regions and so on. However, political elections constitute
just a tiny fraction of the occasions in which groups of agents (people, firms, programs, etc.) take a coordinated decision by
voting.

4 R. Meir

1.1.3 Mechanisms without money
Consider a mechanism whose purpose is to place a public facility (e.g., a library) based on the
reported locations of users. As explained above, when the designer’s goal is social welfare and
the mechanism can use payments, truthfulness and an optimal outcome can both be achieved. In-
deed, most research on mechanisms with payments either deals with efficiently implementing good
mechanisms (as VCG payments may be hard to compute), or concerns design goals other than
welfare.

Unfortunately, in many settings where welfare is our goal, transferring payments (such as VCG
payments) among the players is impractical, undesirable, unethical, or even illegal. Voting scenar-
ios described above and polls on the preferred location of a library are examples of such settings.
Despite the strong negative result of Gibbard and Satterthwaite on general voting rules, there are
restricted settings where there exist truthful and optimal mechanisms [Schummer and Vohra, 2007].

Approximate mechanism design without money (AMDw/oM) When optimal truthful mech-
anisms do not exist,2 we resort to truthful mechanisms that are approximately optimal, just as
approximation algorithms are used for optimization problems in computer science that are compu-
tationally hard.

The first formal analyses of approximation ratios of truthful mechanisms were in the domain of
supervised machine learning with multiple strategic experts [Dekel et al., 2008; Meir et al., 2008].
The approximation agenda was later made more explicit and applied to public facility location
problems by Procaccia and Tennenholtz [2009]. Problems in AMDw/oM have since been studied
in multiple domains, including voting [Alon et al., 2011], resource allocation [Guo et al., 2009],
matching problems [Ashlagi et al., 2010], scheduling [Koutsoupias, 2011], and even money-free
auctions have been crafted [Harrenstein et al., 2009]. Typically the goal of the designer in these
papers is to maximize social welfare, but other optimization criteria (such as egalitarian welfare)
have also been considered.

1.1.4 Taxes and subsidies
The mechanisms described so far were required to deal with the designer’s lack of information—
information that only the agents held regarding their preferences. A different type of intervention
is using payments to change the preferences of players over actions, and thereby the outcome of
the game. For example, a high tax on asocial behavior in games like the Prisoner’s Dilemma can
assist in aligning the incentives of the individuals with those of society, and make them cooperate.

As mentioned above, VCG payments can always guarantee that players will each prefer the
welfare-maximizing outcome. However, VCG payments do not prevent deviations by coalitions,
may require large positive and negative payments, and may be hard to compute and/or to implement.
Thus, designing a good mechanism becomes a non-trivial optimization problem with many factors
and constraints.

Subsidies in non-cooperative games Monderer and Tennenholtz [2004] investigated a very gen-
eral setting where an interested party wishes to influence the behavior of agents in a game. They
assume that the interested party can promise players non-negative bonuses if a particular outcome is
realized, thereby changing the utilities of various actions in the game. The designer wishes to create
an incentive for the players to follow some desired outcome in the new game, while minimizing

2Approximation is also used when complex optimal mechanisms do exist, but a simpler mechanism is preferred due to
practical reasons. See [Hartline, 2011].

Mechanisms for Stability and Welfare 5

the actual amount being spent. The authors show that desired outcomes can often be implemented
without paying anything. A similar approach was applied to a specific class of games (Boolean
games) in [Wooldridge et al., 2012].

Subsidies have also been studied in the context of cooperative games, as a means of increasing
the stability of large coalitions. For a detailed review see Section 3.6.

1.2 Thesis Outline and Main Results
My research is multi-disciplinary in nature, involving tools and ideas from economics, computer
science, mathematics, artificial intelligence, and cognitive science. The work consists of several
projects, ultimately aiming for a better understanding of games. Problems studied in the thesis
range from voting theory and cooperative games to matching and facility location, and new equi-
librium concepts are suggested along the way. Indeed, I believe that there is no one way to model
cooperation, as this is an abstract concept whose realization strongly depends on the domain and
the underlying assumptions.

The content of this thesis should be accessible to readers at the graduate level of computer
science or mathematics, and little to no knowledge in game theory is assumed. In Chapter 2, I lay
out the main concepts and definitions of cooperative and non-cooperative game theory, which are
referred to throughout the thesis. The remaining chapters are mostly self-contained for readers with
basic background in game theory.

Stability Chapters 3 through 6 deal with stability. In Chapter 3, I study the minimal subsidy
that is required in order to induce cooperation in games (known as the cost of stability). I show
tight upper and lower bounds on the cost of stability for broad classes of cooperative games, and in
particular study the relation between the cost of stability and a different measure of stability known
as the least core. The culmination of this line of research is in Chapter 4, where I show a direct
link between the minimal subsidy required to stabilize a game, and the structure of the society that
determines which coalitions may arise. Myerson [1977] suggested to model this network of social
connections between players as a graph. I prove that the cost of stability of any game is bounded
by the treewidth of the underlying network (which was only known for trees), and that this bound
is tight.

Voting games are studied in Chapter 5. There, I propose a new game-theoretic model for voting
in an iterative setting. The main result is that if voters follow a natural best-response dynamics,
they will always converge to a stable outcome. Since the introduction of the original model, several
researchers have studied variations of it, and their results are also presented and compared to mine.

In Chapter 6, I introduce a new solution concept for non-cooperative games called stability
scores, which takes into account the number of coalitions that may try to deviate from a particular
outcome. The usefulness of stability scores is then demonstrated on various games, including
congestion games, ad auctions, and voting games. In particular, stability scores can be used to
analyze the most stable outcome under the Plurality voting rule. In the context of ad auctions, I
analyze the scores of the two most common ad auction mechanisms (VCG and GSP), showing that
the latter is much more stable.

Welfare While stability is important in its own right, one often cares more about the welfare of
the population in those stable outcomes, which is the focus of Chapters 7 through 9. In Chapter 7,
I look at the popular problem of finding an optimal location for a public facility, using mechanisms
that are truthful and do not use payments. The goal is to place the facility as close as possible

6 R. Meir

to all agents, on average. The main positive result is a randomized mechanism that guarantees a
3 − 2

n approximation ratio—where no truthful mechanism can do better. On the other hand, it is
shown that no deterministic mechanism can guarantee a constant approximation ratio for locating
a facility on a discrete cycle. This result has several interesting implications (it also has the most
technically involved proof in the thesis).

Mechanisms without money for problems in the domains of binary classification and judgment
aggregation are studied in Chapter 8. I show how a simple mapping between these domains and
facility location allows us to handle all of them within a unified approach, thereby answering most
of the remaining open questions regarding the approximation ratio of truthful mechanisms in these
domains.

Prices become the focus once again in Chapter 9, where I study online matching mechanisms
that maximize the welfare of participating agents by attaching posted prices to nodes. The model is
inspired by parking systems in urban centers, with various assumptions on the information available
to the designer. In particular, I show that when the preferences of drivers is known (but not their
order of arrival), online prices that lead to optimal welfare can be found by simulating an offline
position auction.

Appendices In some cases the technical details of proofs are important to better understand the
conceptual contribution and limitations. However, in order to allow continuous reading, most
proofs have been omitted from the main text, sometimes replaced with a proof sketch or outline.
All omitted proofs from each chapter can be found in the corresponding appendices.

1.3 Bibliographic Notes

The current thesis is based on a selection of my work in the years 2009 through 2013. As the central
theme of my work is cooperation, I decided to include only the research and results that are directly
related to a better understanding and promotion of cooperation in games. A second criterion for
inclusion of a result in the thesis was the centrality of my role in it. The strict page limit imposed
by the Hebrew University required further selection. Papers that were not included in the thesis but
are still relevant are briefly discussed below.

It is important to note that the results described here have been accomplished via joint work
with many other researchers. Their names are explicitly mentioned when discussing unpublished
work (coauthors of published work are visible in the list of publications). I am the primary or
sole contributor of every result that appears with its proof (in the text, or in the appendix). Results
presented without a proof are not part of the original contribution of this thesis, and appear with a
citation (see, e.g., Theorem 3.4).

The contents of Chapter 3 are based mainly on [Meir, Bachrach, and Rosenschein, 2010; Meir,
Rosenschein, and Malizia, 2011]. Chapter 4 is based on [Meir, Zick, and Rosenschein, 2012; Meir,
Zick, Elkind, and Rosenschein, 2013]. Chapter 5 is based on [Meir, Polukarov, Rosenschein, and
Jennings, 2010]. Chapter 6 is based mainly on [Feldman, Meir, and Tennenholtz, 2012]. Chapters 7
and 8 are based on [Dokow, Feldman, Meir, and Nehama, 2012], and on results from [Meir, Pro-
caccia, and Rosenschein, 2012] that were not included in my M.Sc. thesis [Meir, 2008]. Chapter 9
is based on [Meir, Chen, and Feldman, 2013].

Mechanisms for Stability and Welfare 7

1.3.1 Papers not included in the thesis
A paper that is aimed directly at improving social welfare is [Meir and Rosenschein, 2013], dealing
with pricing costly resources, such as fuel for leased cars. We show the benefits of imposing the
cost of a consumed resource on the users rather than on the supplying company. In short, we
proved that under mild assumptions the unique equilibrium that emerges is preferred by both users
and supplier, and suggested a simple mechanism that facilitates the transition to per-use payments.

Agent failures in games constitute another line of research that tackles both questions of sta-
bility and welfare. We showed how mild failure probabilities can increase stability in cooperative
games [Bachrach, Meir, Feldman, and Tennenholtz, 2011], and can eliminate undesired equilibria
in non-cooperative games, thereby increasing social welfare [Meir, Tennenholtz, Bachrach, and
Key, 2012]. In a recent working paper with Noga Alon and Moshe Tennenholtz, we study how
uncertainty regarding agent failures can be exploited by signaling mechanisms (which reveal se-
lective information) to further improve welfare [Alon, Meir, and Tennenholtz, 2013; Alon, Falik,
Meir, and Tennenholtz, 2013].

In two other papers I focused on the incentives of the designer rather than those of the society,
showing how to increase the profit in ad auctions [Feldman, Meir, and Tennenholtz, 2011], and how
one can pass a complex decision in a committee by clustering several issues together [Alon, Falik,
Meir, and Tennenholtz, 2013].

Finally, when several firms each design their own mechanism in order to attract clients or work-
ers, they induce a new game where firms compete with one another. I formulated and studied such
models in the contexts of group discounts [Meir, Lu, Tennenholtz, and Boutilier, 2013], labor
markets [Meir and Tennenholtz, 2013, (manuscript)], and online services in a network environ-
ment [Feldman, Meir, and Tennenholtz, 2013].

8 R. Meir

Mechanisms for Stability and Welfare 9

Chapter 2

Preliminaries

Throughout the document, we will mostly use bold characters to denote vectors, for example a =
(a1, a2, a3, . . .). We use upper case letters from the beginning of the alphabet, A,B,C, . . ., to
denote sets, and letters from the end of the alphabet, X,Y, Z, to denote random variables. Other
complex objects such as sets of sets are typically denoted either with calligraphic letters,A,B, C, or
with bold upper case letters, A,B,C. Also, given a vector x and a set S, we write x(S) to denote∑
i∈S xi. For a natural number n, we denote [n] = {1, 2, . . . , n}. For an event E, JEK stands for

the corresponding indicator random variable.
In the remainder of this chapter we introduce some notation and concepts of game theory,

mechanism design, and voting. Readers that are familiar with game theory can skip most of this
chapter. For more background on game theory, see [Peleg and Sudhölter, 2003; Maschler et al.,
2013].

2.1 Non-cooperative Games

Game forms and games A game form GF = 〈N,A, C, g〉 consists of a set of agents N , a set
of actions (also called pure strategies) for each agent {Ai}i∈N , where A = ×i∈NAi contains all
combinations of agents’ actions. C is the set of possible outcomes , and g is a mapping g : A→ C.
A joint selection of strategies for each agent a = (ai ∈ Ai)i∈N is called a strategy profile. A partial
profile for a subset of agents S ⊆ N is denoted by aS = (ai ∈ Ai)i∈S . The profile of all agents
except i is denoted by a−i = (aj ∈ Aj)j 6=i.

The set of strategiesAi does not have to be discrete. For example, the strategy may be to decide
on an amount of money to spend, where money is assumed to be continuous.

A non-cooperative game G = 〈GF,u〉 consists of a game form GF , plus a utility function
ui : C → R for each agent, specifying her preferences over outcomes.1 In the most general case
every profile has its own outcome, in which case we write ui(a) instead of ui(g(a)). The utility
function of an agent is also called its type. The set of possible types for agent i is denoted by Ui.

A mixed strategy qi is a probability distribution over actions inAi. A mixed profile (or correlated
profile) q is a probability distribution over profiles in A. Note that if q is a product distribution
×i∈Nqi then it is equivalent to every agent i playing the mixed strategy qi.

1The presentation of G as a table of utilities is also known as a normal form game.

10 R. Meir

Deviations, better-replies and best-replies Given a game and a particular profile a (either pure
or mixed), an agent i ∈ N and an action a′i ∈ Ai, we say that a′i is a better-reply to a if
ui(a

′
i, a−i) ≥ ui(a). a′i is called a deviation from a if this holds with a strict inequality (which is

only possible when a′i 6= ai). a′i is called a best-reply if a′i ∈ argmaxa∈Ai ui(a, a−i).
Note that a best-reply is not necessarily unique, and is not necessarily a deviation. Without

loss of generality (w.l.o.g), the best-reply to a is always a pure strategy, and thus there is a pure
deviation if and only if there is a deviation.

Nash equilibrium and other solution concepts We say that the strategy profile a is a Nash
equilibrium (NE) in G if there is no deviation from a for any agent i. Formally, this holds if for any
agent i and any strategy a′i 6= ai, we have that ui(a) ≥ ui(a−i, a′i). An NE a is called a pure Nash
equilibrium (PNE) if it consists of pure strategies. Every game with a finite set of strategies has a
Nash equilibrium, but does not necessarily have a PNE [Nash, 1950].

A Nash equilibrium and a pure Nash equilibrium are both examples of solution concepts. For-
mally, a solution concept ϕ can be any mapping from games to (sets of) outcomes. Of course,
useful solution concepts are those that specify the outcomes that are made possible by a certain
type of behavior.

Another important solution concept is strong equilibrium. This is similar to Nash equilibrium,
but requires that no coalition can gain by deviating from the outcome. See Section 6.2 for a formal
definition. It is important to emphasize that a particular solution concept may not exist in some
games (like PNE), or may contain multiple outcomes; thus, it is only a “solution” in quite an
abstract sense.

Dominant strategies a∗i ∈ Ai is a dominant strategy of i if agent i always prefers a∗i , regardless
of the choices of other agents. Formally, for all a, ui(a∗i , a−i) > ui(a). Note that if some player
has a dominant strategy, then it is unique, and all other players can assume that it will be played.
If the above holds with a weak inequality, then a∗i is called a weakly dominant strategy, and is not
always unique.

Dominant strategies (and their variations) also give rise to solution concepts. They are stronger
than NE in the sense that they are less likely to exist—in most games, players do not have dominant
strategies. On the other hand, they require fewer assumptions regarding the behavior of players.
Indeed, it is quite likely that a player will follow her dominant strategy if one is available to her.

Example 2.1 (Prisoner’s Dilemma). In the Prisoner’s Dilemma, two prisoners are tried for a rob-
bery they committed together. The police offer each of them a deal, according to which the prisoner
will testify against his partner. Since evidence against them is weak, the two decide to deny in-
volvement in the crime, so that they can only be convicted for the lesser crime of trespassing. Each
player must independently choose whether to Cooperate, by holding to the deal, or to Defect, by
testifying. Thus A1 = A2 = {C,D}. The four possible outcomes are shown in Table 2.1.

u1(a), u2(a) a1 = C a1 = D

a2 = C -2,-2 0, -8
a2 = D -8,0 -5,-5

Table 2.1: −ui(a) is the number of
years in prison for i.

It can be easily verified that D is a strictly dominant
strategy for each player. In particular, the unique Nash
equilibrium of this game is a = (D,D). This is also
the outcome where the sum of both players’ prison time
is maximal. In contrast, there is no strong equilibrium
in this game, since both players gain by deviating from
(D,D) to (C,C).

Other solution concepts take into account the formation process of coalitions, uncertainty over
the states of the world or over other players’ types, and many other factors.

Mechanisms for Stability and Welfare 11

2.1.1 Mechanisms

A mechanism is a function f which receives inputs from participating agents ai ∈ Ai and returns
an outcome from some set C.

Thus every mechanism f induces a game form GFf . This game form, together with agents’
types, composes a non-cooperative gameGf . The conceptual difference between a mechanism and
other games is that in general a game is assumed to be merely a description of the environment. As
explained in Chapter 1, a mechanism (like an algorithm) usually has a purpose or goal, for which
it was designed.

We say that a mechanism f implements a certain property P according to a solution concept ϕ,
if the following holds: for any selection of agents’ types u ∈ U, there is an action profile a ∈ A in
Gf = 〈GFf ,U〉 s.t. (1) f(a) has property P ; and (2) a ∈ ϕ(Gf). For example, f may implement
the property “maximum social welfare in pure Nash equilibrium”, which means that when agents
face the (game induced by) mechanism f , there is always a PNE a which maximizes

∑
i∈N ui(a).

Some mechanisms require agents to reveal information about their type (elections, auctions,
etc.). If every agent in Gf has a dominant strategy which is to reveal its true type, we say that f
is truthful, or strategyproof.2 We can also say that f implements the truthful outcome in dominant
strategies.

Example of a mechanism whose goal is revenue A very simple example is the Vickrey auction
(also known as the second price auction) [Vickrey, 1961]. In this auction a single item is being sold,
and agents are asked to “bid”, i.e., to report the amount they are willing to pay. The highest bidder
gets the item, but pays the price of the next highest bidder. It turns out that the Vickrey auction is
strategyproof, and that under certain assumptions it also maximizes the revenue if a proper reserve
price is set [Myerson, 1981]. Both the VCG auction mentioned in the Introduction, and the GSP
auction, which is mentioned in Chapters 6 and 9, are generalizations of the Vickrey auction.

Examples of mechanisms whose goals are stability and social welfare Consider a mechanism
designed to place a facility as close as possible to agents according to their reported locations on
a line. A mechanism selecting the median location is strategyproof. Further, it is also optimal
w.r.t. social welfare. See Chapter 7 for details.

Next, consider a mechanism that is trying to increase the welfare of agents playing the Pris-
oner’s Dilemma (Example 2.1), by taxing certain actions or outcomes. A sufficiently high tax on
agents playing D will guarantee that C is a dominant strategy, rather than D.

2.1.2 Voting rules

Voting rules are a special class of mechanism, where the agents (also called “voters”) are assumed to
have ordinal or cardinal preferences over all candidates. There is a set C of m candidates, and a set
V of n voters. LetR(C) be the set of all m! total orders over C. A voting rule f allows each voter
to submit his preferences over the candidates by selecting an action from the set A, where typically
A = R(C). Then, f chooses a unique winning candidate—i.e., it is a function f : An → C.3

When referring to a voting rule we usually mean an infinite family of such functions, for every
value of n and m. Unless explicitly mentioned otherwise, we do not allow mixed strategies in the
game induced by the voting rule.

2The term strategyproof is only relevant for mechanisms where agents are asked to reveal private information. More
generally, a mechanism is straight-forward if every agent has a dominant strategy that is based only on its type.

3The definition is sometimes extended so that f can return any nonempty subset of C as winners. See Chapter 5.

12 R. Meir

Examples of voting rules Plurality is the simplest example of a voting rule. Here A = C, i.e.,
every voter only reports his most-preferred candidate. The score of each candidate is the number of
voters supporting it, and the candidate with the highest score is the winner. Note that a tie breaking
rule (for example, lexicographic order over candidates) is required to make the winner unique.

More generally, positional scoring rules where each voter gives points to a candidate according
to how it is ranked (like the Borda rule, or the Eurovision contest rule). Other voting rules look
at pairwise comparisons between candidates. For example, in the Maximin rule the score of every
candidate is the number of voters who prefer it over its strongest opponent, and the winner has
the highest score. A Condorcet winner is a candidate that is preferred to any other candidate by a
majority of voters.

We often seek voting rules that hold certain properties. For example, a rule is Condorcet con-
sistent if a Condorcet winner (when one exists) is always elected. A rule is onto if for any candidate
c ∈ C there is some voting profile a s.t. f(a) = c.

Strategic voting A fundamental question in voting is whether voters should or tend to report their
true preferences (i.e., their type). It is easy to see that in some cases it is better for a voter to “lie”
about his preferences. For example, under the Plurality rule if a voter supports some candidate a1

but knows that this candidate is unpopular and has no chance of winning, it might be better for him
to support one of the leading candidates.

On the other hand, consider a dictatorial rule, where the outcome is determined according to
the preferences of a single voter (w.l.o.g. voter 1). Clearly voter 1 is always better off reporting his
true type, whereas other voters cannot affect the outcome, and in particular cannot gain by lying.
Thus a dictatorial rule is strategyproof.

A natural question is whether there is a way to characterize all strategyproof voting rules.

The Gibbard-Satterthwaite theorem (Gibbard [1973], Satterthwaite [1975]) . An onto voting
rule f for 3 or more candidates is strategyproof if and only if f is dictatorial.

2.2 Cooperative Games
We consider games with the set of players N = {1, . . . , n}. A coalition is simply a subset of
N ; N itself is referred to as the grand coalition. We denote by R+ the set of all nonnegative real
numbers. Given two vectors x = (x1, . . . , xn) and y = (y1, . . . , yn), we write x ≤ y if xi ≤ yi
for all i = 1, . . . , n.

Definition 2.1. A transferable utility (TU) game G = 〈N, g〉 is given by a set of players, or agents,
N = {1, . . . , n} and a characteristic function g : 2N → R, which for each subset of agents S
outputs the payoff that the members of S can achieve by working together; we require g(∅) =
0, g(N) 6= 0.

In most TU games studied in the literature, the payoffs of all coalitions have the same sign, i.e.,
agents get together either to share costs (as in Example 3.1) or to earn profits (as in Example 2.2
below). In the former case, we say thatG is an expense-sharing game and writeG = 〈N, c〉, where
c ≡ −g, and in the latter case we say that G is a profit-sharing game and write G = 〈N, v〉, where
v ≡ g; note that both v and c only take values in R+.

An outcome of a TU game is a way of sharing the value (i.e., profit or expense) of the grand
coalition among all players. Formally, a payoff vector for a TU game G = 〈N, g〉 is any vector
p = (p1, . . . , pn) ∈ Rn.

Mechanisms for Stability and Welfare 13

A payoff vector p is budget balanced if
∑
i∈N pi = |g(N)|. That is, pi is the profit received by

(respectively, cost incurred by) player i. Note that there is no requirement that entries will be either
positive or negative. We denote by I(G) the set of all balanced payoff vectors for the TU game G,
also known as preimputations. Not all outcomes of coalitional games are equally attractive to the
agents. In particular, an important consideration in the analysis of TU games is that of coalitional
stability: a preimputation p ∈ I(G) is said to be an imputation if it is individually rational, i.e.,
G = 〈N, v〉 is a profit-sharing game and pi ≥ v({i}) for all i ∈ N , or G = 〈N, c〉 is an expense-
sharing game and pi ≤ c({i}) for all i ∈ N .

Individual rationality is only a preliminary requirement for stability. For an outcome to be
stable, it should be the case that no subset of players has an incentive to deviate. Formally, given a
profit-sharing game G = 〈N, v〉 (respectively, an expense-sharing game G = 〈N, c〉), we say that
a coalition S blocks a payoff vector p if it can improve its payoff by deviating, i.e., if v(S) > p(S)
(respectively, c(S) < p(S)). A payoff vector p is said to be stable in a TU game G = 〈N, g〉 if it
is not blocked by any coalition S (N . We denote all stable payoff vectors by S(G).

Definition 2.2 (The core). C(G) = I(G) ∩ S(G).

Figure 2.1: An illustration of the core.

That is, a payoff vector p is in the core if
p is both stable and balanced. The core is
the most common solution concept that aims
at capturing stability in cooperative games,
and like strong equilibrium (in non-cooperative
games) it requires that no coalition has an in-
centive to deviate. Unfortunately, the core may
be empty in some games (see Example 2.2).

When n = 3 the core can be graphically
demonstrated—see Figure 2.1. For simplicity
we fix v(1, 2, 3) = 1 as the height of the sim-
plex (triangle). (p1, p2, p3) are the barycentric
coordinates of the payoff vector p, and their
sum always equals the height, which is 1. The
core is in grey.

2.2.1 Coalition structures
Following Aumann and Dréze [1974], we sometimes assume that agents may form coalition struc-
tures, where several disjoint coalitions may exist in parallel.

A coalition structure over N is a partition of N into disjoint subsets. We denote the set of
all coalition structures over N by CS(N). Given a CS ∈ CS(N) we define its value v(CS) as
g(CS) =

∑
S∈CS g(S) and set CS+ = {S ∈ CS | g(S) > 0}.

For profit-sharing games (similar definitions hold for expense-sharing games), let
OPT(G) = max{v(CS) | CS ∈ CS(N)}. A coalition structure CS is said to be optimal if
v(CS) = OPT(G). Stable payoff vectors and the core are defined in a similar way to the case
without coalition structures, except transferring payoffs is only allowed within a coalition. See
Section 3.5 for details.

Remark 2.1. Since in the general case it is possible that v(CS) > v(N), it is crucial which of
them is used as the sum of potential preimputations, and may for example determine whether the

14 R. Meir

core is empty or not. Unless explicitly stated otherwise (e.g., in most of Chapter 4), we assume that
coalition structures are not allowed, and thus that preimputations have to sum up to v(N).

2.2.2 Subclasses of TU Games
We will now define several important classes of TU games that are induced by restrictions on the
characteristic function, such as monotonicity and superadditivity.

Monotone games A TU game G = 〈N, g〉 is called monotone if |g(S)| ≤ |g(T)| for all S ⊆ T .
Monotonicity means that adding agents to a coalition can only increase its profit in a profit-sharing
game, or its expenses in an expense-sharing game.

Superadditive and Subadditive games A profit-sharing game 〈N, v〉 is said to be superadditive
if v(S ∪ T) ≥ v(S) + v(T) for all S, T ⊆ N such that S ∩ T = ∅. An expense-sharing game
〈N, c〉 is said to be subadditive if c(S ∪ T) ≤ c(S) + c(T) for all S, T ⊆ N such that S ∩ T = ∅.
Intuitively, in superadditive profit-sharing games and subadditive expense-sharing games it is never
harmful to merge two non-overlapping coalitions. In particular, if G is superadditive, then {N} is
optimal and g(N) = OPT(G). In what follows, we will refer to superadditive profit-sharing games
and subadditive expense-sharing games as s-additive games.

Anonymous games A TU game G = 〈N, g〉 is called anonymous if the payoff of a coalition
depends only on its size, i.e., g(S) = g(T) whenever |S| = |T |. Given an anonymous game
G = 〈N, g〉, for every k = 1, . . . , n we define gk = g({1, . . . , k}); we have gk = g(S) for every
S ⊆ N of size k.

Simple games A profit TU game G = 〈N, v〉 is called simple if v(S) ∈ {0, 1} for all S ⊆ N ,
and v(N) = 1.4 In a simple game we say that a coalition S ⊆ N wins if v(S) = 1, and loses if
v(S) = 0. A player i in a simple gameG is called a veto player if he is necessary to form a winning
coalition, i.e., we have v(S) = 0 for all S ⊆ N \ {i}. The notion of a veto player turns out to
be useful for characterizing the core of a simple monotone game: it is well known that the core is
non-empty if and only if there are veto players.

An important subclass of simple games is that of weighted voting games (WVGs). In these
games, each agent has a weight, and a coalition of agents wins the game if the sum of the weights
of its members meets or exceeds a certain quota. Formally, a weighted voting game is given by
a set of agents N = {1, . . . , n}, a vector of agents’ weights w = (w1, . . . , wn) ∈ (R+)n and a
quota q ∈ R+; we write G = [w; q]. The weight of a coalition S ⊆ N is w(S); we require q ≤
w(N). The characteristic function of a weighted voting game is given by v(S) = 1 if w(S) ≥ q,
and v(S) = 0 otherwise. Weighted voting games are simple monotone games; however, they are
not necessarily superadditive.

Example 2.2. Four contractors N = {1, 2, 3, 4} compete for a construction project. The project
requires at least 10 trucks, whereas the contractors have 2, 5, 8, and 12 trucks, respectively. This
situation corresponds to a weighted voting game [2, 5, 8, 12; 10]. In this game, {4} and {1, 2, 3}
are winning coalitions (with value 1), whereas {1, 2} is a losing coalition (with value 0). Note
that there are no veto players in this game, and thus the core is empty, which means that if all
four contractors cooperate, they have no stable way to divide the project’s profits. For instance,
the payoff vector p = (0, 1/4, 1/4, 1/2) is blocked by the coalition S = {2, 3}, since p({2, 3}) =

4Simple games are sometimes required to also be monotone. We make no such requirement, and state explicitly when a
game (simple or not) is assumed to be monotone.

Mechanisms for Stability and Welfare 15

1/2 < 1 = v({2, 3}). In contrast, if we allow the formation of coalition structures (meaning that
several construction projects can be performed independently by disjoint contractors), the structure
CS = {{1, 2, 3}, {4}} can be stabilized (for example, with a payoff of p3 = 10 and p4 = 10).

16 R. Meir

Part I

Stability

18 R. Meir

Mechanisms for Stability and Welfare 19

Chapter 3

The Cost of Stability
Subsidies in Cooperative Games

Abstract. We study the minimal external subsidy required to stabilize the core of a coalitional
game, known as the Cost of Stability (CoS) [Bachrach et al., 2009a]. The CoS is used both as
a measure of the inherent (in)stability of a game, and as a design tool for an external party that
wishes agents to reach a stable outcome. In this chapter we prove tight upper and lower bounds
on the CoS, and compare the extended core induced by subsidies with the least core of the game.
The relation between the CoS and the least core is then used to further improve the bounds for a
large class of games.

3.1 Introduction
Coalitional games, or cooperative games deal with the allocation of profit (or cost) that results from
cooperation. The most prominent solution concept that aims to formalize the idea of stability in
coalitional games is the core (see Section 2.2). However, this concept has an important drawback:
the core of a game may be empty. In games with empty cores, any outcome is unstable, and
therefore there is always a group of agents that is tempted to abandon the existing plan.

In this chapter we focus on subsidies by an external authority as a mechanism-design approach
to stabilize games with an empty core. An external party can provide a subsidy that increases the
profit of the grand coalition in a profit-sharing game or lowers the cost of the grand coalition in an
expense-sharing game. This subsidy is given to the grand coalition as a whole, and is conditional
on agents forming the grand coalition. The minimal subsidy that stabilizes a given game is known
as its cost of stability [Bachrach et al., 2009a] (see Section 3.6 for more related work).

The following example demonstrates how subsidies can induce stability.

Example 3.1 (Sharing the cost). Three private hospitals in a large city plan to purchase an X-
ray machine. The standard X-ray machine costs $5 million, and can fulfill the needs of up to two
hospitals. There is also a more advanced machine, which is capable of serving all three hospitals,
but costs $9 million. The hospital managers understand that the right thing to do is to buy the more
expensive machine, which will serve all three hospitals and cost less than two standard machines,
but cannot agree on how to allocate the cost of the more expensive machine among the hospitals:

20 R. Meir

there will always be a pair of hospitals that (together) need to pay at least $6 million, and would
then rather split off and buy the cheaper machine for themselves. The generous mayor decides to
solve the problem by subsidizing the more advanced X-ray machine: she agrees to contribute $3
million, and let each hospital add $2 million. Pairs of hospitals now have no incentive to buy the
less efficient machine, as each pair (together) pays only $4 million.

3.1.1 Results in this Chapter
After presenting the definitions and initial results by Bachrach et al. [2009a], we prove tight bounds
on the cost of stability in expense-sharing games, anonymous games, and games where coalition
sizes are bounded (Section 3.3). We then turn to study the relation between the cost of stability and
the least core (Section 3.4), which enables us to improve the bounds for a broad class of games.
Finally, in Section 3.5 we extend our analysis to coalition structures. Our results on this chapter are
summarized in Table 3.1. The most important and surprising results regarding the cost of stability
require some more definitions and appear in the next chapter.

3.2 Preliminaries

3.2.1 The Cost of Stability
Recall the definitions of transferable utility (TU) games from Section 2.2, and in particular the
definition of the core. Following Bachrach et al. [2009a], we present the formal definitions of the
cost of stability and minimal subsidies. Given a TU game G = 〈N, g〉 and a real value ∆, the
adjusted coalitional game G(∆) = 〈N, g′〉 is given by

g′(S) =

{
g(S) if S 6= N

g(S) + ∆ if S = N.

We say that g′(N) = g(N) + ∆ is the adjusted payoff of the grand coalition. We assume that
∆ is always non-negative for profit sharing games, and always non-positive for expenses sharing
games, and will refer to the quantity |∆| as the subsidy for the game G. Note that if ∆ 6= 0, a
preimputation p′ for the adjusted game G(∆) is not a preimputation for the original game G, since
p′(N) 6= |g(N)|.

We say that a subsidy ∆ stabilizes the gameG if the adjusted gameG(∆) has a non-empty core.
We emphasize that a payoff vector p is stable in G(∆) iff it is stable in G, since S(G(∆)) = S(G).

Example To illustrate the concepts introduced in the previous paragraph, consider Example 3.1.
In this example, c(N) was reduced from 9 (million) to c′(N) = 6 (i.e., by ∆ = 3), while for every
other non-empty coalition S we have c′(S) = c(S) = 5. Thus, p′ = (2, 2, 2) is a payoff vector
for the new game G(3). In fact, ∆ = 3 stabilizes the game G: in particular, p′ = (2, 2, 2) is in the
core of G(3).

We observe that any TU game can be stabilized by an appropriate choice of ∆. Indeed, if
G = 〈N, c〉 is an expense-sharing game, it suffices to set ∆ = −c(N); then the payoff vector
(0, . . . , 0) is in the core of G(∆). Similarly, if G = 〈N, v〉 is a profit-sharing game, we can set
∆ = nmaxS⊆N v(S) and distribute the profits so that each player receives at least maxS⊆N v(S).1

1For monotone games adding (n− 1)v(N) is sufficient.

Mechanisms for Stability and Welfare 21

However, the central authority typically wants to spend as little money as possible. Hence, we are
interested in the smallest subsidy that stabilizes the grand coalition. We will refer to this quantity as
the cost of stability. We will consider both the subsidy |∆| and the total payout obtained/distributed
by the central authority relative to the value of the grand coalition, thus distinguishing between
additive and multiplicative cost of stability.

Definition 3.1 (Additive CoS, Bachrach et al. [2009a]).

addCoS(G) = inf{|∆| ∈ R+ | C(G(∆)) 6= ∅} ≡ inf
p∈S(G)

|p(N)− g(N)|. (3.1)

The multiplicative cost of stability For expense-sharing games, the multiplicative cost of stabil-
ity is also known as the cost recovery ratio (CRR) and has a natural economic interpretation [Xu
and Du, 2006]: this is the maximal fraction of the cost of providing the service to the grand coalition
that can be collected without giving the agents an incentive to deviate.

Similarly, we term the multiplicative CoS in profit sharing games as the required subsidy ratio
(RSR), i.e., the ratio between the minimal total payoff that guarantees stability, and the available
payoff.2 Formally:

Definition 3.2 (Multiplicative CoS).

RSR(G) = multCoS(G) =
|v(N) + addCoS(G)|

|v(N)|
≡ inf

p∈S(G)

p(N)

v(N)
(3.2)

for profit sharing games, and

CRR(G) = multCoS(G) =
|c(N)− addCoS(G)|

|c(N)|
≡ sup

p∈S(G)

p(N)

c(N)
(3.3)

for expense sharing games (recall that we assume that g(N) 6= 0 throughout).

In what follows, we will alternate between the additive and the multiplicative notation; obvi-
ously, all results formulated for the additive cost of stability can be restated for its multiplicative
sibling, and vice versa. Note that we have RSR(G) ≥ 1 and 0 ≤ CRR(G) ≤ 1. We will denote
the game G(addCoS(G)) by G. A simple continuity argument implies that G has a non-empty
core.

Consider the following class of simple monotone games defined by finite projective planes;
Bachrach et al. [2009a] provided this example to prove lower bounds on the cost of stability. We
describe it here for completeness, and also since we will later use similar examples.

Example 3.2 (Bachrach et al. [2009a]). Consider a finite projective plane P of order q, where q is
a prime number. It has q2 + q + 1 points and the same number of lines, every line contains q + 1
points, every two lines intersect, and every point belongs to exactly q + 1 lines. We construct a
simple game Gq = 〈N, v〉 as follows. We let N be the set of points in P , and for every S ⊆ N we
let v(S) = 1 if S contains a line and v(S) = 0 otherwise. Observe that this game is superadditive:
since any two lines intersect, there do not exist two disjoint winning coalitions.

Now, consider a stable payoff vector p. For each line R we have p(R) ≥ 1. Summing over all
q2+q+1 lines, and using the fact that each point belongs to q+1 lines, we obtain (q+1)

∑
i∈N pi ≥

q2 + q + 1, i.e., p(N) ≥ q2+q+1
q+1 = q + 1

q+1 . Since n = |N | = q2 + q + 1, we have q + 1 >
√
n

and hence RSR(Gq) ≥ p(N) > q >
√
n− 1.

2In hindsight, the term cost of stability was not the best selection, as the pattern “cost of X” is overloaded, and the term is
somewhat vague. To maintain consistency with published papers we keep the term (additive) CoS, but use the more natural
CRR and RSR when referring to the multiplicative CoS.

22 R. Meir

The extended core The notion of cost of stability presupposes that the subsidy is provided before
the agents decide how to share profits/expenses. Alternatively, one can ask if a given preimputation
can be transformed into a stable payoff vector by providing a subsidy of ∆ for some ∆ ≥ 0.
Formally, given a profit-sharing game G = 〈N, v〉 and a vector p ∈ I(G), we define the cost of
stability of p as the smallest payment required to extend p to a stable payoff vector, i.e.,

addCoS(p, G) = inf{∆ ≥ 0 | there exists a p′ ≥ p s.t. p′ ∈ C(G(∆))}; (3.4)

for expense-sharing games, the definition has to be modified by replacing the inequality p′ ≥ p
in (3.4) with p′ ≤ p. In general, we have addCoS(p, G) ≥ addCoS(G). The extended core of a
TU game G consists of all payoff vectors for which this inequality holds with equality. We define:

EC(G) = {p ∈ I(G) | addCoS(p, G) = addCoS(G)}.

3.2.2 Cost of Stability: A Linear Programming Formulation
We will now give two alternative definitions of the cost of stability, which can be expressed in terms
of linear programming and will prove to be useful later in this chapter. We formulate our results for
profit-sharing games only; similar results can be derived for expense-sharing games.

The core of every cooperative game can be described as a linear feasibility program over
the variables p1, . . . , pn, with a single linear constraint

∑
i∈S pi ≥ v(S) for every coalition S,

and additional constraints to guarantee that p is balanced (i.e.,
∑
i∈N pi = v(N)). Similarly,

Bachrach et al. [2009a] defined an optimization linear program LP∗, which finds the minimal ∆
s.t.
∑
i∈N pi = v(N) + ∆, subject to the same feasibility constraints.

Clearly the optimal value of this linear program is exactly addCoS(G). Moreover, any optimal
solution of LP∗ corresponds to an imputation in the core of G. It will be convenient to modify this
linear program by replacing the objective function with p1 + · · ·+ pn (which equals to v(N) + ∆,
rather than ∆): if the core of G is empty, the optimal value of the resulting linear program, which
we will denote by LP ′, is exactly addCoS(G) + v(N).

The cost of stability can also be written in a closed form, using the Bondareva–Shapley char-
acterization of the core. To state the Bondareva–Shapley theorem, we first need to introduce the
notion of a (minimal) balanced collection of subsets.

Definition 3.3. A collection D of subsets of a finite set N is said to be balanced if there exists a
vector {δS}S∈D such that δS ∈ R+ for every S ∈ D and for every agent i ∈ N it holds that∑
S∈D:i∈S δS = 1; the vector {δS}S∈D is called the balancing weight vector for D. We denote the

set of all balanced collections of subsets of N by BC(N); the collection of all balancing weight
vectors for a balanced collection D is denoted by B(D).

A balanced collection of subsets D is called minimal if there exists no D′ (D such that D′ is
balanced.

Theorem 3.3 (Bondareva–Shapley Theorem). A profit-sharing game G = 〈N, v〉 has a non-empty
core if and only if for every [minimal]3 balanced collection D and every balancing weight vector
{δS}S∈D for D it holds that

∑
S∈D δSv(S) ≤ v(N).

For a full proof and a more detailed discussion of this characterization, see, e.g., the textbook
by Peleg and Sudhölter [2003].

3There are versions of the theorem with and without the minimality requirement.

Mechanisms for Stability and Welfare 23

Now, fix a profit-sharing game G = 〈N, v〉 with an empty core and consider the game G. It is
not hard to see that for G there exists a collection D with a balancing weight vector {δS}S∈D for
which the inequality in the statement of the Bondareva–Shapley theorem holds with equality. Thus,
we can write the multiplicative cost of stability of the game G as follows:

RSR(G) =
1

v(N)
max

{∑
S∈D

δSv(S) | D ∈ BC(N), {δS}S∈D ∈ B(D)

}
. (3.5)

Equivalently, addCoS(G) = max
{∑

S∈D δSv(S) | D ∈ BC(N), {δS}S∈D ∈ B(D)
}
− v(N).

Furthermore, let D be a collection of sets with a balancing weight vector {δS}S∈D such that
RSR(G) = 1

v(N)

∑
S∈D δSv(S); we can assume without loss of generality thatD = 2N by setting

δS = 0 for S 6∈ D.
Unfortunately, in general neither the linear program LP∗ nor equation (3.5) provide an efficient

way to compute the cost of stability. This remains true even if the value of each coalition can be
easily computed. See [Bachrach et al., 2009a] for more details on computational complexity of
related problems.

3.3 Bounds on the Cost of Stability

3.3.1 The Cost of Stability in Profit-Sharing Games

Consider an arbitrary profit-sharing gameG = 〈N, v〉 with an empty core. We start with some gen-
eral bounds on the required subsidy ratio (RSR) that have been shown by Bachrach et al. [2009a].
The subsequent results are newer contributions.

Let G = 〈N, v〉 be a monotone profit-sharing game. As noted in Section 3.2.1, RSR(G) ≤ n.
This bound is tight, even ifG is simple and anonymous (consider a game where v(S) = 1 for every
non-empty coalition).

For superadditive profit-sharing games, the upper bound of n can be strengthened considerably.4

Theorem 3.4 (Bachrach et al. [2009a]). Let G = 〈N, v〉 be a superadditive profit-sharing game.
Then RSR(G) ≤

√
n, and this bound is asymptotically tight.

We note that the lower bound is due to Example 3.2. If we assume both superadditivity and
anonymity, we can strengthen Theorem 3.4 considerably.

Theorem 3.5 (Bachrach et al. [2009a]). Let G = 〈N, v〉 be an anonymous superadditive profit-
sharing game. Then RSR(G) ≤ 2, and this bound is asymptotically tight.

While Bachrach et al. provided a direct proof for Theorem 3.5, a simple alternative proof uses
the following lemma (see proof of the symmetric case of expense sharing games in Section 3.3.2).

Lemma 3.6. Let G = 〈N, v〉 be an anonymous profit-sharing game. Then RSR(G) = n
vn
·

maxk≤n
vk
k .

4We note that the cost of stability of subadditive profit-sharing games (as well as that of superadditive expense-sharing
games), is not an interesting quantity. In such games it is never beneficial to form a coalition, and thus the cheapest way to
stabilize them is to ensure that agent i gets exactly v({i}) (or pays exactly c({i})).

24 R. Meir

Stability with small coalitions In many scenarios it is not realistic to assume that an arbitrary
group of players can deviate from the grand coalition. In particular, deviations by large groups
of players may be infeasible due to communication, coordination or trust issues (see next chapter
where more intricate restrictions are considered). In such cases, it is meaningful to ask whether
the game in question has an outcome that is resistant to deviations by coalitions of size at most k
(where k is a given parameter), or whether it can be made resistant to such deviations by a subsidy
of at most ∆.

Formally, given a profit-sharing game G = 〈N, v〉 and an integer k, 1 ≤ k ≤ n, we define
a game G|k = 〈N, v|k〉 by setting v|k(S) = v(S) for every S such that |S| ≤ k or S = N
and v|k(S) = 0 otherwise. Our first result in this chapter bounds the subsidy in size-restricted
superadditive games.

Theorem 3.7. Let G = 〈N, v〉 be a superadditive profit-sharing game. Then for any positive
integer k < |N | we have RSR(G|k) ≤ k. This bound is asymptotically tight for any k ≤

√
n.

Combining Theorem 3.4 and Theorem 3.7, we conclude that for any superadditive profit-
sharing game G it holds that RSR(G|k) ≤ min{

√
n, k}.

3.3.2 The Cost of Stability of Expense-Sharing Games
Having covered profit-sharing games in detail, we now turn to study expense-sharing games. The
cost recovery ratio (CRR) can be characterized via the Bondareva–Shapley theorem, similarly to
equation (3.5): for a game G = 〈N, c〉 with an empty core, we have

CRR(G) =
1

c(N)
min

{∑
S∈D

δSc(S) | D ∈ BC(N), {δS}S∈D ∈ B(D)

}
. (3.6)

We will use equation (3.6) to prove bounds on the cost of stability for several classes of expense-
sharing games. We note that in expense-sharing games multCoS(G) = CRR(G) also coincides
with the maximal γ for which the γ-core ofG is non-empty [Jain and Mahdian, 2007]. We describe
some relevant results from the literature in the context of our setting, and compare with additional
results we obtain. Clearly CRR(G) ≥ 0 and this is tight in a simple game where c(S) = 0 for all
S 6= N .

Subadditive expense-sharing games A well-studied class of expense-sharing games is that of
set cover games [Devanur et al., 2005]. Briefly, a set cover game is described by an instance of
the set cover problem: the agents are elements of the ground set, and the cost of a coalition S is
the cost of the cheapest collection of subsets that covers all elements of S. More formally, a set
cover game is an expense-sharing game given by a tuple 〈N,F , w〉, where N = {1, . . . , n} is a
set of agents, F is a collection of subsets of N that satisfies

⋃
F∈F F = N , and w : F → R+ is

a mapping that assigns a non-negative weight to each set in F . The cost of a coalition S ⊆ N is
given by c(S) = min

{∑
F∈F ′ w(F) | F ′ ⊆ F , S ⊆ ∪F∈F ′F

}
. We will write F∗(S) to denote a

cheapest cover of the set S.
It is easy to see that the hospital game described in Example 3.1 is a set cover game with three

agents (the hospitals). Indeed, every subadditive expense-sharing game can be represented as a set
cover game.

Observation 3.8. Set cover games are subadditive. Furthermore, every subadditive expense-
sharing game can be described as a set cover game (by adding to F one set per each coalition).

Mechanisms for Stability and Welfare 25

We remark that the construction in the proof of Observation 3.8 produces a set cover game with
exponentially many sets. However, sometimes the number of sets can be reduced. In particular, if
c(S) = c(S1) + · · · + c(Sk) for some partition {S1, . . . , Sk} of S, then the set S can be removed
fromF (this observation is inspired by the synergy coalition groups representation for superadditive
profit-sharing games [Conitzer and Sandholm, 2006]).

The cost of stability in set cover games is closely related to the integrality ratio of the standard
linear program for the set cover problem. Specifically, consider an instance 〈N,F , w〉 of the set
cover problem. The cost of the grand coalition in the corresponding game G can be written as the
following integer linear program (ILP) over the variables {yj}Fj∈F :

min
∑
Fj∈F

w(Fj)yj subject to:

∑
j:i∈Fj

yj ≥ 1 for each i ∈ N, (3.7)

yj ∈ {0, 1} for each Fj ∈ F . (3.8)

In this ILP, setting yj = 1 corresponds to picking the set Fj for the cover. The linear relaxation of
this program is obtained by replacing condition (3.8) with the condition yj ≥ 0 for each Fj ∈ F
(clearly, in the optimal solution we will have yj ≤ 1 for each Fj ∈ F); we will denote the resulting
linear program by LP(G,N).

For a given instance of the set cover problem, the ratio between the value of its optimal integer
solution and that of its optimal fractional solution is known as the integrality gap. Formally, let
ILP(G,N) and LP(G,N) denote, respectively, the values of optimal integer and fractional solu-
tions of the linear program LP(G,N) corresponding to the set cover game G. The integrality gap
of G is defined as IG(G) = ILP(G,N)/LP(G,N); note that ILP(G,N) = c(N). The following
theorem relates the integrality gap of a set cover game to its multiplicative cost of stability.

Theorem 3.9 (Deng et al. [1999], Jain and Mahdian [2007]). Let G be a set cover game. Then
CRR(G) = 1/IG(G).

The proof of Theorem 3.9 can be obtained by modifying the proof of Theorem 1 in [Deng et al.,
1999]; an alternative proof using the Bondareva-Shapley condition is given in [Jain and Mahdian,
2007] (Corollary 15.9). For completeness, we provide a direct proof in Appendix A, and also
demonstrate how an optimal stable payoff vector can be computed efficiently.

The integrality gap of the set cover problem is well-studied in the literature: it is known to be
bounded from above by Hn =

∑n
i=1

1/i < lnn + 1, and that n can be replaced with k when sets
sizes are bounded [Chvatal, 1979]. Moreover, these bounds are essentially tight, even when the sets
are non-weighted [Slavík, 1996]. Thus, we obtain the following corollary.

Corollary 3.10. Let G = 〈N, c〉 be a subadditive expense-sharing game. Then CRR(G|k) ≥
1

ln(k)+1 , and this bound is asymptotically tight. In particular, CRR(G) ≥ 1
ln(n)+1 .

It is interesting to note that the worst-case bounds on the multiplicative cost of stability for sub-
additive expense-sharing games (Corollary 3.10) are much stronger than the ones for superadditive
profit-sharing games (Theorems 3.4 and 3.7), and depend on lnn rather than

√
n.

Anonymous Expense-Sharing Games

As with profit-sharing games, anonymity allows us to simplify equation (3.6).

26 R. Meir

Lemma 3.11. Let G = 〈N, c〉 be an anonymous expense-sharing game. Then CRR(G) = n
cn
·

mink≤n
ck
k .

Without further assumptions, the cost recovery ratio of an anonymous expense-sharing game
can still be as low as 0: consider, for instance, the game G = 〈N, c〉 given by cn = 1, ck = 0 for
every k ≤ n. However, if we assume both anonymity and subadditivity, we get a tight lower bound.

Theorem 3.12. Let G = 〈N, c〉 be an anonymous subadditive expense-sharing game. Then
CRR(G) ≥ 1/2 + 1

2n−2 , and this bound is tight.

In particular, we get that CRR(G) ≥ 1/2, which is symmetric to the result on expense sharing
games (Theorem 3.5). Note however that our bound on the CRR is exactly tight and not just
asymptotically.

3.4 The Cost of Stability and the Least Core
In this section we explore the relationship between the cost of stability and another common mea-
sure of stability in coalitional games, namely, the value of the least core. We will focus on profit-
sharing games.

We start by formally defining two variants of the least core: the strong and the weak least core.
Consider a profit-sharing game G = 〈N, v〉 and some ε ≥ 0. Following Maschler et al. [1979], the
strong ε-core of G is the set SCε(G) of all pre-imputations for G such that no coalition can gain
more than ε by deviating:

SCε(G) = {p ∈ I(G) | p(S) ≥ v(S)− ε for all S ⊆ N}.

Clearly, for a large enough ε the set SCε(G) is non-empty. The quantity εS(G) = inf{ε ≥ 0 |
SCε(G) 6= ∅} is called the value of the strong least core of G.

One particular payoff vector of interest is the pre-nucleolus pn(G), which minimizes the excess
v(S)−p(S) of the least satisfied coalition, then the next one, and so on [Schmeidler, 1969; Maschler
et al., 1979].

The strong εS-core of G is referred to as the strong least core of G, and is denoted by SLC(G);
a simple continuity argument shows that for every profit-sharing game G the set SLC(G) is non-
empty. It always holds that pn(G) ∈ SLC(G), and the pre-nucleolus can be thought of as the
“most stable” preimputation of G.

In contrast, the weak ε-core of G (see e.g., in [Bejan and Gómez, 2009]) consists of payoff
vectors such that no coalition can deviate in a way that profits each deviator by more than ε:

WCε(G) = {p ∈ I(G) | p(S) ≥ v(S)− ε|S| for all S ⊆ N}.

Just as for the strong least core, we define the value of the weak least core of G as εW(G) =
inf{ε ≥ 0 | WCε(G) 6= ∅}; the weak least core (denoted by WLC(G)) is the weak εW-core of
G. Again, a continuity argument shows that every profit-sharing game has a non-empty weak least
core.

Similarly to the additive cost of stability, both the value of the weak least core and the value of
the strong least core can be obtained as optimal values of certain linear programs. We can think
of all three notions as different measures of (in)stability. For instance, it is clear that conditions
εS(G) > 0, εW(G) > 0, and addCoS(G) > 0 are pairwise equivalent, as each of them holds if
and only if the core of G is empty. We will now discuss the relationship between the weak least
core, the strong least core, and the cost of stability in more detail.

Mechanisms for Stability and Welfare 27

3.4.1 The Strong Least Core
The goal of this section is to establish upper and lower bounds on addCoS(G) in terms of εS(G).
We start by showing that their ratio never exceeds the number of players n. This proof is simply by
adding εS(G) to each agent.

Proposition 3.13. Let G = 〈N, v〉 be a profit-sharing game. Then addCoS(G) ≤ nεS(G), and
this bound is tight even for simple games.

For the remainder of this section, we use the following construction. Given a game G with an
empty core, we set ε = εS(G) and define a new game Gε = 〈N, vε〉, where vε(S) = v(S) − ε for
all S (N , and vε(N) = v(N). Intuitively, Gε is obtained by imposing the minimum penalty on
deviating coalitions that ensures stability, just as G is obtained by providing the minimum subsidy
that ensures stability. Clearly, C(Gε) = SLC(G).

We will now show when the upper bound shown in Proposition 3.13 can be improved.

Theorem 3.14. Let G = 〈N, v〉 be a superadditive profit-sharing game, Then addCoS(G) ≤√
n · εS(G), and this bound is tight up to a small additive constant.

An immediate corollary that follows by Equation (3.2), is that RSR(G) ≤ 1 + addCoS(G)
v(N) ≤

1+
√
nεS(G)
v(N) . Since εS(G) ≤ v(N) and it is usually significantly smaller, Theorem 3.14 strengthens

Theorem 3.4 for almost every game.

�
�
�

�
�
�

����������������������������

�
�
�
�
�

�
�
�
�
�������������������������������������

�
�
�

�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�

�
�
�

�
�
�
�

�����������
�
�

�
�
�

����������

��
��
��
��

�������������
�������������
�������������
�������������

�
�
�
�

�
�
�
���

�
�
�
�����������������������������

�
�
�
�

�
�
�
�

��������������������������

������������ ��������������
������������������������������������

�
�
�
�

�
�
�
�

�
�
�
�

����������
����������
����������
����������

����������
����������
����������
����������

��������������������������
�������
�������
�������
�������

�������������
�������������
�������������
�������������������������

������������
������������
������������

�
�
�
�
�

�
�
�
�
�

��
��
��
��

v2

v1

(1, 0) (0, 1)

p1 ≥ v1 − ε p2 ≥ v2 − ε
εε

v2

v2

v1

(1, 0) (0, 1)
(p1, p2)

p1 ≥ v1 p2 ≥ v2

(1 + ∆, 0)

∆
v1

(0, 1 + ∆)

p2 ≥ v2p1 ≥ v1

Figure 3.1: The core, the strong least core, and the additive cost
of stability in a two-player game.

We now focus on estab-
lishing a lower bound on
addCoS(G)/εS(G). We begin
with a simple example. Con-
sider a game G = 〈N, v〉 with
N = {1, 2}, and suppose that
the core of G is empty. This
means that v({1}) + v({2}) >
v({1, 2}). Clearly, we have
addCoS(G) = v({1}) +
v({2}) − v({1, 2}). On the
other hand, it is not hard to see
that for n = 2 the strong least
core coincides with the weak
least core, and ε = εW(G) =
εS(G) satisfies ε = v({1}) −
p1 = v({2}) − p2, where
(p1, p2) is a payoff vector in
the strong least core. Together
with the constraint p1 + p2 =
v({1, 2}) this implies 2ε =
addCoS(G).

This is illustrated in Fig-
ure 3.1, where we scale the characteristic function so that v(N) = 1 and set v1 = v({1}),
v2 = v({2}); the space of all pre-imputations for G corresponds to the one-dimensional sim-
plex (i.e., the segment [0, 1]); and each of the core constraints corresponds to a halfspace of this
space. The core is empty if and only if these halfspaces do not intersect (top figure). To find the

28 R. Meir

(a) The strong least core (b) The extended core

Figure 3.2: In Fig. 3.2(a), the three hyperplanes in the figure contradict one another. The point o
is the least-core, induced by moving all three hyperplanes an equal distance of ε. The dashed line
shows the new simplex induced by increasing the value of the grand coalition. In Fig. 3.2(b), we
can see the locations of all three hyperplanes before and after translation. H1 is fixed, and H2, H3

move to the intersection point a. We see thatH2 moved exactly ∆ as its distance from the opposing
vertex is fixed to v(1, 3), thus ab = ∆. Also, ao = co = ε, and ob = 1

2ao = ε
2 , since the angle

∠bao is 30o. Thus ∆ = ab = ao+ ob = ε+ ε
2 = 1 1

2ε.

strong least core, we move both halfspaces towards each other at the same rate until they meet,
i.e., we increase ε until the ε-core is no longer empty (middle figure). To find the additive cost of
stability, we stretch our segment from [0, 1] to [0, 1 + ∆], while the constraints remain “locked” to
its endpoints; we increase ∆ until the halfspaces that correspond to the core constraints intersect
(bottom figure).

The graphical approach described above builds on the geometric representation of the least core
that was proposed by Maschler, Peleg, and Shapley [1979], and can be extended to an arbitrary
number of players. Specifically, we can think of every payoff vector p ∈ I(G) as a point in
an (n − 1)-dimensional simplex of height v(N), where each agent corresponds to a face of the
simplex, and pi is the distance from p to face i (an illustration of the core of a game with three
players appears in Figure 2.1). Note that

∑
i∈N pi is always equal to the height of the simplex.

Every core constraint corresponds to some coalition, and defines a halfspace of admissible
payoff vectors. The core is then the intersection of all such halfspaces. To find the strong least core
of a game with an empty core, we move all halfspaces until they intersect (see Figure 3.2).

Similarly, to determine the additive cost of stability, we keep one vertex fixed to its location,
and move only the other n− 1 vertices. Halfspaces are “locked” to their corresponding faces, and
move with them. Thus the halfspaces converge somewhat more slowly towards their intersection
point. By formalizing this analysis, we obtain the following lower bound on addCoS(G).

Mechanisms for Stability and Welfare 29

Theorem 3.15. Let G = 〈N, v〉 be a profit-sharing game. Then addCoS(G) ≥ n
n−1εS(G), and

this bound is tight.

Proposition 3.13 and Theorem 3.15 establish a quantitative relationship between the additive
cost of stability and the value of the strong least core. We conjecture that the strong least core is
also closely related to the extended core.

Conjecture 3.16. For every profit-sharing gameGwith an empty core we have SLC(G) ⊆ EC(G).

In other words, we conjecture that payoff vectors in the strong least core are also the ones that
are the easiest to stabilize: for every p ∈ SLC(G) it holds that addCoS(p, G) = addCoS(G). It is
possible to verify that Conjecture 3.16 holds for n = 2 and n = 3 (see Prop. A.3 in the appendix);
proving it for n ≥ 4 is an interesting open problem. Note that the conjecture implies that the pre-
nucleolus pn(G) (which is contained in the strong least core) is also the easiest vector to stabilize.
Yet a stronger conjecture would be that the nucleolus of G would itself be a non-negative extension
of pn(G).

3.4.2 The Weak Least Core

Consider a game with an empty core G. A simple observation is that the additive Cost of Stability
equals n times the value of the weak least core (see also [Bejan and Gómez, 2009]).

To see why this is true, let ∆ > 0, take any pre-imputation p ∈ I(G), and add ε = ∆/n to
every agent, s.t. p′ = p + 1 · ε. For any coalition S (N , p(S) ≥ v(S) − |S|ε if and only if
p′(S) ≥ v(S).5 In particular, p ∈WCε(G) if and only if p′ ∈ C(G(∆)), and thus

nεW(G) = nmin{ε ≥ 0 |WCε(G) 6= ∅} = min{nε ≥ 0 | C(G(nε)) 6= ∅} = addCoS(G).
(3.9)

Clearly, this also entails that WLC(G) ⊆ EC(G), as any payoff vector z ∈ WLC(G) can be
transformed into a stable payoff vector in S(G) by adding ε to every coordinate.

For superadditive games, Eq. (3.9) allows us to derive the following bounds.

Corollary 3.17 (from Theorems 3.14 and 3.15). Let G = 〈N, v〉 be a superadditive profit-sharing
game. Then √

nεW(G) ≤ εS(G) ≤ (n− 1) · εW(G).

3.5 The Cost of Stability in Games with Coalition Structures

So far, we have tacitly assumed that the only possible outcome of a coalitional game is the formation
of the grand coalition. This makes sense in s-additive games or when the context dictates that only
one coalition can be formed (as with companies competing for a contract).

The situations where agents can split into teams to work on several tasks can be modeled as
TU games with coalition structures [Aumann and Dréze, 1974]. In this section, we consider the
problem of stabilizing TU games with coalition structures. See Section 2.2.1 for basic definitions.

5Note that payoff vectors in the least core may have negative entries.

30 R. Meir

The core of games with coalition structures Given a TU game G = 〈N, g〉, we extend the
notation CS(N) to subsets of N : given a set S ⊆ N , we denote by CS(S) the set of all partitions
of S.

A pre-imputation for a coalition structure CS = (S1, . . . , Sm) in a coalitional game G =
〈N, g〉 is a vector p = (p1, . . . , pn) that satisfies

∑
i∈Sj pi = |g(Sj)| for every j = 1, . . . ,m.

That is, just as in the setting without coalitions structures, pi is the profit received by (respectively,
cost incurred on) player i. We emphasize that the profit (expenses) of each coalition in a coalition
structure is distributed among the coalition members. We denote the set of all pre-imputations for
a coalition structure CS by I(CS).

An outcome of a TU game G = 〈N, g〉 with coalition structures is a pair (CS ,p), where
CS ∈ CS(N) and p ∈ I(CS). Just as for games without coalition structures, we are interested
in outcomes that are stable. Such outcomes are said to form the CS-core of G. More formally,
an outcome (CS ,p) is said to be in the CS-core of G if p is not blocked by any coalition, i.e.,
p ∈ S(G). Note that stability constraints are the same regardless of the coalition structure being
formed, that is S(G) is the same whether coalition structures are allowed or not. We will denote
the CS-core of a game G by CSC(G). Also, for a particular structure CS we set

C(G,CS) = {p ∈ I(CS) | (CS ,p) ∈ CSC(G)} = I(CS) ∩ S(G).

Note that p is in the core of G if and only if (N,p) is in the CS-core of G.
In Example 2.2, for instance, allowing coalition structures means that contractors do not com-

pete over a single project, but rather that any group of contractors with 10 trucks can take on a
project and share its profits. As shown, under this interpretation (of multiple projects) the CS-core
of the game is non-empty (in contrast to the core), and contains (CS = {{1, 2, 3}, {4}},p =
(0, 0, 10, 10)).

3.5.1 Subsidizing the socially optimal coalition structure

As in [Bachrach et al., 2009a], the quantity addCoScs(G), which we will call the additive coali-
tional cost of stability of G, is the minimal subsidy needed to stabilize G if agents are allowed to
form coalition structures. Since the only difference from addCoS(G) is the amount that agents can
generate without the subsidy, addCoScs(G) = addCoS(G)− (OPT(G)− v(N)). The multiplica-
tive coalitional cost of stability of G can be similarly defined as in Definition 3.2. For example,
RSRCS(G) = RSR(G) v(N)

OPT(G) = OPT(G)+addCoScs(G)
OPT(G) for profit sharing games.

Following Aumann and Dréze [1974], we define the superadditive cover of a profit-sharing
game G = 〈N, v〉 as a game G∗ = 〈N, v∗〉 given by v∗(S) = maxCS∈CS(S) v(CS). Note that
for S = N we get v∗(N) = v(ĈS). It is easy to see that G∗ is a superadditive game: for
every pair of non-overlapping coalitions, S1, S2 we have (S1, S2) ∈ CS(S1 ∪ S2) and hence
v∗(S1 ∪ S2) ≥ v(S1) + v(S2). The subadditive cover G∗ = 〈N, c∗〉 of an expense-sharing game
G = 〈N, c〉 is defined similarly: we have c∗(S) = minCS∈CS(S) c(CS). Clearly, G∗ = 〈N, c∗〉
is subadditive. We will refer to both the superadditive covers of profit-sharing games and the
subadditive covers of expense-sharing games as s-additive covers of the respective games.

We will now show that the coalitional cost of stability of a given game equals the cost of stability
of its s-additive cover.

Proposition 3.18. Let G = 〈N, g〉 be a coalitional game, and let G∗ = 〈N, g∗〉 be its s-additive
cover. Then addCoScs(G) = addCoS(G∗) and multCoScs(G) = multCoS(G∗).

Mechanisms for Stability and Welfare 31

Proposition 3.18 follows almost immediately from in [Greco et al., 2011b, Theorem 3.5].6

By Proposition 3.18 we can directly translate all of the upper bounds in this chapter (e.g., in
Theorem. 3.4) to bounds on multCoScs(G) omitting the super/subadditivity requirement.

3.6 Related Work
The term “cost of stability” was introduced in a joint paper with Yoram Bachrach, Michael Zuck-
erman, Jörg Rothe and Jeffrey S. Rosenschein, who defined this concept formally, proved several
bounds on the additive cost of stability, and presented computational complexity results for the cost
of stability in weighted voting games [Bachrach et al., 2009]. This short paper was later extended
by Bachrach et al. [2009a], who studied general classes of games (see results in Section 3.3.1),
and showed for example that computing the CoS is NP-complete under natural assumptions on the
representation of the game.

Recent research on subsidies and the CoS Since the first papers on the CoS, several groups
of researchers studied the cost of stability, focusing mainly on computational questions. Aadithya
et al. [2011] showed that for coalitional games represented by algebraic decision diagrams, the
cost of stability can be computed in polynomial time. Greco et al. [2011c] proved bounds on
the complexity of computing the cost of stability, for games with and without coalition structures.
Bounds in other classes of games have been studied in [Resnick et al., 2009; Aziz et al., 2010;
Bachrach et al., 2013; Bachrach and Shah, 2013].

A model for subsidies in coalitional games was independently suggested by Bejan and Gómez
[2009], who focused (as we do in Section 3.4) on the relationship between subsidies and other
solution concepts. We adopted some of their notation, which is useful in our case as well. However,
in their work the additional payment required to stabilize a game is collected from the participating
agents by means of a specific taxation system, rather than injected into the game by an external
authority, whereas we do not assume any form of taxation. The taxation approach was extended
by Zick et al. [2013], who also studied the connections between taxes and the CoS. The relation
between the CoS and another property of TU games (which aims to measure how far a game is
from being a weighted voting game), was studied in [Freixas and Kurz, 2011].

Approximate core Several other researchers studied subsidies and other issues about incentives
in expense-sharing games using different terminology. Specifically, Deng et al. [1999] show that a
coalitional game whose characteristic function is given by an integer program of a certain form has
a non-empty core if and only if the linear relaxation of this problem has an integer solution. Their
argument can be used to relate the multiplicative cost of stability in such games and the integrality
gap of the respective program. The connection between the integrality gap and the multiplicative
cost of stability is made explicit in the work of Goemans and Skutella [2004] in the context of
facility location games.

An application that has drawn much attention is routing in networks, which was initially for-
mulated as a minimum spanning tree game [Claus and Kleitman, 1973]. In the minimum spanning
tree game the agents are nodes of a graph, and each edge is a connection that has a fixed price.
The cost of a coalition is the price of the cheapest tree that connects all participating nodes to the
source node. The additive cost of stability in this particular game is always 0, as its core is never
empty [Granot and Huberman, 1981]. However, there is a more realistic variation of this game
known as the Steiner tree game, where nodes are allowed to route through nodes that are not part

6Our work preceded that of Greco at al. [2011b]. See [Meir et al., 2010].

32 R. Meir

Any s-additive games / Games with coalition structures
all k-size anonymous

Profit (upper bound on RSR) n (#)
√
n (#) min{k,

√
n} (Thm. 3.7) 2 (#)

Expense (lower bound on CRR) 0 1
lnn+1

(Cor. 3.10) 1
ln k+1

(Cor. 3.10) 1/2 (Thm. 3.12)

Table 3.1: The multiplicative cost of stability for different classes of TU games. All bounds are
asymptotically tight. #—[Bachrach et al., 2009a].

of their coalition. Megiddo [1978] showed that the core of the Steiner tree game may be empty,
and therefore its cost of stability is nontrivial. Jain and Vazirani [2001] proposed a mechanism
for the Steiner tree game with cost recovery ratio of 1/2, under the stronger requirements of group
strategyproofness.7

A different line of research [Skorin-Kapov, 1995] suggested a cost-sharing mechanism for
Steiner trees that does not guarantee strategyproofness, and showed empirically that it allocates
at least 92% of the cost on all tested instances. This finding indicates that the average-case CoS
may be much lower than the worst-case in other classes of TU games as well.

Other cost-sharing mechanisms for many different games have been suggested. For example,
Moulin and Shenker [2001] studied the tradeoff between efficiency and the CRR in subadditive
expense-sharing games; see [Pál and Tardos, 2003; Jain and Mahdian, 2007; Immorlica et al.,
2005] for an overview.

3.7 Conclusion
We provided bounds on the cost of stability for general games and under various restrictions on the
characteristic function, such as super- and subadditivity and anonymity, and extended our results
to the case where the goal is to stabilize some coalition structure rather than the grand coalition.
Our results are summarized in Table 3.1. We have also explored the relationship between the cost
of stability and the (strong and weak) least core, leaving some interesting open questions for future
research, especially regarding the minimal subsidy required to stabilize the prenucleolus.

In the next chapter, we show how the RSR can be further bounded by considering finer restric-
tions on valid coalitions. Bounding the cost of stability of a game is important as a metric to how
“unstable” the game is. Thus, for example, we now know that all subadditive anonymous games
cannot be very unstable. The CoS is also useful as a design tool for an external authority inter-
ested in a stable outcome. Such an authority may ponder the effectiveness of subsidies, perhaps
comparing the induced level of stability to other forms of intervention that change the game.

7More precisely, Jain and Vazirani [2001] demanded full cost recovery and relaxed stability constraints. The bound on
the cost of stability is achieved if we divide their proposed payments by 2.

Mechanisms for Stability and Welfare 33

Chapter 4

Subsidies, Stability, and Restricted
Cooperation

Abstract. We study the stability of cooperative games played over an interaction network,
in a model that was introduced by Myerson [1977]. We show that the cost of stability of such
games (CoS, the subsidy required to stabilize the game) can be bounded in terms of natural
parameters of their underlying interaction networks. Specifically, we prove that if the treewidth
of the interaction network H is k, then the relative cost of stability of any game played over
H is at most k + 1 and this is tight in the worst case. We then provide similar results for the
pathwidth, and show how our results can be used to derive bounds on the CoS in many classes
of games from the literature.

4.1 Introduction
In the previous chapter, we considered the problem of games with empty cores, and suggested the
cost of stability both as a measure to the instability of a game, and as a design tool that enables an
external party to incentivize cooperation between agents who would otherwise be reluctant to join
in one coalition. Specifically, we showed how stability may be achieved via subsidies: an external
party may try to stabilize the game by offering a lump sum to the agents if they form some desired
coalition structure. The minimum subsidy required to guarantee stability is known as the cost of
stability (CoS) [Bachrach et al., 2009a]. Several other ways have been proposed in order to capture
the intuition behind the notion of the core, while relaxing the core constraints—the least-core, for
example (see Section 3.4).

Another approach, pioneered by Myerson [1977], assumes that interaction among agents may
be limited, and that agents cannot deviate unless they can communicate with one another. In more
detail, the game has an underlying interaction network, called the Myerson graph: agents are nodes,
and an edge indicates the presence of a communication link. Permissible coalitions correspond to
connected subgraphs of the Myerson graph. Myerson’s model is a type of restriction scheme known
as a partition system [Bilbao, 2000, Chapter 5].

In this chapter, we study the interplay between restricted interaction and the cost of stability.
Our goal is to bound the relative cost of stability in terms of structural properties of the interaction
network (represented by the Myerson graph). One such property is the treewidth: this is a com-

34 R. Meir

binatorial measure of graph structure that, intuitively, says how close a graph is to being a tree.
Breton, Owen and Weber [1992] have demonstrated a connection between structure and stability
by showing that if the Myerson graph is a tree, then the core of the game is non-empty. This result
was later independently reproduced by Demange [2004], who also provided an efficient algorithm
for constructing a core imputation. It is thus natural to ask if the CoS of games whose Myerson
graphs have small treewidth, is low.

4.1.1 Related Work
Literature on subsidies has been covered in the previous chapter (Section 3.6). A survey of re-
stricted cooperation in TU games is in [Grabisch, 2009]. Recently, Greco et al. [2011b] studied
questions related to the CoS in games with restricted cooperation in the Myerson model, mainly
from a computational complexity perspective. Extension of the Myerson model to directed graphs
have also been suggested [Li and Li, 2011; Khmelnitskaya, 2010]. Other effects of network struc-
ture on subsidies have also been studied in fairly different settings, as in [Elliott and Golub, 2013].

It is well-known that many graph-related problems that are computationally hard in the general
case become tractable once the treewidth of the underlying graph is bounded by a constant (see,
e.g., [Courcelle, 1990]). There are several graph-based representation languages for cooperative
games, and for many of them the complexity of computational questions that arise in cooperative
game theory (such as finding an outcome in the core or an optimal coalition structure) can be
bounded in terms of the treewidth of the corresponding graph [Ieong and Shoham, 2005; Aziz et al.,
2009; Bachrach et al., 2010; Greco et al., 2011a; Voice et al., 2012]. Bounding the treewidth of the
Myerson graph however, does not lead to a tractable solution for these computational questions,1

as shown by Greco et al. [2011b] and later by Chalkiadakis et al. [2012].

4.1.2 Results in this chapter
In Section 4.3 we provide a complete characterization of the relationship between the treewidth of
the interaction network and the worst-case cost of stability. We prove that for any game G played
over a network of treewidth k, its required subsidy ratio (RSR, also known as the multiplicative cost
of stability) is at most k + 1. This is done by first showing the bound for simple games, and then
extending it to general games. We emphasize that throughout the chapter we assume that agents
may form coalition structures (as in Section 3.5). We further show that the bound of k + 1 is tight
whenever 2 ≤ k ≤

√
n.

In Section 4.4 we prove a similar result with respect to the pathwidth of the interaction network,
showing that the RSR is bounded by the pathwidth k (without the additional 1), and that this bound
is also tight.

In both sections we provide algorithms that explicitly construct a stable payoff vector. The
runtime of these algorithms may be exponential in n in the general case, but for simple monotone
games an outcome can be computed efficiently. Some important implications of our result for
various classes of cooperative games are drawn in Section 4.5.

Finally, we show in Section 4.6 that bounded treewidth (even k = 2) does not enable efficient
algorithms for computing optimal coalition structures. This (together with a similar negative result
by Greco et al. [2011b] regarding the computation of the CoS) leads to the conclusion that bounding
the treewidth of the Myerson graph has little impact from a computational perspective, but great
significance from an economic perspective.

1Except for the special case of width 1 mentioned above.

Mechanisms for Stability and Welfare 35

To the best of our knowledge, our work is the first to employ treewidth in order to prove a
game-theoretic result that is not algorithmic in nature.

4.2 Preliminaries
For the standard notations of cooperative games, see Sections 2.2 and 3.2. Following Aumann and
Dréze [1974], we assume that agents may form coalition structures. We follow the definitions of
Section 3.5, and refresh some of the concepts we will use.

Payoffs and Stability Recall that OPT(G) = max{v(CS) | CS ∈ CS(N)}. A payoff vector
x is a pre-imputation for a coalition structure CS if for all S ∈ CS it holds that x(S) = v(S). A
pair of the form (CS ,x), where CS ∈ CS(N) and x is a pre-imputation for CS , is referred to as
an outcome of the game G = 〈N, v〉. Recall that S(G) denotes the set of all payoff vectors (not
necessarily pre-imputations) that satisfy the stability constraints.

We say that an outcome (CS ,x) of a gameG = 〈N, v〉 is stable if x is a pre-imputation for CS
and x ∈ S(G).The set of all stable outcomes of G is called the core of G, and is denoted CSC(G).

The required subsidy ratio (denoted by RSR, and also known as the multiplicative cost of
stability) of a game G, is the ratio between smallest total payoff that stabilizes the game, and the
maximal available payoff:

RSRCS(G) = inf
x∈S(G)

x(N)

OPT(G)
. (compare with Eq. (3.2))

Since we assume coalition structures are used throughout the chapter, we replace the terms CSC(G)
and RSRCS(G) with C(G) and RSR(G), respectively.

4.2.1 Interaction graphs and their treewidth

Figure 4.1: The graph H . The coali-
tion {1, 2, 3} is allowed, but {1, 2, 4} is
not.

An interaction network (also called a Myerson graph) over
N is a graph H = 〈N,E〉. Given a game G = 〈N, v〉 and
an interaction network over N , we define a game G|H =
〈N, v|H〉 by setting v|H(S) = v(S) if S is a connected sub-
graph of H , and v|H(S) = 0 otherwise; that is, in G|H a
coalition S ⊆ N may form if and only if its members are
connected (See Fig. 4.1).

A tree decomposition of H is a tree T over the nodes V (T) such that:
• Each node of T is a subset of N .
• For every pair of nodes X,Y ∈ V (T) and every i ∈ N , if i ∈ X and i ∈ Y then for any

node Z on the (unique) path between X and Y in T we have i ∈ Z.
• For every edge e = {i, j} of E there exists a node X ∈ V (T) such that e ⊆ X .
The width of a tree decomposition T is tw(T) = maxX∈V (T) |X| − 1; the treewidth of H is

tw(H) = min{tw(T) | T is a tree decomposition of H}.

If a graph H has a treewidth of at most k, then it is possible to find a tree decomposition of H
whose width is k in f(k)O(n) time, for some function f . Examples of graphs with low treewidth
include trees (whose treewidth is 1) and series-parallel graphs (whose treewidth is at most 2); see,
e.g., [Bodlaender and Kloks, 1996; Bodlaender and van Antwerpen-de Fluiter, 2001].

36 R. Meir

Given a subtree T ′ of a tree decomposition T (we use the term “subtree” to refer to any con-
nected subgraph of T), we denote the agents that appear in the nodes of T ′ by N(T ′). Con-
versely, given a set of agents S ⊆ N , let T (S) denote the subgraph of T induced by nodes
{X ∈ V (T) | X∩S 6= ∅}; it is not hard to check that T (S) is a subtree of T for every S ⊆N .
Given a tree decomposition T of H and a node R∈V (T), we can set R to be the root of T . In this
case, we denote the subtree rooted in a node S∈V (T) by TS .

A tree decomposition of a graph H such that T is a path is called a path decomposition of H .
The pathwidth of H is pw(H) = min{tw(T) | T is a path decomposition of H}.

For any graph H , tw(H) ≤ pw(H) and pw(H) = tw(H) ·O(log(n)).

4.2.2 Cost of stability and the degree of H
Before we head to our main results on the treewidth, we test the natural conjecture that the mul-
tiplicative cost of stability (RSR) of a game is related to the degree of the Myerson graph (as low
degree means sparser graph and fewer valid coalitions).

Let d(H) be the maximum degree of a node in H . Is it true that RSR(G|H) ≤ g(d(H)), for
some function g? Our next proposition shows that this conjecture is false. The proof (see appendix)
shows that any superadditive simple game can be embedded in a 3-dimensional grid network.

Proposition 4.1. For any k ∈ N there exists an interaction networkH with d(H) = 6 and a simple
superadditive game G with RSR(G|H) ≥ k.

4.3 Treewidth and the Cost of Stability
Our goal in this section is to provide a general upper bound on the cost of stability for TU games
whose interaction networks have bounded treewidth. We start by proving a bound for simple games;
we then show how to extend it to the general case.

4.3.1 Simple Games
We now show that for any simple game G = 〈N, v〉 and an interaction network H over N ,
RSR(G|H) ≤ tw(H) + 1. Our proof is constructive: we show that Algorithm 1, whose input is a
simple game G = 〈N, v〉, a network H , a parameter k, and a tree decomposition T of H of width
at most k, outputs a stable payoff vector x for G|H such that x(N) ≤ (tw(H) + 1) ·OPT(G|H).

Superadditive simple games Before presenting the full algorithm, we will provide some intu-
ition by describing a simpler algorithm for the superadditive case (i.e., games such that G|H is
superadditive). Since G is also simple, this means that any two winning coalitions in G|H in-
tersect. Hence, for every pair of winning coalitions S1, S2 ⊆ N the subtrees T (S1) and T (S2)
intersect. This implies that there exists a node A ∈ V (T) that belongs to the intersection of all
subtrees that correspond to winning coalitions in T , and hence intersects every winning coalition.
Therefore we can stabilize the game by paying 1 to every agent in A. Thus, our total payment is
|A| ≤ tw(T) + 1 ≤ k + 1.

We now turn to the more general case of arbitrary simple games. Briefly, Algorithm 1 picks
an arbitrary node R ∈ V (T) to be the root of T and traverses the nodes of T from the leaves
towards the root. Upon arriving at a node A, it checks whether the subtree TA contains a coalition
that is winning in G|H (note that we have to check every subset of N(TA) ∩Nt, since G|H is not

Mechanisms for Stability and Welfare 37

Mechanism 1 STABLE-TW(G = 〈N, v〉 , H, k, T)
Fix an arbitrary R ∈ V (T) to be the root
t← 0 N1 ← N x← 0n

for A ∈ V (T), traversed from the leaves upwards do
t← t+ 1
if ∃S ⊆ N(TA) ∩Nt s.t. v|H(S) = 1 then

for i ∈ A ∩Nt do
xi ← 1

end for
Nt+1 ← Nt \N(TA)

else
Nt+1 ← Nt

end if
end for return x = (x1, . . . , xn)

necessarily monotone). If this is the case, it pays 1 to all agents in A and removes all agents in
TA from every node of T . Note that every winning coalition in TA has to be connected, so either
it is fully contained in a proper subtree of TA or it contains agents in A. The reason for deleting
the agents in TA is simple: every winning coalition that contains members of TA is already stable
(one of its members is getting a payoff of 1). The algorithm then continues up the tree in the same
manner until it reaches the root. We note that Algorithm 1 is similar in spirit to the one proposed
by Demange [2004]; however, Algorithm 1 may pay 2 ·OPT(G|H) ifH is a tree. Moreover, unlike
Demange’s algorithm for trees, Algorithm 1 may require exponential time. However, if the simple
game given as input is monotone, a straightforward modification (check whether v|H(S) = 1 only
for S = N(TA) rather than for every S ⊆ N(TA)) makes it run in polynomial time.

Theorem 4.2. For every simple game G = 〈N, v〉 and every interaction network H over N ,
RSR(G|H) ≤ tw(H) + 1.

Proof. Let T be a tree decomposition of H such that tw(T) = k. Let x be the output of Algo-
rithm 1. We claim that x is stable and x(N) ≤ (k + 1)OPT(G|H).

To prove stability, consider a coalition S with v|H(S) = 1; we need to show that x(S) > 0.
Suppose for the sake of contradiction that x(S) = 0; this means that each agent in S is deleted
before he is allocated any payoff. Consider the first time-step when an agent in S is deleted;
suppose that this happens at step t when a node A ∈ V (T) is processed. Clearly for an agent in S
to be deleted at this step it has to be the case that T (S) ∩ TA 6= ∅. Further, it cannot be the case
that S ∩ (A ∩ Nt) 6= ∅, since each agent in A ∩ Nt is assigned a payoff of 1 at step t, and we
have assumed that x(S) = 0. Therefore, T (S) must be a proper subtree of TA. Let B be the root
of T (S), and consider the time-step t′ < t when B is processed. At time t′, all agents in S are
still present in T , so the node B meets the if condition in Algorithm 1, and therefore each agent in
B gets assigned a payoff of 1. This is a contradiction, since B is the root of T (S), and therefore
B ∩ S 6= ∅, which implies x(S) > 0.

It remains to show that x(N) ≤ (k + 1)OPT(G|H). To this end, we will construct a specific
coalition structure CS∗ and argue that x(N) ≤ (k + 1)v|H(CS∗). The coalition structure CS∗ is
constructed as follows. Let At be the node of the tree considered by Algorithm 1 at time t, and let
St = N(TAt) ∩ Nt, i.e., St is the set of all agents that appear in TAt at time t. Let T ∗ be the set
of all values of t such that At meets the if condition in Algorithm 1. For each t ∈ T ∗ the set St

38 R. Meir

contains a winning coalition; let Wt be an arbitrary winning coalition contained in St. Finally, let
L = N \ (∪t∈T∗Wt), and set CS∗ = {L} ∪ {Wt | t ∈ T ∗}.

Observe that CS∗ is a coalition structure, i.e., a partition of N . Indeed, L ∩Wt = ∅ for all
t ∈ T ∗, and, moreover, if i ∈Wt for some t > 0, then i was removed from T at time t, and cannot
be a member of coalition Wt′ for t′ > t. Further, we have vH(CS∗) ≥ |T ∗|.

To bound the total payment, we observe that no agent is assigned any payoff at time t 6∈ T ∗,
and each agent that is assigned a payoff of 1 at time t ∈ T ∗ is a member of At. Hence we have

x(N) =
∑
t∈T∗

x(At) ≤
∑
t∈T∗

|At| ≤ (k + 1)|T ∗| ≤ (k + 1)v|H(CS∗) ≤ (k + 1)OPT(G),

which proves that RSR(G) ≤ k + 1.

4.3.2 The General Case

Using Theorem 4.2, we are now ready to prove our main result.

Theorem 4.3. For every game G = 〈N, v〉 and every interaction network H over N it holds that
RSR(G|H) ≤ tw(H) + 1.

Proof. Given a game G′ = 〈N, v′〉, let #(G′) = |{S ⊆ N | v′(S) > 0}|. We prove the theorem
by induction on #(G|H). If #(G|H) = 1 then RSR(G|H) = 1: any outcome of this game
where the positive-value coalition forms is stable. Now suppose that our claim is true whenever
#(G|H) < m; we will show that it holds for #(G|H) = m. To simplify notation, we identify v
with v|H , i.e., we write v in place of v|H throughout the proof.

We define a simple game G′ = 〈N, v′〉 by setting v′(S) = 1 if v(S) > 0 and v′(S) = 0
otherwise. By Theorem 4.2, there exists a payoff vector x′ such that x′(S) ≥ v′(S) for all S ⊆ N
and x′(N) ≤ (tw(H) + 1)v(CS ′), where CS ′ is an optimal coalition structure for G′. Moreover,
we can assume that x′ ∈ {0, 1}n, as Algorithm 1 outputs such a payoff vector.

We set ε = min{v(S) | v(S) > 0} and define a game G′′ = 〈N, v′′〉 by setting v′′(S) =
max{0, v(S) − εx′(S)}. Intuitively, we “split” G to a simple game εG′ and a remainder G′′, and
stabilize each one independently.

Consider a coalition S with v(S) = ε. We have v′(S) = 1 and hence x′(S) = 1. Therefore,
v′′(S) = 0 and hence #(G′′) < m, so the induction hypothesis applies to G′′. Therefore, there is
a stable payoff vector x′′ such that x′′(N) ≤ (tw(H) + 1)OPT(G′′), We set x = εx′ + x′′. We
will now show that x(N) ≤ (tw(H) + 1)OPT(G) and x(S) ≥ v(S) for all S ⊆ N .

We have x(S) = εx′(S) +x′′(S) ≥ εx′(S) + v′′(S) ≥ εx′(S) + v(S)− εx′(S) = v(S) for all
S ⊆ N , so x is a stable payoff vector for G.

Let CS ′′ be an optimal coalition structure for G′′. We can assume without loss of generality
that there is only one coalition of value 0 in CS ′′; we denote this coalition by S0.

Let N∗ = N \ S0; t∗ = |{S ∈ CS ′+ | S ∩N∗ 6= ∅}|; and t0 = |{S ∈ CS ′+ | S ⊆ S0}|. We
have that v′(CS ′) = |CS ′+| = t∗ + t0, and∑
S∈CS ′′+

x′(S) = x′(N∗) ≥
∑

S∈CS ′+

x′(S∩N∗) ≥
∑

S∈CS ′+

v′(S∩N∗) ≥ |{S ∈ CS ′+ | S∩N∗ 6= ∅}|.

Mechanisms for Stability and Welfare 39

We are now ready to bound x(N). Using the last inequality, we obtain

x(N) = εx′(N) + x′′(N) ≤ ε(tw(H) + 1)v′(CS ′) + (tw(H) + 1)v′′(CS ′′)

= (tw(H) + 1)

ε|CS ′+|+∑
S∈CS ′′+

(v(S)− εx′(S))

≤ (tw(H) + 1)

(
ε|CS ′+|+ v(CS ′′+)− εt∗

)
= (tw(H) + 1)

(
v(CS ′′+) + εt0

)
.

Further, t0 =
∑
S∈CS ′+:S⊆S0

v′(S) ≤
∑
S∈CS ′+:S⊆S0

1
ε v(S), thus

x(N) ≤ (tw(H) + 1)

v(CS ′′+) +
∑

S∈CS ′+:S⊆S0

v(S)

 .

The coalitions in the right-hand side of this expression form a partition of (a subset of) N , so their
total value under v does not exceed OPT(G|H).

The multiplicative cost of stability of any TU game, even with unrestricted cooperation, is at
most

√
n (see Chapter 3). Thus, we obtain RSR(G|H) ≤ min{tw(H) + 1,

√
n}, assuming that

coalition structures are allowed. For superadditive games Theorem 4.3 implies that there is some
stable payoff vector x such that x(N) ≤ (tw(H) + 1)v(N).2

4.3.3 Tightness
We will now show that if the treewidth of the interaction network is at least 2, then the upper bound
of tw(H) + 1 proved in Theorem 4.3 is tight.

Theorem 4.4. For every k ≥ 2 there is a simple superadditive gameG = 〈N, v〉 and an interaction
network H over N such that tw(H) = k and RSR(G|H) = k + 1.

Proof sketch. Instead of defining H directly, we will describe its tree decomposition T . There
is one central node A = {z1, . . . , zk+1}. For every unordered pair I = {i, j}, where i, j ∈
{1, . . . , k + 1} and i 6= j, we define a set DI that consists of 7 agents and set N = A ∪⋃
i 6=j∈{1,...,k+1}D{i,j}.

The tree T is a star, where leaves are all sets of the form {zi, zj , d}, where d ∈ D{i,j}. That is,
there are 7 ·

(
k+1

2

)
leaves, each of size 3. Since the central node of T is of size k+ 1, it corresponds

to a network of treewidth at most k. We set Di =
⋃
j 6=iD{i,j}; observe that for any two agents

zi, zj ∈ A we have Di ∩ Dj = D{i,j}. Given T , it is now easy to construct the underlying
interaction network H: there is an edge between zi and every d ∈ D{i,j} for every j 6= i; see
Figure 4.2 for more details.

For every unordered pair I = {i, j} ⊆ {1, . . . , k + 1}, let QI denote the projective plane
of dimension 3 (a.k.a. the Fano plane, marked by dotted lines in Fig. 4.2) over DI . That is, QI
contains seven triplets of elements from DI , so that every two triplets intersect, and every element
d ∈ DI is contained in exactly 3 triplets in QI . Winning sets are defined as follows. For every
i = 1, . . . , k + 1 the set {zi} ∪

⋃
j 6=iQ{i,j} is winning. Thus for every zi there are 7k winning

coalitions containing zi, each of size 1 + 3k.
2Note that, while the proof for simple superadditive games is straightforward, we cannot use the inductive argument

made in Theorem 4.3 directly, as superadditivity may not be preserved.

40 R. Meir

Figure 4.2: The interaction network of Theorem 4.4 for k = 2 (left), and its tree decomposition (right). Here,
D1,3 = {a1, . . . , a7}, D1,2 = {b1, . . . , b7} and D2,3 = {c1, . . . , c7}. An edge connects z1 to all agents in
D1,3 andD1,2, z2 toD1,2 andD2,3, and z3 toD1,3 andD2,3. Agent z1 forms winning coalitions with triplets
of agents fromD1,2 andD1,3 that are on a dotted line; z2 and z3 form winning coalitions with their respective
sets as well.

We can observe that all winning coalitions intersect, which implies that the simple game in-
duced by these winning coalitions is indeed superadditive and has an optimal value of 1. It remains
to verify that every stable payoff vector must pay at least k + 1 to the agents (see appendix).

The proof of Theorem 4.4 is not applicable when k = 1, since the width of our construction is
at least 2 (each leaf is of size 3). Indeed, if Theorem 4.4 were to hold for k = 1, we would obtain a
contradiction with Demange’s result.

4.4 Pathwidth and the Cost of Stability
For some graphs we can bound not just their treewidth, but also their pathwidth. For example, for
a simple cycle graph both the treewidth and the pathwidth are equal to 2. For games over networks
with bounded pathwidth, the bound of tw(H) + 1 shown in Section 3 can be tightened.

Theorem 4.5. For every TU game G = 〈v,N〉 and every interaction network H over N it holds
that RSR(G|H) ≤ pw(H), and this bound is tight.

Proof Sketch. We argue that, given a simple game G and a network H , Algorithm 5 (see Ap-
pendix B.2) outputs a stable payoff vector x such that x(N) ≤ pw(H) · OPT(G|H). First, Algo-
rithm 5 pays 1 to all winning singletons and removes them from the game; it can be shown that this
step does not increase the cost of stability. Next, we proceed in a manner similar to Algorithm 1;
however, when processing a nodeAj such thatN(TAj) contains a winning coalition, we do not pay
any agent i ∈ Aj such that i /∈ N(TAj) \ Aj . Paying such agents is not necessary, as any winning
coalition that contains them must contain some other agent in Aj that is paid 1 by the algorithm.
It can be shown that such agents are guaranteed to exist, thus not all agents in Aj are paid. We
then employ an inductive argument similar to the one in Theorem 4.3. To show tightness, we use a
slight modification of the construction from Section 3.

Mechanisms for Stability and Welfare 41

4.5 Implications for Games on Graphs
Our results apply to several well-studied classes of cooperative games. The following definition,
which appears in [Potters and Reijnierse, 1995], becomes useful in showing this.

LetH = 〈N,E〉 be an interaction network. We say that two coalitions S, T ⊆ N are connected
in H if there exists an edge (i, j) ∈ E such that i ∈ S, j ∈ T ; otherwise S and T are said to be
disconnected. A TU game G = 〈N, v〉 is said to be H-component additive if for every pair of
coalitions S, T that are disconnected in H , it holds that v(S ∪ T) = v(S) + v(T). If G is H-
component additive then G is essentially equivalent to G|H : these games can only differ in values
of infeasible coalitions.

There are many classes of combinatorial TU games defined over graphs, where every game in
the class is component-additive with respect to the graph on which it is defined; our results hold
for all of these classes. Some examples include induced subgraph games [Deng and Papadimitriou,
1994]; matching games, edge cover games, coloring games and vertex connectivity games [Deng
et al., 1999]; and social distance games [Brânzei and Larson, 2011].3 While some of these games
are known to have a non-empty core, our results hold for unstable variants of them as long as they
maintain component-additivity.

Games over hypergraphs Another two classes of games—Synergy Coalition Groups [Conitzer
and Sandholm, 2006] and Marginal Contribution Nets [Ieong and Shoham, 2005]—are defined over
collections of subsets, i.e., hypergraphs. Now, the notion of an interaction network can be naturally
extended to that of an interaction hypergraph, an idea suggested by Myerson himself as well as by
others (see [Bilbao, 2000], p. 112): a coalition can form only if for any two coalition members i
and j there is a sequence of overlapping hyperedges that connect them.

The concepts of treewidth and tree decomposition of a hypergraph coincide with the corre-
sponding definitions applied to its primal graph [Gottlob et al., 2001]. Therefore, all of our proofs
work for games whose interaction networks are hypergraphs with bounded treewidth. The notion
of a component-additive game can be extended to games on hypergraphs, and it is not hard to show
that both Synergy Coalition Groups and Marginal Contribution Nets are component-additive with
respect to their underlying hypergraphs. Hence, our results hold for these models as well.

4.6 Structure and Computational Complexity
We define the decision problem OPTCS as follows: it receives as input a game G = 〈N, v〉, an
interaction network H and some value α ∈ R; it outputs yes if and only if there is some partition
S1, . . . , Sk of N such that

∑k
j=1 v|H(Sj) ≥ α. We assume oracle access to v.4

It is known that if H is a tree and G is a simple monotone game then there is a polynomial
algorithm for OPTCS . This is by selecting an arbitrary root and iteratively isolate winning coali-
tions from the leafs upwards (similarly to the procedure of Algorithm 1, see [Demange, 2004; Meir
et al., 2012]).

We next show that the conditions of tree-structure, monotonicity, and simple game are minimal.

Proposition 4.6. OPTCS (G,H) is NP-hard even in the following cases:
(a) tw(H) = pw(H) = 2, G is simple and monotone.

3Brânzei and Larson [2011] define an NTU version of social distance games; however a TU version can be naturally
defined.

4This means that for every S ⊆ N we can access v(S) in constant time.

42 R. Meir

(b) H is a tree, G is simple but not monotone.
(c) H is a tree, G is monotone but not simple.

Proof sketch of (a). Our reduction is from an instance of the PARTITION problem [Garey and John-
son, 1979]. Given a PARTITION instance (a1, . . . , an) we define a weighted voting game with n+2
players, setting wi = ai for i ≤ n, wx = wy = 0. The threshold is q = 1

2

∑
i≤n wi. Our inter-

action network H over the player set is defined as follows: there are edges (i, x) and (i, y) for all
1 ≤ i ≤ n; observe that tw(H) = 2. Thus a coalition wins iff its weight is at least q, and it contains
either x or y (for connectivity). Thus OPT(G|H) = 2 if and only if the weights can be partitioned
into two equal sets.

Computing the CoS It is well known that in the general case computing the exact CoS of a
game, is an NP-hard problem [Bachrach et al., 2009a]. It is therefore a natural question whether
a restricted interaction structure helps in that respect. While it was shown by Greco et al. [2011b]
that the answer is affirmative in case the network H is a tree, they also showed that the problem
remains NP-hard even for graphs with tree-width (and path-width) of 2.

We find it quite remarkable that, contrary to the common wisdom, the treewidth of the Myerson
graph plays no role from an algorithmic perspective (except for the special case of a tree), but does
have significant game-theoretic implications.

4.7 Conclusion

We saw that the required subsidy ratio (RSR) of any cooperative game is bounded by the treewidth
of the social network by which players are connected. Simply put, as the network of social connec-
tions becomes “simpler” and with fewer cycles, the game becomes easier to stabilize. To the best
of our knowledge, this is the first time that the notion of treewidth has been used to obtain results
that are purely game-theoretic rather than algorithmic in nature.5

While we provide a stronger bound with respect to pathwidth, the bound on the treewidth is
more significant; indeed, Theorem 4.5 improves upon Theorem 4.3 only when the treewidth equals
the pathwidth, which is uncommon.

Our results imply a separation between games whose interaction networks are acyclic (i.e.,
with treewidth 1), which have been shown to be stable [Demange, 2004] (i.e., RSR of 1), and
other games. For any higher value of treewidth, the RSR is somewhat higher than the treewidth. In
particular, the result of Demange is not a special case of our theorem, although a slight modification
of our algorithm can be used to provide an alternative proof for Demange’s theorem.

Hypertreewidth We have argued in Section 4.5 that our results can be extended to hypergraphs,
giving a bound on the RSR in terms of the treewidth of the interaction hypergraph. Gottlob et
al. [2001] describe a stronger notion of width for hypergraphs, called hypertreewidth. This defini-
tion can result in a much lower width for general hypergraphs, and it is an open question whether
it can provide us with a better bound on the RSR.

5Interestingly, game-theory has been useful in characterizing hypergraphs with low hypertreewidth [Gottlob et al., 2003].
We establish a novel connection in the opposite direction.

Mechanisms for Stability and Welfare 43

The least core In Chapter 3 we saw that the value of both the strong least core and the weak least
core of a cooperative game can be bounded in terms of its additive cost of stability. Our combined
results imply that any bound on the treewidth or pathwidth of the interaction graph translates into a
bound on this other well-known measure of inherent instability.

44 R. Meir

Mechanisms for Stability and Welfare 45

Chapter 5

Convergence of Iterative Voting

Abstract. In this chapter we consider voting scenarios where voters cannot coordinate their
actions, but are allowed to change their vote after observing the current outcome. Such scenarios
are common in small committees and in online polls (for example on Facebook). We focus on
the Plurality voting rule, and study the conditions under which this iterative game is guaranteed
to converge to a Nash equilibrium (i.e., to a decision that is stable against further unilateral
changes). Our main result is that if voters restrict their behavior to natural best-response, the
game always converges. We conclude with an extensive discussion of iterative voting and its
prospects.

5.1 Introduction

In this chapter we consider a game where players should reach a joint decision (say, select a candi-
date for a tenure track position), using the Plurality voting rule. While it is known that no reasonable
voting rule is completely immune to strategic behavior, Plurality has been shown to be particularly
susceptible, both in theory and in practice [Saari, 1990; Forsythe et al., 1996; Friedgut et al., 2008].
This makes the analysis of any voting scenario—even one where the simple and common Plurality
rule is used—a challenging task. As voters may speculate and counter-speculate, it would be ben-
eficial to have formal tools that would help us understand (and perhaps predict) the final outcome.

Natural tools for this task include well-studied solution concepts developed for non-cooperative
games. While voting is not always presented as a game, several natural formulations have been
proposed (see Sections 5.6 and 2.1.2 for related work). Moreover, such formulations are extremely
simple in Plurality voting games, where voters only have a few available ways to vote.

The most prominent solution concept for games—the Nash equilibrium—has typically been
overlooked when it comes to voting, mainly because it appears to be too weak: there are typically
many Nash equilibria in a voting game, and most of them are trivial. For example, if all voters vote
for the same candidate, then this is clearly an equilibrium, since any single agent cannot change the
result.

The lack of a single prominent solution for the game suggests that in order to fully understand
the outcome of the voting procedure, it is not sufficient to consider voters’ preferences. The strate-
gies voters’ choose to adopt, as well as the information available to them, are necessary for the
analysis of possible outcomes. To play an equilibrium strategy for example, voters must have some

46 R. Meir

beliefs about the preferences of others. Partial knowledge (as well as a communication method) is
also required in order to collude with other voters.

We make no assumption about the beliefs of the voters, who may be completely oblivious about
the preferences of others. We do assume however that voters cannot or will not coordinate their
actions. Such situations may arise, for example, when voters do not trust one another or have
restricted communication abilities. Thus, even if two voters have exactly the same preferences,
they may be reluctant or unable to share this information, and hence they will each vote indepen-
dently. Voters may still try to vote strategically, based on their current information, which may be
partial or wrong. The analysis of such settings is of particular interest to AI as it tackles the fun-
damental problem of multi-agent decision making, where autonomous agents (that may be distant,
self-interested and/or unknown to one another) have to choose a joint plan of action or allocate
resources or goods. The central questions are (i) whether, (ii) how fast, and (iii) on what alternative
the agents will agree.

In our (Plurality) voting model, voters start from some announcement (e.g., the truthful one), but
can change their votes after observing the announcements of other voters and the current outcome.
The game proceeds in turns, where a single voter changes his vote at each turn. This process is
similar to online polls via Doodle or Facebook, where users can log-in at any time and change their
vote.

5.1.1 Results in this Chapter
We study different versions of this game, varying tie-breaking rules, weights and policies of vot-
ers, and the initial profile. Our main result shows that in order to guarantee convergence under
deterministic tie-breaking from any initial state, it is sufficient that voters restrict their actions to
natural best replies, and that this restriction cannot be relaxed. A similar result still holds under
randomized tie-breaking, provided that voters start from the truthful state.

5.2 Preliminaries
We denote the set of n voters by V . The alternatives, or candidates are denoted by C where
|C| = m.

As explained in detail in Chapter 2, every voting rule induces a game form. In the case of the
Plurality rule, this game form is particularly simple, as every voter only needs to specify his top
candidate, and the game form is a function f : Cn → 2C \ ∅.

We extend this game form by including the possibility that only k out of the n voters may
play strategically. We denote by K ⊆ V the set of k strategic voters, which are called agents, or
manipulators. The set B = V \K contains the n− k additional voters who have already cast their
votes, and are not participating in the game. Thus, the outcome is f(a1, . . . , ak, bk+1, . . . , bn),
where bk+1, . . . , bn are fixed as part of the game form. This separation of the set of voters does
not affect generality, but allows us to encompass situations where only some of the voters behave
strategically.

The Plurality game form According to the Plurality rule, the winner is the candidate (or a set of
those) with the most votes, where votes may be weighted. The weight of voter i ≤ n is denoted
by wi ∈ N. The initial score ŝ(c) of a candidate c is defined as the total weight of the fixed voters
who selected c—i.e., ŝ(c) =

∑
j∈B:bj=c

wj . The final score of c for a given joint action a ∈ Ck
(also called a voting profile) is the total weight of voters that chose c (including the fixed set B):

Mechanisms for Stability and Welfare 47

v1, v2 a b c
a (14, 9, 3) {a} (10, 13, 3) {b} (10, 9, 7) {a}
b (11, 12, 3) {b} (7, 16, 3) {b} (7, 12, 7) {b}
c (11, 9, 6) {a} (7, 13, 6) {b} (7, 9, 10) {c}

Table 5.1: There is a set C = {a, b, c} of candidates with initial scores ŝ = (7, 9, 3). Voter 1
has weight 3 and voter 2 has weight 4. Thus, GFT = 〈{a, b, c}, {1, 2}, (3, 2), (7, 9, 3)〉. The table
shows the outcome vector s(a1, a2) for every joint action of the two voters, as well as the set of
winning candidatesGFT (a1, a2). In this example there are no ties, and it thus fits both tie-breaking
schemes.

s(c,a) = ŝ(c) +
∑
i∈K:ai=c

wi. We sometimes write s(c) if the joint action is clear from the
context. We write s(c) >p s(c′) if either s(c) > s(c′) or the score is equal and c has a higher
priority (lower index). We denote by PLR the Plurality rule with randomized tie breaking, and
by PLD the Plurality rule with deterministic tie breaking in favor of the candidate with the lower
index. We have that

PLR(ŝ,w,a) = argmaxc∈C s(c,a), and
PLD(ŝ,w,a) = {c ∈ C s.t. ∀c′ 6= c, s(c,a) >p s(c

′,a)}.

Note that PLD(ŝ,w,a) is always a singleton, whereas PLR(ŝ,w,a) is a set.
For any joint action, its outcome vector s(a) contains the score of each candidate:

s(a) = (s(c1,a), . . . , s(cm,a)). For a tie-breaking scheme T (T ∈ {D,R}) the Game Form
GFT = 〈C,K,w, ŝ〉 specifies the winner for any joint action of the agents—i.e., GFT (a) =
PLT (ŝ,w,a). Table 5.1 demonstrates a game form with two weighted manipulators.

5.2.1 Incentives
We now complete the definition of our voting game, by adding incentives to the game form. The
order �i∈ R reflects the preferences of voter i, where R is the set of all strict orders over C. The
vector containing the preferences of all k agents is called a preference profile, and is denoted by
r = (�1, . . . ,�k). The game formGFT , coupled with a preference profile r, define a normal form
game GT = 〈GFT , r〉 with k agents. agent i prefers outcome GFT (a) over outcome GFT (a′) if
GFT (a) �i GFT (a′).

Note that for deterministic tie-breaking, every pair of outcomes can be compared. If ties are
broken randomly,�i does not induce a complete order over outcomes, which are sets of candidates.
A natural solution is to augment agents’ preferences with cardinal utilities, where ui(c) ∈ R is the
utility of candidate c to agent i. This definition naturally extends to multiple winners by setting
ui(W) = 1

|W |
∑
c∈W ui(c).1 A utility function u is consistent with a preference relation �i if

u(c) > u(c′)⇔ c �i c′.

Lemma 5.1. For any utility function u which is consistent with preference order �i , the following
holds:

1. a �i b ⇒ ∀W ⊆ C \ {a, b}, u({a} ∪W) > u({b} ∪W) ;

1One interpretation is that we randomize the final winner from the set W . For a thorough discussion of cardinal and
ordinal utilities in normal form games, see [Borgers, 1993].

48 R. Meir

v1, v2 a b * c
* a {a} 3,2 {b} 2, 1 * {a} 3,2
b {b} 2, 1 {b} 2,1 {b} 2, 1
c {a} 3, 2 {b} 2, 1 {c} 1, 3

Table 5.2: A gameGT = 〈GFT , r〉, whereGFT is as in Table 5.1, and r is defined by a �1 b �1 c
and c �2 a �2 b. The table shows the ordinal utility of the outcome to each agent (the final score
is not shown). Bold outcomes are the NE points. Here the truthful vote (marked with *) is also a
NE.

v1, v2 a b * c
* a {a} 3, 1 {b} 1,2 * {a} 3, 1
b {b} 1, 2 {b} 1,2 {b} 1, 2
c {a} 3, 1 {b} 1, 2 {c} 2, 3

Table 5.3: This game has the same game form as in Table 5.1, and the preference profile a �1

c �1 b and c �2 b �2 a. In this case, the truthful vote is not a NE.

2. ∀b ∈W,a �i b ⇒ u(a) > u({a} ∪W) > u(W) .

By Lemma 5.1, any order �i induces a partial preference order on the set of outcomes, but this
order is not complete if the cardinal utilities are not specified. For instance, the order a �i b �i c
does not determine if i will prefer {b} over {a, c}. When utilities are given explicitly, every pair of
outcomes can be compared, and we will slightly abuse the notation by using GFR(a) �i GFR(a′)
to note that i prefers the outcome of action a over that of a′.

5.2.2 Manipulation and Stability

Having defined a normal form game, we can now apply standard solution concepts. Let GT =
〈GFT , r〉 be a Plurality voting game, and let a = (a−i, ai) be a joint action in GT . We say that
ai

i→ a′i is an improvement step of agent i if GFT (a−i, a
′
i) �i GFT (a−i, ai). A joint action a

is a Nash equilibrium (NE), if no agent has an improvement step from a in GT . That is, no agent
can gain by changing his vote, provided that others keep their strategies unchanged. A priori, a
game with pure strategies does not have to admit any NE. However, in our voting games there are
typically (but not necessarily) many such points.

Now, observe that the preference profile r induces a special joint action a∗, termed the truthful
vote, such that a∗(r) = (a∗1, . . . , a

∗
k), where a∗i �i c for all c 6= a∗i . We also call a∗(r) the truthful

state of GT , and refer to GFT (a∗(r)) as the truthful outcome of the game. If i has an improvement
step in the truthful state, then this is a manipulation.2 Thus, r cannot be manipulated if and only
if a∗(r) is a Nash equilibrium of GT = 〈GFT , r〉. However, the truthful vote may or may not
be included in the NE points of the game, as can be seen from Table 5.2 and 5.3 that demonstrate
games that are induced by adding incentives to the game form shown in Table 5.1, and indicate the
truthful states and the NE points in these games.

2This definition of manipulation coincides with the standard definition from social choice theory.

Mechanisms for Stability and Welfare 49

5.2.3 Game Dynamics
We finally consider natural dynamics in Plurality voting games. Assume that agents start by an-
nouncing some initial vote, and then proceed and change their votes until no one has objections
to the current outcome. It is not clear how rational agents would act to achieve a stable decision,
especially when there are multiple equilibrium points. However, one can make some plausible as-
sumptions about their behavior. First, the agents are likely to only make improvement steps, and
to keep their current strategy if such a step is not available. Thus, the game will end when it first
reaches a NE. Second, it is often the case that the initial state is truthful, as agents know that they
can reconsider and vote differently, if they are not happy with the current outcome.

We start with a simple observation that if the agents may change their votes simultaneously, then
convergence is not guaranteed, even if the agents start with the truthful vote and use best replies—
that is, vote for their most preferred candidate out of potential winners in the current round.

Proposition 5.2. If agents are allowed to re-vote simultaneously, the game may never converge.

Example 5.2. The counterexample is the game with 3 candidates {a, b, c} with initial scores given
by (0, 0, 2). There are 2 voters {1, 2} with weights w1 = w2 = 1 and the following preferences:
a �1 b �1 c, and b �2 a �2 c. The two agents will repeatedly swap their strategies, switching
endlessly between the states a(r) = (a, b) and (b, a). Note that this example works for both tie-
breaking schemes. ♦

We therefore restrict our attention to dynamics where simultaneous improvements are not avail-
able. That is, given the initial vote a0, the game proceeds in steps, where at each step t, a single
agent may change his vote, resulting in a new state (joint action) at. The process ends when no
agent has objections, and the outcome is set by the last state. Such a restriction makes sense in
many computerized environments, where voters can log-in and change their vote at any time.

5.2.4 Types of moves
Let us first provide some useful notation. We denote the outcome at time t by ot = PL(at) ⊆ C,
and its score by s(ot). Suppose that agent i has an improvement step at time t, and as a result the
winner switched from ot−1 to ot. The possible steps of i are given by one of the following types
(an example of such a step appears in parentheses):

type 1 from ai,t−1 /∈ ot−1 to ai,t ∈ ot ; (step 1 in Ex.5.4a.)

type 2 from ai,t−1 ∈ ot−1 to ai,t /∈ ot ; (step 2 in Ex.5.4a.)

type 3 from ai,t−1 ∈ ot−1 to ai,t ∈ ot ; (step 1 in Ex.5.4b.),

where inclusion is replaced with equality for deterministic tie-breaking. We refer to each of these
steps as a better reply of agent i. If ai,t is i’s most preferred candidate capable of winning, then this
is a best reply.

Remark 5.1. Any rational move of a myopic agent in the normal form game corresponds to exactly
one of the three types of better-reply. In contrast, our definition of best-reply is somewhat different
from the traditional definition in game theory, which allows the agent to choose any strategy that
guarantees him a best possible outcome. For example, a voter could possibly make ot become
a winner by just removing his vote from ot−1 and voting for some other candidate with the lower
score. We refer to this type of move as an extended best-reply. In this work, we assume the improver

50 R. Meir

makes the more natural response by actually voting for ot. Thus, under our definition, the best reply
is always unique.

Note that there are no best replies of type 2. Finally, we denote by st(c) the score of a candidate
c without the vote of the currently playing agent; thus, it always holds that st−1(c) = st(c).

5.3 Deterministic Tie-Breaking
Our first result (which is also the main result of this chapter) shows that under the most simple
conditions, the game must converge.

Theorem 5.3. Let GD be a Plurality game with deterministic tie-breaking. If all agents have
weight 1 and use best replies, then the game will converge to a NE from any state.

Proof. We first show that there can be at most (m − 1) · k sequential steps of type 3. Note that
at every such step a i→ b it must hold that b �i a. Thus, each voter can only make m − 1 such
subsequent steps.

Now suppose that a step a i→ b of type 1 occurs at time t. We claim that at any later time
t′ ≥ t: (I) there are at least two candidates whose score is at least s(ot−1); (II) the score of a will
not increase at t′. We use induction on t′ to prove both invariants. Right after step t we have that

st(b) + 1 = s(ot) >p s(ot−1) >p st(a) + 1 . (5.1)

Thus, after step t we have at least two candidates with scores of at least s(ot−1): ot = b and
ot−1 6= b. Also, at step t the score of a has decreased. This proves the base case, t′ = t.

Assume by induction that both invariants hold until time t′ − 1, and consider step t′ by voter
j. Due to (I), we have at least two candidates whose score is at least s(ot−1). Due to (II) and
Equation (5.1) we have that st′(a) ≤p st(a) <p s(ot−1)− 1. Therefore, no single voter can make
a a winner and thus a cannot be the best reply for j. This means that (II) still holds after step
t′. Also, j has to vote for a candidate c that can beat ot′—i.e., st′(c) + 1 >p s(ot′) >p s(ot−1).
Therefore, after step t′ both c and ot′ 6= c will have a score of at least s(ot−1)—that is, (I) also
holds.

The proof also supplies us with a polynomial bound on the rate of convergence. At every
step of type 1, at least one candidate is ruled out permanently, and there at most k times a vote
can be withdrawn from a candidate. Also, there can be at most mk steps of type 3 between such
occurrences. Hence, there are in total at most m2k2 steps until convergence. It can be further
shown that if all voters start from the truthful state then there are no type 3 steps at all. Thus, the
score of the winner never decreases, and convergence occurs in at most mk steps. The proof idea
is similar to that of the corresponding randomized case in Theorem 5.8.

We now show that the restriction to best replies is necessary to guarantee convergence.

Proposition 5.4. If agents are not limited to best replies, then: (a) there is a counterexample with
two agents; (b) there is a counterexample with an initial truthful vote.

Example 5.4a. C = {a, b, c}. We have a single fixed voter voting for a, thus ŝ = (1, 0, 0). The
preference profile is defined as a �1 b �1 c, c �2 b �2 a. The following cycle consists of better
replies (the vector denotes the votes (a1, a2) at time t, the winner appears in curly brackets):

(b, c){a} 2→ (b, b){b} 1→ (c, b){a} 2→ (c, c){c} 1→ (b, c) ♦

Mechanisms for Stability and Welfare 51

Example 5.4b. C = {a, b, c, d}. Candidates a, b, and c have 2 fixed voters each, thus ŝ =
(2, 2, 2, 0). We use 3 agents with the following preferences: d �1 a �1 b �1 c, c �2 b �2 a �2 d
and d �3 a �3 b �3 c. Starting from the truthful state (d, c, d) the agents can make the fol-
lowing two improvement steps (showing only the outcome): (2, 2, 3, 2){c} 1→ (2, 3, 3, 1){b} 3→
(3, 3, 3, 0){a},
after which agents 1 and 2 repeat the cycle shown in (5.4a). ♦

In fact, it can be easily verified that Example 5.4a shows that convergence from an arbitrary
state is not guaranteed even under extended best-reply. However, Reijngoud and Endriss [2012]
later showed that if voters start from the truthful state, then extended best-reply is guaranteed to
converge as well.

5.3.1 Weighted voters
While using the best reply strategies guaranteed convergence for equally weighted agents, this is
no longer true for non-identical weights:

Proposition 5.5. There is a counterexample with four candidates and three weighted agents that
start from the truthful state and use best replies.

However, if there are only two weighted voters, either restriction is sufficient to guarantee con-
vergence.

Theorem 5.6. Let GD be a Plurality game with deterministic tie-breaking. If k = 2 and both
agents (a) use best replies or (b) start from the truthful state, a NE will be reached.

5.4 Randomized Tie-Breaking
The choice of tie-breaking scheme has a significant impact on the outcome, especially when there
are few voters. A randomized tie-breaking rule has the advantage of being neutral—no specific
candidate or voter is preferred over another.

In order to prove convergence under randomized tie-breaking, we must show that convergence
is guaranteed for any utility function which is consistent with the given preference order. That is,
we may only use the relations over outcomes that follow directly from Lemma 5.1. To disprove,
it is sufficient to show that for a specific assignment of utilities, the game forms a cycle. In this
case, we say that there is a weak counterexample. When the existence of a cycle will follow only
from the relations induced by Lemma 5.1, we will say that there is a strong counterexample, since
it holds for any profile of utility scales that fits the preferences.

In contrast to the deterministic case, the weighted randomized case does not always converge
to a Nash equilibrium or possess one at all, even with (only) two strategic agents.

Proposition 5.7. There is a strong counterexample GR for two weighted agents with randomized
tie-breaking, even if both agents start from the truthful state and use best replies.

Example 5.7. C = {a, b, c}, ŝ = (0, 1, 3). There are 2 agents with weights w1 = 5, w2 = 3 and
preferences a �1 b �1 c, b �2 c �2 a (in particular, b �2 {b, c} �2 c). The resulting 3×3 normal
form game contains no NE states. ♦

Nevertheless, the conditions mentioned are sufficient for convergence if all agents have the
same weight.

52 R. Meir

Theorem 5.8. Let GR be a Plurality game with randomized tie-breaking. If all agents have
weight 1 and use best replies, then the game will converge to a NE from the truthful state.

Proof. Our proof shows that in each step, the current agent votes for a less preferred candidate.
Clearly, the first improvement step of every agent must hold this invariant.

Assume, toward deriving a contradiction, that b i→ c at time t2 is the first step s.t. c �i b. Let
a

i→ b at time t1 < t2 be the previous step of the same agent i. We denote by Mt = ot the set of
all winners at time t. Similarly, Lt denotes all candidates whose score is s(ot)− 1.

We claim that for all t<t2, Mt∪Lt ⊆ Mt−1∪Lt−1, i.e., the set of “almost winners” can only
shrink. Also, the score of the winner cannot decrease. Observe that in order to contradict any of
these assertions, there must be a step x j→ y at time t, where {x} = Mt−1 and y /∈ Mt−1 ∪ Lt−1.
In that case, Mt = Lt−1 ∪ {x, y} �j {x}, which means either that y �j x (in contradiction to the
minimality of t2) or that y is not a best reply.

From our last claim we have that s(ot1−1) ≤ s(ot′) for any t1 ≤ t′ < t2. Now consider the
step t1. Clearly b ∈Mt1−1 ∪ Lt1−1 since otherwise voting for b would not make it a winner.

Case 1: c /∈ Mt1−1 ∪ Lt1−1. We have that st1(c) ≤ s(ot1−1) − 2. Let t′ be any time s.t.
t1 ≤ t′ < t2, then c /∈Mt′ ∪Lt′ . By induction on t′, st′(c) ≤ st1(c) ≤ s(ot1−1)− 2 ≤ s(ot′)− 2,
and therefore c cannot become a winner at time t′ + 1, and the improver at time t′ + 1 has no
incentive to vote for c. In particular, this holds for t′ + 1 = t2; hence, agent i will not vote for c.

Case 2: c ∈Mt1−1 ∪ Lt1−1. It is not possible that b ∈ Lt1−1 or that c ∈Mt1−1: since c �i b
and i plays best reply, i would have voted for c at step t1. Therefore, b ∈ Mt1−1 and c ∈ Lt1−1.
After step t1, the score of b equals the score of c plus 2; hence, we have that Mt1 = {b} and
c /∈Mt1 ∪ Lt1 , and we are back in case 1.

In either case, voting for c at step t2 leads to a contradiction. Moreover, as agents only vote for
a less-preferred candidate, they make at most m − 1 steps each, and at most (m − 1) · k steps in
total.

However, in contrast to the deterministic case, convergence is no longer guaranteed, if agents
start from an arbitrary profile of votes. The following example shows that in the randomized tie-
breaking setting even best reply dynamics may have cycles, albeit for specific utility scales.

Proposition 5.9. If agents start from an arbitrary voting profile, there is a weak counterexample
with 3 unweighted agents, even if they use best replies.

As in the previous section, if we relax the requirement for best replies, there may be cycles even
from the truthful state.

Proposition 5.10. (a) If agents use arbitrary better replies, then there is a strong counterexample
with 3 agents of weight 1. Moreover, (b) there is a weak counterexample with 2 agents of weight 1,
even if they start from the truthful state.

5.5 Truth-Biased Agents
So far we assumed purely rational behavior on the part of the agents, in the sense that they were
indifferent regarding their chosen action (vote), and only cared about the outcome. Thus, for ex-
ample, if an agent cannot affect the outcome at some round, he simply keeps his current vote.
This assumption is indeed common when dealing with normal form games, as there is no reason
to prefer one strategy over another if outcomes are the same. However, in voting theory it is typi-
cally assumed that a voter will vote truthfully unless she has an incentive to do otherwise. As our

Mechanisms for Stability and Welfare 53

model incorporates ideas from both domains, it is important to clarify the exact assumptions that
are necessary for convergence.

Consider a variation of our model where agents always prefer their higher-ranked outcomes,
but will vote honestly if the outcome remains the same—i.e., the agents are truth-biased. Formally,
let W = PLT (ŝ,w, ai,a−i) and Z = PLT (ŝ,w, a′i,a−i) be two possible outcomes of i’s voting.
Then, the action a′i is better than ai if either Z �i W , or Z = W and a′i �i ai. Note that with this
definition there is a strict preference order over all possible actions of i at every step. Unfortunately,
truth-biased agents may not converge even in the simplest settings (see Proposition C.1 in the
appendix).

5.6 Related Work
Equilibrium analysis As explained in Section 1.1.1, almost every voting profile is a Nash equi-
librium, so other solution concepts should be considered when analyzing voting. Strong equilib-
rium in voting was studied by Sertel and Sanver [2004], whereas a variation of strong equilibrium
for the Plurality rule was suggested by Messner and Polborn [2002]. Another solution concept that
is based on coalitions is stability scores. For details on stability scores in Plurality voting see the
next chapter and in particular Section 6.5. A different approach was suggested by Myerson [1993],
who modeled to the uncertainty regarding the preferences of other voters in elections with a very
large number of voters.

Another highly relevant work is that of Dhillon and Lockwood [2004] whose game formulation
is identical to our deterministic setting (without iterations). They prove a necessary and sufficient
condition to remove dominated voting strategies. Unfortunately, their analysis shows that this rarely
occurs, making dominance perhaps a too-strong solution concept for actual situations.

Crucially, all of the aforementioned papers assume that voters have some prior knowledge re-
garding the preferences of others. In contrast, our model in this chapter applies to a finite number
of voters, that have no knowledge regarding the distribution of other voters’ preferences.

Models of iterative voting A different type of iterative voting procedures investigated in the
literature, is where voting is presented as an extensive form game with one turn for each voter.
Strategic considerations in such settings have been studied by multiple researchers [Farquharson,
1969; McKelvey and Niemi, 1978; Desmedt and Elkind, 2010; Xia and Conitzer, 2010]. Since in
such a game each voter plays at most once, there is no notion of “convergence”. Note that in order
to play optimally, the voters must have full information not only about the current state, but also
about the preferences of voters who have not voted yet. Chopra et al. [2004] consider a variation of
this model, where voters have different levels of information. In the lowest level agents are myopic
and are assumed to follow a simple best-reply behavior (as we assume as well).

The convergence of best-response dynamics to a pure equilibrium in games is often showed via
a potential function [Monderer and Shapley, 1996]. However, Kukushkin [2011] showed that the
only (deterministic) voting rules that possess a potential function are dictatorial.

When considering various solution concepts for games in general and for voting in particular,
a line can be drawn between deductive and inductive methods. This distinction of behavior types
goes back to the works on bounded rationality [Arthur, 1994]. In deductive methods, which assume
perfect rationality as in [Myerson and Weber, 1993; Messner and Polborn, 2002; Desmedt and
Elkind, 2010; Xia and Conitzer, 2010] and in fact in most work in game theory, the players/voters
derive their optimal action (or vote) backward from the equilibrium outcome. Inductive reasoning
assumes that agents are not involved in complicated strategic reasoning, and are simply following

54 R. Meir

some myopic policy, or a “rule of thumb” that requires little information and effort. While in a
one-shot voting game it is not clear how inductive voting policies can be formulated, an iterated
process is a fertile ground for the development of voting heuristics and myopic policies. The current
work, as well as its extensions that are briefly summarized in the next paragraph examples of such
inductive methods.

A different example of a voting procedure as an iterative game was offered by Airiau and
Endriss [Airiau and Endriss, 2009]. In their paper, they study the outcome of a sequence of majority
contests, each held between the incumbent winner and an offered challenger.

Recent follow-up work Since the publication of this work [Meir et al., 2010], our iterative voting
model was employed by other researchers, who further developed the model in various directions.

Iterative voting under additional voting rules, which is the most natural extension of this work,
was studied independently by Lev and Rosenschein [2012] and by Reyhani and Wilson [2012].
Both papers showed that in contrast to Plurality, most standard voting rules (except Veto) do not
guarantee convergence.

This observation triggered attempts to modify the voting dynamics so that convergence is guar-
anteed (keeping the dynamics simple when possible). Indeed, Grandi et al. [2013] offered several
such myopic behaviors, and proved they must converge for various voting rules. Similarly, Go-
har [2012] proved convergence and bounded the number of iterations under particular dynamics,
focusing on Plurality with weighted voters.

A different study by Reijngoud and Endriss [2012] placed our model of iterative voting within
a wider framework of voting with polls. A poll reveals some information on the current state to
some voters, who in turn respond to this information in an optimal way. They also perform initial
experiments (under the impartial culture assumption) that demonstrate how such dynamics can lead
to improved efficiency. More specifically, they show that the iterative procedure leads more often to
the election of the Condorcet winner, when exists. Similar experiments have also been performed
by Grandi et al. [2013].

Brânzei et al. [2013] look at a different criterion of efficiency, namely the price of anarchy, us-
ing the social welfare of the truthful outcome as a baseline. We highlight that under their definition,
the truthful outcome is necessarily optimal and thus welfare can only decrease as the dynamics
takes the voters “far” from the truthful outcome.

Finally, the effect of truth-bias on a single-round voting game was studied empirically by
Thompson et al. [2013], and theoretically by Obraztsova et al. [Obraztsova et al., 2013], who
showed that such bias dramatically reduces the number of Nash equilibria in the game.

5.7 Conclusion
We summarize the results in Table 5.4. We can see that in most cases convergence is not guaranteed
unless the agents restrict their strategies to “best replies”—i.e., always select their most-preferred
candidate that can win. Also, deterministic tie-breaking seems to encourage convergence more
often. This makes sense, as the randomized scheme allows for a richer set of outcomes, and thus
agents have more options to “escape” from the current state. Neutrality can be maintained (in
expectation) by randomizing a tie-breaking order and publicly announcing it before the voters cast
their votes.

We saw that if voters are non-weighted, begin from the truthful announcement and use best
reply, then they always converge within a polynomial number of steps (in both schemes), but to
what outcome? The proofs show that the score of the winner can only increase, and by at most 1

Mechanisms for Stability and Welfare 55

Deterministic Tie breaking
Dynamics Best reply from Ex. best reply from Any better reply from

Initial state Truth Anywhere Truth Anywhere Truth Anywhere
Weighted (k > 2) X (Ex. 5.5) X X X X X
Weighted (k = 2) V V (Thm. 5.6a) V X V (Thm. 5.6b) X (Ex. 5.4a)
Non-weighted V V (Thm. 5.3) V (#) X (Ex. 5.4a) X (Ex. 5.4b) X

Randomized Tie breaking
Dynamics Best reply from Any better reply from

Initial state Truth Anywhere Truth Anywhere
Weighted X (Ex. 5.7) X X X
Non-weighted V (Thm. 5.8) X (Ex. 5.9) X (Ex. 5.10) X (Ex. 5.10)

Table 5.4: We highlight cases where convergence is guaranteed. The number in brackets refers to
the index of the corresponding theorem (marked with V) or counterexample (X). Entries with no
index follow from other entries in the table. We added the newer results on extended best-reply
from [Reijngoud and Endriss, 2012] so they can be compared with ours (marked with #). Also
note that for truth-biased agents, convergence is not guaranteed under any of the above settings
(Example C.1).

in each iteration. Thus possible winners are only candidates that are either tied with the (truthful)
Plurality winner, or fall short by one vote. In other words, the winner of Plurality under iterative
voting is either a Plurality winner herself, or very close to it. This intuitive finding was later
formalized by Brânzei et al. [2013], who showed that the dynamic price of anarchy of Plurality is
low.

A new voting rule We observe that the improvement steps induced by the best reply policy are
unique. If, in addition, the order in which agents play is fixed, we get a new voting rule—Iterative
Plurality. In this rule, agents submit their full preference profiles, and the center simulates an
iterative Plurality game, applying the best replies of the agents according to the predetermined
order. It may seem at first glance that Iterative Plurality is somehow resistant to manipulations, as
the outcome was shown to be an equilibrium. This is not possible of course, and indeed agents can
still manipulate the new rule by submitting false preferences. Such an action can cause the game to
converge to a different equilibrium (of the Plurality game), which is better for the manipulator.

Prediction and design Two of the most important goals of social choice research, which are also
the hardest, are predicting human voter behavior, and the design of artificial agents with strategic
voting capabilities. The best-reply dynamics is natural, straight-forward, and requires little infor-
mation. As such, and due to the convergence properties demonstrated in this work, it is an attractive
“baseline” candidate both for prediction and design purposes. However, the clear disadvantage of
this approach is that in the vast majority of cases (especially when there are more than a handful of
voters), almost every voting profile (including the truthful one) is already a Nash equilibrium.

Our analysis is particularly suitable when the number of voters is small, for two main reasons.
First, it is more practical to perform an iterative voting procedure with few participants. Second,
the question of convergence is only relevant when cases of tie or near-tie are common. An analysis
in the spirit of [Myerson and Weber, 1993] would be more suitable when the number of voters
increases, as it rarely happens that a single voter would be able to influence the outcome, and
almost any outcome is a Nash equilibrium. This limitation of our formulation is due to the fact that
the behaviors of voters encompass only myopic improvements.

56 R. Meir

Mechanisms for Stability and Welfare 57

Chapter 6

Stability Scores
Quantifying Coalitional Stability

Abstract. We introduce a measure for the level of stability against coalitional deviations,
called stability scores, which generalizes widely-used notions of stability in non-cooperative
games. Stability scores allow for the comparison of various Nash equilibria within a particular
game, and can be used to quantify the effect of game parameters on coalitional stability. We
demonstrate both uses on simple congestion games. For our main results, we apply stability
scores to analyze and compare the Vickrey-Clarke-Groves (VCG) and the Generalized Second
Price (GSP) ad auctions, showing that the latter is far more stable.

6.1 Introduction

A group of individuals can often coordinate their actions in a way that will benefit the entire
group—perhaps at the expense of other players. In cases where such coalitions can easily form,
the stability conveyed by the Nash equilibrium as a solution concept is insufficient, and equilibria
concepts that take coalitions into account are required.

A profile is a strong equilibrium (SE) if no coalition of agents can jointly deviate in a way
that strictly increases the payoff of each coalition member [Aumann, 1959]. Intermediate lev-
els of coalitional stability have also been suggested, such as stability against deviations of small
coalitions (see, e.g., [Andelman et al., 2007]), and in particular pairs. An even more appealing
solution concept than SE is the Super-Strong Equilibrium (SSE) that considers deviations in which
no member loses while at least one member makes a positive gain (see, for example, [Feldman and
Tennenholtz, 2009]).

A major problem with these proposed solutions is that they seldom exist. Indeed, SSE rarely
exist even in cases where strong equilibria do exist (e.g., in simple congestion games [Holzman and
Law-Yone, 1997; Andelman et al., 2007]), and even if only deviations by pairs are considered.

In this chapter we relax the requirement that no coalition will have an incentive to deviate,
and suggest a quantitative measure to coalitional stability. Assuming we have a Nash equilibrium
profile of a game where some pairs of agents can still deviate, we may still wish to measure its
stability by referring to the number of pairs that have beneficial deviations from that profile. More

58 R. Meir

generally, given a game and a strategy profile, we can associate with it a tuple in which the r-th
entry in the tuple is the number of coalitions of size r that can gain by a deviation. This tuple
determines the stability score of the strategy profile.

Given two strategy profiles, we need a way to decide which one is more stable. Since small
coalitions are more likely to form and maintain cooperation, a natural extension is to compare
stability scores of games with associated strategy profiles using a lexicographic ordering of the
corresponding vectors.1 For example, given an n-person game G and two Nash equilibria a and a′

in G, the stability score of the former will be better if the number of beneficial deviations by pairs
from a is smaller than the number of beneficial deviations by pairs from a′. Note that we could
compare in the same way a pair of equilibrium profiles in different games (say, G and G′), as long
as both games have n players.

While the existence of, say, 19 coalitions that can deviate rather than 15 does not have much
significance, we usually care about the behavior of stability scores in some parameterized family
of games where parameters may include number of players, size of the strategy space, etc. If the
score of a is asymptotically lower than the score of a′ (w.r.t. one of the parameters), then this may
indicate that a′ is substantially more prone to coalitional deviations. Moreover, when studying such
a parameterized family, stability scores may assist us in understanding how the parameters of the
game affect coalitional stability. This holds even if there is a unique or a prominent equilibrium.

Stability scores are particularly useful in the context of mechanism design, as they allow us to
quantify the coalitional stability of various mechanisms and to compare mechanisms that operate in
a specific domain. To illustrate this point, we consider two central mechanisms in what is perhaps
the most widely studied economic scenario in recent years: ad auctions. We analyze in detail
the Generalized Second Price (GSP) auction and the Vickrey-Clarke-Groves (VCG) auction, and
compare their stability scores.

6.1.1 Related work

A recent application of stability scores to voting games is in [Falik et al., 2012]; see Section 6.5.

Related solution concepts in games In the context of non-cooperative games, approximate sta-
bility is typically measured by the strength of the incentive required to convince an agent to deviate,
captured for example by the concept of ε-Nash equilibrium [Nisan et al., 2007, p. 45]. As discussed
above, stability against collusion is captured by concepts such as SE and SSE, but these often do
not allow a fine distinction between various outcomes.

In addition, coalitions are the key component in cooperative game theory, and many variations
of coalitional stability have been studied. While we are unaware of solutions concepts that quantify
stability by counting coalitional deviations, models of restricted cooperation capture social con-
straints that may prevent the formation of some coalitions (see [Myerson, 1977], and Chapter 4
in this work). However, even if some coalition can gain by deviation, it may or may not do so:
members of the coalition might intentionally avoid cooperation based on far-sighted prediction (an
assumption underlying coalition-proofness for example [Bernheim et al., 1987]), or just fail to rec-
ognize the benefit in deviating. This is especially true if the coalition is large. Stability scores
do not assume a particular social context or incentive structure, but simply try and minimize the
number of coalitions with profitable deviations.

1There are many ways to compare stability score vectors (see [Falik et al., 2012]). Choosing the “right” one highly
depends on the context and underlying assumptions. However in this work we avoid such complications by only comparing
deviations of coalitions of the same size.

Mechanisms for Stability and Welfare 59

Collusion and equilibria in ad auctions Major results of previous work on ad auctions, char-
acterized a special family of equilibria of the GSP auction, termed symmetric Nash equilibria, or
SNE . SNEs have many attractive properties which make them a natural choice as outcomes of
the GSP auction (see Section 6.4.1 for details). Moreover, it has been shown that the SNE leading
to the lowest revenue for the seller (termed Lower Equilibrium (LE)), coincides with the natural
equilibrium of VCG where all bidders report their true values [Varian, 2007; Edelman et al., 2007].

The above results led to a surge of papers comparing VCG and the various equilibrium out-
comes of GSP, under both public information and private information settings [Kuminov and Ten-
nenholtz, 2009; Thompson and Leyton-Brown, 2009; Edelman and Schwarz, 2010; Lucier et al.,
2012]. However, these comparisons focused mainly on revenue (and occasionly on welfare), rather
than on coalitional stability. The VCG mechanism was shown to be vulnerable to collusion in
various domains (see, e.g., [Conitzer and Sandholm, 2006; Bachrach, 2010] for relatively recent
work), compared to a simple first-price (pay-your-bid) auction. The formal literature on collusion
in second-price auctions goes back to Graham and Marshall [1987], while the literature on the more
involved matter of collusion in first-price auctions goes back to McAfee and McMillan [1987].

6.1.2 Results in this chapter
Stability scores are formally defined in Section 6.2, where we show how they generalize well
known solution concepts. In Section 6.3 we study stability scores in a simple family of congestion
games. The main purpose of this study is to demonstrate how stability scores can be used in
order to compare different Nash equilibria, and to measure how stability is affected by game’s
parameters. Moreover, while the studied family itself is quite simple, it is often used to model real
world situations such as load balancing. Our analysis can give some intuition as to the main factors
affecting coalitional stability in such games.

The main results are in Section 6.4, where we present the VCG and GSP mechanisms for ad
auctions, and show bounds on stability scores in these auctions. In particular, we study how the
stability of GSP varies as a function of the distributions of agents’ valuations and slots’ click-
through rates, thereby showing that under certain reasonable conditions GSP is far more stable than
VCG.

6.2 Preliminaries
We follow the notation of non-cooperative games as defined in Section 2.1. Recall that a deviation
of agent i from profile a is an action bi ∈ Ai s.t. ui(bi, a−i) > ui(ai, a−i).

Coalitional deviations We now extend the notion of deviations to coalitions. Given an action
profile a, we denote by aS the profile of agents in S, and by AS the set of all such joint actions.
The profile of all agents in N \ S is denoted by a−S .

Given a profile of actions a ∈ A, bS ∈ AS is a strict deviation from a if ui(bS , a−S) >
ui(aS , a−S) for every i ∈ S. The profile a is termed a strong equilibrium (SE) if there are no
S ⊆ N and bS ∈ AS , such that bS is a strict deviation from a.

One can also consider the following weaker notion of deviation. Given a profile of actions
a ∈ A, bS ∈ AS is a deviation from a if ui(bS , a−S) ≥ ui(aS , a−S) for every i ∈ S and
there exists j ∈ S such that uj(bS , a−S) > uj(aS , a−S) . The profile a is termed a super-strong
equilibrium (SSE) if there is no S ⊆ N, bS ∈ AS that is a deviation from a. Since every strict
deviation is clearly a deviation, every SSE is also a SE.

60 R. Meir

SSE captures the natural requirement that we should resist even situations in which a deviation
only benefits some of the deviators without hurting others. A strategy profile is r-SE (respectively,
r-SSE) if there are no coalitions of size at most r that have strict deviations (resp., deviations).

Stability scores The stability score of the profile a in gameG is defined as a vector with n entries.
For every 1 ≤ r ≤ n, letDr(G,a) ∈ N (respectively, SDr(G,a) ∈ N) be the number of coalitions
of size r that have deviations (resp., strict deviations) from a in G. While there are many ways to
impose an order based on vectors, we believe that the following lexicographic order is particularly
natural.

Given two n-player games G and G′ and two profiles a and a′ in the respective games, we
say that the pair (G,a) is more resistant to deviations (or more stable) than (G′,a′), if there exists
some r ≤ n such that Dr(G,a) < Dr(G′,a′) and the terms are equal for every r′ < r. We can
similarly compare strict stability scores to one another.

Our definition of stability scores generalizes some widely used notions of stability. For exam-
ple, a is a Nash equilibrium (NE) of G iff D1(G,a) = SD1(G,a) = 0. This means that the score
of a NE (by either definition) is always strictly better than the score of any profile that is not a
NE. Further, any profile that is r-SE has a better strict-stability score than any non r-SE profile. A
similar property holds w.r.t. r-SSE. As a different example, a profile a is Pareto efficient in G iff
Dn(G,a) = 0.

6.3 Resource Selection Games
In this section we demonstrate how stability scores can be used to measure and compare the stability
of different outcomes in a given game. To this end we focus on a very simple parametrized family,
where games are known to posses at least one pure equilibrium. A natural choice is the simple class
of resource selection games (RSG) with identical resources.

In a RSG there is a set of resources F = {1, . . . ,m}, and a non-decreasing cost function
c : [n] → R+, where [n] = {1, . . . , n}. Each agent i ∈ N can select exactly one resource j, and
suffers a cost (negative utility) of c(nj), where nj is the number of agents that selected resource j.
RSGs are potential games and thus always admit a pure Nash equilibrium. In fact, any NE a of a
RSG G = 〈F,N, c〉 is a strong equilibrium [Holzman and Law-Yone, 1997], and thus all equilibria
have the same (strict) stability score. However, this is no longer true if the games are concatenated
in a sequence.

Formally, a sequential RSG (SRSG) is a RSG with k steps. A strategy ai ∈ F k of agent i re-
quires selecting one resource in each step.2 We next show that the number of coalitional deviations
significantly depends on the played equilibrium. We consider games where m,n, k ≥ 2, focusing
mainly on games with 2 steps.

6.3.1 Counting deviations: an example
Suppose that m = 4, n = 6, k = 2 and that c(t) = t for all t ≤ n. Any profile in which
there are exactly 1 or 2 agents on each resource (in each step) is a Nash equilibrium. However,
these equilibria differ in their stability against strict deviation of pairs. Suppose that in the first
step agents are partitioned {1, 2}, {3, 4}, {5}, {6}, and repeat the same actions in the second step.
Denote this profile by a. In this case the pair {1, 2} can strictly gain as follows: agent 1 joins

2Equivalently, the game can be described as a congestion game over a network [Rosenthal, 1973], with k sequential
parts and m parallel edges in each part.

Mechanisms for Stability and Welfare 61

agent 5 (or 6) in the first step, and agent 2 joins 5 in the second. Thus the cost for each of the two
agents drops from 4 to 3. Only pair {3, 4} can do the same, thus SD2(G,a) = 2.

On the other hand, consider the profile b where players play in the first step as in a, and in
the second step are partitioned {1, 3}, {2, 4}, {5}, {6}; then no pair can strictly gain by deviating.
Notice though, that this is still not a strong equilibrium, as the coalition {1, 2, 3, 4} can still gain
(agents 2, 3 deviate in the first step, and 1, 4 in the second), thus SD2(G,b) = 0 and SD4(G,b) =
1.

Finally, in the profile c agents are partitioned {1, 5}, {2, 6}, {3}, {4} (in the second step), and
this is a strong equilibrium, i.e., SDr(G, c) = 0 for all r. It therefore follows that w.r.t strict
stability scores c is more stable than b, which is more stable than a.

Note however that none of these profiles is an SSE or even 2-SSE. More generally, in any
profile in G there is at least one pair (in fact two) that shares a resource and thus they have a (weak)
deviation where just one of them gains. Thus for every profile p in G, we have that D2(G,p) ≥ 2.

6.3.2 Bounding stability scores in two-step RSG
The example above shows that different NE profiles in a particular game may differ in their stability
to deviations of pairs or larger coalitions. We want to get a better picture of the gap between the
most and least stable NE profiles, focusing on pair deviations. For the results in this section, we
will restrict our cost function to be convex.

A nondecreasing cost function c : [n]→ R is said to be convex if it has an increasing marginal
loss; i.e., c(i + 1) − c(i) ≤ c(j + 1) − c(j) for every i < j. Note that when facing a convex cost
function, agents in an RSG try to minimize the maximal number of agents using a single resource.
If the number of agents on every resource is the same, we say that the partition is balanced. If these
numbers differ by at most one, we say that the partition is nearly balanced. Note that in our simple
class of games, every NE is nearly balanced in all steps, and thus maximizes the social welfare.

LetG be a two-step game with a convex cost function. Note that when n mod m = 0, any NE
is a balanced partition of agents to resources (in each step). In such partition, no coalition can gain
by deviating, as at least one deviating agent will end up paying more in expectation. If, in addition,
costs are strictly convex, then even weak deviations are impossible. Since in this case every NE is
an SE (and even an SSE), stability scores are trivial. We therefore assume in the remainder of this
section that n mod m = q > 0.

Let â be the profile with the highest number of pair deviations, and let a∗ be the profile with the
lowest number of pair deviations. interestingly, the stability score of the various profiles we study
is completely independent in the cost functions—except for the convexity assumption.

Proposition 6.1. SD2(G, â) = Θ
(
qn2

m2

)
.

Proof sketch of lower bound. We note that in â agents play some nearly balanced partition in the
first step, and repeat the same partition in the second step. Thus some resources (called full) will
have dn/me agents, and the others will have bn/mc agents. A crucial observation used in the proof
(and in the proofs of the other propositions in this section), is that a pair has a strict deviation if
and only if it shares a full resource in both steps. Then (similarly to the example above) one agent
switches to a non-full resource in the first step, and the other does the same in the second step.

Proposition 6.2. SD2(G,a∗) = O
(
n2

m2

)
. Further, if either n < m2 or q ≤ m

2 , then SD2(G,a∗) =

0, i.e., a∗ is 2-SE.

62 R. Meir

Note that the best NE a∗ is significantly more stable than â: either a∗ has no deviations at all,
or â has more deviations by a factor of Θ(q) = Θ(m/2) = Θ(m).

In order to achieve the upper bound asserted in Proposition 6.2, we define a profile that tries to
scatter in the second step agents that shared a resource in the first step. As a qualitative conclusion,
we see that in order to minimize possible deviations, agents should form a partition in the second
step that differs as much as possible from the partition in the first step.

6.3.3 SRSGs with multiple steps

The following proposition quantifies the stability score of a random pure NE in a RSG with k steps.
Note that the set of pure NEs coincides with the set of profiles that are nearly balanced in each step.

Proposition 6.3. Let G be an SRSG with k steps and a convex cost function, and let a be a random
NE in G. The expected number of deviating pairs in G is SD2(G,a) ∼=

(
n
2

)
(1− (1 + α)e−α),

where α = q(k−1)
m2 .

We can summarize how the parameters affect stability as follows. If the number of steps k is
small, and the number of resources m increases, then α → 0, and thus SD2(G,a) → 0 as well
(i.e., there are very few pairs that can deviate). Conversely, when the number of steps grows (in
particular when k � m2

q), then almost every pair can deviate with a high probability.
As a corollary of Proposition 6.3 when k = 2, we get the lower bound of Proposition 6.1 for

the case q = Θ(m), as SD2(G, â) ≥
(
n
2

) (
1−

(
1− 1

m

) (
1 + 1

m

))
= Ω

(
n2

m

)
.

6.4 Stability Scores in Ad Auctions

Having showed how stability scores can be used to analyze coalitional stability in simple games,
we next turn to prove our main results. We compute the stability scores of the VCG and GSP
ad auctions, which are central to the recent literature on economic mechanism design. Since both
auctions admit strong equilibria, we do not consider strict deviations, and instead focus our analysis
on non-strict deviations and the scores they induce.

6.4.1 Ad auctions: model and notations

Following [Varian, 2007], an ad auction has s slots to allocate, and n ≥ 2s bidders,3 each with
valuation vi per click. Every slot 1 ≤ j ≤ s is associated with a click-through rate (CTR) xj > 0,
where xj ≥ xj+1. For mathematical convenience, we define xj = 0 for every j > s. Throughout
the paper we make the simplifying assumptions that CTRs are strictly decreasing (i.e., xj > xj+1),
and that vi 6= vj for all i 6= j. We denote by bold letters the corresponding vectors of valuations,
CTRs, and bids (e.g., b = (b1, . . . , bn)).

A bidder i that has been allocated slot j gains vi per click (regardless of the slot), and is charged
pj per click. Thus, her total utility is given by ui = (vi − pj)xj .

3When discussing deviating pairs it is sufficient to assume n > s, which is a typical situation. Also, all of our results
can be easily adjusted to cases with fewer bidders.

Mechanisms for Stability and Welfare 63

VCG In the Vickrey-Clark-Groves (VCG) mechanism every bidder i submits a bid bi, and the
mechanism allocates the j’th slot, j = 1, . . . , s, to the j’th highest bidder. Each bidder j is charged
(per click) for the “harm” she poses to the other bidders, i.e., the difference between the welfare of
bidders k 6= j if j is omitted and their welfare when j exists.

It is well known that the VCG mechanism is truthful, meaning that reporting true valuations
bj = vj is a (weakly) dominant strategy for all bidders. In particular, it is a Nash equilibrium.

Suppose that bidders’ valuations are sorted in non-increasing order. Assuming truthful bidding
(i.e., bj = vj for all j), each bidder i ≤ s is allocated slot i (which means that the allocation
maximizes the social welfare), and pays

pV CGi =
∑

s+1≥j≥i+1

xj−1 − xj
xi

· vj . (6.1)

GSP In the Generalized Second Price (GSP) auction, slot j is given to the j’th highest bidder (as
in the VCG auction). Denote by j the bidder who is getting slot j. The price to bidder j = 1, . . . , s
equals to the bid of the next bidder; i.e., pj = bj+1. For mathematical convenience, we define
bj+1 = 0 for j ≥ n.

GSP equilibria Varian [2007] identifies a set of natural Nash equilibria of the GSP auction,
termed envy free NE or Symmetric NE (SNE), which are characterized by a set of recursive in-
equalities. Varian shows that all SNE’s satisfy some very convenient properties. First, in SNE no
bidder wants to swap slots with any other bidder.4 Second, SNEs are efficient in the sense that
bidders with higher valuations always bid higher (and thus get better slots, which means that so-
cial welfare is maximized as in VCG). This allows us to assume that valuations are also sorted in
non-decreasing order v1 ≥ v2 ≥ · · · ≥ vn. Lastly, SNEs can be easily computed by a recursive
formula, which makes them especially attractive for computerized and online settings.

The two equilibria that reside on the boundaries of the SNE set, referred to as Lower Equilib-
rium (LE) and Upper Equilibrium (UE), are of particular interest. We denote the LE and UE profiles
by bL = (bLi)i∈N and bU = (bUi)i∈N , respectively. The bids in the LE, for every 2 ≤ i ≤ s + 1,
are given by

bLi xi−1 = vi(xi−1 − xi) + bLi+1xi =
∑

s+1≥j≥i

vj(xj−1 − xj). (6.2)

In particular, since CTRs are strictly decreasing, we get that bi > bi+1 for all i ≤ s. A central
result by Varian [2007] is that the LE equilibrium induces payments, utilities, and revenue equal
to those of the truthful outcome in VCG. It is therefore of great interest to compare the stability of
these seemingly identical outcomes in both mechanisms.

The bids in the UE, for every 2 ≤ i ≤ s+ 1, are given by

bUi xi−1 = vi−1(xi−1 − xi)+bUi+1xi =
∑

s+1≥j≥i

vj−1(xj−1 − xj). (6.3)

6.4.2 Deviations in VCG
Recall that the payment for bidder i is a weighted average of the reported (and by truthfulness, the
actual) values of bidders i+ 1 ≤ j ≤ s+ 1 (see Eq. (6.1)).

4When swapping with a bidder in a worse slot, this requirement coincides with the one implied by NE. However when
swapping with a bidder in a better slot, envy-freeness is slightly stronger.

64 R. Meir

We next characterize the structure of a set of deviators R of size r. We say that a coalition R
of r bidders has a potential to deviate under VCG (or that it is a potential coalition), if either: (a)
the group R contains exactly r winners (i.e., bidders that are allocated a slot j ≤ s); or (b) the set
R is composed of t < r winners, the first loser, and the r − t− 1 bidders that directly follow (i.e.,
bidders s+ 1 through s+ r− t). We denote the number of potential coalitions of size r by Mr, and
argue that it only makes sense to count potential coalitions when considering a deviation.

To see why, note first that all bidders ranked s + r or worse have no effect on the payment of
any other bidder, and can be ignored. Second, the bidders ranked s + 2, . . . , s + r − 1 are only
effective if they allow the bidder allocated slot s+ 1 to lower her bid. Thus non-potential coalitions
always contain at least one bidder that has no contribution at all to the deviation, and can therefore
be ignored. Note for example that while adding dummy bidders (with valuation 0) increases the
total number of coalitions, the number of potential coalitions remains unchanged.

It is easy to verify that there are
(
s
r

)
coalitions of type (a), and

∑r−1
t=1

(
s
t

)
coalitions of type (b).

Thus Mr =
∑r
t=1

(
s
t

)
. Interestingly, in VCG every potential coalition can actually deviate.

Proposition 6.4. Under the truthful equilibrium of VCG, denoted by T , any potential coalition has
a deviation, i.e., Dr(V CG, T) = Mr for all 2 ≤ r ≤ s.

Proof. Let R be some potential coalition, and i∗ ∈ argmini∈R vi. We call i∗ the indifferent bidder.
Suppose that every agent i ∈ R reports v′i so that vi > v′i > vi+1. Clearly, this has no effect
on slot allocation. In coalitions that include only winners, all the agents except agent i∗ (which is
indifferent) pay strictly less than their original payments, as the payment monotonically depends
on the valuations of the other members of R. In potential coalitions of the other type, where R
includes t winners and r − t losers, all t winners strictly gain.

6.4.3 Deviations in GSP
Since LE is a Nash equilibrium, we have thatD1(GSP,LE) = SD1(GSP,LE) = 0. In fact, as in
the VCG mechanism, no coalition has a strict deviation from the LE profile in GSP. This statement
is not as trivial in the GSP mechanism, but it follows from Lemma D.3 in the appendix. We next
turn to evaluate the resistance of GSP to (non-strict) deviations, focusing on the lower equilibrium.
As in the previous section, we only count potential coalitions as all other coalitions necessarily
contain redundant participants.

Characterization of pair deviations in Lower equilibrium It is easy to see that for every i ≤ s,
the pair of agents (i, i + 1) (called neighbors) can always (weakly) gain as a coalition, by having
agent i + 1 lowering her bid to b′i+1, so that bi+1 > b′i+1 > bi+2.5 In this case, agent i + 1 is not
affected, but agent i gains the difference xi(bi+1 − b′i+1) > 0. It is also clear that bidders ranked
s+ 2 or worse can never be part of a deviating pair. In terms of the stability score, this means that
s ≤ D2(GSP,LE) ≤M2 =

(
s+1

2

)
.

Consider the pair of non-neighbors (k, j), where k < j − 1 ≤ s. We want to derive a sufficient
and necessary condition under which the pair (k, j) has a deviation. A simple observation is that
given some Nash equilibrium, for an agent i to strictly gain by being allocated a new slot i′ 6= i,
the bid bi′+1 must strictly decrease, since otherwise this would also be a deviation for i as a single
agent (in contradiction to equilibrium). Therefore, either (1) k moves to a worse slot k′ = j − 1,
and b′j < bj ; or (2) j moves to a better slot j′ = k, k is pushed down to k′ = k + 1, and b′k < bk.

5The assumption that CTRs are strictly decreasing is required here, as otherwise bidder i + 1 may not be able to lower
her bid.

Mechanisms for Stability and Welfare 65

However, the utility of j in this case is at most the utility she would get by swapping slots with
bidder k. Thus if j gains in case (2), then this means she is envy in bidder k under the current profile
b. This is impossible, as we assumed b is an SNE. We conclude that the only deviation for non-
neighbors is where k′ = j − 1; j′ = j. Further, this is a deviation only if bj−1 > b′k > b′j ≥ bj+1.
Note that: (i) b′k can get any value in this range without affecting the utility of k or j, (ii) the utility
of j remains the same, and (iii) the most profitable deviation for k is one in which b′j = bj+1

(breaking the tie in favor of j).
The discussion above establishes a necessary condition for a pair deviation, and asserts that in

every pair deviation of k, j only agent k can strictly gain, where k < j.
For the following results, we denote a = xj−1 − xj (for our fixed j), and wi = xi−1−xi

xj
for all

i ≤ s+1. We complete the characterization by establishing a sufficient condition for pair deviation.

Lemma 6.5. Suppose that the pair k, j deviates from LE, by moving agent k to slot k′ = j−1. Let
u(k), u′(k) be the utility of agent k before and after the deviation, then
u(k)− u′(k) ≥

∑j−1
t=k+1(xt−1 − xt)(vk − vt)− a · vj + a

∑s+1
i=j+1 wivi.

Moreover, in the optimal deviation for agent k the last inequality holds with an equality.

Proof. Suppose agent j lowers her bid to b′j = bj+1 + ε where ε ≥ 0 (so j keeps her slot). For any
x,v the utility of agent k changes as follows:

u(k)− u′(k) = (vk − bk+1)xk − (vk − (bj+1 + ε))xj−1

= (xk − xj−1)vk −
s+1∑
t=k+1

(xt−1 − xt)vt +

s+1∑
i=j+1

xj−1(xi−1 − xi)
xj

vi + εxj−1

=

j−1∑
l=k+1

(xl−1 − xl)vk −
j∑

t=k+1

(xt−1 − xt)vt +

(
xj−1

xj
− 1

) s+1∑
i=j+1

(xi−1 − xi)vi + εxj−1

=

j−1∑
t=k+1

(xt−1 − xt)(vk − vt)− (xj−1 − xj)vj +
xj−1 − xj

xj

s+1∑
i=j+1

(xi−1 − xi)vi + εxj−1

=

j−1∑
t=k+1

(xt−1 − xt)(vk − vt)− a · vj + a

s+1∑
i=j+1

wivi + εxj−1.

The inequality follows since ε ≥ 0. In the optimal deviation ε = 0 in which case we get an equality.
Note that

∑s+1
i=j+1 wivi is a weighted average of valuations. In particular, it is always between vs+1

and vj+1.

As a direct corollary from Lemma 6.5, we get that in LE the pair k, j (where k < j − 1), has a
deviation if and only if

j−1∑
t=k+1

(xt−1 − xt)(vk − vt) < a · vj − a
s+1∑
i=j+1

wivi. (6.4)

Upper equilibrium It is easy to check that a similar characterization to Eq. (6.4) applies to
the UE. However, the conditions differ with respect to bidders that are two positions apart (see
Proposition D.2 in the appendix). This result holds under all valuation and CTR functions; hence
D2(GSP,UE) ≥ 2s − 1. This means that the UE may be slightly less stable than LE (whose
stability is expressed in Theorem 6.6). Yet, it is not too difficult to show that the number of pair

66 R. Meir

XXXXXXXXXXValuations
CTR ← Concave→ ← Convex→

β-concave Linear β-convex

Concave 2-concave All
(
s+1

2

)
All
(
s+1

2

)
-

Linear Ω(s2) Θ(s
√
s) O(s · logβ(s))

Convex 2-convex - s s

Table 6.1: The table summarizes the number of pairs that have a deviation, i.e., D2(GSP,LE).
When one function is strictly concave and the other is strictly convex, the score may depend on the
exact structure of both functions.

deviations from UE and LE are asymptotically the same. Therefore, in the remainder of this section
we focus on stability scores of LE.

Counting pair deviations It turns out that the asymptotic number of pair deviations strongly
depends on the shape of both the CTR function and the valuation function. In particular, convexity
(as well as concavity and β-convexity) will play a major role in our results. Let g1, . . . , gm be a
monotonically nonincreasing vector.

Similarly to the way defined convex cost functions in Section 6.3, we say that g is convex if it
has a decreasing marginal loss; i.e., gi − gi+1 ≥ gj − gj+1 for every i < j. Similarly, if g has an
increasing marginal loss then it is concave. Note that linear functions are both convex and concave.
A special case of convexity (resp., concavity) is when the marginal loss decreases (resp., increases)
exponentially fast:

Let β > 1. We say that g is β-convex if gi−1 − gi ≥ β(gi − gi+1) for every i. Similarly, g is
said to be β-concave if β(gi−1 − gi) ≤ gi − gi+1 for every i. 6

Intuitively, as either valuations or CTRs are “more” convex,7 a bidder who deviates by moving
to a lower (i.e., worse) slot faces a more significant drop in her utility. Thus we can hope that pairs
that are sufficiently distant from one another will not be able to deviate jointly. This intuition is
further formalized and quantified in the remainder of this section. For convenience, the results are
summarized in Table 6.1.

The next proposition demonstrates that convexity induces greater stability.

Theorem 6.6. Suppose that both CTR and valuation functions are convex. The number of pairs
with deviations in the Lower equilibrium can be upper bounded as follows.
(a) D2(GSP,LE) = O(s

√
s).

(b) if CTRs are β-convex then D2(GSP,LE) = O(s logβ s).
(c) if valuations are β-convex, for any β ≥ 2, then D2(GSP,LE) = s (i.e., only neighbor pairs).

We present the proof of the first statement, so as to demonstrate the proof technique.

Proof of 6.6a. Recall that a = xj−1−xj > 0. A crucial observation is that
∑s+1
i=k+1 wivi is in fact

a weighted average of valuations, where the weight wi is proportional to the difference xi−1 − xi.
Therefore this average is biased toward low values when CTR is convex, and toward high values
when it is concave.

6Lucier et al. [2012] studied GSP auctions with well-separated CTR functions, which is a closely related term. In
particular, a 1

β
-well separated function is also β-convex.

7When referring to convexity of CTR/valuation functions, we only consider the first s+ 1 values.

Mechanisms for Stability and Welfare 67

Also, since CTRs are convex, we have that for all i < j, xi−1 − xi ≥ a. Thus by Lemma 6.5,

u(k)−u′(k) ≥ a
j−1∑
t=k+1

(vk − vt)− a · vj + a

s+1∑
i=j+1

wivi

= a

 j−1∑
t=k+1

(vk − vt) +

s+1∑
i=j+1

wivi − vj

 ≥ a(j−1∑
t=k+1

(vk − vt) + avg
s+1≥i≥j+1

(vi)− vj

)
.

(6.5)

Therefore, in order to prove that the pair j, k can deviate, it is necessary to show
j−1∑
t=k+1

(vk − vt) < vj − avg
s+1≥i≥j+1

vi. (6.6)

We note that under linear CTRs, all inequalities become equalities (in which case Equation (6.6)
is also a sufficient condition). Observe that closer pairs are more likely to deviate. e.g., for pairs
s.t. j = k + 2, it is sufficient that vk − vk+1 < vk+2 − avg

s≥t′≥k+3
vt′ to have a deviation. Let

h = j − 1− k ≥ 1, and z = vk − vj−1 = vk − vk+h.
From convexity of v it holds that for all h′ < h, vk−vk+h′h′ ≥ vk−vk+h

h = z
h , thus for the LHS

of Eq. (6.6),

j−1∑
t=k+1

(vk − vt) ≥
j−1∑
t=k+1

z
t− k
h

=
z

h

h(h+ 1)

2
=
h+ 1

2
z. (6.7)

Bounding the RHS of Eq. (6.6), we have

vj− avg
s+1≥i≥j+1

vi ≤ vj − vavg{s+1≥i≥j+1}vj − v⌈ j
2

+ s
2

⌉ (convexity of v)

= vj − vdj+ s−j
2
e ≤
d(s−j)/2he∑

i′=1

(vj+(i′−1)h − vj+i′h) ≤
d(s−j)/2he∑

i′=1

(vk − vk+h), (6.8)

which is at most
⌈
s−j
2h

⌉
z. By using the bounds we showed on both sides of the equation, condi-

tion (6.6) implies h+ 1 <
⌈
s−j
h

⌉
, which must be false whenever h+ 1 = j − k >

√
s. Therefore

each winner k ≤ s can deviate with at most
√
s other bidders, and there can be at most s

√
s such

pairs.

It is evident from Theorem 6.6, that convexity can guarantee some level of stability, and further,
that “more” convexity can induce more stability. Our next result complements this observation, by
showing that concavity of valuation and CTR functions affects stability in the opposite direction.

Theorem 6.7. Suppose that both CTR and valuation functions are concave. The number of pairs
with deviations in the Lower equilibrium can be lower bounded as follows.
(a) D2(GSP,LE) = Ω(s

√
s).

(b) if CTRs are β-concave for any β > 1, then D2(GSP,LE) = Ω(s2) (i.e., a constant fraction
of all pairs).

(c) if valuations are β-concave, for any β ≥ 2, thenD2(GSP,LE) =
(
s+1

2

)
= M2 (i.e., all pairs).

A linear function is both convex and concave. Therefore, in the special case where both CTRs
and valuations are linear, we obtain an asymptotically tight estimation of D2(GSP,LE).

68 R. Meir

Deviations of more than two agents We first characterize the structure of such deviations (com-
pare with VCG in Section 6.4.2). Indeed, we claim that a coalition R ⊆ N has a deviation if, and
only if, R contains a pair of bidders that has a deviation.

In order to prove the characterization (see Lemma D.3 in the appendix), we must show that the
bidder that is ranked last among the deviators is an indifferent bidder. Every deviating coalition R
also contains a free-rider, which gains from the deviation but does not need to change his bid, and
can therefore be removed (as long as some non-indifferent bidders remain). This crucial observation
facilitates the computation of the number of deviations by coalitions of size r for any r ≥ 3.

Recall that Mr denotes the number of coalitions of size r, and that under VCG auction all of
these coalitions actually have a deviation. Clearly, Dr(GSP,LE) ≤ Mr. We next show how
the accurate number of coalitions asymptotically depends on the size of the coalition r and on the
number of slots s.

Proposition 6.8. If both CTRs and valuations are convex, then Dr(GSP,LE) ≤ Mr · O
(
r2√
s

)
.

In contrast, if both CTRs and valuations are concave, then for any positive constant d < 1,

Dr(GSP,LE) ≥Mr · d ·
(

1− exp

(
−Ω

(
r
√
r√
s

)))
.

Proposition 6.8 confirms that the GSP auction is far more stable than the VCG auction against
collusions of relatively small coalitions (when CTR and valuations are convex). This result also
establishes an almost sharp threshold for the case of linear CTRs and valuations: for every r � 3

√
s,

almost all coalitions of size r can deviate, while the proportion of coalitions of size r � 4
√
s that

can deviate goes to 0 (when r is fixed and as s tends to infinity).

6.5 Plurality Voting

It is often useful to model voting systems as games where voters are strategic agents, and analyze
them via game theoretic tools (see Chapter 5 and references therein). As we noted before, in
most voting systems there are typically numerous Nash equilibria, and many of them do not make
sense (e.g., when all voters vote for their most hated candidate). Thus the question of equilibrium
selection is a highly important one, in order to give any valuable predictions or suggestions.

In a recent paper with Dvir Falik and Moshe Tennenholtz, we applied stability scores to the
analysis of the Plurality voting system [Falik, Meir, and Tennenholtz, 2012]. In particular, we
asked “what are the most stable outcomes?” from a coalitional stability perspective, and more
importantly—who is the winner in these stable outcomes.

Somewhat surprisingly, it turns out that under a mild assumption on the profiles, the “most
stable winner” under the Plurality system (i.e., the winner in the profile that has the lowest stability
scores), is the truthful winner of a different voting system, known as Maximin.8 In particular, the
result in [Falik et al., 2012] generalizes an observation by Sertel and Sanver [2004], who showed
that a candidate in Plurality can win in a strong equilibrium (i.e., has a stability score of 0 for every
size of coalition), if and only if it is a Condorcet winner.

Mechanisms for Stability and Welfare 69

(a) Average CTR (linear scale) (b) Average CTR (log scale)

Figure 6.1: The average click-through rate for ads positioned in any of the first ten slots are shown
in Fig. 6.1(a) (numbers are normalized so that the CTR of slot 1 is 100). We can see that the shape
of the CTR function is convex in both Google and Overture. In Fig. 6.1(b) we see the same data
in log scale. Interestingly, the Overture CTR function is very close to exponential (with β ∼= 1.3).
Statistics are taken from Atlas Institute rank report [Brooks, 2004]. We present the data on the
“click potential” attribute, which corresponds to the actual CTR in our model.

6.6 Conclusion
The main contribution in this chapter is the introduction of stability scores—a new stability measure
for game equilibria. We demonstrated how stability scores can be used to compare equilibria in
congestion games and to draw qualitative results regarding properties of the game and the profiles
with high coalitional stability.

Other than comparing equilibria of a particular game, we demonstrated the usefulness of stabil-
ity scores in comparing the stability of equilibria under mechanisms that are designed for similar
settings—the setting of ad auctions in our case.

Auctions Our results indicate that for a prominent class of CTR and valuation functions, GSP
is far more stable than VCG. It is important to note that convex and even exponential CTRs are
common in the real world, as can be seen in Figure 6.1. It is much harder to assess the shape of
valuation functions, as it depends on private information that is not directly measurable.

In addition, we use the proposed score to compare different equilibria of the GSP mechanism;
in particular we show that the upper equilibrium (UE) is somewhat less stable than the lower equi-
librium (LE). As the UE generates a higher revenue, this result suggests a (small) tradeoff between
revenue and stability.

It is known that the LE of GSP generates exactly the same revenue as VCG, and any other
SNE of GSP generates an even higher revenue. This may suggest that GSP is better than VCG
with respect to both revenue and stability. However, a relatively simple modification to the VCG
mechanism (in particular, the introduction of a random reserve price, see Appendix D.3) induces a
randomized mechanism that eliminates all coalitional deviations, thus turning it into a highly stable
mechanism.

8Maximin is usually considered a better voting rule than Plurality, for example it is Condorcet consistent.

70 R. Meir

Part II

Welfare

72 R. Meir

Mechanisms for Stability and Welfare 73

Chapter 7

Mechanism Design without Money I
Facility Location Mechanisms

Abstract. In this chapter we consider mechanisms that place a single facility for public
use (like a library or a swimming pool), based on the reported locations of multiple agents.
We characterize strategyproof (SP) mechanisms and study the worst case approximation ratio
that can be guaranteed by deterministic and randomized SP facility location mechanisms. In
particular, we show that any deterministic SP mechanism on a large enough cycle must be close
to dictatorial. When randomization is allowed, we describe a 3− 2

n
approximation mechanism

that works for every metric space even when agents are weighted.

7.1 Introduction

In the next two chapters we study mechanisms without money (see Section 1.1.3), whose goal
is to incentivize agents to report truthfully information that required for solving an optimization
problem. Mechanisms for the location of a public facility (which is a game-theoretic version of the
Weber problem, see below) are the focus of this chapter.

The Weber problem In the classic Weber problem (also known as the Fermat-Weber problem),
a set of points {ai}i∈N in Euclidean space are given, each with a nonnegative weight wi, and
we should find the point x minimizing the sum of distances

∑
i∈N wi ‖ai − x‖2 [Weber, 1929].

The problem is an abstraction of situations where a public facility should be placed where it can
optimally serve the people in the input locations.

We refer to the corresponding problem in metric spaces as the metric Weber problem, replacing
the `2 norm with an arbitrary metric d(a, x), for example distance on a city grid or on some other
graph. The optimal solution for the metric Weber problem is known as the Geometric median or
the 1-median. In the constrained [metric] Weber problem, the facility x can only be placed in a
predefined subset of the Euclidean [metric] space. Most of the literature regarding variants of the
Weber problem deals with its algorithmic aspects, namely in how to efficiently compute the exact
optimal location [Kuhn, 1973; Eckhardt, 1980; Hansen et al., 1982; Bajaj, 1986; Chandrasekaran
and Tamir, 1990].

74 R. Meir

Facility location with private information The facility location problem is a variant of the met-
ric Weber problem, where the locations of the agents are not publicly known. Rather, the location
ai is only known to agent i. Agents each report their location to a facility location (FL) mechanism,
which consequently places the facility in one of the allowed locations, based on agents’ reports.
The objective of the mechanism designer is to locate the facility at a point that will minimize the
average distance to the real locations of all agents.

The problem of false reports that bias the optimal location arise in many real-life scenarios. A
similar problem arises also in virtual scenarios, such as deciding on the salary of a manager during
a board meeting of a firm (see also next chapter).

When agents report their locations truthfully, the problem of finding the optimal location for
the facility reduces to the constrained or unconstrained metric Weber problem. However, a naïve
mechanism that computes and returns the optimal solution based on reported locations may fail if
agents act strategically. For example, when considering whether to locate a bus station in one of
both ends of a street, it is fairly easy to see that a mechanism that always picks the optimal end can
be easily manipulated. In particular: an agent who lives closer to the non-selected end can report an
even more extreme location. The false report may result in locating the station in the sub-optimal
side.

Research objectives We look for mechanisms that are strategyproof (as presented in Section 2.1.1)
and would thus discourage false reports by the agents. Since truthfulness is often at odds with op-
timality, we compare the outcome of each mechanism to the optimal outcome (the 1-median in the
unconstrained case) to get the approximation ratio. Then, we seek the best possible approximation
ratio that can be guaranteed using SP mechanisms, with and without using randomization.

7.1.1 Recent related work

Most work on facility location focused on continuous topologies, for example graphs where agents
and facilities may be placed anywhere along the edges. Regarding deterministic mechanisms, the
most relevant paper to our work is by Schummer and Vohra [2004], who characterized SP mech-
anisms on continuous intervals, cycles, and trees. While we focus on discrete graphs rather than
continuous, our model is similar and adopts some of the standard definitions used by Schummer
and Vohra.

The approximation approach to SP facility location was first formalized by Procaccia and Ten-
nenholtz [2009]. Mechanisms for various continuous topologies have been subsequently suggested
and studied by other researchers [Alon et al., 2010; Lu et al., 2010].

A randomized 3-approximation SP mechanism for general metric spaces was given in [Meir,
2008] (see also [Meir et al., 2009, 2012]).1 In fact, this mechanism simply selects a dictator at
random and places the facility in her preferred location. The same upper bound was later indepen-
dently proved by Thang [2010], who also provided a lower bound of 2− o(n).

Other variations of the SP facility location problem include for example the location of several
facilities [Procaccia and Tennenholtz, 2009; Lu et al., 2009], the use of alternative optimization
criteria [Alon et al., 2010], and the location of obnoxious facilities that agents prefer to place as far
as possible [Cheng et al., 2011]. Such variations are outside the scope of this work.

1The problem studied in Meir et al.was a binary classification problem, but the proof was given for general metric spaces.
See also next chapter.

Mechanisms for Stability and Welfare 75

7.1.2 Results in this chapter

For a deterministic setting, we provide a complete characterization of onto SP mechanisms for
facility location on a discrete line. We then prove a discrete analog of a classic result by Schummer
and Vohra [2004], showing that any deterministic onto SP FL mechanism on a cycle must be close
to dictatorial (although every agent may have some small influence). One important corollary of
this result is an alternative proof for the Schummer and Vohra’s theorem, which is shorter, more
structured, and also works in the discrete case. A second corollary will be applied in the next
chapter to derive lower approximation bounds in other domains of AMDw/oM.

We then present a new mechanism for the facility location problem with weighted agents, with
a guaranteed approximation ratio of 3 − 2

n , thereby improving the previously known upper bound
from [Meir, 2008; Thang, 2010]. All bounds are summarized in Table 8.2 in the next chapter, where
we can see that the 3− 2

n bound is tight.

7.2 Preliminaries

Consider a graph G = 〈V,E〉 with a set V of vertices and a set E of undirected edges. For ease of
presentation, we assume edges are unweighted, although adding weights (i.e., lengths) would not
change our results. The vertices v ∈ V will be also referred to as locations. The distance between
two vertices v, v′ ∈ V , denoted d(v, v′), is the length of the minimum-length path between v and
v′, where the length of a path is defined as the number of edges in the path.2 Note that d is a
distance metric. We extend the notion of distance between vertices to distance between sets of
vertices, where the distance between two sets of vertices A,A′ ⊆ V , denoted d(A,A′) is defined
as d(A,A′) = minv∈A,v′∈A′ d(v, v′). We will be especially interested in three classes of graphs,
namely lines, cycles, and binary cubes (that will become important in Chapter 8). These classes are
formally defined in the relevant sections.

In an instance of a facility location problem, there are n agents that are located on vertices of
the graph, and a subset V ′ ⊆ V of allowed locations for the facility. Let N = {1, . . . , n} be the set
of agents, and a = (a1, . . . , an) ∈ V n be a location profile, where aj denotes the location of agent
j for every j ∈ N . Instances where V ′ = V are called unconstrained.3

Given an agent j’s location aj ∈ V and a facility location x ∈ V ′, agent j’s cost is given by
d(aj , x). It is assumed that agents prefer to minimize their cost; that is, an agent prefers having
the facility located as close to her as possible (and is indifferent between locations of the same
distance).

7.2.1 Mechanisms

A facility location (FL) mechanism for a graphG = 〈V,E〉 is a function fG : V n → V ′, specifying
the chosen facility location for every location profile. An FL mechanism that operates on any graph
is denoted by f .

A randomized FL mechanism f maps any location profile V n to probability distribution pf over
V ′. We denote by pf (v|a) the probability that mechanism f returns vertex v ∈ V ′ given the profile

2If v, v′ are not connected then d(v, v′) =∞, however we only consider connected graphs in this paper.
3Note that every instance where ai ∈ V ′ for all i ∈ N is w.l.o.g. unconstrained, as we can eliminate all vertices of

V ⊆ V ′, and replace every path between v, u ∈ V ′ with a single weighted edge.

76 R. Meir

a as input. For a randomized mechanism, we define the distance from the facility to agent i as the
expected distance:

d(f(a), ai) = Ev∼pf [d(v, ai)] =
∑
v∈V ′

pf (v|a)d(v, ai).

Mechanism properties We start with several definitions of mechanism properties, which are
independent of the graph topology. While some of these properties are standard in the literature,
we provide their definitions for completeness.

Definition 7.1. A mechanism f is onto, if for every x ∈ V ′ there is a ∈ V n s.t. f(a) = x.

This property is a very basic requirement (sometimes referred to as society sovereignty), and as
such we will restrict our attention to mechanisms satisfying this condition. We are also interested
in the following properties, which are stronger.

Definition 7.2. A mechanism f is unanimous if for every x ∈ V , f(x, x, . . . , x) = x.

Definition 7.3. A location y ∈ V ′ is said to Pareto dominate a location x ∈ V ′ under a given
profile if all the agents strictly prefer y over x (i.e., d(y, aj) < d(x, aj) for every j ∈ N). A
mechanism f is Pareto if for all a ∈ V n, there is no location y ∈ V ′ Pareto dominates f(a) w.r.t.
the profile a.

Note that this requirement is slightly weaker than the more common definition of Pareto, re-
quiring that no other location can strictly benefit one of the agents without hurting any other agent.
It is easy to verify that that either version of Pareto implies unanimity, which in turn implies onto.

A mechanism which returns the best location with respect to a location of a specific agent i
(i.e., f(a) ∈ argminv∈V ′ d(v, ai)) is called a dictator mechanism, and agent i is called a dictator.
Note that on an unconstrained instance, a dictator mechanism returns ai.

It is argued that dictatorial mechanisms are “unfair” in the sense that the agent’s identity plays a
major role in the decision of the facility location. Completely fair mechanisms that ignore agents’
identities altogether are said to be anonymous.

Definition 7.4. A mechanism f is anonymous, if for every profile a and every permutation of agents
π : N → N , it holds that f(a1, . . . , an) = f(aπ(1), . . . , aπ(n)).

Our main interest is in strategyproof mechanisms, defined as follows.

Definition 7.5 (Strategyproof). A mechanism f is said to be strategyproof (SP), if no agent can
strictly benefit by misreporting her location; that is, for every profile a ∈ V n, every agent j ∈ N
and every alternative location a′j ∈ V , it holds that

d(aj , f(a′j , a−j)) ≥ d(aj , f(a)).

While for randomized mechanisms the definition above only concerns strategyproofness in ex-
pectation, the mechanisms we will discuss in this chapter have the stronger property of ex-post SP.
That is, no agent would lie even if the outcome of the randomization is known in advance.

The following folk lemma gives a necessary condition for a mechanism to be onto and SP. For
a proof see e.g., [Barberà and Peleg, 1990].

Lemma 7.1. Every mechanism that is both onto and SP, is unanimous.

Mechanisms for Stability and Welfare 77

The social cost The social cost of a mechanism f on profile a is the (possibly weighted) sum of
distances from all agents:

SC(f,a) =
∑
i∈N

wid(f(a), ai).

The optimal location for profile a is denoted by opt(a) ∈ V ′ (i.e., opt(a) ∈ argminx∈V ′ SC(x,a)),
where we break ties consistently by some arbitrary order. The optimal social cost is denoted by
d∗ = SC(opt(a),a). For a single agent i, opt(ai) is simply the closest location to ai in V ′.

We measure the quality of the outcome of a mechanism using the standard notion of multiplica-
tive approximation.

Definition 7.6. A mechanism f provides an α-approximation if for every a ∈ V n, SC(f(a),a) ≤
α · d∗.

Note that randomized mechanisms are only required to attain approximation in expectation, and
not necessarily with high probability.

There is an inherent tradeoff between strategyproofness and good approximation. A naïve
mechanism which always returns opt(a)), for example, is a 1-approximation mechanism, but may
not be SP even in very simple instances. On the other hand, a mechanism that selects agent 1 as a
dictator, and returns opt(a1) is clearly SP but in general may give a very bad approximation (e.g.,
if all other agents are located in a′ 6= a1).

7.3 Deterministic Mechanisms on a Line
It is widely known that there are many SP facility location mechanisms on a line, including mech-
anisms that are optimal. In this section we characterize all SP and onto mechanisms on a discrete
line.

Line graphs A line graph with k + 1 vertices is denoted by Lk = {0, 1, . . . , k}. We refer to an
increase of the index as a movement in the right direction and similarly we refer to a decrease as a
movement in the left direction. Clearly, in line graphs, every two vertices are connected by a single
path. For v′ > v, we denote by the closed interval [v, v′] the set of vertices {v, v+1, . . . , v′−1, v′},
and by the open interval (v, v′) the set of vertices {v + 1, . . . , v′ − 1}.

In this section (and also in the next one) we consider the unconstrained version of the facility
location problem. That is, V ′ = V = Lk. Given a location x ∈ Lk, agent j’s cost is d(aj , x) =
|aj − x|. In the following definitions, aj , bj etc. are possible locations in Lk for agent j.

Definition 7.7. A mechanism f on a line is monotone (MON) if for every j ∈ N and every bj > aj ,
f (a−j , bj) ≥ f (a−j , aj).

In other words, monotonicity of a mechanism means that if an agent moves in a certain di-
rection, the facility cannot move in the other direction as an effect. The following two properties
bound the effect of an agent’s movement on the outcome of the mechanism.

Definition 7.8. A mechanism f is m-step independent (m-SI) if the two following properties hold:
(I) For every j ∈ N, a′j > aj , if d([aj , a

′
j], f(a)) > m, then f(a′j , a−j) = f(a). (II) For every

j ∈ N, a′j ≤ aj , if d([a′j , aj], f(a)) > m, then f(a′j , a−j) = f(a).

Definition 7.9. A mechanism f is disjoint independent (DI) if for every j ∈ N, a′j ∈ Lk, if f(a) =
x 6= x′ = f(a′j , a−j), then |A ∩ X| ≥ 2, where A is the segment defined by aj and a′j (i.e.,
A =

[
min

(
aj , a

′
j

)
,max

(
aj , a

′
j

)]
) and X is the segment defined by x, x′.

78 R. Meir

Intuitively,m-SI means that if an agent moves inside an interval sufficiently far from the facility,
it has no effect. The DI property means that an agent can affect the outcome of the mechanism only
when its trajectory intersects the trajectory of the facility in at least two consecutive points.

A mechanism is said to be strongly m-step independent (m-SSI) if it is both m-SI and DI.
Consider for example the median mechanism, which returns the median location f(a) =

adn/2e. The median mechanism (and in fact any order statistics mechanism) is strongly 0-SSI.
Also note that the median is optimal: if we move right, then the facility becomes closer to at most
bn/2c agents, and getting farther from at least dn/2e agents (at the same rate), thereby increasing
the social cost.

Our primary result in this section characterizes all the mechanisms that satisfy the requirements
of onto and SP on the line.

Theorem 7.2. An onto mechanism f on the line is SP if and only if it is MON and 1-SSI.

In the remainder of this section we sketch the proof of Theorem 7.2. Full proofs of all lem-
mas are deferred to Appendix E.1. An alternative characterization is given in the next chapter in
Section 8.2.2, using the notations of the binary cube.

Lemma 7.3. Every SP mechanism is monotone.

Lemma 7.4. A monotone mechanism f is Pareto iff it is unanimous.

Notice that the Pareto property (Def. 7.3) has a simpler form on a line:

f(a) ∈ [min
j∈N

aj ,max
j∈N

aj].

The following lemma is the main building block in the proof of Theorem 7.2.

Lemma 7.5. Every SP, unanimous mechanism for the line is 1-SI.

A few remarks are in order. It is not hard to verify (see Lemma E.1 in the appendix) that every
0-SI monotone mechanism on the line is SP. This lemma can be seen as a particular case of Nehring
and Puppe [2007] theorem. They show that for any subset of the binary cube (see Section 8.2.2),
0-SI (called IIA) and MON are sufficient and necessary conditions for being an SP mechanism, for
a certain definition of SP that is stronger than ours. The following example shows that 0-SI is not
a necessary condition under our definition: consider a setting with two agents and the following
mechanism f on L2: f(a1, a2) = 2 if a1 = 2 or a2 = 2, f(a1, a2) = 1 if a1 = a2 = 1, and
f(a1, a2) = 0 otherwise. The reader can check that this is an SP, onto and unanimous mechanism;
however, it is not 0-SI, since moving from the profile (0, 1) to (0, 2) changes the result from 0 to 2.

We now turn to sketch the proof of the main theorem of this section.

Proof sketch of Theorem 7.2 (the hard direction). Suppose f is an onto SP mechanism; then, by
Lemmas 7.1 and 7.3, it is also monotone and unanimous, and therefore, by Lemma 7.5, it is 1-SI.
Suppose that f does not satisfy 1-SSI; then, there is an agent i that violates DI (i.e., caused the
violation). This means (by MON and 1-SI) that either the facility moved from x = ai − 1 to ai
(which is a manipulation for i), or the facility moved from x = a′i to x′ = a′i + 1. In the latter case
the movement a′1 → ai is manipulation for i.

Mechanisms for Stability and Welfare 79

7.3.1 Descriptive and axiomatic characterizations
For continuous lines, the set of SP and onto mechanisms has been characterized as all generalized
median voting schemes (g.m.v.s) [Border and Jordan, 1983; Schummer and Vohra, 2004]. This ba-
sically means that f(a) is the median selection from some subset of agents. By slightly modifying
our definitions above for continuous graphs (informally, by replacing the 1-SSI requirement with
a 0-SI requirement), we get an alternative, axiomatic characterization that is similar to the one we
give for the discrete case. While our definition of 0-SI seems very different from the definition of
a g.m.v.s., the two definitions coincide by Theorem 7.2 (as both are equivalent to requiring onto
and SP). Similarly, it is possible to give a descriptive characterization in the spirit of g.m.v.s. in the
discrete case.

7.4 Deterministic Mechanisms on a Cycle
In this section we move forward from line graphs, where optimal SP mechanisms exist, to cycle
graphs. As in the previous section, we consider the unconstrained version, where V ′ = V = Rk.
After inspecting the main differences from the continuous case, we will continue to our main result,
which puts a strong limitation on the possible SP mechanisms.

Recall that agent j is said to be a dictator in f if for every location profile a ∈ V n, it holds that
f(a) = aj . We define the following relaxation of the dictatorship notion.

Definition 7.10. An agent j is said to be an m-dictator in f , if for every a ∈ V n, it holds that
d(f(a), aj) ≤ m. A mechanism f is m-dictatorial if there exists an agent j that is an m-dictator
in f .

Note that a 0-dictator is just a dictator. Schummer and Vohra [2004] proved that any onto SP
mechanism on the continuous cycle must be a dictatorship. However, this is not true for discrete
cycles. Clearly, any dictator mechanism is both onto (and even unanimous) and SP, but the converse
does not hold.

Consider some cycle Rk of even length k, with any number of agents. The following is an
example of an SP mechanism: the cycle is partitioned to k/2 pairs of neighboring points. First,
the pair in which agent 1 resides is chosen. The location within this pair of points is decided by a
majority vote of all other n− 1 agents. This is not a dictatorial mechanism, and in fact every agent
has some small effect on the outcome in some profiles. Moreover, if the cycle contains only few
vertices, then there are even completely anonymous mechanisms (i.e., very far from dictatorships)
that are SP. See Section 7.4.3 for detailed examples.

We still want to claim that when k is large enough, then any onto SP mechanism on the cycle
Rk is “close” to a dictator. Note that even in the example above, the facility is always next to
agent 1, which makes him a 1-dictator. The main result of this section shows that this is always the
case (see formal statement in Theorem 7.15).

Main theorem . For sufficiently large cycles, any onto SP mechanism is 1-dictatorial.

In the next chapter we complete the characterization (for even k) by considering the embedding
of the cycle in the binary cube. This will also enable us to derive a lower approximation bound for
SP facility location and other problems.

As a proof outline of the main theorem, we go through the following steps: we first consider
the case of two agents, proving that any SP mechanism must be Pareto and then that the facility
must always be next to one of the agents. We then show that it is always the same agent, and thus

80 R. Meir

a 1-dictator must exist. The next step is proving the same for three agents, using a reduction to the
n = 2 case. Finally, we extend the result to any number of agents using an inductive argument
close to the one used by Schummer and Vohra [2004] (and to similar ideas in [Kalai and Muller,
1977; Svensson, 1999]).

Before diving into the case of 2 agents, we need two general lemmas for onto SP mechanisms
(a more formal statement is in Appendix E.2).

Lemma 7.6. If agent 1 moves toward x, i.e. along the shorter arc between them, then x′ = x.

Lemma 7.7. Suppose that agent 1 moves one step away from x (along the longer arc between
them), Let y be the point on the longer arc s.t. d(a′, y) = d(a, x). Then either x′ = x (no change);
or d(x′, y) ≤ 1.

We also use a specific property of cycle-Pareto. For the exact definition see Def. E.1 in the
appendix. However, for our proof sketch it is sufficient to note that cycle-Pareto is very similar to
Def. 7.3 (in fact for even size cycles the definitions coincide).

We prove below that any SP mechanism for 2 agents on large enough cycles must satisfy cycle-
Pareto. However, as Lemma E.3 in the appendix shows, this result is true for any number of agents.

7.4.1 Two agents on the cycle
Lemma 7.8. If a, b, f(a, b) are on the same semi-cycle,4 then f(a, b) is between a, b.

Proof. Assume otherwise, w.l.o.g. a ∈ (b, f(a, b)). Then b can manipulate by reporting a, since
f(a, a) is closer to b than f(a, b).

Lemma 7.9. Let k ≥ 13, n = 2. If f is SP and onto on Rk, then f is cycle-Pareto.

We give a simpler proof for large cycles. The full proof appears in Appendix E.2.1.

Proof sketch for k ≥ 100. We start from some profile where x = f(a, b) is violating cycle-Pareto.
We use the notationA±B as a shorthand for “in the range [A−B,A+B]”. We show (Lemma E.4
in Appendix E.2.1) that cycle-Pareto can only be violated when the facility is at distance (exactly)
2 from some agent (w.l.o.g. d(b, x) = 2), and agents are almost antipodal.

(1) We set two locations for agent 1, as a′ = x + 20 = b + 22 and a′′ = x + 30 = b + 32.
Observe that f(a′, b) = f(a′′, b) = x. For each of the profiles a′, b and a′′, b, we move
agent 2 counterclockwise (away from x), and denote by b′ [respectively, b′′] the first step s.t.
f(a′, b′) 6= x [resp., f(a′′, b′′) 6= x]. Denote x′ = f(a′, b′), x′′ = f(a′′, b′′). See Figure 7.1
for an illustration.

(2) We show that b′ must be roughly antipodal to a′, as otherwise we get a violating profile that is
contradicting (1). Then by Lemma 7.7, x′ is a reflection of x along the axis a′ ↔ b′. It follows
that |[x′, x)| = |[x′, b′)|+ |[b′, x)| = 2|[b′, x)| ± 3 = k − 40± 5.

(3) From a similar argument, we get that |[x′′, x)| = k − 60± 5, which means x′ 6= x′′.

Finally, denote z = f(a′′, b′). By Lemma 7.6, z = f(a′′, b′′) = x′′, as agent 2 approaches x′′. On
the other hand, by the same argument z = f(a′, b′) = x′, as agent 1 approaches x′. Then we get a
contradiction as x′ = z = x′′.

4I.e., there is a segment of length at most k
2

that includes the three points.

Mechanisms for Stability and Welfare 81

b′

b′′

b

a′
a′′

x

x′′

x′

Figure 7.1: Agents’ locations (a, b, etc.) appear outside the cycle, and facility locations (x, x′, etc.)
appear inside.

Lemma 7.10. Let k ≥ 13. For all a, b ∈ Rk, x = f(a, b), d(a, x) ≤ 1 or d(b, x) ≤ 1.

Proof. Assume that there is some violating profile, then w.l.o.g. it is x = f(a, b), where x = b+ 2,
and a > x. Also, by cycle-Pareto and Lemma 7.6, a′ = b + 5 and a′′ = b + 7 have the same
outcome x = f(a′, b) = f(a′′, b).

However, we show in the (full) proof of Lemma 7.9 that exactly this pair of profiles leads to a
contradiction.

We can now use the results above to prove the main result for two agents.

Theorem 7.11. Assume k ≥ 13, n = 2. Let f be an onto SP mechanism on Rk, then f is a
1-dictator.

Proof. Take some profile a, b where x = f(a, b), d(x, b) > 1. By Lemma 7.10, x is near a, i.e.,
d(a, x) ≤ 1. We will show that agent 1 is a 1-dictator (in the symmetric case, agent 2 will be a 1-
dictator). Assume, toward a contradiction, that there is some location b′ for agent 2 s.t. d(y, a) > 1,
where y = f(a, b′) (and by Lemma 7.10, d(y, b′) ≤ 1). We can gradually move agent 2 from b to
b′ until the change occurs, and thus w.l.o.g. b′ = b + 1. By Lemma 7.6, moving agent 2 toward x
cannot change the outcome, thus on the arc [x, b′] the order is x < x+ 1 < b < b′.

We must have d(b, x) ≤ d(b, y), as otherwise there is a manipulation b→ b′. Thus d(b, a)−1 ≤
d(b, b′) + 1 = 2, i.e., d(a, b) ≤ 3. Also, d(a, b) ≥ 1 since otherwise d(y, a) = d(y, b) ≤ 1 in
contradiction to our assumption. Thus there are three possible cases, and we will show that each
leads a contradiction.

(I) If d(a, b) = 1, then since d(x, b) > 1 we have x = a− 1 (in contradiction to Lemma 7.8).
(II) If d(a, b) = 2, then x = a (since x = a − 1 contradicts lemma 7.8). Thus d(y, b) ≥

d(x, b) = d(a, b) = 2 which means y = b′ + 1 = b + 2. This induces a manipulation for agent 1
a→ b′ (by unanimity).

(III) If d(a, b) = 3, then since k > 8, all of the points are on a semi-cycle and thus x ∈ {a, a+
1}, y ∈ {b′, b′ − 1} (again, by lemma 7.8). However this clearly means that d(y, b) ≤ 1 < d(x, b),
and there is a manipulation b→ b′ for agent 2.

82 R. Meir

k ≤ 12 k ∈ {13, 14, 16} k = 15 or k ∈ [17, 21] k ≥ 22
n = 2 A (Prop.7.16b) D (Thm. 7.11)
n = 3 A (Prop.7.16b) D (Search) D (Thm. 7.14)
n > 3 ND (⇓ by Prop. 7.17) D (⇓ by Thm. 7.15)

Table 7.1: Summary of results for SP mechanisms on Rk, with n agents. D means that every SP
mechanism is 1-dictatorial. ND means there exists an SP non-1-dictatorial mechanism. A means
there exists an SP anonymous mechanism.

7.4.2 Multiple agents on the cycle
Lemma 7.12. Assume k ≥ 13, n = 3. Let f be a unanimous SP mechanism on Rk. Then either f
has a 1-dictator, or any pair is a 1-dictator. That is if there are two agents j, j′ s.t. aj = aj′ , then
d(f(a), aj) ≤ 1.

Lemma 7.13. Let f be an SP, unanimous rule for 3 agents on Rk for k ≥ 13. For all a, b, c ∈ Rk,
x = f(a, b, c), d(a, x) ≤ 1 or d(b, x) ≤ 1 or d(c, x) ≤ 1.

The proof of Lemma 7.13 is using Lemma 7.12, which in turn requires the result for n = 2.
Our next result for three agents relies on the previous lemmas.

Theorem 7.14. Assume k ≥ 22, n = 3. Let f be an onto SP mechanism on Rk, then f is a
1-dictator.

Finally, we leverage the results of the previous sections to obtain a necessary condition for
mechanisms on the discrete cycle for the general case of n agents.

Theorem 7.15. Let f be an onto and SP mechanism on Rk, where k ≥ 22, then f is 1-dictatorial.

The last step of the proof is almost identical to the continuous case, as appears in [Schummer
and Vohra, 2004]. For completeness, the proof is in the appendix.

7.4.3 Small cycles
A natural question is the critical size of a cycle, for which there still exist SP mechanisms that are
not 1-dictatorial. The proofs above show that the critical size for n = 2 is at most 12, and for n ≥ 3
it is at most 21. We next provide the exact numbers.

Proposition 7.16. There are onto and anonymous SP mechanisms on Rk:
(a) for n = 2, and all k ≤ 12.
(b) for n = 3, and all k ≤ 14 or k = 16.

For k ≤ 7, the following “median-like” mechanism will work for n = 3: let (a3, a1] be the
longest clockwise arc between agents, then f(a) = a2. Break ties clockwise, if needed. For two
agents we simply fix the location of one virtual agent (see proof in Appendix E.2.3). Note that like
the median mechanism, this “median-like’ mechanism is also optimal in terms of social cost.

For higher values of k the “median” mechanism is no longer SP, but we have been able to
construct anonymous SP mechanisms using a computer search for all the specified values. A tabular
description of these mechanisms is available online.5

5http://tinyurl.com/mrqjcbt

http://tinyurl.com/mrqjcbt

Mechanisms for Stability and Welfare 83

Proposition 7.16a settles the question of the maximal size for which non-1-dictatorial mech-
anisms for two agents exist. For three agents, we close the gap between Proposition 7.16b and
Theorem 7.14 by performing an exhaustive search on all mechanisms with three agents for k ∈
{15, 17, 18, 19, 20, 21}.6 Indeed, it turns out that every mechanism in this range must be 1-dictatorial.
Thus we have a full characterization of the cycle sizes for which non-1-dictatorial SP mechanisms
exist.

As a direct corollary from Proposition 7.16 we get the following result, by adding any number
of agents from which the mechanism ignores.

Proposition 7.17. For all n ≥ 3, k ≤ 14 and k = 16, there are onto SP mechanisms for n
agents on Rk that treat the first 3 agents symmetrically. In particular, these mechanisms are not
1-dictatorial.

Note however that the resulting mechanism is not an anonymous one. The exact sizes of cycles
for which an anonymous/non-dictatorial mechanism exists appear on Table 7.1.

7.4.4 Implications of the main theorem
In this section we cover some strong implications of the result that any SP mechanism on a large
cycle must be almost-dictatorial.

The social cost Recall that our initial goal was to prove upper and lower bounds on the approxi-
mation ratio of SP mechanisms. Dictatorial mechanisms typically have poor performance in terms
of social welfare (or cost), and we will use this to prove a lower bound on the approximation ratio
of facility location mechanisms (on a cycle, and thus on general graphs as well). While for a low
number of agents a dictatorial facility location mechanism is not so bad (in fact, for n = 2 the
dictator mechanism is optimal w.r.t. the social cost), for more agents the main theorem provides us
with a lower bound that linearly increases with the number of agents (the corollary still holds for
lower values of k, as appear on Table 7.1).

Proposition 7.18. Every SP mechanism on Rk for k ≥ 22 has an approximation ratio of at least
9
10n− 1. The ratio converges to n− 1 as k tends to infinity.

Cyclic graphs A second implication is that our result about cycles extends to a much larger class
of graphs. A natural conjecture is that any SP (and onto) mechanism on any graph containing a
cycle that matches the conditions of the theorem, must be 1-dictatorial on a subdomain. However,
we need to be careful. In the continuous case studied by Schummer and Vohra [2004], any cyclic
graph contains a continuous cycle and thus their negative result automatically applies.

In the discrete case, this is only guaranteed to be true if we add edges outside the cycle. We
define a minimal cycle as a cycle that is not cut by any string. Equivalently, the shortest path
between every two vertices on the cycle is going through the edges of the cycles. The extension of
our main theorem is as follows.

Corollary 7.19. Let G = (V,E) be a graph that contains some minimal cycle R ⊆ V that is
sufficiently large (according to Table 7.1). Then any SP onto mechanism on G has a “cycle 1-
dictator” i ∈ N . That is, if all agents lie on R then d(f(a), ai) ≤ 1.

6While the number of mechanisms for 3 agents and bounded k is finite, the size of the search space is huge (kΘ(kn)).
Thus any naïve search would be infeasible. However, by using the lemmas from Section 7.4 we can significantly reduce the
search space so that the search completes in several minutes.

84 R. Meir

If we take a large cycle and add internal edges (so that it is no longer minimal), then there may
be non-dictatorial mechanisms that are SP. As a simple example, the main theorem applies on R14

with n = 2. However if we add the edge (0, 7), this forms two cycles of length 8. The following
mechanism is SP and onto: if the two agents are on different cycles, then f(a) = 0. If they are on
the same cycle, then we apply the “median-like” mechanism for R8 described in Appendix E.2.3,
where the point 0 serves as the dummy agent for both cycles.

The continuous case As we mentioned in Section 7.3.1 for continuous lines, one can repeat the
steps of our proof, with some adjustments, when the underlying graph is continuous. This results
in an alternative proof that every onto SP mechanism on a continuous cycle is dictatorial. In fact,
some steps of our proof are greatly simplified in the continuous case, leaving us with a relatively
short and intuitive proof for Theorem 2 in [Schummer and Vohra, 2004, p.22]. We do not include
the full details here.

7.5 Randomized Mechanisms for Metric Spaces
A simple randomization has been demonstrated to break the lower bound given by Theorem 8.6,
and to achieve a constant approximation ratio with respect to any concept class.

For the unconstrained version of the facility location problem, it is widely known that the
“weighted random dictator” (WRD) mechanism (which selects each agent i as a dictator with
probability wi) is SP and guarantees 2-approximation. Meir, Procaccia, and Rosenschein [2009]
showed that when applied to general instances, the approximation ratio of WRD is 3− 2wmin and
this is tight.

When all agents have the same weight, we have thatwmin = 1
n , in which case the approximation

bound reduces to 3− 2
n (or 2− 2

n for unconstrained instances).

7.5.1 Improving the upper bound for weighted agents

As we will see later in Chapter 8, the 3− 2
n bound cannot be further improved for the constrained

unweighted case, as any SP mechanism is essentially a random dictator mechanism. However
we are still free to define the probabilities of selecting different agents, and we may take agents’
weights into account. The WRD mechanism is an example of such a randomization, but we can
design others.

A simple variant of the WRD mechanism is the squared-weight mechanism (SRD). That is,
the mechanism would select every dictator i ∈ N with probability proportional to w2

i . In fact, for
n = 2, the SRD guarantees 2-approximation, and cannot be further improved (for details see [Meir
et al., 2011]).

Unfortunately, while SRD does attain some improvement over the WRD mechanism, it does
not match the lower bound, even for n = 3. The approximation ratio of the SRD mechanism is at
least 2.4 on some instances with three agents (i.e., strictly higher than

(
3− 2

n

)
= 2 1

3). A similar
counterexample exists for individually realizable datasets, where the approximation ratio of SRD
is above 1.39 (i.e., strictly above 2− 2

n for n = 3). See Examples E.5 and E.6 in the appendix.
We therefore must take a somewhat different approach in the selection of the dictator. Consider

the mechanisms CRD and RRD, where the latter is a small variation of the former.
The CRD and RRD mechanisms are clearly SP, as the probabilities are unaffected by the re-

ported location.

Mechanisms for Stability and Welfare 85

Mechanism 2 The Convex-weight Random Dictator Mechanism (CRD)
for each i ∈ N , set p′i = wi

2−2wi
.

compute αw = 1∑
i∈N p′i

.
select agent i with probability pi = αwp

′
i.

return opt(ai).

Mechanism 3 The Realizable-weight Random Dictator Mechanism (RRD)
h← argmaxi∈N wi.
if wh > 1

2 then
return opt(Sh).

end if
for each i ∈ N , set p′i = wi

1−2wi
.

compute βw = 1∑
i∈N p′i

.
select agent i with probability pi = βwp

′
i.

return opt(ai).

Theorem 7.20. The following hold for Mechanism 2:
(a) αw ≤ 2− 2

n .
(b) CRD has an approximation ratio of 1 + αw, i.e., at most 3− 2

n .
(c) for unconstrained instances, the approximation ratio is αw

2 + 1, i.e., at most 2− 1
n .

Proof sketch of part (b). Denote ci = opt(ai); c∗ = opt(a). Note that for all i, d(ci, c
∗) ≤

2d(ai, c
∗), since otherwise c∗ is closer to ai than ci.

SC(CRD(a),a) =
∑
i∈N

piSC(ci,a) =
∑
i∈N

pi
∑
j∈N

wjd(ci, aj) =
∑
i∈N

piwid(ci, ai) +
∑
j 6=i

piwjd(ci, aj)

≤
∑
i∈N

piwid(c∗, ai) +
∑
j 6=i

piwj(d(ci, c
∗) + d(c∗, aj))

 (by triangle ineq.)

= αw

∑
i∈N

wi
2(1− wi)

d(ci, c
∗)(1− wi) +

∑
j∈N

wjd(c∗, aj)
∑
i∈N

pi ≤ αw

∑
i∈N

wi
2

2d(ai, c
∗) +

∑
j∈N

wjd(c∗, aj)

= (αw + 1)
∑
j∈N

wjd(c∗, aj) = (αw + 1)SC(c∗,a) ≤
(

3− 2

n

)
d∗, (from part (a))

which shows the upper bound.

By Theorem 8.7, no SP mechanism can do better on a general graph in the worst case, thus
CRD is optimal. However, if the instance is unconstrained (i.e., it is known that ai ∈ V ′ for all
i ∈ N), then CRD is suboptimal, and RRD is strictly better (in the worst case).

Theorem 7.21. The following hold for Mechanism 3:
(a) βw ≤ 1− 2

n .
(b) RRD has an approximation ratio of at most 4, and at least 3 (in the worst case).
(c) for unconstrained instances, the approximation ratio is 1 + βw, i.e., at most 2− 2

n .

Observe that for two agents, RRD simply selects the heavier dictator. Thus if the dataset is
constrained, the approximation ratio can be as high as 3, which accounts for the lower bound in (b).

86 R. Meir

Implications We conclude the results at the end of the next chapter. As we will show, the CRD
mechanism matches the lower bound for any set of weighted agents, thereby showing that the uni-
form weight case is, in fact, the hardest. The situation with the RRD mechanism is similar—no
randomization of dictators can do better. However, it is still an open question whether there are
better, more sophisticated, randomized mechanisms for the unconstrained case (see Table 8.2). The
natural conjecture would be that there are none, as we showed for deterministic mechanisms in Sec-
tion 7.4. Note that when weights are uniform, then the CRD, RRD, SRD and WRD mechanisms
all coincide, and all guarantee a 3 − 2

n approximation ratio in the constrained case, and 2 − 2
n in

the unconstrained case.
Curiously, RRD is better than CRD when the input in known to be unconstrained, whereas in

the general (i.e., constrained) case the converse is true. Therefore, a different mechanism should be
used, depending on our assumptions on the world. However, the mechanism must be decided on
a-priori—we cannot select between CRD and RRD after observing the reported locations, as this
would not be strategyproof!

Mechanisms for Stability and Welfare 87

Chapter 8

Mechanism Design without Money II
From Binary Classification to a Unified
Approach

Abstract. We consider facility location problems on graphs that are subsets of the binary
cube. We show how we can embed line and cycle graphs in the cube in order to attain complete
characterization of strategyproof (SP) mechanisms on these graphs. Then, we show that facility
location on the cube is essentially equivalent to the strategyproof binary classification problem,
as presented in [Meir, 2008] (and to other mechanism design problems), thereby deriving tight
upper and lower bounds on the approximation ratio of SP mechanisms in both settings.

8.1 Introduction
While the results in the previous chapter were quite technical, the contribution of this chapter is
more conceptual. We consider the strategyproof (SP) binary classification problem, as defined in
[Meir, 2008; Meir et al., 2009], and show that it is equivalent to the strategyproof facility loca-
tion problem where the underlying graph is a multi-dimensional binary cube. Other problems of
mechanism design without money are also closely related.

Binary classification An essential part of the theory of machine learning deals with the binary
classification problem: a setting where a decision maker must classify a set of input points with
binary labels, while minimizing the expected error (for an overview, see for example [Devroye et al.,
1997]). In contrast with the standard assumption in machine learning, SP classification is required
in situations where the labels of the input points are reported by self-interested agents, rather than
by a credible expert. Agents might lie in order to obtain a classifier that more closely matches
their own opinion, thereby creating a bias in the data; this motivates the design of mechanisms that
discourage false reports.

Judgment and partition aggregation Partition aggregation is just another name for aggregation
of several binary classifiers, albeit not in the context of machine learning. In judgment aggregation,
every judge reports her opinion over a set of issues which are logical expressions. These opinions

88 R. Meir

are then aggregated into a single assignment that is consistent across all expressions (for example,
if the issue “X and Y ” is assigned a value of “true”, then the issue “X or Y ” must also get a value
of “true”).

8.1.1 Previous work

The study of SP classification mechanisms was initiated in Meir’s M.Sc. thesis [2008] (see also
[Meir et al., 2008, 2009, 2010]). These papers provided SP classification mechanisms for some
special cases, and completed them with lower bounds on the worst-case approximation ratio at-
tainable by SP mechanisms. In particular, it was shown that no deterministic SP mechanism can
guarantee a constant approximation ratio. Similarly, no randomized SP mechanism can guarantee
a ratio better than 3 − 2

n . However, many questions remained unanswered, in particular regarding
randomized mechanisms in settings where agents are weighted.

Properties of mechanisms for judgment/partition aggregation have been discussed extensively
in the literature since the 1970’s [Wilson, 1975; Mirkin, 1975; Leclerc, 1984; Barthèlemy et al.,
1986; Fishburn and Rubinstein, 1986]. A recent paper that deals explicitly with manipulations is by
Dokow and Holzman [2010], which characterize strategyproof aggregation rules. Approximation in
judgment aggregation are considered by Nehama [2011]. However, Nehama does not study social
welfare, but rather approximate notions of consistency and independence.

Our current work differs in two important ways from the literature on judgment aggregation.
First, we explicitly measure the quality of proposed mechanisms (in the spirit of AMDw/oM, see
Section 1.1.3), which enables us to compare SP mechanisms to one another. Second, we study
not only deterministic mechanisms, but also randomized ones. We believe that the notion of ap-
proximation, and the use of randomization (both a common practice in computer science) can also
contribute to the study of more “standard” judgment aggregation settings.

8.1.2 Results in this Chapter

In this chapter we aim to provide a complete picture of the power and limitations of strategyproof
mechanisms, closing most of the gaps left open by previous work in the field for both deterministic
and randomized mechanisms.

A primary conceptual contribution is the observation that binary classification and facility loca-
tion can be treated within a unified framework. More specifically we show how various structures
can be naturally embedded in the multi-dimensional binary cube, which serves us for several pur-
poses. First, by considering a natural embedding of the cycleRk, we provide a full characterization
of SP mechanisms on even-length cycles. Second, by embedding the line Lk we give an alternative
characterization for facility location mechanisms on lines, using similar terms. Lastly, we show
how every binary classification instance can be mapped to a subset of the binary cube, demonstrat-
ing that binary classification is a special case of the facility location problem.

As a consequence, many of the results on approximation ratios of facility location and binary
classification mechanisms (from Chapter 7 and from the literature) hold in both domains. Since
binary classification and judgment aggregation are essentially equivalent, results hold in the judg-
ment aggregation domain as well. Our results, together with previous results that can be translated
using the above mapping, are concentrated in Table 8.2.

Mechanisms for Stability and Welfare 89

Figure 8.1: A dataset with labels. Here, X = R2, C is the class of linear separators over R2, and
n = 3. The data points X of all three agents are identical, but the labels, i.e., their types, are
different. The best classifier from C with respect to each Si is also shown (the arrow marks the
positive halfspace of the separator). Only the rightmost dataset is realizable.

8.2 Preliminaries

8.2.1 Binary classification
Our definitions follow [Meir, 2008; Meir et al., 2009].

LetX be an input space, which we assume to be either a finite set, or a subset of Rd. A classifier
c is a function c : X → {+,−} from the input space to the labels {+,−}. A concept class C is a
set classifiers. For example, the class of linear separators over Rd is the set of classifiers that are
defined by the parameters q ∈ Rd s.t. |q| = 1 and b ∈ R, and map a point x ∈ Rd to + if and only
if q · x + b ≥ 0.

Denote the set of agents by N = {1, . . . , n}, n ≥ 2. The agents are interested in a (finite)
set of k data points X ∈ X k. We typically assume that X is shared among the agents, that is, all
the agents are equally interested in each data point in X .1 Naturally, the points in X are common
knowledge.

Each agent has a private type: its labels for the points in X . Specifically, agent i ∈ N holds
a function Yi : X → {+,−}, which maps every point x ∈ X to the label Yi(x) that i attributes
to x. Each agent i ∈ N is also assigned a weight wi, which reflects its relative importance; by
normalizing the weights we can assume that

∑
i∈N wi = 1. Let Si = {〈x, Yi(x)〉 : x ∈ X} be

the partial dataset of agent i, and let S = 〈S1, . . . , Sn〉 denote the complete dataset. Si is said to
be realizable w.r.t. a concept class C if there is c ∈ C which perfectly separates the positive samples
from the negative ones. If Si is realizable for all i ∈ N , then S is said to be individually realizable.
Figure 8.1 shows an example of a dataset labeled by three agents.

We use the common 0-1 loss function to measure the error. The risk, or negative utility, of
agent i ∈ N with respect to a classifier c is simply the relative number of errors that c makes on its
dataset. Formally,

Ri(c,S) =
1

k

∑
〈x,y〉∈Si

Jc(x) 6= yK =
1

k

∑
x∈X

Jc(x) 6= Yi(x)K . (8.1)

Note that Si is realizable if and only if minc∈C Ri(c,S) = 0. The global risk (which is the social
cost) is defined as

RN (c,S) =
∑
i∈N

wi · Ri(c,S) =
1

k

∑
i∈N

∑
x∈X

wi · Jc(x) 6= Yi(x)K . (8.2)

1Some of our previous work relaxes this assumption [Meir et al., 2010].

90 R. Meir

8.2.2 The binary cube
A binary cube of dimension k is denoted byCk. The set of vertices ofCk is the set of binary vectors
of size k. Two vertices v, v′ ∈ Ck are connected if they differ in a single coordinate. Given a vertex
v, we denote by v[`] ∈ {0, 1} the `’th coordinate of v. Therefore, d(v, v′) = |{` : v[`] 6= v′[`]}|.

Suppose that V is some subset of Ck. Since every location can be thought of as having k
coordinates (or attributes), the cube structure calls for some new definitions. We next define several
properties of facility location mechanisms that operate on the binary cube Ck or on its subsets.

Definition 8.1. A mechanism f is Cube-monotone, if changing coordinate ` of an agent can only
change coordinate ` in the same direction. That is, if aj [`] 6= a′j [`] and f(a)[`] 6= f(a−j , a

′
j)[`],

then f(a)[`] = aj [`].

Another property often considered in a multi-attribute setting is independence in irrelevant
attributes (IIA). This means that coordinate ` of the facility is only determined by the values of
coordinate ` of the agents’ locations. While this property seems unnatural in the general case of
aggregating agent location on a subset of the cube, it is reasonable in a lot of related aggregation
problems. For example, in preference aggregation2 the IIA property means pair-wise aggregation
and is accepted as a desired property. We relax this notion as follows.

Definition 8.2. A mechanism f is m-independent of irrelevant attributes (m-IIA) if f(a)[`] is de-
termined by coordinates `−m, . . . , `+m of the voters in a.

Note that the m-IIA property depends on coordinates order, and is not preserved under a per-
mutation of coordinates’ names. 0-IIA is just IIA. The following property is also quite natural.

Definition 8.3. A mechanism f is independent of disjoint attributes (IDA), if the coordinates
changed by the agent and the coordinates changed in the facility (if it moved) always intersect.
Formally, if aj , a′j differ by coordinates S ⊆ K, and f(aj , a−j), f(a′j , a−j) differ by coordinates
T ⊆ K, then either T = ∅ (i.e., no change in outcome) or S ∩ T 6= ∅.

A similar property was suggested by Dietrich [2007] as independence in irrelevant information
(in our case a coordinate is relevant to its neighborhood, and irrelevant to all other coordinates).

Definition 8.4. We say that a mechanism f is Cube-Pareto, if whenever all the agents agree on
the same coordinate, then this is the aggregated coordinate as well. Formally, if aj [`] = 0 for all
j ∈ N , then f(a)[`] = 0, and likewise for 1.

8.3 Embedding Line and Cycle Graphs in the Cube

8.3.1 Alternative characterization for SP mechanisms on lines
We give a natural embedding of Lk in Ck. Map every x∈Lk = {0, 1, . . . , k} to a vector ϕ(x)∈
{0, 1}k, whose first x entries are 1. Thus ϕ(x)[i] = 1 iff i ≤ x. It is easy to verify that ϕ is
distance-preserving, i.e., that d(ϕ(x), ϕ(x′)) = |x− x′| = d(x, x′).

Every mechanism f on Lk induces a mechanism fϕ on the embedded space ϕ(Lk) ⊆ Ck. The
following correspondences of properties follow directly from distance preserving of the mapping
ϕ.

2Preference aggregation is similar to voting, only the outcome is a complete order over candidates rather than a winner.
Dietrich and List [2007] show that preference aggregation can be seen as aggregation on the cube. Note that this means that
all of our upper bounds apply to preference aggregation as well.

Mechanisms for Stability and Welfare 91

Lemma 8.1. Let f be a mechanism on Lk.
1. f is monotone iff fϕ is Cube-monotone.
2. f is m-SI iff fϕ is m-IIA.
3. f is DI iff fϕ is IDA.
4. f is Pareto iff fϕ is Cube-Pareto.

Corollary 8.2 (From Theorem 7.2). An onto mechanism on ϕ(Lk) (The line embedded in Ck) is
SP if and only if it is 1-IIA, Cube-monotone, and IDA.

8.3.2 Full characterization of SP mechanism on the cycle
Every cycle of even length can be thought of as “two lines attached in their ends”. Indeed, R2k can
be embedded in the binary cube Ck in a very similar way to the embedding of the line. This is by
mapping the first k points on the cycle (setting order and orientation on the cycle. We later show
that these can be arbitrarily chosen) to vectors of the form 0k11k2 (as with Lk), and the remaining
k points to vectors of the form 1k10k2 . In particular, ϕ(0) = 0k, and ϕ(k) = 1k. As with Lk, it is
not hard to verify that our mapping preserves distances, as

d(ϕ(x), ϕ(x′)) = d(x, x′) = |x− x′| (mod 2k).

We can now turn to completing the characterization of SP mechanisms on the cycle, extending
Theorem 7.15.

Theorem 8.3. Let 2k ≥ 18 (or 2k ≥ 14 for n = 2). An onto mechanism on the cycle R2k is SP if
and only if it is 1-dictatorial, Cube-monotone, and IDA.

Note that our characterizations for SP mechanisms on lines (Corollary 8.2) and on cycles (The-
orem 8.3) use almost the same terms when formulated using the properties of the cube.

8.4 Binary Classification as Facility Location on a Cube
Consider a dataset labeled by several agents, and the binary cube whose dimensions correspond to
the samples in the dataset. We argue that our classification model is equivalent to facility location
on the binary cube, where the label vector of each agent corresponds directly to a specific vertex of
this cube.

Lemma 8.4. For any instance 〈S, C〉 of the classification problem, there is an equivalent instance
of the facility location problem over Ck, where k is the number of samples. Equivalent means that
any outcome in the original instance (a classifier), has a corresponding outcome in the location
instance (a vertex), with the same quality, and vice versa.

Proof. Consider the dataset S = 〈X, (Yi)i∈N 〉 = 〈S1, . . . , Sn〉 in the classification domain. Set
k = |X|, and translate S to the following facility location problem over Ck (one dimension per
each data point x` ∈ X). Every classifier c : X → {−,+} corresponds to a vertex qc of the binary
cube, where qc[`] = 1 if and only if c(x`) = ‘+′. We extend the mapping q to sets in the natural
way. In particular, the location of every agent i ∈ N is the vertex ai ∈ {0, 1}k corresponding to Yi
(that is, ai = qYi), and the concept class C corresponds to the set of allowed vertices V ′ ⊆ {0, 1}k.
See Figure 8.2.

92 R. Meir

Figure 8.2: A dataset with labels (xi, Y (xi))
3
i=1, and a classifier c (left). Each of Y and c is

translated to a vertex of the cube C3 (right).

To see that the facility location instance 〈a, V ′〉 is completely equivalent to the original clas-
sification instance 〈S, C〉, observe that for any agent i ∈ N and any classifier c ∈ C, it holds
that

Ri(c,S) = |{x` ∈ X : Yi(x`) 6= c(x`)}| = |{` ≤ k : qYi [`] 6= qc[`]}| = d(ai, qc).

A similar mapping can be applied in the other direction, by mapping each vertex a ∈ Ck (or
a ∈ V) to a labeling function q−1

a , where q−1
a (x`) = ‘+′ iff a[`] = 1. It then holds that for every

agent i ∈ N and every location z ∈ V , d(ai, z) = Ri(q
−1
z ,S), where Sj = (X, q−1

aj) for all
j ∈ N .

The binary classification problem (and the judgment/partition aggregation problem) is thus a
special case of the facility location problem. Other concepts can also be naturally mapped between
the domains. It is easy to see that S is individually realizable if and only if a is unconstrained w.r.t.
G = 〈V,E〉. That is, every agent has a perfect classifier iff every agent can have the facility located
exactly at her location.3

Every general facility location mechanism fFL in particular operates on binary cubes in ar-
bitrary sizes, and thus induces a classification mechanism fBC . In particular, if fFL has an ap-
proximation ratio of α, then the induced classification mechanism fBC also has α-approximation.
Similarly, if fFL is SP then so is fBC (meaning that no agent can gain by misreporting her labels).
We recall the following known results on SP binary classification.

8.4.1 Transferring upper bounds and lower bounds across domains
Upper bounds on approximation ratios of SP mechanisms translate immediately from the general
case (facility location) to the special case (classification/judgment aggregation). Lower bounds go
through in the other direction.

Corollary 8.5 (From Theorems 7.20 and 7.21). There is a randomized SP 3 − 2
n approximation

mechanism (CRD) for the binary classification problem. For individually realizable instances,
there is a 2− 2

n approximation mechanism (RRD).

3To see why judgment aggregation coincides with binary classification, observe that we can map between every issue on
the agenda and a single sample. Thus, a logical assignment to all issues corresponds to a classifier (an binary assignment
to all samples). Similarly, every agenda corresponds to a concept class, which contains all assignments that are logically
consistent with the agenda. The requirement that the opinion of every judge itself be consistent is thus equivalent to the
individual rationalizability requirement. Other concepts could be similarly mapped onto one another.

Mechanisms for Stability and Welfare 93

As for lower bounds, we recall the following known results.

Theorem 8.6 (Meir et al. [2010; 2012]). There exist concept classes for which any deterministic
SP mechanism has an approximation ratio of at least Ω(n), even if all the weights are equal.

The proof of the theorem uses a reduction from voting scenarios, and applies the Gibbard-
Satterthwaite impossibility theorem (see Section 2.1.2). The proof is a variation of the proof of
Theorem 3.1 in [Meir et al., 2010]. The details of the constructed scenario and the mapping to the
corresponding voting problem are somewhat different and are given in Appendix F for complete-
ness.

For general concept classes, the following lower bound is known.

Theorem 8.7 (Meir et al. [2011]). There exist concept classes for which any randomized SP mech-
anism has an approximation ratio of at least 3− 2

n , even if all weights are equal.

Corollary 8.8. No randomized facility location mechanism (on constrained instances) can guar-
antee an approximation ratio better than 3− 2

n , even when agents are unweighted.

Remark 8.1. The proof of Theorem 8.7, as appears in [Meir et al., 2011] has an unfortunate (but
fixable) bug. The proof relies on a theorem by Gibbard [1977], stating that every randomized
voting rule that is SP must be a mixture of duples and SP unilateral rules. The proof did not
consider the possibility of unilateral rules other than the dictatorial rule. However, this problem
can be easily fixed, by noticing that every unilateral rule other than dictatorial would have a poor
performance in the case of unanimous vote (similarly to the way duples are handled in [Meir et al.,
2011, Lemma 10]).

8.4.2 A lower bound for classification
Transferring bounds in the other direction is not so trivial, since in general facility location is not
a special case of classification. Recall that in Chapter 7 we proved a lower bound of Ω(n) for
(unconstrained) facility location mechanisms. In order to apply it to classification, we use the fact
that the particular graph on which the bound was attained (i.e., the cycle graph) can be embedded
in the binary cube, as shown in Section 8.3.2. Moreover, we will next observe that the embedded
cycle corresponds to a very natural class of binary classifiers, known as linear separators.

The cycleR2k (embedded inCk) contains the 2k vectors 0k11k2 and 1k10k2 , where k1+k2 = k.
Note that these are exactly all the possibilities to classify (using a 1-dimensional linear separator)
an arbitrary dataset of k − 1 points {x1, x2, . . . , xk−1}, where x` ∈ R. For example, the vector
1k12k2 corresponds to the separator defined by q = −1, b = xk1 .

We get that any SP mechanism for linear classification is in particular an SP facility location
mechanism on the cycle R2k. The following corollary then follows from Proposition 7.18. Note
that this result in particular entails Theorem 8.6.

Corollary 8.9. Every SP classification mechanism for linear classifiers in Rd (for any d ≥ 1) has
an approximation ratio of Ω(n), even when datasets are individually realizable.

8.5 Conclusion
Tables 8.1 and 8.2 summarize the results of both Chapters 7 and 8. In particular, we provided
the best possible (randomized) SP mechanism for weighted agents, and proved proved that the

94 R. Meir

General datasets Realizable datasets
Constrained FL Unconstrained FL

Upper bound O(n) (#) ⇒ O(n)

Lower bound Ω(n) (Th. 8.6) Ω(n) (Cor. 8.9)

Table 8.1: Summary of results (deterministic mechanisms). The corresponding theorem for each
result appears in parentheses. #—[Meir et al., 2009].

General datasets / Realizable datasets /
Constrained FL Unconstrained FL

WRD 3 (#) 2 (#)

SRD > 2.4 for n = 3 (Prop. E.5) > 1.39 for n = 3 (Prop. E.6)

CRD 3− 2
n (Thm.7.20) 2− 1

n (Thm.7.20)

RRD ≥ 3 (Thm.7.21) 2− 2
n (Thm.7.21)

Best upper bound 3− 2
n (CRD) 2− 2

n (RRD)

Lower bound 3− 2
n (Thm.8.7 †) 1

Table 8.2: Summary of results (randomized mechanisms). We conjecture that the upper bound for
realizable datasets is tight, but this remains an open question. #—[Meir et al., 2009], †—[Meir
et al., 2011].

approximation ratio of any deterministic SP mechanism is linear in the number of agents—even in
the unconstrained/realizable case. As we noted above, all results apply both for the more general
problem of SP facility location in metric spaces, and to the special case of binary classification (or
judgment aggregation, where realizability is known as consistency).

Interestingly, the techniques we used thus far seem insufficient for proving lower bounds on
randomized mechanisms in unconstrained/realizable scenarios. Since realizability is common and
sometimes necessary (e.g., in judgment aggregation), closing this gap is both important and inter-
esting.

Mechanisms for Stability and Welfare 95

Chapter 9

Parking Allocation and Online
Matching

Abstract. We study online bipartite matching settings inspired by parking allocation prob-
lems, where rational agents arrive sequentially and select their most preferred parking slot. Our
focus is on natural and simple pricing mechanisms, in the form of posted prices. We construct
optimal and approximately optimal pricing mechanisms under various informational and struc-
tural assumptions, and provide approximation upper bounds under the same assumptions.

9.1 Introduction
In recent years, smart parking systems are being deployed in an increasing number of cities. Such
systems allow commuters and visitors to see in real time, using cellphone applications or other
digital methods, all available parking slots and their prices.1 At the same time, dynamic pricing
becomes more popular in various domains [Lewis et al., 2010], including for example congestion
tolls [Yildirim, 2001], smart grids [Roozbehani et al., 2011], and electric vehicle charging [Gerding
et al., 2011; Stein et al., 2012].

Parking allocation as matching We consider the problem of maximum online bipartite matching
with dynamic posted prices, motivated by the real-world challenge of efficient parking allocation.
As in the standard online matching setting, one side of the bipartite graph (representing the park-
ing slots) is known in advance. The vertices of the other side (representing commuters) arrive
sequentially and each demand a slot. However, in contrast to standard online matching setting
where edges incident to each arriving vertex are revealed upon its arrival, the preferences of an
agent over available slots are private and are only known to the driver. We focus on natural posted
price mechanisms: drivers are assumed to be rational agents, and select a slot based on their private
preferences and prices of available slots at the time of arrival.

While private preferences of agents and the restriction to posted price mechanisms impose
additional challenges relative to standard online matching, in the parking allocation domain there
are some natural structures on agent preferences that can be exploited to achieve more efficient

1San Francisco and other cities in California are already supporting such an application for some time now. Other cities
are rapidly catching up [Richtel, 2011; Povich, 2012].

96 R. Meir

allocation. Specifically, we assume that every agent has a goal (e.g., her office building), and
prefers parking slots closer to her goal, ceteris paribus. An agent’s valuation of a parking slot
thus depends on its distance to her goal. In this paper, we consider two natural single-parameter
valuation schemes: MAXDISTANCE and LINEARCOST. In MAXDISTANCE, an agent is willing to
accept any slot within a certain distance from her goal, while in LINEARCOST, an agent’s valuation
of a slot decreases linearly with the distance between the slot and her goal.

The objective of a system designer is to set up (dynamic) prices for available parking slots
to prompt the most efficient allocation, in terms of social welfare. That is, the sole purpose of
payments is to align the incentives of the agents with that of the society, rather than to make a
profit. Note that our problem is two-fold: first, an optimal allocation may not be possible in the
online setting even if the agents were not strategic (in contrast, for example, to the problems studied
in Chapters 7, 8); second, the best online algorithm may not be implementable with fixed prices.

Although our problem is motivated by the application of parking allocation, the general setup
is applicable to other domains with private preferences that have similar structural restrictions. An
example is online procurement, where each agent has some ideal product or service in mind (the
goal), but must select from a limited range of available options based on their similarity to her
goal and current prices. However, in such domains, the system designer may arguably be more
interested in maximizing revenue, whereas we focus on social welfare.

9.1.1 Related work

“Smart parking” has attracted much attention in urban planning. For example, Geng and Cassan-
dras [2011] proposed a system asking each agent to report her maximum acceptable distance to
her goal and maximum parking cost and leveraging integer programing to decide an allocation.
Such systems do not consider the strategic nature of agents and have not yet provided theoretical
guarantees on efficiency. Some related online allocation problems such as charging of electrical
vehicles [Gerding et al., 2011; Stein et al., 2012] and WiFi bandwidth allocation [Friedman and
Parkes, 2003] use auction-like mechanisms that are based on agents’ reported type. The main dif-
ference in our approach is that it uses posted prices, which come with their pros and cons. The
decision making of agents become very easy, but the mechanism may not get information that is
required for a better allocation.

Matching The parking allocation problem we study closely relates to maximum online matching
in unweighted bipartite graphs, as defined by Karp et al. [1990].2 In fact, one variant of our problem
coincides with it exactly. In this case, we can easily implement their well-known RANKING algo-
rithm, using random posted prices. Karp et al. proved that RANKING achieves an approximation
ratio of 1− 1/e, and that no online algorithm (and thus no pricing mechanism) can do better.3

Some later work on online bipartite matching studied the best possible approximation ratio that
can be guaranteed in several variants of the original problem, typically by varying the informa-
tional and distributional assumptions on arriving vertices [Mehta et al., 2007; Feldman et al., 2009;
Karande et al., 2011]. The motivation behind some of these comes from the AdWords assignment
problem (matching ads to search queries). A setting where all slots reside on a line was also studied,
albeit with a focus on minimum matching [Koutsoupias and Nanavati, 2004].

2This is yet another difference from online allocation settings such as EV charging, where the underlying optimization
problem does not always resemble matching.

3Note that in contrast to the two previous chapters where we tried to minimize the cost, in this chapter we are trying to
maximize welfare, and thus higher approximation ratios (closer to 1) are better.

Mechanisms for Stability and Welfare 97

An extension of the matching problem to the case where every known node of the bipartite
graph has a fixed capacity (as is often the case in parking assignments) is in [Kalyanasundaram
and Pruhs, 2000]. The authors provide a deterministic online algorithm whose approximation ratio
approaches 1−1/e as the capacity grows, and proved that no deterministic algorithm can do better.∗

Weighted matching While the general problem of online matching with weights is quite difficult
(even in bipartite graphs), better algorithms exist if certain restrictions are made. Aggarwal et
al. [2011] extended the result of Karp et al. [1990] to vertex-weighted matching, where every vertex
on the known side (the parking slots in our case) has a weight. In one of our models, there are values
(weights) attributed to the unknown vertices (the agents), in which case the approximation ratio
may be unbounded. A different restriction on weights that has been considered—namely triangle
inequality—has led to a 1

3 -approximation mechanism [Kalyanasundaram and Pruhs, 1991].4

Allocation with posted prices Chawla et al. [2010] recently tackled a much more general chal-
lenge of resource allocation (not necessarily matching) using posted prices. They gave constant
approximation bounds (between 1

8 and 2
3) for maximum revenue in a range of allocation prob-

lems.5 Among other differences from our model, their model assumes that each arriving agent is
sampled from some known distribution, whereas our results are distribution-free.

9.1.2 Results in this chapter
We study the parking allocation problem under MAXDISTANCE and LINEARCOST valuation schemes
respectively and with various informational and structural assumptions.

For MAXDISTANCE, our contribution is two-fold. At the conceptual level, we isolate explicit
structural and informational assumptions inspired by real-world parking allocation and establish
connections to the well-studied online bipartite matching problem.

At the technical level, we provide several pricing mechanisms that are simple to implement.
We show that when the population (but not the order of arrival) is known in advance, an optimal
mechanism exists provided that we have access to each agent’s goal. For other variants of the prob-
lem we provide approximation mechanisms and approximation upper bounds. Our results for the
MAXDISTANCE valuation scheme are summarized in Table 9.1. In particular, when all slots re-
side on an interval between two goals, we show a pricing mechanism that attains an approximation
ratio of 2

3 , which is better than the upper bound on the general case. In the most general setting
without weights, when there is no restriction on the structure, the answers to most questions follow
directly from [Karp et al., 1990]. We therefore focus on the weighted case, providing a constant
approximation bound under the assumption that all types (but not the order of arrival) are known in
advance.

For the more intricate LINEARCOST scheme, we focus on the case where both the population
and the goals are known. By means of constructing a reduction to the generalized second price
auction (see Section 6.4), we provide a pricing mechanism that guarantees the optimal social wel-
fare.
∗Meir, Chen and Feldman [2013, Theorem 18] supposedly show that a better approximation ratio is attainable in the

capacitated problem. Soon after we learned about the paper by Kalyanasundaram and Pruhs [2000], which contradicts our
results, we found an error in our paper (thanks to Yossi Azar and Niv Buchbinder). The erroneous theorem was not inserted
into this chapter, which is based on [Meir, Chen, and Feldman, 2013].

4While distances between parking slots hold triangle inequality, the utility functions we define are not the distance
(rather, they are decreasing as distance grows). Thus the weighted bipartite graph induced by parking allocation instances
does not obey the triangle inequality constraint.

5Chawla et al. [2010] claimed that the same bounds hold for maximum social welfare.

98 R. Meir

9.2 Preliminaries

An instance of a parking allocation problem is a tuple H = 〈S, N, π〉, consisting of a structure, a
population and an arrival order. Specifically, the structure is given by a tuple S = 〈S,G, d〉, where
S is a finite set of parking slots, G is a finite set of goals, and d is a distance metric over S ∪ G.
We denote m = |S|, k = |G|. The population consists of a set of agents N with their preferences,
where n = |N |. Finally, π is a permutation of [n], indicating the order of arrival.

The preference of an agent j ∈ N is given by (gj , vj), where gj ∈ G is the goal of agent j,
and vj : S → R is a function specifying the valuation of agent j for being allocated some slot s.
We assume that vj(s) is distance based, in the sense that it only depends on the distance between
the allocated slot and j’s goal. More specifically, vj(s) = φj − Cj(s), where φj is a constant and
Cj(s) is some non-decreasing function of d(gj , s). φj can be interpreted as the cost of using a
default option, in case the agent j is not allocated any slot, and is referred to as the agent’s type. In
the parking domain, such a default option might be a large parking lot that is always available, but
is either expensive or inconveniently located. Throughout the paper we assume that agents with the
same goal share the same type, i.e., φj = φg whenever gj = g. Note that agents of the same type
can still have different utility functions. A special case is φj = φg = φ for all agents, for example,
when there is a single default option available for all goals.

An allocation of slots S to agents N is a matching σ : N → S ∪ {∅}, specifying for each
agent her allocated slot (or in the case of ∅, no slot is allocated). Given any i, j ∈ N , the allocation
satisfies σ(i) 6= σ(j) unless σ(i) = σ(j) = ∅. That is, each slot can be allocated to at most one
agent.

Mechanisms and pricing A mechanism M maps an instance of a parking allocation problem
to an allocation. Let σ denote the allocation outputted by M for instance H . The social welfare
achieved by mechanismM at instanceH is defined as the sum of agent valuations at the allocation,
i.e., SW (M,H) = SW (σ) =

∑
j∈N vj(σ(j)). We emphasize that although the agent’s decision is

eventually based on the prices of slots, the social welfare is not influenced by monetary transfers.6

For randomized mechanisms, we treat SW (M,H) as the expected value over all realizations of
prices and allocations.

We consider posted price mechanisms. Agents with private preferences arrive in sequence
according to π and are presented with a posted price p(s) for every available parking slot s ∈ S.
The utility of an agent for selecting a slot s is quasi-linear, defined as uj(s) = vj(s) − p(s). We
emphasize that the price of a slot may change through the run. Also, the mechanism can block a
slot, which is equivalent to setting the price to infinity (or just higher than any φi).

From a game theoretic perspective, posted price mechanisms are the most simple ones. Every
agent is only affected by her own allocation, and the price each agent is facing does not depend
on her actions or private information (the mechanism does not ask for this information). Thus the
mechanism is straight-forward (see Section 2.1.1). As agents are assumed to be rational, they each
follow their dominant strategy by selecting a slot to maximize their utility—or reject all slots and
use the default option if none of the slots provides nonnegative utility.

The goal of the system designer is to design a posted price mechanism that maximizes social
welfare. We emphasize that prices are just means to align incentives, and do not affect the social
welfare.

6Equivalently, we can count payments in and sum over all agents and the parking authority in calculating the social
welfare.

Mechanisms for Stability and Welfare 99

In the rest of this section, we define the criterion for evaluating pricing mechanisms, and various
assumptions that can be made on agents’ valuation functions, knowledge of the system designer,
and structure of the parking space that our analysis will consider.

Approximation ratio We adapt the competitive model of Karp et al. [1990] to evaluate pricing
mechanisms. The structure S is common knowledge among all agents and the system designer. We
allow our mechanism to flip coins when setting prices. An adversary who knows the mechanism se-
lects a set of agentsN (i.e., their preferences) and an arrival order π.7 The performance of the mech-
anism is compared to that of the optimal allocation, in the worst selected instance. Formally, the
approximation ratio8 of a pricing mechanism M over a structure S is minN minπ

SW (M,〈S,N,π〉)
SW (σ∗(〈S,N〉)) ,

where σ∗(〈S, N〉) is the social welfare achieved by the optimal allocation for structure S and
agents N . For convenience, denote opt(〈S, N〉) = σ∗(〈S, N〉) (or just opt when the context is
clear). Note that the approximation ratio is at most 1, with equality if and only if the mechanism is
optimal. Optimal allocations are w.l.o.g. deterministic.

Unless explicitly stated otherwise, we assume that the instances are “large enough”. That is,
the number of allocated slots in the optimal allocation, n and m are sufficiently large to ignore
rounding issues.

Valuation Schemes We will consider two valuation schemes of agents in this paper. Each agent’s
preferences under each scheme can be characterized by a single parameter on top of her type.

MAXDISTANCE: In this scheme each agent j has a parameter mj , specifying the maximum dis-
tance she is willing to walk. Thus if agent j is allocated slot si ∈ S, her valuation is
vj(si) = φj if d(gj , si) ≤ mj , and 0 otherwise.

LINEARCOST: Each agent j incurs a cost cj for walking a unit of distance. Thus, the valuation of
a parking slot si ∈ S for agent j is vj(si) = φj − cjd(gj , si).

Informational assumptions In some cases, we make simplified assumptions on what the system
designer knows.

Assumption KP (Known Population): the size of N and the distribution of agent preferences are
public information. That is, the system designer knows how many agents exist for what
preference, but does not know the preference of any arriving agent.

Assumption KG (Known Goal): gj is public information. E.g., each commuter has a chip in her
car to identify her employer.

Assumption UV (Uniform Values): φj = φ for all j. We refer to UV as the unweighted case.

For the purpose of comparing our results with standard results on online matching algorithms,
we also define Assumption PI (Public information), which means that the full preferences of each
arriving agent is public information. Clearly PI entails KG.

Structural restrictions We will consider the following three classes of structures.
1. Structures with a single goal.
2. Structures with two goals, where all slots are scattered along an interval between them. That

is, d(s, g1) = R− d(s, g2) for all s ∈ S and some constant R.
3. General structures.

7Following Karp et al., this is a non-adaptive adversary.
8This ratio is sometimes referred to as competitive ratio.

100 R. Meir

9.3 General Observations
It is sometimes useful to decompose the allocation problem into two steps: find the right partition
of space for the goals; and then optimally allocate space assigned to each goal to agents with that
goal.

Observation 9.1. Finding an optimal offline allocation is a special case of maximum weighted bi-
partite matching. Thus, under Assumption KP, the optimal allocation (and in particular an optimal
partition of the space) can be found in polynomial time.

To see this, suppose we define agents to be the vertices of the left side of the graph, and slots to
be the vertices of the right side. We add an edge between every agent j and slot i, whose weight is
the valuation of j for slot i. Then, an allocation is a matching and its social welfare is exactly the
total weight of the matching. Maximum weighted matching can be found in polynomial time, e.g.,
by the Edmonds-Karp algorithm.

According to Observation 9.1, the MAXDISTANCE model under Assumption UV is a special
case of maximum cardinality (unweighted) matching in bipartite graphs. Our next result shows that
they are equivalent.

Lemma 9.2. Let (I, S,E) be a bipartite graph with vertex sets I and S and edge set E. Then there
is an instance of MAXDISTANCE where d(s, gi) ≤ mi if and only if (i, s) ∈ E.

Proof. For every i ∈ I , denote by Γ(i) ⊆ S the neighbors of i. Let m = |S|, and consider the
(m−1)-dimensional regular simplex (with unit side length) over vertices S. Let dk be the radius of

a k-dimensional face in this simplex, then dk =
√

k
2(k+1) . Note that 0 = d0 < d1 < · · · < dm−1.

Let xs ∈ Rm−1 denote the coordinates of slot s. For every agent i ∈ I we define a single goal gi,
and place it in the middle of the face defined by Γ(i). That is xgi = 1

|Γ(i)|
∑
s∈Γ(i) xs. Finally, we

define the type of agent i as (gi, d|Γ(i)|). Thus d(i, s) ≤ mi iff s ∈ Γ(i).

Given the last lemma, we have the equivalence of the online problems under Assumptions
PI+UV.

Corollary 9.3. Under the MAXDISTANCE model with Assumptions PI+UV, the parking allocation
problem is equivalent to the online maximum cardinality matching problem.

This is simply because if the preference of an arriving agent is known, we have the same infor-
mation as in online matching. We can allocate any desired slot s to this agent by setting the price
of s to 0, and prices of other slots to infinity. It follows that any algorithm or approximation up-
per bound for online algorithms in one domain (bipartite matching/parking allocation) immediately
applies to the other as well.

Our next observation is that given a partition of space to k goals, P = (S1, . . . , Sk), the online
allocation problem reduces to a single goal problem provided that we have access to agents’ goals.

Observation 9.4. Suppose we have a pricing mechanism that finds an optimal allocation for a
single goal. Then under Assumption KG, we have a pricing mechanism that implements the optimal
allocation for any given partition P .

Upon the arrival of an agent with goal g, we block all slots of Sg′ , g′ 6= g, and price the slots of
Sg as if this is the entire space. Since our pricing for every set Sg yields an optimal allocation of
these slots, we get the best possible allocation for P .

Thus, under Assumption KG we have the following recipe:

Mechanisms for Stability and Welfare 101

1. Design an optimal online pricing mechanism for a single goal.
2. Based on prior information, find a good partition of slots to goals (either optimal or approxi-

mately optimal). For example, by Observation 9.1, an optimal offline partition can be found
under Assumption KP.

3. Run the single goal mechanism for the appropriate goal whenever an agent arrives.

9.4 Parking at a Fixed Cost within the Maximal Distance
In this section, we assume the MAXDISTANCE scheme. We first note that by the equivalence to
matching, even trivial mechanisms work reasonably well if all agents have the same type φ.

Observation 9.5. Under Assumption UV, any maximal matching is a 1
2 -approximation. A maximal

matching can be easily attained by setting prices of all slots to 0.

A single goal We next consider a restricted setting, in which there is a single goal g, with value φ.
In this case, we sort all slots according to non-decreasing distance from g. Thus d(g, si) ≤ d(g, si′)
for all i < i′. It is easy to see that if we take agents in an arbitrary order, and place j on the highest
(i.e., most distant) slot si s.t. d(g, si) ≤ mj , then this allocation would be optimal. Indeed, if some
m∗ slots are allocated, then either all agents got slots; or all m∗ slots closest to g are allocated, in
which case there are no agents with mj > m∗. The allocation in both cases is clearly optimal.

Proposition 9.6. There is an optimal mechanism for a single goal.

The mechanism is very simple: we sort slots according to nondecreasing distance from g, and
set prices to pi = (m− i)ε for all i, with some ε < φ/m. We refer to this mechanism as monotone
pricing scheme. Under these prices, each agent prefers the most distant slot s.t. d(g, si) ≤ mi.

By Observations 9.1 and 9.4, monotone pricing can be easily extended to any number of goals
in arbitrary spaces.

Corollary 9.7. Under Assumptions KP+KG, there is an optimal pricing mechanism.

In the remainder of this section, we study the best approximation ratio that can still be guar-
anteed when these assumptions are relaxed. For easy comparison, the results are summarized in
Table 9.1. Throughout this section, we use the notation α =

maxg φg
ming′ φg′

≥ 1.

9.4.1 Two goals on an interval
Our next setting involves two goals, residing on the two ends of an interval containing all slots. We
sort all slots by non-decreasing distance from g1, and this is also a non-increasing distance from
g2. We assume, w.l.o.g. φ1 ≥ φ2, thus φ1 = αφ2.

We say that Pt = (S1, S2) is a threshold partition for threshold t if si ∈ S1 for all i ≤ t and
si ∈ S2 for all i > t.

Lemma 9.8. There is always an optimal threshold partition Pt∗ . Moreover, w.l.o.g. t∗ is exactly
the maximal number of agents with goal g1 that can be placed in the optimal allocation.

Proof. If there is an agent with goal g1 getting a higher slot than some agent with goal g2, we could
just switch them. Also, if there are gaps on both sides of the threshold, we could push down the
threshold t∗. If we could assign a slot to one more agent from goal g1 when α > 1, this would shift

102 R. Meir

the threshold up by one, which would displace at most one agent of goal g2. Since φ1 ≥ φ2, this
would weakly increase welfare.

Lemma 9.9. For any threshold partition Pt, we can implement with posted prices an allocation
that is at least as good as Pt.

Proof. The mechanism THRESHOLD is defined as follows. We need each agent to select the most
distant slot si from her goal g, s.t. d(g, si) is bounded by both mj and the threshold t. In other
words, the slot closest to t s.t. d(g, si) ≤ min{mj , d(g, t)}.

On arrival, we price available slot si by εdi, where di is the number of the currently available
slots between si and t (not the distance); and ε is small enough such that, for all i, εdi is less than
φ2 and if α > 1 it is also less than φ1 − φ2. Moreover, if all slots in S2 are full and α > 1, we add
φ2 to the price of all slots in S1.

Now, suppose that a type 1 agent with parameter mj , denoted (g1,mj), arrives and selects si.
There are three cases: (a) There is one cheapest slot closer than mj , below t (i.e., on the “correct”
side). Then this is the slot assigned to j by the optimal allocation anyway. (b) There are two
cheapest slots, one on each side of t. Then one of these is the one from case (a), which is preferred
by default since it is closer to g1. (c) si > t (but below mj). This means that all slots s < si
are taken, and it cannot prevent future agents from being allocated slots above si. Thus, this new
allocation is still optimal for the threshold t.

A similar argument works for agents with goal g2, except that in case (c) all available slots
belong to S1 and thus cost more than φ2. Therefore, agents with goal g2 are never allocated slots
i ≤ t.

Given a threshold t, we can still implement an optimal allocation for t without knowing agents’
goals. By Lemma 9.8, the optimal partition is indeed a threshold partition, we thus have the fol-
lowing.
Corollary 9.10. Under Assumption KP, there is an optimal mechanism for two goals on an interval.

We will later see that this no longer holds even in slightly more complex structures.

Unknown population We next relax the strong assumption of KP, starting with an upper bound
on the performance of online algorithms. Naturally, posted price mechanisms cannot do better.

Proposition 9.11. (a) Every online algorithm under Assumption UV has a worst-case approxima-
tion ratio of at most 3

4 , even on an interval. (b) If we relax Assumption UV, then the bound is at
most 1

2 .

Proof sketch of (a). Consider the following two sequences of n agents, where n = m. The first
n/2 agents (denoted N ′) are of type (g1, n), with goal g1 and maximum distance to walk n. They
can be allocated any slot. Our two instances differ in the next n/2 agents (denoted N ′′). In H1,
we have n/2 agents of type (g2,

1
2n). In H2, we have n/2 agents of type (g1,

1
2n). Note that

opt(H1) = opt(H2) = n.
We look at both halves of the interval. AfterN ′ arrive, at least one of them is at least half empty

(w.l.o.g. the half closer to g1). Then in H2 at least m/4 slots remain empty. Similarly if the half
closer to g2 is half empty, then the mechanism fails on H2.

We present a mechanism called TWO-THRESHOLDS, which guarantees s 2
3 -approximation

for unweighted instances when the goal is known. Denote by Ti the m/3 slots closest to gi. When-
ever an agent with goal i arrives, the mechanism sets infinite price on all slots in T−i, and applies
monotone pricing for the remaining slots.

Mechanisms for Stability and Welfare 103

Proposition 9.12. Under Assumptions KG+UV, the TWO-THRESHOLDS mechanism guarantees
an approximation ratio of 2

3 on the interval.

Proof. At the end of the sequence, if Ti is not full, then all agents of type i were allocated. If both
T1, T2 are full or both are non-full, then the allocation must be optimal (either all slots are taken, or
all agents are assigned). Thus suppose that exactly one of Ti (w.l.o.g. T1) is full. Denote by T ′ the
middle segment. If T ′ is full, then at least 2

3m slots are allocated and we are done. Let x1, x2 be
the number of type 1 and type 2 agents in T ′, and let y be the number of un-allocated type 1 agents
(that could be allocated in σ∗). There are no unallocated agents of type 1 with range above 2

3m, as
they would go the gaps in T ′. However, every type 2 agent in T ′ prevents the allocation of at most
one type 1 agent. Thus y ≤ x2.

Our mechanism allocated all of T1, plus x1 + x2 slots from T ′, plus z1 + z2 slots from T2 (to
agents of types 1,2). That is m/3 +x1 +x2 + z1 + z2 in total. The optimal allocation would assign
at most x2 + z2 slots to type 2 agents (as all were allocated), plus m/3 +x1 + y+ z1 slots to type 1
agents. Thus the approximation ratio is at least

m/3 + x1 + x2 + z1 + z2

m/3 + x1 + y + z1 + x2 + z2
≥ m/3 + x2

m/3 + x2 + y
≥ m/3 + x2

m/3 + 2x2
≥ m/3 +m/3

m/3 + 2m/3
=

2

3
.

To conclude the section, we present a mechanism that matches the upper bound on the interval
in the weighted case. In fact, we use the THRESHOLD mechanism with a particular threshold.

Proposition 9.13. The THRESHOLD mechanism with the threshold t̂ = m/2 provides us with a
1
2 -approximation for two goals on the interval.

9.4.2 General structures
The RANKING algorithm by Karp et al. [1990] assigns a random priority over slots, and matches
every arriving node to its highest-priority neighbor. They prove that the algorithm has an approx-
imation ratio of 1 − 1/e ∼= 0.632 in expectation, and that no online algorithm can do better on
general unweighted bipartite graphs. By Corollary 9.3, it follows that no better mechanism exists
for the general parking allocation problem either.

The RANKING algorithm can easily be implemented with posted prices without any additional
assumption (in the unweighted case), by assigning random prices to slots and keep these prices
fixed.

In contrast, when φg’s significantly differ, no constant approximation can be guaranteed even
under Assumption PI.

Proposition 9.14. No online algorithm can guarantee an approximation ratio better than 1/α.

Proposition 9.15. Setting fixed prices at 0 guarantees a 1/2α approximation.

Thus, the approximation ratio on general structures without further assumptions is Θ(1/α).
Another bound we can get is in terms of the number of goals. Consider the RANDOM-PARTITION
mechanism, which generates a random partition of space P =(S1,..., Sk) to the k goals. We know
by Observation 9.4 that any partition including P can be optimally implemented with posted prices
under Assumption KG.

104 R. Meir

Proposition 9.16. Under Assumption KG, for any number of goals k, RANDOM-PARTITION is a
1
k -approximation mechanism. Moreover, it can be derandomized.

Proof sketch. A random partition allocates every goal roughly 1/k of the slots at every possible
distance (in expectation). Further, with a deterministic queuing algorithm, we can make sure that
at least 1/k of the slots at distance at most d are allocated to goal g - for every goal g and distance
d.

Suppose that in the optimal allocation some set Ni ⊆ N of goal gi’s agents are allocated slots.
Then such a partition guarantees that at least 1/k of the agents in Ni can still be allocated.

Known population Our upper bounds thus far relied on the inherent difficulty of the online
matching problem. When the population is known, the online matching problem (which is equiv-
alent to parking allocation with Assumption PI) is trivial by Corollary 9.7, and thus this setting
highlights the mechanism design challenge. That is, how does the fact that the allocation is done
by a pricing mechanism affect the approximation ratio.

We next show that if agents’ goals are unknown, then no pricing mechanism can implement
the optimal allocation even if the population is initially known. Further, this holds even if the
space is a mild variation of the interval setting from Section 9.4.1. We still use two goals on a
one-dimensional line. However, there can be slots on either side of each goal.

Proposition 9.17. For the structure of two goals on a line, under Assumption KP, there exists no
pricing mechanism that implements the optimal allocation.

Proof sketch. Consider a structure S over a line of size 8, {s1, . . . , s8}, with two goals g1 =
s4, g2 = s7, and four vacant slots {s1, s5, s6, s8}. All other slots are blocked. We set φ1 =
2, φ2 = 1. The population N has five agents: (g1, 1); (g1, 8); (g2, 1); (g2, 1); (g2, 8). Note that in
the optimal solution we can place both type 1 agents and two other agents, thus opt = 2φ1 +2φ2 =
6. Our proof shows that for any deterministic mechanism M , minπ SW (M, 〈S, N, π〉) ≤ 5 =
5
6 opt. Since there is only a finite number of outcomes, it follows that the approximation of any
randomized mechanism is also bounded away from 1.

While no optimal mechanism exists, the knowledge of the population can be exploited to
achieve a constant approximation ratio. The mechanism computes an optimal offline allocation.
Then it blocks low-value agents from getting slots that belong to high-value goals, by using appro-
priate pricing.

Proposition 9.18. Under Assumption KP, the described mechanism has an approximation ratio of
1
2 .

9.5 Parking at a Cost that is Linear in the Distance
We begin by characterizing the optimal offline allocation for a single goal under the LINEARCOST
scheme. Suppose that we decide to allocate exactly m′ ≤ m slots. Then it is clear that (a) these
should be the m′ slots closest to the goal; and (b) each of the m′ agents with lowest cost cj gets
a slot. Assume slots are sorted by non-decreasing distance from g, and let σm′ be the optimal
allocation of the cheapest m′ agents. Then the social welfare is

SW (σm′) =
∑
i≤m′

(φ− d(g, si)cσ−1(i)) = m′ · φ−
∑
i≤m′

d(g, si)cσ−1(i).

Mechanisms for Stability and Welfare 105

Uniform values for goals (UV)
XXXXXXXXXStructure

Assumptions KP+KG KP PI or KG none

Single goal 1 (Prop. 9.6)

Interval (2 goals)
1 (Prop. 9.7)

1 (Prop. 9.10)
UB: 3/4 (Prop. 9.11) 3/4
LB: 2/3 (Prop. 9.12) LB: 0.632

Any 0.632 (#)
LB: 0.632

Different values for goals
Interval (2 goals)

1 (Prop. 9.7)
1 (Prop. 9.10) 0.5 (Prop. 9.13,Prop. 9.11)

Any
UB: < 1 (Prop. 9.17) O(1/α) (Prop.9.14) O(1/α)
LB: 0.5 (Prop. 9.18) 1/k (Prop. 9.16) Ω(1/α) (Prop. 9.15)

Table 9.1: Summary of results for MAXDISTANCE. KP = Known Population, KG = Known Goal,
PI = Public information. α =

maxg φg
ming′ φg′

. Proposition numbers appear in brackets. Entries with no
reference follow from other entries. #—[Karp et al., 1990].

Sort agents by cost cj in non-decreasing order. In order to minimize
∑
i≤m′ d(g, si)cσ−1(i) (and

thus maximize welfare), we need to assign sm′ (farthest occupied slot) to agent 1 who has the
lowest cost c1, assign sm′−1 to agent 2 and so on. Thus to find the optimal allocation we can
try all m′ ≤ min{m,n}, and for each m′ apply the optimal allocation of m′ agents described
above. Denote by m∗ = argmaxm′≤min{m,n} SW (σm′) the optimal number of agents (and slots)
to allocate. We will assume for the rest of this section that no slot is at distance 0.

9.5.1 Parking as a position auction
We will leverage results on generalized second price (GSP) auction [Varian, 2007] to set posted
prices for our parking allocation problem under the LINEARCOST scheme and with Assumptions
KP+KG.

Position auctions, and GSP in particular, were presented in Section 6.4.1. We follow similar
notations here, except that we use s as a subscript for the slot (j is already used for agents). In a GSP
auction, there are a set of slots with quality (xs)s∈S , and a set of agents with valuation (vi)i∈N .
The utility that agent i extracts from slot s at price ps is U(i, s) = (vi−ps)xs. Agents each submit
a bid (bi)i∈N . The GSP auction allocates the slot of the highest quality to the agent with the highest
bid and so on. It then charges the agent assigned to slot s a price ps = bσ−1(s+1) per click. Hence,
if (xs)s≤m and (vi)i≤n are non-increasing, then U(i, s) = xs(vi − ps) = xs(vi − bσ−1(s+1)) =
xs(vi − bi+1).

The following table aligns the corresponding (not necessarily equivalent) concepts in both do-
mains:

GSP: CTR xs value per click vi bid bi price per click ps utility U(i, s)
Parking: distance d(g, s) cost per distance ci - total price p(s) utility ui(s)

Varian [2007] characterized the Symmetric Nash Equilibria (SNE) of GSP auctions and pro-
vided closed-form expressions of agent’s bid bi at an SNE in terms of (xs)s∈S and (vi)i∈N . The
extreme solutions of this convex set are the lower and upper equilibrium (LE and UE), as they
appear in Equations (6.2) and (6.3), respectively. Varian showed that these SNEs are envy-free.
That is, for any two agents i and i′ it holds that U(i, σ(i)) ≥ U(i, σ(i′)). These results suggest

106 R. Meir

that if we can calculate ps (without engaging in the bidding process) and use them to derive posted
prices for the parking slots, we can achieve the same allocation as the GSP auction at an SNE.
Varian’s expressions of bi make it possible to remove the actual bidding process. Given (xs)s∈S
and (vi)i∈N , we can “simulate” bids at an SNE and then calculate the price for a parking slot, as
p(s) = psxs = bσ−1(s+1)xs.

We now map a single-goal parking allocation instance to a GSP auction. LetD = maxs d(g, s),
and set the quality (CTR) as xs = D − d(g, s). To determine the valuation of each agent, we set
vi = ci.

The utility of agent i for getting a parking slot s is thus

ui(s) = φ− d(g, s)ci − p(s) = φ− (D− xs)ci − psxs = φ−Dci + xs(vi − ps) = µi +U(i, s).

That is, the utility of i in the parking allocation is exactly the utility of i in the induced ad-auction
allocation, plus a constant µi = φ−Dci that does not depend on the allocation.

For slots S and agents N , let p = p(S,N) be a vector of SNE prices (there are usually more
than one). As ui(s) is an affine transformation ofU(i, s), p induces an envy-free parking allocation.

Suppose we optimally assign the m′ closest slots (ordered by non-decreasing distance) to the
m′ lowest-cost agents (ordered by non-increasing cost), that is σ(i) = i. Let p = (p1, . . . , pm′)
be a vector of SNE prices for the first m′ slots, based on the first m′ agents (in the translated GSP
instance).

Lemma 9.19. By setting p(s) = psxs for all s ≤ m′, the agents’ utility is non-decreasing in index
(and in the distance from g). That is, uj(j) ≤ ui(i) for all j < i ≤ m′.

We now define mechanism GSP-PARK for a single goal under Assumption KP.

Mechanism 4 GSP-PARK(S, N)
Extract σ = σ∗ and m∗ by computing all optimal offline allocations σ1, σ2, . . . , σm
Sort the cheapest m∗ agents by non-increasing cost, and all slots by non-decreasing distance
from g
. Note that σ(j) = j for all j ≤ m∗

Set vi ← ci for each i ≤ m∗, and xs ← D − d(g, s) for each s ≤ m∗
Simulate some SNE bids b1, . . . , bm∗ for these agents (in the induced GSP auction)
. A particular SNE may be required, see proof

Set the price of slot si to p(i)← pixi = bi+1xi for all i ≤ m∗
if m∗ ≥ n then return prices p(i) for all i
else

Set γ ← u1(s1, p(1))− ε (for some low ε)
return prices p′(i)← p(i) + γ for all i
end if

Theorem 9.20. Under Assumption KP, GSP-PARK is optimal for a single goal.

Proof sketch. Due to envy-freeness, we know that each agent j ≤ m∗ prefers the slot allocated to
her over any other slot at these prices. The translation γ prevents high-cost agents (those that are
not allocated in the optimal allocation) from selecting a slot on arrival.

It remains to prove that the mechanism is individually rational (no negative utilities for agents),
which follows from Lemma 9.19, after showing that no high-cost agent will want the first slot.

Mechanisms for Stability and Welfare 107

An immediate corollary from Observations 9.1 and 9.4, is that under Assumptions KP+KG,
there is an optimal pricing mechanism for LINEARCOST for any structure and number of goals.

9.6 Conclusion
In this chapter we established a firm link between online bipartite matching mechanisms and prac-
tical parking allocation problems. We then provided pricing mechanisms that can exploit the rising
popularity of advanced city-wide parking systems in order to increase the social welfare of the
population.

In the MAXDISTANCE scheme our main results were for the simple structure of an interval,
where we showed a mechanism that slightly improves upon the upper bound of the general case
(under the assumption that the goal is known). In particular this improves the lower bound of
online bipartite matching (which is equivalent to Assumption PI) for this special structure. We
conjecture that the upper bound of 3/4 is tight, i.e., that better mechanisms exist—even without
KG. Interestingly, when the population is not known in advance, same approximation ratios are
attainable whether we reveal the full type on arrival or just the goal.

Our result for the LINEARCOST scheme reveals an interesting connection between parking
allocation and ad auctions. While in this paper we showed how known results from GSP auctions
can be applied to parking allocation, the other direction is interesting too: the multi-goal version
of our problem can be interpreted as a generalization of the ad auction setting. That is, where the
value of a slot to different advertisers may depend on different spatial attributes. As a concrete
example, think of ads that are displayed across the screen. While advertisers in English value ads
by their proximity to the left end of the screen, advertisers in languages that are written from right
to left (like Hebrew and Arabic) value ads by their closeness to the right end. Interestingly, this
motivating example exactly coincides with our interval structure from Section 9.4.1.

To conclude, while the assumption that the goals of agents are known is often realistic, the
population itself is unlikely to be completely known in advance. Hence a realistic model of partial
knowledge would be of great interest.

108 R. Meir

Mechanisms for Stability and Welfare 109

Chapter 10

Conclusions and Future Work

Throughout the thesis, I studied through a game-theoretic lense how self-interested agents interact,
focusing on the mechanisms that regulate these interactions. I analyzed known and new mecha-
nisms in a large range of domains, measured their stability in face of strategic behavior, and the
level of welfare they guarantee to society. I see my main contribution in presenting new mechanism
that improve the state-of-the-art, and in exposing the assumptions and conditions under which those
mechanisms operate well.

In this final chapter, I tie together some of the results we have seen, and draw some general
conclusions. I will also specify what else is required, in my opinion, to further promote research in
the field of mechanism design.

Discussion and Lessons Learned
Towards a realistic picture of coalitional stability In both Chapters 4 and 6, I showed how
restricted cooperation can be used to achieve a higher degree of stability. In the first model the
interaction structure was explicit, whereas in the latter we could not know which coalitions might
deviate, and simply tried to minimize their number. A combined approach to coalitional stability
would consider both known and unknown limitations on collusion, possibly attributing more im-
portance to coalitions with a stronger incentive to deviate. This approach can both contribute to
and gain from the ongoing efforts in game theory to combine the solution concepts of cooperative
and non-cooperative games [Aumann, 1961]. Combined models would enable us to better predict
realistic outcomes of games, and to improve the mechanisms we design. In future research, coali-
tional stability considerations should be taken into account, along with other goals such as welfare
and fairness.

Welfare in voting Despite the focus in Chapter 5 on showing stability of voting procedures, the
ultimate goal of voting procedures is not stability, but rather to have a “good president”, a worthy
Oscar winner, etc. One of the major problems of the Plurality rule (other than its susceptibility to
strategic voting), is that the truthful outcome can be quite unwelcome. There are multiple ways to
qualitatively or quantitatively evaluate the welfare of a particular voting outcome (i.e., how good is
the winner), and the truthful outcome of Plurality often turns out to be a poor choice under most
of them [Xia et al., 2007]. For example, a Plurality winner may be ranked last by all but a small
number of voters.

110 R. Meir

However, it is quite possible that strategic behavior under the Plurality rule or other voting
methods is not just more stable, but also better for the society than voting truthfully (see Sec-
tion 6.5). This line of thought is directly linked to the approach of mechanism design without
money, as covered in Chapters 7 and 8. The iterative dynamics proposed in Chapter 5, and alter-
native dynamic behaviors [Reijngoud and Endriss, 2012; Gohar, 2012; Grandi et al., 2013] show
that higher welfare is sometimes achieved by strategic voting, and further research is required to
determine under what conditions they indeed converge to better outcomes.

While the quality of the outcome can be assessed via theoretical tools and simulations, be-
havioral experiments are required in order to determine how human voters really vote in iterative
settings. I am currently performing initial experiments (along with Ya’akov Gal), in order to see
whether any of the myopic behaviors offered thus far captures important aspects of human voting
behavior.

Stability vs. welfare In some of the domains covered in this dissertation, the tradeoff between
stability and welfare is not an issue: in cooperative games (Chapters 3 and 4), outcomes with
higher value are also easier to stabilize; also, in both of the domains that were studied in Chapter 6
(resource selection games and auctions), all of the equilibria we considered were optimal in terms
of social welfare, and only differed in their level of stability. Conversely, in facility location and
other mechanism design problems (Chapters 7 and 8), stability and welfare stand in sharp contrast.
Therefore, the welfare criterion should be weighed against stability and other properties that I did
not discuss, such as fairness (see a lucid survey by Budish [2012]).

In Chapter 9, the choice of using posted price mechanisms eliminates the need to deal with
agents’ incentives, and allows the designer to focus on welfare optimization. In other words, the
inherent constraints of today’s parking systems settle the tradeoff between stability and welfare. It
is reasonable to assume that future applications will gather increasingly rich and detailed input on
our preferences—whether for the purpose of parking allocation or other tasks—that can in principle
lead to better outcomes, but may also cause stability to deteriorate as users are gaming the system.
Good mechanisms should find the way to reconcile between the two.

One thing I made an effort to demonstrate in this dissertation is how concepts and methods
originally developed in one domain often become useful in another. The concept of treewidth,
which received much attention from AI researchers in the context of efficient computation, turns
out to have strong economic implications (Chapter 4), and I am confident that this connection can
lead to more breakthroughs. In Chapter 9 I showed how the concept of envy-free equilibrium in
auctions can be exploited for the implementation of optimal posted prices mechanisms for parking
allocation. The modeling of a voting scenario as a non-cooperative game in Chapter 5 can be used
to give predictions about the outcome—and in the other direction, a reduction to voting scenarios
is used to prove lower approximation bounds in other games, as explained in Chapter 8. These
connections and many others vividly illustrate that mechanism design is inter-disciplinary in its
essence, and that tighter integration of fields will boost the development of valuable mechanisms
in all of them.

Is Mechanism Design “Useful”?
It is often argued that game-theory is not practical in the real world (see for example [Rubinstein,
1991]). While game theory can be studied purely from a mathematical perspective, much of its
appeal is derived from the perception that it does help us to understand and predict human behavior

Mechanisms for Stability and Welfare 111

in situations of conflict. This is particularly true for mechanism design, whose motivation clearly
comes from actual problems in the real world.

In order to make mechanisms “practical”, we need to make sure that the underlying assump-
tions (which typically follow standard game theoretic assumptions) will be as close as possible
to the actual state of affairs. While this statement is true for most engineering problems, making
“real” assumptions when it comes to human behavior is much harder than, say, making the right
assumptions about file sizes in a database. As a result, the theory of mechanism design has only
been successfully applied in a handful of domains. In several specific domains like ad auctions,
players (who are typically firms rather than individuals) do try to maximize their expected profit as
game theory assumes. Other mechanisms that are having groundbreaking success (for example in
kidney exchange [Roth et al., 2004] and in school assignments [Abdulkadiroğlu et al., 2005]) keep
decision making as simple as possible, even when there is non-trivial theory “under the hood”.

More than its theoretical guarantees, the simplicity of a mechanism might determine whether
people will use it successfully (or at all). Indeed, most mechanisms studied in this dissertation
(random dictators, posted prices, etc.) are relatively simple, make minimal assumptions, and require
inductive rather than deductive reasoning (see Section 5.6). I believe that this makes them practical,
an hope that practitioners will find them useful as well.

Behavioral mechanism design What can we do when good, simple mechanisms are not at hand,
and we have no particular reason to assume that players are more rational than the average person?
The relatively recent agendas of behavioral economics and behavioral game theory provide us with
a partial answer [Mullainathan and Thaler, 2000; Camerer, 2003]. By integrating empirical data
with economic and cognitive theories (e.g., prospect theory by Kahneman and Tversky [1979]), cor-
rected assumptions on human behavior in games can be made; by validating assumptions through
experiments (as I mentioned earlier in the context of voting), and by constantly comparing pre-
dictions versus true results, unfit models can be discarded and the prominent ones can continue to
improve. Needless to say, improved game theoretic models will enable the design of more practical
and valuable mechanisms.

In the future, I intend to adopt more insights from behavioral game theory into my own work
on mechanism design. For a computer scientist this has a sense of closure, as similar ideas to
those guiding behavioral game theory have long been advocated within the AI community under
the title of bounded rationality [Simon, 1957]. A new agenda of behavioral mechanism design will
hopefully have much to contribute.

In conclusion, the occasional wrongs of the market’s invisible hand can often be righted by the
confident hands of a skilled designer. I sincerely hope that the models and results presented in this
dissertation will promote further research in the field, and will lead to the design of mechanisms
that are stable, optimal, and practical. Such mechanisms, in turn, will gradually make our world
better for everyone.

—Jerusalem, May 2013

112 R. Meir

Part III

Appendices

114 R. Meir

Mechanisms for Stability and Welfare 115

Appendix A

Proofs for Chapter 3

A.1 Proofs for Section 3.3
A technical lemma that is crucial in the proof of the upper bound of

√
n, and that we will also use,

is the following.

Lemma A.1 (Bachrach et al. [2009b]). Let G = 〈N, v〉 be a superadditive profit-sharing game.
Then there exists a solution {δS}S⊆N to G such that for every R, T ⊆ N with δR 6= 0, δT 6= 0 we
have R ∩ T 6= ∅.

(See [Bachrach et al., 2009b, top of p. 7])

Theorem 3.7. Let G = 〈N, v〉 be a superadditive profit-sharing game. Then for any positive
integer k < |N | we have RSR(G|k) ≤ k. In the other direction, for any n and any k ≤

√
n, there

exists a game G with RSR(G|k) > k(1− o(1)).

Proof. If k ≥
√
n then by Theorem 3.4 we are done. Thus, we can assume that k <

√
n. Let

{δS}S⊆N be a solution to G|k that satisfies the conditions of Lemma A.1. If δN = 1, then we
have δS = 0 for S 6= N, ∅ and hence Equation (3.5) implies RSR(G|k) = 1. Now, suppose that
δN < 1. We claim that in this case δT > 0 for some coalition T with |T | ≤ k. Indeed, otherwise
all terms in Equation (3.5) except possibly for δNv|k(N) would be equal to 0 and we would get
RSR(G|k) = 1

v|k(N)δNv|k(N) = δN < 1, a contradiction.
Now, consider a coalition T with |T | ≤ k, δT > 0. We have

RSR(G|k) =
1

v|k(N)

∑
S⊆N

δSv|k(S) ≤ 1

v|k(N)

∑
i∈T

∑
S⊆N :i∈S

δSv|k(S)

≤
∑
i∈T

∑
S⊆N :i∈S

δS =
∑
i∈T

1 = |T | ≤ k,

which completes the proof of the upper bound.
To see that this bound is asymptotically tight, let q be the largest prime number strictly below

k. Note that q > k − O(ln k) = k(1 − o(1)). Consider the game G∗q = 〈N∗, v∗〉 with n∗ agents
described in Example 3.2. Note that n∗ = q2 + q + 1 < (q + 1)2 ≤ k2. We now embed G∗q into
a larger game Gq = 〈N, v〉. Specifically, we set N = N∗ ∪ N ′ for an arbitrary set N ′ of size

116 R. Meir

n − n∗, and let v(S) = v∗(S ∩ N∗) for every S ⊆ N ′. It is immediate that Gq is superadditive.
Further, it is easy to see that any payoff vector p in the core of Gq|k satisfies pi = 0 for i 6∈ N∗,
and hence there is a natural one-to-one correspondence between the core of Gq|k and that of G∗q .
Consequently, we have

RSR(Gq|k) = RSR(G∗q) >
√
q2 + q + 1 > q ≥ k(1− o(1)).

Proposition A.2 (Observation 3.8). Set cover games are subadditive. Furthermore, every subad-
ditive expense-sharing game can be described as a set cover game.

Proof. Fix a set cover game G given by a tuple 〈N,F , w〉. For every pair of subsets S, T ⊆ N we
have S ∪ T ⊆ F∗(S) ∪ F∗(T). Therefore, c(S ∪ T) ≤ c(S) + c(T), i.e., G is subadditive.

Conversely, given a subadditive expense-sharing game G = 〈N, c〉, we construct a set cover
game by setting F = 2N , w(F) = c(F) for every F ∈ F . We will now argue that the resulting
game G′ = 〈N, c′〉 is equivalent to G. Indeed, consider a set S and its cheapest cover F∗(S). We
have c′(S) =

∑
F∈F∗(S) c(F). Since G is monotone, we can assume that the sets in F∗(S) are

pairwise disjoint: if we have F1∩F2 6= ∅ for some F1, F2 ∈ F∗(S), we can replace F2 with F2\F1

without increasing the overall cost. Now, set F ′ = ∪F∈F∗(S)F . The superadditivity of G implies
that c(F ′) ≤

∑
F∈F∗(S) c(F) = c′(S). Further, since S is a subset of F ′, we have c(S) ≤ c(F ′)

and hence c(S) ≤ c′(S). On the other hand, {S} is a cover of S, so we have c′(S) ≤ c(S). Thus,
c′(S) = c(S). Since this holds for every set S ⊆ N , the games G and G′ are equivalent.

Theorem 3.9. Let G be a set cover game. Then CRR(G) = 1/IG(G).

Proof. Consider a set cover game G = 〈N,F , w〉, whose integral solution is ILP (G,N) = c(N).
The dual to the (relaxed) linear program LP(G,N) is the following linear program LPdual(G,N)
over the set of variables {pi}i∈N :

max
∑
i∈N

pi subject to:∑
i∈Fj

pi ≤ w(Fj) for each Fj ∈ F (A.1)

pi ≥ 0 for each i ∈ N.

We can see that LPdual(G,N) is very similar to LP ′ (which defines the addCoS(G)). In fact, it
is the same program only with fewer constraints. Thus, let p be a stable sub-imputation for G.
Since p is not blocked by any coalition, it satisfies all constraints of LPdual(G,N) and therefore∑
i∈N pi ≤ LP(G,N), and CRR(G) ≤ p∗(N)

c(N) ≤
LP(G,N)
ILP(G,N) .

In the other direction, let p be a feasible solution of LPdual(G,N). Consider a coalition S with
cost c(S). By definition of the cost function, the set S can be covered by a collection of subsets
F∗(S) = {F1, . . . , Fk} of cost c(S) =

∑k
`=1 w(F`). Note that

∑
i∈S

pi ≤
k∑
`=1

∑
i∈F`

pi ≤
k∑
`=1

w(F`) = c(S).

Mechanisms for Stability and Welfare 117

That is, the payoff vector p is not blocked by any coalition.
Now, let p∗ be an optimal solution to the LP (A.1). By strong LP duality, we have

∑
i∈N p

∗
i =

LPdual(G,N) = LP(G,N) and hence CRR(G) ≥ p∗(N)
c(N) = LP(G,N)

ILP(G,N) and the proof is complete.

Lemma 3.11. Let G = 〈N, c〉 be an anonymous expense-sharing game. Then

CRR(G) =
n

cn
·min
k≤n

ck
k
.

Proof. Pick k∗ ∈ argmink≤n ck/k, and let p be a sub-imputation given by pi = ck∗/k
∗ for all

i ∈ N . Clearly, p is stable: for every S ⊆ N we have p(S) = |S|ck∗/k∗ ≤ c(S) by our choice of
k∗.

Now, suppose that there is a stable sub-imputation q with q(N) > p(N). Consider a coalition
S with |S| = k∗ that satisfies q(S) ≥ q(S′) for all coalitions S′ of size k∗. We have

q(S) ≥ k∗

n
q(N) >

k∗

n
p(N) = ck∗ ,

which means that q is not stable. Hence,

CRR(G) =
p(N)

c(N)
=

n

cn
· ck

∗

k∗
,

which completes the proof. A symmetric argument proves Lemma 3.6.

Theorem 3.12. Let G = 〈N, c〉 be an anonymous subadditive expense-sharing game. Then
CRR(G) ≥ 1/2 + 1

2n−2 , and this bound is tight.

Proof. For n ≤ 2 the theorem is trivial. Thus assume n ≥ 3. cn = cn
k ·k ≤

⌈
n
k

⌉
ck, which means

that n ckk ≥
n
k

1

dnk e
cn for any k, and in particular for k∗ = argmin ck

k .

We denote n
k∗ by a. Note that a ≥ n

n−1 > 1, thus dae ≥ 2. We first look at the case dae ≥ 3.
This means that a > 2, and thus (for n ≥ 4)

a

dae
≥ a

a+ 1
≥ 2

3
≥ n

2n− 2
.

The alternative case is dae = 2. Here, a = n
n−1 minimizes the expression a

dae (since the

denominator is fixed), and we get that a
dae ≥

n/(n−1)
2 = n

2n−2 . Note that for n = 3 we are either
in the second case, or k∗ = 1, and thus a

dae = 3
3 = 1 > n

2n−2 also holds.
We showed that in any case a

dae ≥
n

2n−2 , thus, by Lemma 3.11 :

CRR(G) =
n

cn

ck∗

k∗
≥ n

k∗
1⌈
n
k∗

⌉ =
a

dae

≥ n

2n− 2
=
n− 1 + 1

2n− 2
= 1/2 +

1

2n− 2
.

118 R. Meir

For tightness, consider a game where cn = 2, and ck = 1 for any k < n. In this game k∗ = n− 1,
and by using Lemma 3.11,

CRR(G) =
n

cn

ck∗

k∗
=

n

2(n− 1)
= 1/2 +

1

2n− 2
.

A.2 Proofs for Section 3.4

Proposition 3.13. Let G = 〈N, v〉 be a profit-sharing game. Then addCoS(G) ≤ nεS(G), and
this bound is tight.

Proof. If εS(G) = 0, we have addCoS(G) = 0. Now, assume εS(G) > 0. Let p be a payoff
vector in the strong least core of G. For every S ⊆ N we have p(S) ≥ v(S) − εS(G). Consider
the payoff vector p∗ given by p∗i = pi + εS(G) for all i ∈ N . Clearly, we have p∗(S) ≥ v(S) for
every S ⊆ N , i.e., p∗ is stable. Furthermore, it is easy to see that p∗(N) = v(N) + n · εS(G), so
addCoS(G) ≤ addCoS(p∗, G) ≤ nεS(G).

To see that this bound is tight, consider the game G = 〈N, v〉 with v(S) = 1 for all S 6= ∅. It
is easy to see that εS(G) = (n− 1)/n. On the other hand, addCoS(G) = n− 1 = n · εS(G).

Theorem 3.14. Let G = 〈N, v〉 be a superadditive profit-sharing game, Then addCoS(G) ≤√
n · εS(G), and this bound is tight up to a small additive constant.

Proof. By Lemma A.1 there exists a solution (δS)S∈D to G such that every two sets S and T with
δS 6= 0 and δT 6= 0 have a non-empty intersection.

Since (δS)S∈D is a balancing weight vector for 2N , applying the Bondareva–Shapley theorem
to the game Gε (which has a non-empty core), we obtain∑

S⊆N

δS(v(S)− ε) =
∑
S⊆N

δSvε(S) ≤ vε(N) = v(N).

Together with the fact that
∑
S⊆N δS ≤

√
n (cf. the proof of Theorem 3.4), this implies

addCoS(G) =
∑
S⊆N

δSv(S)− v(N) ≤
∑
S⊆N

δSv(S)−
∑
S⊆N

δS(v(S)− ε)

= ε
∑
S⊆N

δS ≤
√
nε =

√
nεS(G),

which completes the proof of the upper bound.
To see that this bound is tight, consider the game Gq (see Example 3.2). Since Gq is a simple

game, we have εS(Gq) ≤ 1. Moreover, consider the payoff vector p given by pi = 1/n for all
i ∈ N . If S is a winning coalition in Gq , then |S| ≥ q + 1 and thus p(S) ≥ (q + 1)/n ≥ 1/

√
n.

Therefore εS(Gq) ≤ 1 − 1/
√
n, and hence

√
n · εS(G) ≤

√
n − 1. On the other hand, we have

seen that RSR(Gq) >
√
n− 1. Since Gq is a simple game, this implies

addCoS(Gq) = RSR(Gq)− 1 > (
√
n− 1)− 1 ≥

√
n · εS(G)− 1.

Mechanisms for Stability and Welfare 119

Theorem 3.15. Let G = 〈N, v〉 be a profit-sharing game. Then addCoS(G) ≥ n
n−1εS(G), and

this bound is tight.

Proof. If the core of G is non-empty, the inequality holds trivially. Thus, let us assume that G has
an empty core. Let ε = εS(G).

Consider the game Gε. An argument similar to the one used in Section 3.2.2 shows that there
exists a minimal balanced collection of subsets D 6= {N} and a balancing weight vector {δS}S∈D
for D for which the inequality in the statement of the Bondareva–Shapley theorem (applied to Gε)
holds with equality, i.e., ∑

S∈D
δSvε(S) = v(N). (A.2)

Note that by minimality of D we have N 6∈ D, as otherwise we would have D = {N}. For each
i ∈ N we have

∑
S∈D:i∈S δS = 1. Summing over i ∈ N , we obtain

n =
∑
i∈N

∑
S∈D:i∈S

δS =
∑
S∈D

∑
i∈S

δS =
∑
S∈D
|S|δS ≤ (n− 1)

∑
S∈D

δS ,

and hence ∑
S∈D

δS ≥
n

n− 1
. (A.3)

By definition, vε(S) = v(S)− ε for every S (N , so from (A.3) we obtain

v(N) =
∑
S∈D

δSvε(S) =
∑
S∈D

δS(v(S)− ε)

=
∑
S∈D

δSv(S)− ε
∑
S∈D

δS ≤
∑
S∈D

δSv(S)− ε n

n− 1
.

By (3.5), this implies

addCoS(G) ≥
∑
S∈D

δSv(S)− v(N) ≥ ε n

n− 1
,

which completes the proof of the lower bound.
To see that this bound is tight, consider the game G = 〈N, v〉, where v(S) = 1 if |S| ≥ n− 1

and v(S) = 0 otherwise. Clearly, we have addCoS(G) = 1/(n− 1) and εS(G) = 1/n.

Proposition A.3. For every profit-sharing game G with an empty core and 3 players, we have
SLC(G) ⊆ EC(G).

Proof. Let D be a minimal balanced collection that is tight for the least core. That is, s.t. for every
S ∈ D and p ∈ SLC(G), p(S) = vε(S) = v(S)− εS.

For n = 3 there are only five minimal balanced collection not including {N}, as in the follow-
ing table.

We divide in cases, and explain how p can be extended to a stable payoff vector in each case.
Suppose first thatD = {{1}, {2}, {3}}, and all coefficients δS = 1. Then we simply set p′i = pi+ε
for all i ∈ {1, 2, 3}. This clearly stabilizes the game, and addCoS(p, G) ≤ 3ε. On the other hand,

120 R. Meir

Sets Coefficients
{1}, {2}, {3} (1, 1, 1)
{1, 2}, {3} (1, 1)
{1}, {2, 3} (1, 1)
{2}, {1, 3} (1, 1)

{1, 2}, {2, 3}, {1, 3} (1/2, 1/2, 1/2)

in the game G every stable payoff vector q holds that q(N) ≥
∑
S∈D δSv(S), and in particular for

the collection at hand.

addCoS(G) = min
q∈S(G)

q(N)− v(N) ≥
n∑
i=1

v(i)− p(N) =

3∑
i=1

(pi + ε)− p(N) = 3ε.

Thus addCoS(p, G) ≤ addCoS(G) (in fact equal), and p ∈ EC(G).
The three next collections have the same structure, of a singleton and a pair, both with co-

efficients 1. W.l.o.g. S1 = {1}, S2 = {2, 3}. We set p′1 = p1 + ε = v(1). This clearly
stabilizes any coalition containing agent 1. Now, if v(2) < p2, we keep p′2 = p2, and set
p′3 = v(2, 3) − p2 = p3 + ε. The equality is since p2 + p3 = v(2, 3) − ε. By construc-
tion, p′(2, 3) = v(2, 3) so it remains to show that p′3 ≥ v(3). Indeed, since p ∈ SLC(G),
p3 ≥ vε(3) = v(3)− ε which shows that p′ is stable in this case.

If v(2) ≥ p2, we set p′2 = v(2) and p′3 = max{v(2, 3) − v(2), v(3)}. Clearly no coalition is
blocking p′.

It remains to show that no stable payoff has lower sum. In both cases we have either p′(N) =
v(1) + v(2, 3), or p′(N) = v(1) + v(2) + v(3). Since both are balanced collections, they are upper
bounded by q(N) for any stable payoff vector q.

The final case is when D contains the three pairs of agents, each with δS = 1
2 . This means

that p(i, j) = v(i, j)− ε for every pair. In this case SLC(G) contains exactly one vector p, where
pi = 1

2 (v(i, j) + v(i, k) − v(j, k) − ε). By setting p∗i = pi + ε/2 for every i ∈ N , it holds that
all pairs are stabilized. If all singletons are also stabilized then we are done, since for any stable
payoff vector q:

2q(N) = 2(q1 + q2 + q3) ≥ v(1, 2) + v(2, 3) + v(1, 3) = 2p(N) + 3ε,

i.e. q(N) ≥ p(N) + 1.5ε = p∗(N).
Otherwise there is some agent (w.l.o.g. agent 1) s.t. v(1) > p1 + ε/2. This means that there is

some minimally stable payoff vector q∗ (i.e. in the core of G), where q∗1 = v(1).1

Let q be any vector in C(G). Suppose that there is some i ≤ 3 s.t. pi ≤ v(i) (w.l.o.g. i = 1).
Set p′1 = v(1); p′2 = max{v(2), v(1, 2)− v(1)}. Note that

p2 = v(1, 2)− p1 − ε ≤ v(1, 2)− (v(1)− ε)ε = v(1, 2)− v(1),

thus p′2 ≥ p2 (as required). If p′2 = v(2), set p′3 = max{v(3), v(2, 3)− v(2), v(1, 3)− v(1)}. This
clearly stabilizes all coalitions. For all three cases where p′2 = v(2), we have that p′(N) equals the
sum of some balanced collection and thus p′(N) ≤ q(N).

1Consider (v(1), p∗2, p
∗
3). It stabilizes every coalition that contains agent 1, and thus we never need to increase the first

entry to get a stable vector.

Mechanisms for Stability and Welfare 121

If p′2 = v(1, 2) − v(1), then p′(1, 2) = v(1, 2) ≤ q(1, 2) . Set p′3 = max{v(3), v(2, 3) −
p′(2), v(1, 3)− p′(1)} (which stabilizes all coalitions). Thus in the first two cases, either

p′(N) = v(1, 2) + v(3) ≤ q(1, 2) + q(3) = q(N),

or

p′(N) = p′(1) + p′(2) + v(2, 3)− p′(2) = p′(1) + v(2, 3) = v(1) + v(2, 3) ≤ q(N).

For the last case, consider the vector q∗.

p′(N) = p′(1) + p′(2) + v(1, 3)− p′(1) = v(1, 2)− v(1) + v(1, 3) = v(1, 2) + v(1, 3)− q∗1
= q∗(1, 2) + q∗(1, 3)− q∗1 = 2q∗1 + q∗2 + q∗3 − q∗1 = q∗1 + q∗2 + q∗3 = q∗(N).

It thus holds that in all cases p can be extended to a stable vector p′, and p′(N) ≤ q(N) for any
stable payoff vector q. Therefore p ∈ EC(G).

A.3 Proofs for Section 3.5

Proposition 3.18. Let G = 〈N, g〉 be a coalitional game, and let G∗ = 〈N, g∗〉 be its s-additive
cover. Then addCoScs(G) = addCoS(G∗) and multCoScs(G) = multCoS(G∗).

Proof. We will prove this claim for the case whenG = 〈N, v〉 is a profit-sharing game; for expense-
sharing games the argument is similar.

Let ĈS = {S1, . . . , Sm} be a coalition structure with the maximum social welfare. Set ∆ =

addCoScs(G); by our choice of ĈS we have ∆ = addCoS(G, ĈS). Thus, there exists a subsidy
vector ∆ ∈ Φ(ĈS ,∆) and a payoff vector p such that (ĈS ,p) ∈ CSC(G(∆)). We have p(N) =

v(ĈS)+∆ = v∗(N)+∆. Hence, p ∈ I(G∗(∆)). Moreover, under the payoff vector p no coalition
has an incentive to deviate. Hence, p ∈ C(G∗(∆)) and therefore addCoS(G∗) ≤ addCoScs(G).

Conversely, let µ = addCoS(G∗), and let q be an arbitrary payoff vector in the core of G∗(µ).
For j = 1, . . . ,m, set µj = q(Sj)− v(Sj). Note that µj ≥ 0, since otherwise coalition Sj would
have an incentive to deviate under q. We have

m∑
j=1

µj = q(N)− v(ĈS) = µ.

Further, under the payoff vector q no coalition of has an incentive to deviate. Thus, the vector
(µ1, . . . , µm) stabilizes ĈS and hence addCoScs(G) ≤ µ = addCoS(G∗).

We conclude that addCoScs(G) = addCoS(G∗). Further, since v(ĈS) = v∗(N), we also
have multCoScs(G) = multCoS(G∗).

122 R. Meir

Mechanisms for Stability and Welfare 123

Appendix B

Proofs for Chapter 4

Proposition 4.1. For any k ∈ N, there is a simple superadditive game with RSR(G) ≥ k over an
interaction network H with d(H) = 6.

Proof. We show that any superadditive simple game can be embedded in a 3-dimensional grid
network H = 〈N ′, E〉, if N ′ is sufficiently large.

For this, consider first a 3-dimensional grid drawing W of the complete graph Kn. This is an
embedding of n vertices in a grid, s.t. every edge (i, j) is replaced by a path, and paths—if drawn as
straight lines—do not intersect. Such a drawing always exists using a grid of O(n)×O(n)×O(n)
(see e.g., [Cohen et al., 1997]). However,W itself is not a grid graph, but just another representation
of Kn.

The graph H ′ = 〈N ′, E′〉 that we will use is a 3-dimensional grid that is attained by replacing
every vertex in the grid underlying W , with a grid of 2n × 2n × 2n (thus |N ′| = O(n6)). In
particular, every original vertex i ∈ N is replaced with a cube Ai ⊆ N ′ of n3 vertices (and Ai
is padded inside a larger cube of 8n3 vertices). Next, for every (i, j) ∈ E (assume i < j), we
identify a path P (i, j) ⊆ N ′, s.t. P (i, j) connects Ai and Aj ; and no two paths intersect. Since the
projection of W on H ′ is extremely sparse, it is very easy to refrain from path intersections. For
example, define Q(i, j) as the set of vertices whose convex hull completely contains the straight
line between the centers of Ai, Aj . The sets Q(i, j) themselves will hardly intersect, and we can
take P (i, j) to be almost any path inside Q(i, j).

We next use G to define the embedded game G′ = 〈N ′, v′〉, with the following winning coali-
tions. For every winning coalition S ⊆ N of G, we set v′(S′) = 1, where S′ =

⋃
i∈S Ai ∪⋃

i,j∈S P (i, j). Since S is connected in Kn, then S′ is connected in H ′. Moreover, since G is
superadditive, every two winning coalitions S1, S2 intersect at some i ∈ N . Thus S′1, S

′
2 also

intersect (in all vertices of Ai), which entails that G′ is also superadditive.
Finally, we argue that RSR(G′|H′) = RSR(G′) ≥ RSR(G). Indeed, since every winning S′ is

connected, the first equality applies. Then, assume that there is some payoff vector x′ ∈ S(G′) that
stabilizes G′. We define a payoff vector x for G, where xi = x′(Ai) +

∑
j∈N x

′(P (i, j)). Clearly
x(N) ≤ x′(N ′) = RSR(G′). Moreover, for every winning S ⊆ N , x(S) = x′(S′) ≥ v′(S′) = 1,
thus x stabilizes G.

For any k, there is a simple superadditive game Gk whose RSR is at least k (e.g., the game
defined by the projective plane of order k. See Example 3.2. As shown above,Gk can be embedded
(like any other game) in a grid H ′ of degree 6.

124 R. Meir

B.1 Proofs for Section 4.3

Theorem 4.4. For every k ≥ 2 there is a simple superadditive gameG = 〈N, v〉 and an interaction
network H over N such that tw(H) = k and RSR(G|H) = k + 1.

Proof. Instead of defining H directly, we will describe its tree decomposition T . There is one
central node A = {z1, . . . , zk+1}. Further, for every unordered pair I = {i, j}, where i, j ∈
{1, . . . , k + 1} and i 6= j, we define a set DI that consists of 7 agents and set N = A ∪⋃
i 6=j∈{1,...,k+1}D{i,j}.

The tree T is a star, where leaves are all sets of the form {zi, zj , d}, where d ∈ D{i,j}. That
is, there are 7 ·

(
k+1

2

)
leaves, each of size 3. Since the maximal node of T is of size k + 1, it

corresponds to some network whose treewidth is at most k. We setDi =
⋃
j 6=iD{i,j}; observe that

for any two agents zi, zj ∈ A we have Di ∩ Dj = D{i,j}. Given T , it is now easy to construct
the underlying interaction network H: there is an edge between zi and every d ∈ D{i,j} for every
j 6= i; see Figure 4.2 for more details.

For every unordered pair I = {i, j} ⊆ {1, . . . , k + 1}, let QI denote the projective plane
of dimension 3 (a.k.a. the Fano plane) over DI . That is, QI contains seven triplets of elements
from DI , so that every two triplets intersect, and every element d ∈ DI is contained in exactly 3
triplets in QI . Winning sets are defined as follows. For every i = 1, . . . , k + 1 and every selection{
Q{i,j} ∈ Q{i,j}

}
j 6=i the set {zi}∪

⋃
j 6=iQ{i,j} is winning. Thus for every zi there are 7k winning

coalitions containing zi, each of size 1 + 3k. Let us denote by Wi the set of winning coalitions
that contain zi; observe that for every d /∈ A, d appears in exactly 3 · 7k−1 winning coalitions in
Wi: d belongs to some D{i,j}, and is selected to be in a winning coalition with zi if a triplet Q{i,j}
containing d is joined to zi. There are 3 triplets in Q{i,j} that contain d, and there are 7k−1 ways
to choose the other triplets (seven choices from every one of the other k − 1 sets).

We first argue that all winning coalitions intersect. Indeed, let Ci, Cj be winning coalitions
such that zi ∈ Ci, zj ∈ Cj . Then both Ci and Cj contain some triplet from Q{i,j}. Suppose
Q{i,j} ⊆ Ci, Q

′
{i,j} ⊆ Cj . Since Q{i,j}, Q′{i,j} ∈ Q{i,j}, they must intersect, and thus Ci and

Cj must also intersect. This implies that the simple game induced by these winning coalitions is
indeed superadditive and has an optimal value of 1. Note that if we pay 1 to each zi ∈ A, then the
resulting super-imputation is stable, since every winning coalition intersects A. To conclude the
proof, we must show that any stable super-imputation must pay at least k + 1 to the agents.

Given a stable super-imputation x, we know that x(Ci) ≥ 1 for every Ci ∈ Wi. Thus,∑
Ci∈Wi

x(Ci) ≥ 7k. We can write
∑
Ci∈Wi

x(Ci) as

∑
Ci∈Wi

x(Ci) =
∑

Ci∈Wi

xzi +
∑

d6=zi|d∈Ci

xd

 = 7kxzi +
∑

Ci∈Wi

∑
d6=zi|d∈Ci

xd

= 7kxzi +
∑
d∈Di

1
∑

Ci∈Wi|d∈Ci

xd = 7kxzi +
∑
d∈Di

3 · 7k−1xd

= 7kxzi + 3 · 7k−1x(Di).

This immediately implies that xzi ≥ 1− 3
7x(Di). Observe that

∑
zi∈A x(Di) = 2

∑
i<j x(D{i,j}),

as each D{i,j} appears exactly twice in the summation: once in Di and once in Dj . Also, observe

Mechanisms for Stability and Welfare 125

Mechanism 5 STABLE-PW(G = 〈N, v〉 , H, k, T)
Set T = (A1, . . . , Am) x← 0n I ← {i ∈ N | v({i}) = 1}
for i ∈ I do

xi ← 1
end for
N1 ← N \ I
for j = 1 to m do

if there is some S ⊆ N(TAj) ∩Nj such that v(S) = 1 then
for i ∈ Aj ∩Nj do

if i ∈ N(TAj) \Aj then
xi ← 1

end if
end for
Nj+1 ← Nj \N(TAj)

else
Nj+1 ← Nj

end if
end for return x = (x1, . . . , xn)

that
∑
i<j x(D{i,j}) = x(N \A), so

∑k+1
i=1 x(Di) = 2x(N \A). Finally,

x(N) = x(A) + x(N \A) =

k+1∑
i=1

xzi + x(N \A)

≥
k+1∑
i=1

(
1− 3

7
x(Di)

)
+ x(N \A) =

k+1∑
i=1

1− 3

7
2x(N \A) + x(N \A)

= k + 1 + (1− 6

7
)x(N \A) ≥ k + 1

Thus, the relative cost of stability in our game is at least k + 1.

B.2 Proofs for Section 4.4

Theorem 4.5. For every TU game G = 〈v,N〉 and every interaction network H over N it holds
that RSR(G|H) ≤ pw(H), and this bound is tight.

Proof. Note first that it suffices to show that our bound holds for simple games; we can then use
the reduction described in the proof of Theorem 4.3. For simple games, our proof is very similar
to the proof of Theorem 4.2; however, here we will show that in every node Aj that satisfies the if
condition of Algorithm 5 we can identify an agent that we do not need to pay.

Our algorithm first deals with winning coalitions of size 1. This step can be justified as follows.
Suppose we remove all agents in I = {i ∈ N | v({i}) = 1} and construct a stable super-imputation
x′ for the game G′|H , where G′ = 〈N ′, v′〉, N ′ = N \ I , and v′(S) = v(S) for each S ⊆ N \ I ,
so that x′(N ′) ≤ pw(H). Now, consider a super-imputation x for G given by xi = 1 for i ∈ I ,

126 R. Meir

xi = x′i for i ∈ N ′. We have x(N) = x′(N ′) + |I|, and, furthermore, x(S) ≥ v|H(S) for every
S ⊆ N , i.e., x is a stable super-imputation for G|H . On the other hand, it is not hard to check that
OPT(G|H) = OPT(G′|H) + |I|. Hence, we obtain

x(N)

OPT(G|H)
=

x′(N ′) + |I|
OPT(G′|H) + |I|

<
x′(N ′)

OPT(G′|H)
≤ pw(H),

i.e., x witnesses that RSR(G|H) ≤ pw(H). Thus, we begin Algorithm 5 by paying all winning
singletons 1 and ignoring them (and any winning coalitions that contain them) for the rest of the
execution; note, however, that we do not remove the winning singletons from H , i.e., we do not
modify our path decomposition or its width.

Next we show stability. Given a node Aj , we must make sure that each winning coalition in
N(TAj) is paid at least 1. By the proof of Theorem 4.2, paying all agents in Aj is sufficient. Note,
however, that there is no need to pay an agent i that is not in N(TAj) \ Aj : since we removed all
winning singletons, every winning coalition inN(TAj) that contains i (and that is not yet stabilized)
must also contain another agent from Aj .

Finally, we must show that in every paid node Aj , j ≥ 2, there is at least one agent that is not
paid. Note that Aj has a unique child Aj−1. If Aj ⊆ Aj−1, then no agent in Aj is being paid (as
they had already been paid when processing Aj−1). Otherwise, there is some agent i ∈ Aj \Aj−1.
Since T is a path and all nodes containing i must be connected, we have i /∈ N(Aj) \ Aj . Thus
i is not paid. Note that in Algorithm 5 the agents in A1 are not paid in the first iteration of the
algorithm.

To show tightness, we use a slight modification of the construction from Section 4.3.3. For any
k ≥ 3:

• Take the tree-width example for k − 1, remove all edges from the (star) tree.

• Add the central node (of size k) to all leaf nodes. Thus we get O(k2) nodes of size k + 1.

• Connect all nodes by an arbitrary path.

Then the path-width is (k + 1) − 1 = k, whereas the RSR is exactly as before (k) since we have
the same set of winning coalitions. A cycle graph with n → ∞ can be used for the case of k = 2.
See [Meir et al., 2011] for details.

B.3 Computational Complexity
We define the decision problem OPTCS as follows: it receives as input a game G = 〈N, v〉, an
interaction network H and some value α ∈ R; it outputs yes if and only if there is some partition
S1, . . . , Sk of N such that

∑k
j=1 v|H(Sj) ≥ α. We assume oracle access to v.

It is known that if H is a tree and G is a simple monotone game then there is a simple poly-
nomial algorithm for OPTCS . This is by selecting an arbitrary root and iteratively isolate winning
coalitions from the leafs upwards (similarly to the procedure of Algorithm 1). However if we re-
lax either of these three requirements, and the tree structure in particular, the problem becomes
computationally hard.

The next three propositions prove the three parts of Proposition 4.6.

Proposition B.1. OPTCS (G,H) is NP-hard even if G is simple and tw(H) = pw(H) = 2.

Mechanisms for Stability and Welfare 127

Proof. Our reduction is from an instance of the SET-COVER [Garey and Johnson, 1979] problem.
Recall that an instance of SET-COVER is given by a finite set C, list of sets S = (S1, . . . , Sn) and
an integerM ; it is a “yes” instance if and only if there is a subset S ′ ⊆ S such that S ′ covers C, i.e.⋃
S∈S′ S = C, and |S ′| ≤ M . Given an instance of SET-COVER (C,S,M), as described above,

we define the player set to be {1, . . . , n, x, y}. We define the characteristic function as follows: for
any S ⊆ {1, . . . , n}, v(S ∪ {x}) = 1 if and only if the set {Si}i∈S covers C; v(S ∪ {y}) = 1 if
and only if |S| ≥ n−M . Our interaction networkH over the player set is defined as follows: there
are edges (i, x) and (i, y) for all 1 ≤ i ≤ n; observe that tw(H) = 2. One can easily verify that an
optimal coalition structure over G|H has a value of 2 if and only if (C,S,M) is a “yes” instance of
SET-COVER .

Limiting our attention to monotone simple games seems to be somewhat restrictive. However,
both monotonicity and bi-values are required for tractability. Note that in both cases we show that
it is hard even to distinct between the cases where v(CS∗(G|T)) = 1 and v(CS∗(G|T)) = 0. Thus
there is no efficient approximation algorithm either.

Proposition B.2. OPTCS (G,T) is NP-complete if we allow inputs with a non-monotone G, even
if we assume that the interaction network T is a tree and G is simple.

Proof. Our reduction is from SUBSET-SUM [Garey and Johnson, 1979]; recall that an instance
of SUBSET-SUM is given by a list of integer weights w1, . . . , wn and some quota q. It is a “yes”
instance if and only if there is some subset of weights whose total weight is exactly q. Given
an instance of SUBSET-SUM 〈w1, . . . , wn; q〉, we construct the following game on n + 1 players:
player i is assigned a weight wi, while player n + 1 has a weight of 0. The value of v(S) is 1 if
and only if

∑
i∈S wi = q (and otherwise 0). The communication network H is a star centered in

player n + 1, with the other n players as leaves. Observe that in this game, at most one coalition
containing more than one member of {1, . . . , n} can form. To conclude, assuming that wi < q for
all i, the optimal coalition structure in G|H has value of at most 1, and is 1 if and only we have a
“yes” instance of SUBSET-SUM .

Finally, OPTCS is NP-complete for monotone non-simple games as well.

Proposition B.3. OPTCS (G,T) is NP-complete, even if the interaction network T is a tree, G is
monotone, and v is allowed only three different values.

Proof. Our reduction is from the SET-COVER problem [Garey and Johnson, 1979]. Recall that an
instance of SET-COVER is given by a finite set of elements M , a set F = {S1, . . . , Sm} ⊆ 2M and
a parameter k. It is a “yes” instance if and only if there is some subset F ′ ⊆ F of size ≤ k such
that

⋃
S∈F ′ S = M . We define a game with n = m + 1 agents. The characteristic function is as

follows: there is an agent j corresponding to each Sj ∈ F , plus one dummy agent d. The value of
a coalition C ⊂ N is 0 if it is empty, 2m if {Sj}j∈C cover M , and 1 otherwise. Our interaction
network H is a star with d in the center, and with all j ≤ m as leaves. Thus, only one coalition
that covers M may form. Clearly, in an optimal coalition structure a coalition C∗ that covers M
will form, with the addition of as many singletons as possible. The value of the optimal coalition
structure is at least 2m+(m−k) = 3m−k if and only if |C∗| ≤ k, which concludes the proof.

128 R. Meir

Mechanisms for Stability and Welfare 129

Appendix C

Proofs for Chapter 5

Lemma 5.1. For any utility function u which is consistent with preference order �i , the following
holds:

1. a �i b ⇒ ∀W ⊆ C \ {a, b}, u({a} ∪W) > u({b} ∪W) ;
2. ∀b ∈W,a �i b ⇒ u(a) > u({a} ∪W) > u(W) .

Proof. Let a, b ∈ C and W ⊆ C \ {a, b}.

u({a} ∪W) =
1

|W |+ 1|

(
u(a) +

∑
c∈W

u(c)

)
>

1

|W |+ 1|

(
u(b) +

∑
c∈W

u(c)

)
= u({b} ∪W).

Let a ∈ C,W ⊆ C s.t. ∀b ∈W,a �i b. Then

u(a) =
1

|W |+ 1

(
u(a) +

∑
b∈W

u(a)

)
>

1

|W |+ 1

(
u(a) +

∑
b∈W

u(b)

)
= u({a} ∪W)

>
1

|W |+ 1

(
u(W) +

∑
b∈W

u(a)

)
=

1

|W |+ 1
u(W) +

|W |
|W |+ 1

u(W) = u(W).

Proposition 5.5. There is a counterexample with four candidates and three weighted agents that
start from the truthful state and use best replies.

Example 5.5. The initial score of candidates {a, b, c, d} is ŝ = (0, 1, 2, 3). The weight of each voter
i ∈ {1, 2, 3} is i. The preference profile is as follows. c �1 d �1 b �1 a, b �2 c �2 a �2 d, and
a �3 b �3 c �3 d.

The truthful profile is thus a = (c, b, a), which results in the score vector (3, 3, 3, 3) where a is
the winner.

votes: (c, b, a) → (d, b, a) → (d, c, a)
scores: (3, 3, 3, 3){a} (3, 3, 2, 4){d} (3, 1, 4, 4){c}

↑ ↓
(c, b, b) ← (c, c, b) ← (d, c, b)

(0, 6, 3, 3){b} (0, 4, 5, 3){c} (0, 4, 4, 4){b}

130 R. Meir

♦

Theorem 5.6. Let GD be a Plurality game with deterministic tie-breaking. If k = 2 and both
agents (a) use best replies or (b) start from the truthful state, a NE will be reached.

Proof of 5.6a. Assume there is a cycle, and consider the winners in the first steps: {x} 1→ {y} 2→
{z}. Suppose that after step 1 both agents vote for different candidates (a1,2 6= a1,1 = y). This
holds for any later step, as an agent has no reason to vote for the current winner. An agent can never
make a step of type 3 (after the first step), since at every step the winner is the candidate that the
other agent is voting for. If the first step brings the agents to the same candidate, then in the second
step they split again (a2,1 6= a2,2 = z), and we are back in the previous case.

Proof of 5.6b. We show that the score of the winner can only increase. This clearly holds in the first
step, which must be of type 1. Once again, we have that the two agents always vote for different
candidates, and thus only steps that increase the score can change the identity of the winner.

Proposition 5.9. If agents start from an arbitrary profile, there is a weak counterexample with 3
agents of weight 1, even if they use best replies.

Example 5.9. There are 4 candidates {a, b, c, x} and 3 agents with utilities u1 = (5, 4, 0, 3), u2 =
(0, 5, 4, 3) and u3 = (4, 0, 5, 3). In particular, a �1 {a, b} �1 x �1 {a, c}; b �2 {b, c} �2 x �2

{a, b}; and c �3 {a, c} �3 x �3 {b, c}. From the state a0 = (a, b, x) with s(a0) = (1, 1, 0, 1) and
the outcome {a, b, x}, the following cycle occurs:

(1, 1, 0, 1){a, b, x} 2→ (1, 0, 0, 2){x} 3→ (1, 0, 1, 1){a, x, c} 1→ (0, 0, 1, 2){x} 2→

(0, 1, 1, 1){x, b, c} 3→ (0, 1, 0, 2){x} 1→ (1, 1, 0, 1){a, b, x}.

♦

Proposition 5.10. (a) If agents use arbitrary better replies, then there is a strong counterexample
with 3 agents of weight 1. Moreover, (b) there is a weak counterexample with 2 agents of weight 1,
even if they start from the truthful state.

Example 5.10a. C = {a, b, c} with initial score ŝ = (0, 1, 0). The initial state is a0 = (a, a, b)—
that is, s(a0) = (2, 2, 0) and the outcome is the winner set {a, b}. Consider the following cyclic
sequence (we write the score vector and the outcome in each step): (2, 2, 0){a, b} 2→ (1, 2, 1){b} 1→
(0, 2, 2){b, c} 3→ (1, 1, 2){c} 2→ (2, 1, 1){a} 3→ (1, 2, 1){b} 1→ (2, 2, 0){a, b}. If the preferences
are a �1 c �1 b, b �2 a �2 c and c �3 b �3 a, then each step is indeed an improvement step for
the agent whose index is on top of the arrow. ♦

Example 5.10b. We use 5 candidates with initial score (1, 1, 2, 0, 0), and 2 agents with utilities
u1 = (5, 3, 2, 8, 0) and u2 = (4, 2, 5, 0, 8). In particular, {b, c} �1 c, {a, c} �1 {a, b, c}, and
{a, b, c} �2 {b, c}, c �2 {a, c}, and the following cycle occurs:

(1, 1, 2, 1, 1){c} 1→ (1, 2, 2, 0, 1){b, c} 2→ (2, 2, 2, 0, 0){a, b, c} 1→

(2, 1, 2, 1, 0){a, c} 2→ (1, 1, 2, 1, 1){c}.

♦

Mechanisms for Stability and Welfare 131

Proposition C.1. There are strong counterexamples for (a) deterministic tie-breaking, and (b)
randomized tie-breaking. This holds even with two non-weighted truth-biased agents that use best
reply dynamics and start from the truthful state.

Example C.1a. We use 4 candidates with no initial score. The preferences are defined as c �1

a �1 b �1 d and d �2 b �2 a �2 c. The reader can easily verify that in the resulting 4× 4 game
there are no NE states. ♦

Example C.1b. There are 4 candidates with initial scores (0, 0, 1, 2). The preference profile is
given by a �1 c �1 d �1 b, b �2 d �2 c �2 a. Consider the following cycle, beginning with the
truthful state: (1, 1, 1, 2)

1→ (0, 1, 2, 2)
2→ (0, 0, 2, 3)

1→ (1, 0, 1, 3)
2→ (1, 1, 1, 2). ♦

132 R. Meir

Mechanisms for Stability and Welfare 133

Appendix D

Proofs for Chapter 6

D.1 Proofs for Section 6.3

Proposition 6.1. D2(G, â) = Θ
(
qn2

m2

)
.

Proof. The first observation is that any NE profile must be almost-balanced, in the sense that every
resource has bn/mc agents (vacant) or dn/me agents (full). Note that there are exactly q full
resources in each iteration.

The second observation is that a pair has a strict deviation if and only if they share a full resource
in both iterations. Then one agent can switch to a vacant resource in the first iteration, and the other
can do the same in the second iteration. In each iteration one of them strictly gains and the other is
unharmed.

It follows that in â agents play the same partition in both iterations, and every pair that is in a
full resource can deviate. Since there are q full resources, there are q

(dn/me
2

)
= Θ

(
qn2

m2

)
.

Proposition 6.2.

(a) D2(G,a∗) = O
(
n2

m2

)
.

(b) if n < m2 then D2(G,a∗) = 0, i.e. a∗ is 2-SE.

(c) if q ≤ m/2, then D2(G,a∗) = 0.

Proof. If n < m2, then we show that a∗ is a 2-SE profile. Let A = (A1, A2, . . . , Am) be any
almost-balanced partition in the first iteration. That is, Ai contains the (dn/me or bn/mc) agents
that select resource i in the first iteration. Assume eachAi is ordered as a vector (arbitrarily). LetA
be vector of size n, created by concatenating the vectors A1, . . . , Am. We construct the partition in
the second iteration B, by adding each agent A(j) to resource (j mod m). Since every |Ai| ≤ m,
all agents in Ai end up in different resources in the second iteration. Thus D2(G,a∗) = 0.

If n > m2 and q > m/2, then there is at least one resource with ≥ m + 1 agents. By pigeon
hole, at least two of these agents share a resource in the second iteration, thus D2(G,a∗) ≥ 1.

134 R. Meir

However we can still upper bound the stability score of a∗. Indeed, take any vector Ai, and divide
it to subvectors Ai1, Ai2, . . ., each of size m. We now create the partition B as described in the
previous paragraph. As |Ai| may be more than m, it is possible that two agents from Ai now share
a resource in B. However if two agents belong to the same subvector Ai,t, they must be in distinct
resources in B, and thus cannot deviate. Also, every j ∈ Ai,t shares a resource in B with at most
1 other agent from each other subvector Ai,t′ . Thus the number of pairs in Ai shat share a resource
in B is at most

(d|Ai|/me
2

)
(for example, B1 contains the first agent from each set A1,t, one agent

from each A2,t, etc.). However, not all of these pair can deviate. It is necessary that the resource
shared in the first step is full (i.e. |Ai| = dn/me), and also the shared resource in the second step.
Thus, only a fraction of q/m of the pairs end up in a full resource in B. Thus for every full resource
i, we have at most d|Ai|/me agents sharing a resource in B. Summing the pairs from Ai over the
q full resources of B, we have (at most)

q

(
d|Ai|/me

2

)
= Θ

(
q
(n

m2

)2
)

deviating pairs, and the total number of deviating pairs in all q full resources of A is

D2(G,a∗) ≤ q ·Θ
(
q
(n

m2

)2
)

= Θ

(
q2n2

m4

)
= Θ

(
n2

m2

)
.

For the last case, suppose that q < m/2. We take one agent from each full resource in A, and
move it to a (distinct) empty resource to create B. Thus there is no resource that is full in both
iterations. Hence the only agents that belong to a full resource (and thus may have an opportunity
to gain) in both iterations are the ones we moved. None of these agents shares a resource with any
other agent twice, and therefore no pair deviation is possible.

Proposition 6.3. Let G be an SRSG with k steps, and a be a random NE in G. Denote r = q(k−1)
m2 ,

then D2(G,a) ∼=
(
n
2

)
(1− (1 + r)e−r).

Proof. Let (1, 2) be a random pair of agents. In each iteration, they share a resource w.p. of 1
m .

Also, if they do share a resource, this resource is full w.p. of q
m , thus they have a probability

of α = q
m2 to share a full resource. (1, 2) can deviate iff they share at least two full resources.

Equivalently, they do not have one iff they share exactly 0 or 1 full resource, which occurs at
probability of

β = (1− α)k + k · α(1− α)k−1

= (1− α)k−1(1− α+ kα) ∼= e−α(k−1)(1 + α(k − 1))

= e−r(1 + r). (as r = q(k−1)
m2 = α(k − 1))

Since every pair does not have a deviation w.p. β, the expected number of pair deviations is(
n
2

)
(1− β) =

(
n
2

)
(1− (1 + r)e−r).

Mechanisms for Stability and Welfare 135

D.2 Proofs for Section 6.4

D.2.1 Characterizing pair deviations
Lemma D.1. The following condition is both necessary and sufficient for the pair k < j − 1 to
have a deviation in UE:

j−1∑
t=k+1

(xt−1 − xt)(vk − vt−1) < a

vj−1 −
s+1∑
r=j+1

wrvr−1

 ,

where according to our notations a = xj−1 − xj , and wr = xr−1−xr
xj

.

Proof. The proof is very similar to that of Lemma 6.5. Let u(k), u′(k) be the utility of agent k
before and after the deviation. Recall that the best thing that the pair k < j − 1 can do, is that j
reports b′j = bj+1, and k reports b′k = bj (i.e. takes slot j − 1). The new utility of k in this case is
u′(k) = (vk − bj+1)xj−1. For any x,v the utility of k changes as follows:

u(k)−u′(k) = (vk − bUk+1)xk − (vk − bUj+1)xj−1

=(xk − xj−1)vk −
s+1∑
t=k+1

(xt−1 − xt)vt−1 +
xj−1

xj

s+1∑
r=j+1

(xr−1 − xr)vr−1

=

j−1∑
l=k+1

(xl−1 − xl)vk −
j∑

t=k+1

(xt−1 − xt)vt−1 + (
xj−1

xj
− 1)

s+1∑
r=j+1

(xr−1 − xr)vr−1

=

j−1∑
t=k+1

(xt−1 − xt)(vk − vt−1)− (xj−1 − xj)vj−1 +
xj−1 − xj

xj

s+1∑
r=j+1

(xr−1 − xr)vr−1

=

j−1∑
t=k+2

(xt−1 − xt)(vk − vt−1)− a · vj−1 + a

s+1∑
r=j+1

wrvr−1

From Lemma D.1 we can derive bounds on stability scores that are asymptotically equal to the
ones we derived for LE.

Proposition D.2. Given a UE, the pair of agents i, i+ 2 has a deviation for every i < s.

Proof. We take Lemma D.1, and substitute j with k + 2. Then

u(k)− u′(k) =

k+1∑
t=k+1

(xt−1 − xt)(vk − vt−1)− a · vk+1 + a

s∑
r=k+2

wr+1vr

= (xk − xk+1)(vk − vk) + a

s∑
r=k+2

wr+1vr − a · vk+1 ≤ 0 + a (vk+2 − vk+1) < 0.

(since a > 0)

Thus u′(k) > u(k) and agent k strictly gains by deviating with j = k + 2.

136 R. Meir

D.2.2 Counting pair deviations

Theorem 6.6. Suppose that both CTR and valuation functions are convex. The number of pairs
with deviations in the Lower equilibrium can be upper bounded as follows.

(a) D2(GSP,LE) = O(s
√
s).

(b) if CTRs are β-convex then D2(GSP,LE) = O(s logβ s).

(c) if valuations are β-convex for any β ≥ 2, then only neighbor pairs can deviate. That is,
D2(GSP,LE) = s.

Theorem 6.6a is proved in the main text.

Proof of 6.6b. W.l.o.g. xs = 1. As in the previous proof, we denote a = xj−1−xj ≥ βs−j(xs−1−
xs) = βs−j(β − 1). We can now rewrite differences between CTRs as xi−1 − xi ≥ βj−ia for all
i < j. Continuing from Lemma 6.5,

u(k)− u′(k) ≥
j−1∑
t=k+1

βj−ta(vk − vt)− a · vj +
a

xj

s+1∑
r=j+1

(xr−1 − xr)vr

≥ a

(
j−1∑
t=k+1

βj−t(vk − vt)− vj + avg
s+1≥r≥j+1

vr

)
, (D.1)

where the inequality follows from the convexity of x. Thus we replace condition (6.6) from the
linear CTR case with

j−1∑
t=k+1

βj−t(vk − vt) ≥ vj − avg
s+1≥r≥j+1

vr, (D.2)

and make a similar analysis. Let h, z as in the linear case, then

j−1∑
t=k+1

βj−t(vk − vt) ≥
j−1∑
t=k+1

βj−tz
t− k
h

(as in (6.7))

=

h∑
t=1

βh+1−tz
t

h
=
z

h
βh+1

h∑
t=1

β−tt >
z

h
βh+1β−1 =

z

h
βh, (D.3)

Suppose now that h > logβ
s−j

2 , then from Eq. (6.8)

j−1∑
t=k+1

βj−t(vk − vt) ≥
z(s− j)

2h
≥ vj − avg

s+1≥r≥j+1
vr,

which means no agent gains from the deviation.
Thus each bidder can find at most O(logβ s) other bidders to collaborate with, or O(s logβ s)

pairs in total.

Mechanisms for Stability and Welfare 137

For tightness, assume that valuations are linear. In this case, all inequalities except (D.3) be-
come equalities. Now take any pair such that j < s/2; 2h < logβ

s−j
2 . Then we have

h < logβ
s− j

2
− h < logβ

s− j
2
− logβ h = logβ

s− j
2h

⇒
j−1∑
t=k+1

βj−t(vk − vt) =

h∑
t=1

βh+1−tz
t

h
=
z

h
βh+1

h∑
t=1

β−tt

<
z

h
βh+1hβ−1 = zβh < z

s− j
2h

= vj − avg
s+1≥r≥j+1

vr,

and k strictly gains by manipulating with j. Moreover, there are at least s
2

logβ
s
4

2 = Ω(s logβ s)
such pairs, thus our bound is tight.

Proof of 6.6c. Let any k, j such that j ≥ k + 2.

j−1∑
t=k+1

(vk − vt) ≥ vk − vk+1 ≥ 4(vj − vj+1) ≥ 2vj ≥ vj − avg
s≥t′≥j+1

vt′ .

Then by condition(6.6), the pair k, j cannot deviate.

Theorem 6.7. Suppose that both CTR and valuation functions are concave. The number of pairs
with deviations in the Lower equilibrium can be lower bounded as follows.

(a) D2(GSP,LE) = Ω(s
√
s).

(b) if CTRs are β-concave for any β > 1, then D2(GSP,LE) = Ω(s2).

(c) if valuations are β-concave, for any β ≥ 2, then all pairs can deviate. I.e., D2(GSP,LE) =(
s+1

2

)
= M2.

Proof of 6.7a. Consider the proof of Theorem 6.6a. All the weak inequalities in the proof follow
directly either from the convexity of x, or from the convexity of r. If both functions are concave,
all weak inequalities are reversed (rounding expressions down rather than up). Therefore, a pair
k, j = k + h+ 1 can deviate whenever

h+ 1 <

⌊
s− j
h

⌋
.

To see that there are Ω (s
√
s) such pairs, consider for example all pairs where j < s/2;h <√

s/4.

Proof of 6.7b. Consider Equation (D.2) in the proof of Theorem 6.6b. As x is now concave, rather
than convex, we have xt−1 − xt ≤ βt−j(xj−1 − xj) for all t < j, and we should reverse the
inequalities (D.1) and (D.2). We get the following condition:

j−1∑
t=k+1

βt−j(vk − vt) < vj − avg
s+1≥r≥j+1

vr. (D.4)

138 R. Meir

Whenever condition (D.4) holds, deviation of k, j is guaranteed to succeed. Now, let h = j−k−1
as in previous sections. We show that each of the top (1− 1

β) 1
4s bidders can deviate with any bidder

above her (note that this means that there is a constant fraction of the total number of pairs that can
deviate). We first upper bound the LHS:

j−1∑
t=k+1

βt−j(vk − vt) ≤ (vk − vj−1)

j−1∑
t=k+1

βt−j = (vk − vj−1)

j−k−1∑
t=1

βt

< (vk − vj−1)

∞∑
t=0

β−t ≤ (vk − vj−1)
1

1− 1
β

≤ a · h 1

1− 1
β

≤ a
(

(1− 1

β
)
1

4
s

)
1

1− 1
β

=
1

4
· s · a

For the RHS, we have

vj − avg
s+1≥r≥j+1

vr ≥ vj − v j+s+1
2
≥ vj − vs/2 ≥ a

(s
2
− j
)
≥ a

(
s

2
− 1

4
βs

)
≥ 1

4
· s · a.

(v is concave)

We therefore have that for all k < j < (1 − 1
β) 1

4s, condition (D.4) holds. Since β > 1 then
(1 − 1

β) > 0, and therefore there are Ω(s2) such pairs, where the constant depends on β. For

example, for β = 2, there are at least
(b 1

8 sc
2

)
> 1

100s
2 deviating pairs.

Proof of 6.7c. By Equation (6.6), the pair j, k can deviate if

j−1∑
t=k+1

(vk − vt) < vj − avg
s+1≥r≥j+1

vr.

Since vi+1 − vi+2 > 2(vi − vi+1) for every i, for every t > k it holds that

vk − vt <
vt − vt+1

2t−k
.

We get

j−1∑
t=k+1

(vk − vt) = (vk − vk+1)(j − k − 1) + (vk+1 − vk+2)(j − k − 2) + · · ·+ (vj−2 − vj−1)

<
vj−2 − vj−1

2j−k−2
(j − k − 1) +

vj−2 − vj−1

2j−k−3
(j − k − 2) + · · ·+ vj−2 − vj−1

2
+ (vj−2 − vj−1)

=(vj−2 − vj−1)

j−k−2∑
t=0

t+ 1

2t
< (vj−2 − vj−1)

(
j−k−2∑
t=0

t

2t
+

j−k−2∑
t=0

1

2t

)
< (vj−2 − vj−1)(2 + 2)

<vj − vj+1 < vj − avg
s+1≥r≥j+1

vr.

This establishes the statement of the proposition.

Mechanisms for Stability and Welfare 139

D.2.3 Counting deviations of large coalitions
Lemma D.3. Suppose that R ⊆ N is a coalition that gains by a deviation, and let bj , b′j denote
the bids of j ∈ R before and after the deviation. Then the following hold:

(a) There is at least one bidder i∗ ∈ R that does not gain anything from the deviation (an indifferent
bidder). Moreover, the slot allocated to i∗ is not affected.

(b) There is at least one bidder f ∈ R that does not contribute anything to the deviation (a “free
rider”). That is, the utility of all bidders in R \ {f} does not decrease if f bids her equilibrium
bid, and at least one j ∈ R \ {f} still gains.

(c) For all j ∈ R, either b′j < bj , or the utilities of all agents in R (including j) are unaffected by
the bid of j.

Proof. We prove each property separately.

Indifferent bidder First consider the bidder i∗ ∈ R that is ranked last after the deviation, and
let i′ be the new slot allocated to i∗. Clearly bi′+1 did not change, and thus if i∗ gains she would
also gain by deviating unilaterally to b′i∗ = bi′+1 + ε. Therefore i∗ is indifferent. Note that by our
assumption that the game is generic, i′ = i∗, or otherwise bidder i∗ would strictly lose.

Lowering bids Suppose that k ∈ R strictly gains by bidding b′k and moving to some slot i. Let
k∗ be the bidder such that bk∗ < b′k, and maximal in that condition (i.e. the bidder located directly
below the new slot of k). Then either: (i) k∗ ∈ R and b′k∗ < bk∗ ; or (ii) there is some bidder t ∈ R
such that t < k (i.e. bt > bk), but after the deviation b′t < b′k. Let t∗ be the bidder t with the lowest
b′t. If neither of (i),(ii) holds, then k is allocated the same slot or worse, and pays at least as before.

Assume that b′k > bk. If case (ii) holds, then t∗ strictly loses, or otherwise she would weakly
gain by bidding b′t∗ in a single deviation. Otherwise, note that k itself does not gain, and consider
some j ∈ R. Either j < k, j remains above k, or j > k and remains below k. In both cases j
is unaffected, unless b′j < bk and maximal in that condition, in which case j strictly loses by the
move of k.

Free rider If R contains a pair of neighbors, this pair has a deviation regardless of the actions
of all other bidders, and we can clearly remove any bidder that is not a part of this pair. Assume
therefore that R do not contain a pair of neighbors.

Consider the bidder f ∈ R that is ranked first among all bidders of R (after the deviation), and
denote her new slot by f ′. Clearly f does not contribute do any other bidder in R. R \ {f} still
has a deviation (i.e. do exactly what they did when f was part of the coalition), unless f is the only
bidder that strictly gains by the deviation of R. Suppose we are in the latter case. According to
our generic games assumption, bidders that do not gain must keep their slots, and by the previous
paragraph, for all k ∈ R \ {f}, bk ≥ b′k ≥ bk+1. Consider t ∈ R, s.t. t 6= f ′ + 1 (there must be
such t, as |R| ≥ 3). If t = 1 bidder t is a free rider and we are done, thus assume t > 1.

Since R contains no neighbors, the bidder in slot t − 1 is not in R, and therefore the coalition
R \ {t} still has a deviation.

Proposition 6.8. If both CTRs and valuations are convex, then

Dr(GSP,LE) ≤Mr ·O
(
r2

√
s

)
.

140 R. Meir

In contrast, if both CTRs and valuations are concave, then

Dr(GSP,LE) ≥Mr · d ·
(

1− exp

(
−Ω

(
r
√
r√
s

)))
for any positive constant d < 1.

Proof of Proposition 6.8, upper bound. Recall that we only consider the top s+ r−1 bidders. The
crucial observation is that a coalition R can deviate iff it contains a pair that can deviate. This
follows directly from Lemma D.3, as we show in Section 6.4.3.

For the upper bound, we take a coalition R that is sampled uniformly from all Mr possible
coalitions, and bound the probability that it contains a deviating pair. Recall that from the proof of
Theorem 6.6a, a pair k, j can deviate only if they are at most

√
s− j ≤

√
s slots apart.

A coalition of size r contains
(
r
2

)
= O(r2) pairs, and each such pair has a probability of at most

2
√
s
s = O

(
1√
s+r

)
= O

(
1√
s

)
. From the union bound we get that the probability that a random

coalition R contains any deviating pair is at most O
(
r2√
s

)
.

Proof of Proposition 6.8, lower bound. If r ≥ s/2, then R contains a pair of neighbors and there-
fore surely has a deviation. Similarly, if r = ω(

√
s), then R contains a neighbor pair with high

probability. Assume therefore that r is relatively small w.r.t. s, say r < s2/3. Note that for all
t ≤ r,

(
s
t

)
=
(
s
t−1

)
s−t
t ≥

(
s
t−1

)
s1/3. By induction,

(
s
r

)
≥
(
s
t

)
s1/3·(r−t).

Let c < 1 be a constant, d =
√
c.

Lemma D.4. For a sufficiently large s,
(
s
r

)
> d ·Mr.

Proof. Consider the sum Mr−1 =
∑
t=1 r − 1

(
s
t

)
. It holds that

Mr−1 ≤
r−1∑
t=1

(
s

r

)
s1/3(t−r) =

(
s

r

) r−1∑
t=1

(s1/3)−t ≤ 2s−1/3

(
s

r

)
.

In particular, for a sufficiently large s, we have that 2s−1/3 < 1− d, and thus Mr−1 < (1− d)Mr.
Recall that Mr = Mr−1 +

(
s
r

)
, thus(

s

r

)
= Mr −Mr−1 > Mr − (1− d)Mr = d ·Mr.

As we perform an asymptotic analysis, we indeed assume that s is as large as required.
Let q = d2/r. We consider coalitions of size r in slots 1, 2, . . . , qs (i.e. coalitions of the first

type only). We show that there is only a small fraction of the
(
qs
r

)
coalitions do not have a deviation.

Lemma D.5.
(
qs
r

)
≥ d ·

(
s
r

)
.

Mechanisms for Stability and Welfare 141

Proof.

q = d2/r = e2 ln(d)/r >

(
1 +

2 ln d

r

)
(D.5)(

qs
r

)(
s
r

) =
(qs)!(s− r)!
s!(qs− r)!

=

r∏
t=1

qs− t
s− t

≥
(
qs− r
s− r

)r
>

(
s+ 2 ln d

r s− r
s− r

)r
(from (D.5))

=

(
1 +

2s ln d

r(s− r)

)r
>

(
1 +

ln d

r − 1

)r
≥ exp

(
ln(d)r

r

)
= exp(ln d) = d.

Also, from Equation (D.5),√
1− q ≥

√
1−

(
1 +

2 ln d

r

)
=

√
−2 ln(d)

r
> d′

1√
r
, (D.6)

where d′ > 0 is some constant independent of r and s.
We construct our coalition iteratively, lower bounding in every iteration the probability that a

deviating pair is formed. Since all bidders are in slots ≤ qs, it is sufficient for the first pair k, j to
deviate if they are at most

√
s− j ≥

√
s− qs =

√
s(1− q) slots apart. If the first pair are too far

between, the third selected bidder has a double chance to deviate (with at least one of them). If this
fails, the fourth bidder can be in the proximity of either of the first three, and so on.

Denote by Et the event that the bidder selected in iteration t has a deviation with one of the
previous bidders. Suppose that none of the t− 1 previous bidders has a deviation. The new bidder
t has qs− (t− 1) available slots. There are at least (t− 1)

√
s(1− q) slot that are in the proximity

of previous bidders, since there is a “dangerous” interval of size (at least)
√
s(1− q) around each

bidder, and these intervals are distinct (otherwise there is a deviating pair). Formally, this can be
written as

Pr(Et|∀t′ < t,¬Et′) ≥
(t− 1)

√
s(1− q)

qs− t+ 1
. (D.7)

We have that for a random coalition R drawn from 1, 2, . . . , qs, the probability that R does not
contain a deviating pair, is

Pr(¬Et for all t = 2, 3, . . . , r) = Pr(¬E2)Pr(¬E3|¬E2) · · ·Pr(¬Er|∀t′ < r,¬Et′)

≤

(
1−

2
√
s(1− q)
qs− 1

)
· · ·

(
1−

(r − 1)
√
s(1− q)

qs− r + 1

)
(from (D.7))

<

r−1∏
t=1

(
1−

t
√
s(1− q)
s

)
≤

r−1∏
t=br/2c

(
1−

t
√
s(1− q)
s

)

≤
r−1∏

t=br/2c

(
1−

⌊r
2

⌋ √s(1− q)
s

)
≤

(
1−

⌊r
2

⌋ √(1− q)
s

)d r2e−1

≤
(

1− (r − 1)
√

1− q
2
√
s

) r−2
2

≤
(

1− d′ r − 1

2
√
s
√
r

) r−2
2

(from (D.6))

≤ exp

(
−d′ (r − 1)(r − 2)

4
√
s
√
r

)
= exp

(
−Ω

(
r
√
r√
s

))

142 R. Meir

Thus there are at least
(
qs
r

) (
1− exp

(
−Ω

(
r
√
r√
s

)))
coalitions of size r with deviations. Finally,

we get from Lemmas D.5 and D.4 that
(
qs
r

)
≥ d
(
s
r

)
≥ d2Mr = cMr, thus

Dr(GSP,LE) ≥ c ·Mr ·
(

1− exp

(
−Ω

(
r
√
r√
s

)))

as required.

D.3 Eliminating Group Deviations

D.3.1 VCG with a reserve price
Consider a variant of the VCG mechanism that adds a fixed reserve price c. That is, only bidders
that reports a value of c or higher get a slot, and payments are computed ignoring the other bidders
(i.e. replacing their values with c).

This definitions may seem different than than the “standard” definition of VCG with reserve
price c, which is typically defined as follows: remove bidders whose value is below c. Now run
VCG on remaining bidders.

Lemma D.6. The two definitions are equivalent.

Proof. Let pi denote the original payment of agent i in VCG without a reserve price. p′i is the
payment with reserve price according to the first definition, and p′′i is the payment according to the
second definition. That is, p′′i = max(c, pi) if vi ≥ c and 0 otherwise.

Let αi = xi
xi−1

. According to Varian [2007], pi = bi+1, where bi is recursively defined as
follows. bs+1 = vs+1, and

pi−1 = bi = αivi + (1− αi)bi+1.

Let j be the index of the lowest surviving bidder. Clearly if j ≥ s + 1 then both auctions
coincide with the original VCG auction, as the reserve price is not used at all. Therefore suppose
j ≤ s.

We now turn to compute p′i in the same way. Suppose we add a positive term δ to all valuations.
Then clearly all payments will also increase by δ.

Since all values (after removing the low bidders) are above c, we can decrease all vi by c, to
v′i = vi− c, and add c to the final payment. That is, p′ = p∗+ c, where p∗ are the VCG payments
for valuations v′. We claim that p∗i = pi − c. The base case of the induction is p∗j = b∗j+1 = 0
(since there are at most s bidders). The next bidder pays p∗j−1 = b∗j = αjv

′
j = αj(vj − c).

It is easy to verify that truth-telling remains a dominant strategy, and that Proposition 6.4 re-
mains valid if the values of all bidders are strictly above c. However, a bidder whose value is exactly
c will not join any coalition: by lowering her reported value she will lose her current slot for sure,
whereas previously she enjoyed a positive utility.

Now, consider a VCG mechanism that chooses a reserve price as follows. With probability q,
the reserve price is chosen randomly from a sufficiently large interval, and with probability 1 − q,
it is set to 0. Crucially, the probability distribution of the reserve price is common knowledge, but
agents submit their reports before its realization is revealed. Let us denote the proposed mechanism
by VCG∗. While the proposed adjustment seems small, it results in a dramatic increase of stability.

Mechanisms for Stability and Welfare 143

Theorem D.7. If s ≥ n, then truth-telling is a SSE in VCG∗.

Proof. First observe that VCG∗ is a lottery over strategyproof mechanisms, thus no agent has an
incentive to deviate unilaterally. Suppose by way of contradiction that there exists a deviating
coalition, and let R be such a coalition of minimal size. Since R is minimal, the indifferent agent
i∗ ∈ R (as defined in Prop. 6.4) must lower her reported value, otherwise the coalition R \ {i∗}
can also deviate. Assume, therefore, that v′i∗ = vi∗ − ε for some ε > 0. It is easy to verify
that i∗ cannot gain in any outcome of the mechanism. In contrast, there is a non-zero probability
that c is chosen in the range (v′i∗ , vi∗), in which case the utility of i∗ becomes 0, compared to
(vi∗ − c)xi∗ > 0 under truth-telling. Therefore, agent i∗ loses in expectation, contradicting the
existence of a coalition R.

By the last theorem, VCG∗ guarantees stability whenever n ≤ s.1 However, if s < n the bidder
ranked s + 1 can serve as the indifferent bidder of any coalition. Consequently, VCG∗ does not
posses a SSE. That is, since the utility of agent s + 1 is always 0, she will not be discouraged by
the random reserve price, even when her reported value falls below the reserve price.

In order to deal with the lack of slots (i.e., the case in which s ≤ n), we introduce a modified
VCG∗ mechanism, which always induces truth-telling as a SSE.

Consider the following modification to VCG∗, termed VCG∗λ. Let 0 < λ < 1
n . Given some

slot j ≤ s with a CTR of xj > 0, it is allocated to the bidder that is ranked j with probability 1−λ,
and is allocated to the bidder that is ranked s+ 1 with probability λ. This modification effectively
creates a new slot s + 1, whose expected CTR is λxj , whereas the new (expected) CTR of slot j
becomes (1−λ)xj . This procedure can be applied to the desired additional n−s slots. In particular,
a possible instantiation is where the new expected CTR of position s will be (1− (n− s)λ)xs, and
there will be n− s new slots with an expected CTR of λxs. Since the new auction has n slots, the
mechanism VCG∗ can be performed to eliminate all coalitional deviations.

The careful reader will notice that by changing the CTRs, the equilibrium in the new auction
may change. However, as long as the order of the slots is preserved, the equilibrium allocation is
not affected, and this is ensured by satisfying λ < 1

n . Moreover, the new payment differs from the
original payment by at most v1 ·n ·λ; thus for a sufficiently small λ the difference is negligible. As
a result, we get the following corollary.

Corollary D.8. Truth-telling is a SSE in mechanism VCG∗λ for every 0 < λ < 1
n . Moreover, the

payments and revenue of VCG∗λ can be arbitrarily close to the payments and revenue of VCG.

D.3.2 GSP with a reserve price
As evident from the results in the last section, stability of the VCG mechanism is significantly
increased by augmenting the mechanism with a random reserve price and additional subtle ran-
domization. It might be tempting to apply the same technique to the GSP mechanism, in an attempt
to increase its stability, while maintaining the possibility to achieve a higher revenue than VCG. Un-
fortunately, this approach fails since (in contrast to VCG) adding a reserve price does not preserve
its original set of equilibria.

To see this, consider a GSP mechanism with a fixed reserve price c. Bidder i is affected by the
reserve price if either: (I) vi > c > bi, in which case bidder i has an incentive to raise her bid, as
otherwise she will lose the slot; or (II) vi < c < bi, in which case she has an incentive to lower

1The proof in fact shows a stronger result: truth-telling is a SSE in dominant strategies. Thus VCG∗ is group-
strategyproof.

144 R. Meir

her bid, as otherwise she will pay more than the slot’s worth to her. In both cases it follows that the
modified GSP mechanism no longer preserves the SNE properties characterized by Varian (even
with respect to unilateral deviations). The reason for the difference between VCG and GSP is that
VCG induces truthful revelation in equilibrium; hence cases (I) and (II) suggested above cannot be
realized.

Mechanisms for Stability and Welfare 145

Appendix E

Proofs for Chapter 7

E.1 Proofs for Section 7.3

Lemma 7.3. Every SP mechanism is monotone.

Proof. Suppose that f is SP, and assume toward a contradiction that f is not monotone. Thus
there are a ∈ V n, j ∈ N , bj > aj such that x′ = f(a−j , bj) < f(a) = x. We have that
|x′ − aj | ≥ |x − aj |, since otherwise j can benefit by reporting bj in the profile a. Since x′<x,
this implies x′<aj<bj . Thus |x− bj | < |x′ − bj |, and thus j can benefit by reporting aj instead
of bj .

Lemma 7.4. A monotone mechanism f is Pareto iff it is unanimous.

Proof. Pareto clearly entails unanimity. It remains to show that unanimity implies Pareto. Note
that the notion of Pareto on a line is equivalent to f(a) ∈ [minj∈N aj ,maxj∈N aj]. Let a ∈ Ln,
a′ = minj∈N aj and a′′ = maxj∈N aj . Also let a′ = (a′, . . . , a′) and a′′ = (a′′, . . . , a′′). By
unanimity, f(a′) = a′ and f(a′′) = a′′. By monotonicity,

min
j∈N

aj = a′ = f(a′) ≤ f(a) ≤ f(a′′) = a′′ = max
j∈N

aj ,

as required.

Lemma 7.5. Every SP, unanimous mechanism for the line is 1-SI.

Proof. Since f is SP and unanimous, it is MON (by Lemma 7.3) and thus also Pareto (by Lemma 7.4).
Suppose by way of contradiction that f is not 1-SI. Then, there exists at least one pair of profiles
that violates the 1-SI property. Assume w.l.o.g. that the two profiles differ only in agent 1’s report,
and also that a′1 = a1 + 1. By the violation of the 1-SI property, it holds that f(a1, a−1) = x 6=
x′ = f(a′1, a−1), while d([a, a′], f(a′)) > 1.1 Among these pairs, let a,a′ be the two profiles that
maximize

∑
j∈N aj .

1This is w.l.o.g a violation of part (b) of Definition 7.8. The other, symmetric, case is when d([a, a′], f(a)) > 1.

146 R. Meir

Since a′1 > a1, MON implies that x′ > x. Let Ia = [a1, a
′
1] and Ix = [x, x′]. We distinguish

between the following cases:
case a: The intervals Ia, Ix intersect on at most one point. It follows that either a1 ≥ x′ or

a′1 ≤ x. In the former case, agent 1 can benefit by reporting a′1 instead of a1 in a, and similarly,
in the latter case, agent 1 can benefit by reporting a1 instead of a′1 in a′. Thus, a contradiction is
reached.

case b: One of the intervals Ia, Ix strictly contains the other. Since a′1 = a1+1 and f(a1, a−1) 6=
f(a′1, a−1), the inclusion must be Ia (Ix. Further, since d(a′1, x

′) ≥ 2, it must hold that x ≤ a′1−2
(i.e. that x < a1), as otherwise a′1 → a1 is a manipulation for agent 1.

Since f is Pareto, and x < a1, then there must be some other agent (w.l.o.g. agent 2) s.t.
a2 ≤ x.

We define two new profiles, b,b′, that differ from a,a′ only by relocating agent 2 so that
b2 = b′2 = x + 1. Denote the new output locations by y = f(b) and y′ = f(b′). One can easily
verify that b2 > a2 (and clearly b′2 > a′2). It, therefore, follows from MON that y ≥ x, y′ ≥ x′,
and also y′ ≥ y. We further distinguish between two sub-cases.

If y′ > y, then y′ ≥ x′ ≥ a′1 + 2. Then b,b′ is still a violating pair. However, since b2 > a2

and all other agents in a,b are the same,
∑
i∈N bi >

∑
i∈N ai in contradiction to maximality of

the pair a,a′.
If y = y′, then consider the pair of profiles a,b and their outcomes x = f(a), y = f(b). Note

that y = y′ ≥ x′ > a1 ≥ x + 1 = b2, and thus d(y, b2) > 1 = d(x, b2). Therefore b2 → a2 is a
manipulation for agent 2 under profile b, which is a contradiction to SP.

Lemma E.1. Every 0-SI, MON mechanism f for the line is SP.

Proof. Let a be a profile, j an agent, and a′j a deviation of j and assume that f(aj , a−j) 6=
f(a′j , a−j). W.l.o.g., assume aj < a′j . From monotonicity we get that f(aj , a−j) < f(a′j , a−j)
and from f being 0-SI aj ≤ f(aj , a−j) < f(a′j , a−j) ≤ a′j . Therefore, we get that j prefers
f(aj , a−j) in a and hence this is not a manipulation.

Theorem 7.2. An onto mechanism f on the line is SP if and only if it is MON and 1-SSI.

Proof. Suppose f is an onto SP mechanism; then, by Lemmas 7.1 and 7.3, it is also monotone and
unanimous, and therefore, by Lemma 7.5, it is 1-SI. Suppose that f does not satisfy 1-SSI; then,
there is an agent i that violates DI (i.e., caused the violation).

Therefore, there is a profile (ai, a−i) and deviation a′i s.t. f (ai, a−i) = x 6= x′ = f (a′i, a−i)
but |A ∩X| ∈ {0, 1} (A and X are the segments as used in Def. 7.9). W.l.o.g. assume ai < a′i.
f satisfies 1-SI and hence d ([ai, a

′
i]) < 2. This means (by MON and 1-SI) that either the facility

moved from x = ai − 1 to ai (which is a manipulation for i), or the facility moved from x = a′i to
x′ = a′i + 1. In the latter case the movement a′1 → ai is manipulation for i.

We now prove the other direction. Suppose f is an onto, monotone and 1-SSI mechanism. We
will show that f is also SP. Suppose some agent j moves from aj to a′j > aj and by that causes
the facility to move from x = f(a) to x′ = f(a′j , a−j)(the proof for movement to the left is
symmetric). By monotonicity, x′ ≥ x. If x ≥ aj , then agent j does not benefit from the deviation.
Otherwise, x < aj ; then, by 1-SI it holds that x = aj − 1 (otherwise the facility will not move).
By DI, it must hold that |[aj , a′j] ∩ [x, x′]| ≥ 2, which means that x′ ≥ aj + 1. Here again, agent j
does not benefit from the deviation.

Mechanisms for Stability and Welfare 147

E.2 Proofs for Section 7.4
Let a, a′ be two profiles that differ only by the location of one agent (w.l.o.g. agent 1), and denote
x = f(a), x′ = f(a′).

Lemma 7.6. If agent 1 moves closer to x along the shorter arc between them, then x′ = x. I.e., if
|(a, x]| ≤ bk/2c and a′ ∈ (a, x] then x′ = x.

Proof. W.l.o.g. we assume that a moves clockwise, and prove by induction on the number of steps
toward x. Let a′ = a + 1. Assume, toward a contradiction, that y = f(a′, a−1) 6= x. Then either
y ∈ [a, x) (in which case a → a′ is a manipulation), or y ∈ (x, a). If |[a, y]| ≤ bk/2c, then since
x ∈ (a′, y) it is closer to a′ = a+ 1 than y, meaning that a′ → a is a manipulation.

Therefore, the shorter arc between a, y is [y, a], of length≤ bk/2c. Of course, d(y, a) ≥ d(x, a)
(otherwise a→ a′) is a manipulation. However, this means that

d(a′, x) = d(a, x)− 1 ≤ d(a, y)− 1 = (d(a′, y)− 1)− 1 < d(a′, y),

i.e.,that a′ → a is a manipulation.

Lemma 7.7. Suppose that agent 1 moves one step away from x (along the longer arc between x and
x′). Let y be the point on the longer arc s.t. d(a′, y) = d(a, x). Then either x′ = x (no change); or
d(x′, y) ≤ 1.
(If x is antipodal to a, then trivially a cannot move it.)

Proof. W.l.o.g. a′ = a+ 1. Denote x′ = f(a′, b). If x′ ∈ (x, y− 2] then a→ a′ is a manipulation.
If x′ ∈ [y + 2, x) then d(a′, x′) > d(a′, x), and thus a→ a′ is a manipulation.

Definition E.1. Let a1, . . . , an, s.t. the minimal arc (consecutive part of the cycle) that includes
all the points is of size < k/2.2 A point x ∈ Rk is cycle-Pareto (w.r.t. the profile ai), in either of
the following cases:

• x lies on the arc.

• k is odd, the arc size is bk/2c, and there is an agent i next to x, i.e., d(ai, x) = 1.

If there is no such arc, every point x ∈ Rk is cycle-Pareto.
A mechanism f is cycle-Pareto, if for any profile x = f(a1, a2, . . . , an) is a cycle-Pareto outcome.

Lemma E.2. For an odd cycle, a profile (a1, . . . , an), and a point x:

i If x is a cycle-Pareto outcome, then there is no point y s.t. d(ai, y) < d(ai, x) for every agent
i.3

ii If x is not a cycle-Pareto outcome, then there exists a point y s.t. d(ai, y) ≤ d(ai, x) for
every agent i and d(ai′ , y) < d(ai′ , x) for some agent i′.4

Proof.

2Notice that the minimal arc is uniquely defined in such case.
3In the literature this criterion is usually referred to as ‘Strong Pareto Dominance’ and is equivalent to definition 7.3.
4In the literature this criterion is usually referred to as ‘Weak Pareto Dominance’.

148 R. Meir

i Clearly, if x is a cycle-Pareto outcome due to the first condition (lies on the arc), it is also
Pareto.
Otherwise, x does not lie on the arc, the arc size is exactly bk/2c, and there is an agent s.t.
d(ai, x) = 1. W.l.o.g, the agents are ordered clockwise a1, a2, . . . , an s.t. d(a1, an) = k−1

2 ,
d(x, a1) = 1, d(x, an) = k−1

2 . The only point that is closer to a1 than x is a1 itself and it is
not closer to an than x.

ii If x is not cycle-Pareto then the minimal arc is of size ≤ (k− 1)/2 and x does not lie on this
arc. W.l.o.g, the agents are ordered clockwise a1, a2, . . . , an and a1 is the closest to x. I.e.,
d(a1, x) ≤ d(ai, x) for all i. Denote by t = d(x, a1) > 0.
If t + d(a1, an) ≤ (k − 1)/2 (x and all the points lie on a semi-cycle), then for all agents
d(a1, ai) ≤ d(x, ai) and d(a1, a1) = 0 < d(x, a1) so y = a1 satisfies the conditions.
If t > d(a1, an), then for all agents d(ai, an) ≤ d(a1, an) < d(a1, x) so
d(x, ai) = min (d (ai, a1) + d (a1, x) , d (ai, an) + d (an, x)) ≥ min (d (a1, x) , d (ai, an)) =
d (ai, an) and d(an, an) = 0 < d(x, an) so y = an satisfies the conditions.
Otherwise, the point y is defined as the point on the arc [a1, an] s.t. d(a1, y) = t − 1. For
any agent: If d (ai, a1) + d (a1, x) < k/2 then d (ai, y) < d (ai, x). Otherwise, d (ai, y) −
d (ai, x) = (d (ai, a1)− d (a1, x) + 1)−(k − d (ai, a1)− d (a1, x)) = 2d (ai, a1)−k+1 ≤
0 so y satisfies the conditions.

Lemma E.3. If f is an SP mechanism for Rk for n > 2 agents that does not satisfy cycle-Pareto
then there exists an SP mechanism g for Rk for 2 agents that does not satisfy cycle-Pareto.

Proof. Let (a1, . . . , an) be a profile s.t. x = f(a1, . . . , an) is not a cycle-Pareto outcome. So we
know that all the points lie on an arc smaller than k/2. W.l.o.g, assume a1, a2 are the extreme
points of this arc. We define g by g(u, v) = f(u, v, a3, . . . , an).
Since f is SP, so is g and clearly x = g(a1, a2) is not a cycle-Pareto outcome.

E.2.1 Two agents
Lemma E.4. Let f be onto and SP rule on Rk (k ≥ 13). Suppose that x = f(a, b) is violating
cycle-Pareto. Then x is at distance (exactly) 2 from some agent, and agents are almost antipodal,
i.e. k/2 > d(a, b) ≥ k/2− 1.

Proof. As our proof will show, this will be true for any number of agents. However we consider
the case of two agents first. Let f(a, b) = x such that x is not cycle-Pareto. Moreover, let a, b
be the profile minimizing d(a, b) under this condition. W.l.o.g. [a, b] is the shorter arc (we denote
a < b), thus x ∈ (b, a). By unanimity, d(a, b) ≥ 5, as otherwise there is a manipulation a → b or
vice versa (as either d(a, x) > 4 or d(b, x) > 4). We denote u = f(a+ 1, b) and w = f(a, b− 1).
By minimality of d(a, b), u,w 6= x and both u,w are cycle-Pareto (w.r.t. their respective profiles).
See Figure E.1 for an illustration. We prove the following series of claims.

• u 6= w (W.l.o.g. that u = b)
Indeed, suppose that they are equal, then u = w ∈ [a, b], and thus d(a, u) + d(b, u) =
d(a, b). Also, from SP we have that d(a, x) ≤ d(a, u) and d(b, x) ≤ d(b, u). By joining the
inequalities,

d(a, b) = d(a, u) + d(b, u) ≥ d(a, x) + d(b, x) = k − d(a, b).

Mechanisms for Stability and Welfare 149

(x)

b

u

b− 1

w = q
a+ 1

a

x

Figure E.1: An illustration of the original violating profile, where x = f(a, b). Agents’ locations
(a, b, etc.) appear outside the cycle, and facility locations (x, x′, etc.) appear inside. The conclusion
of this part of the proof is that the facility must be close to one of the agents (appears in brackets).

This entails that [a, b] is the long arc, which is a contradiction.

• Either w = a or u = b.
Consider q = f(a + 1, b − 1). If u 6= b, then q = f(a + 1, b − 1) = f(a + 1, b) = u by
Lemma 7.6. Similarly, if w 6= a, then q = f(a+ 1, b− 1) = f(a, b− 1) = w. Therefore if
neither of the two equalities holds then u = q = w in contradiction to the previous claim.

• d(q, b− 1) ≤ 1
Otherwise b− 1→ b is a manipulation for agent 2 (under a+ 1).

• d(q, b) = d(q, b− 1) + 1 ≤ 2.

• a 6= w
If a = w, then d(q, a + 1) ≤ 1, i.e. q = a + 1 or q = a + 2, and thus (since k ≥ 13)
d(q, b) = d(a, b)− d(q, a) ≥ 5− 2 = 3, in contradiction to the previous result.

• 1 ≤ d(x, b) ≤ 2
Deviation of agent 1 a → a + 1 is not beneficial (under b) and hence d(x, b) ≤ d(w, b) =
d(q, b) ≤ 2

• d(x, b) = 2
If k is even, then d(a, b) < k, as otherwise every outcome is Pareto. It then follows by
Lemma 7.8 that d(x, b) > 1 (i.e. d(x, b) = 2). Similarly, if k is odd, then d(a, b) ≤ bk/2c
(otherwise a→ b is a manipulation). Then d(b, x) = 2 as well, since d(a, x) = 1 would not
violate cycle-Pareto by definition. Thus we get the first part of the lemma.

150 R. Meir

b′

b′′

x′′

x′

1

2

3
45

6

7
x

8

9

10
a′ 11 12

a′′

13

14

(a) The ranges of the critical locations
of agent 2 b′, b′′ are shown, as well
as the ranges of the outcomes x′ =
f(a′, b′), x′′ = f(a′′, b′′).

b′

b′′

x′′ = x′

y

1

2

3
45

6

7
x

8a∗

9

10
a′ 11 12

13

14

(b) An illustration of case (ii).

Figure E.2: Illustrations of profiles defined in the second part of the proof.

• d(a, b) ≥ k/2 − 1. Suppose otherwise, i.e. that d(a, b) < k/2 − 1. Since d(x, b) = 2, then
d(a, x) > d(a, b), and a→ b is a manipulation for agent 1.

Finally, due to Lemma E.3, SP mechanisms on Rk, k ≥ 13 must be cycle-Pareto, for every n.

Lemma 7.9. Let k ≥ 13, n = 2. If f is SP and onto on Rk, then f is cycle-Pareto.

Proof. Recall that by Lemma E.4 cycle-Pareto can only be violated when the facility is at distance
(exactly) 2 from some agent, and agents are almost antipodal.

- For any location of agent 1 on [x, a] = {b+ 2, b+ 3, . . . , a}, the location of the facility does
not change (by Lemma 7.6). In particular, this includes the locations a′ = x+ 3 = b+ 5 and
a′′ = x+ 5 = b+ 7 (since k ≥ 13 it holds that a′, a′′ ∈ [x, a]).

We claim that the existence of profiles (a′, b) and (a′′, b) leads to a contradiction. This claim
completes our proof, and will also be used in the proof of Lemma 7.10.

For each of the profiles a′, b and a′′, b, we move agent 2 counterclockwise (away from x),
and denote by b′ [respectively, b′′] the first step s.t. f(a′, b′) 6= x [resp., f(a′′, b′′) 6= x]. See
Figure E.2(a) for an illustration.

• b′′ > b′

Indeed, the facility cannot move before agent 2 crosses the point antipodal to a′′ (i.e. while
|[b − t, a′′]| < |[a′′, b − t]|), as otherwise we would have a profile violating cycle-Pareto,
where d(x, a′′), d(x, b − t) 6= 2. Similarly, the facility must move after the crossing (i.e.
when |[b − t, a′′]| > |[a′′, b − t]|). Thus for odd k we get that b′′ = a′′ − dk/2e. For
even k, the location of the facility can be anywhere when a′′, b′′ are exactly antipodal, thus
b′′ ∈ [a′′ − k/2− 1, a′′ − k/2].

Mechanisms for Stability and Welfare 151

• We can summarize both cases with the following constraint:

d(b′′, x) = |(b′′, x]| = |(b′′, a′′]| − 5 =

(
k

2
+

1

2
± 1

2

)
− 5 ≤ k

2
− 4. (E.1)

A similar analysis for a′, b′ shows the following:

d(b′, x) = |(b′, x]| = |(b′, a′]| − 3 =

(
k

2
+

1

2
± 1

2

)
− 3 ≥ k

2
− 3. (E.2)

• We denote x′ = f(a′, b′), x′′ = f(a′′, b′′). By Lemma 7.7, x′ is roughly the same distance
from b′ as x is, i.e.

d(b′′, x′′) = d(b′′ − 1, x)± 1 ≤ d(b′′, x) ≤ k/2− 4 (By Eq. (E.1))
d(b′, x′) = d(b′ − 1, x)± 1 ≥ d(b′, x)− 2 ≥ k/2− 5 (By Eq. (E.2))

We get that either (i) x′′ is strictly closer that x′ to b′ (i.e. x′′ < x′), or (ii) x′′ = x′, b′′ =
b′ + 1. Also note that by Lemma 7.7 d(b′, x′) ≤ d(b′ − 1, x), which entails (for k ≥ 13) that
x′ ≥ a′′. See Figure E.2(a) for an illustration.

(i) Suppose that x′′ > x′. This case leads to a simple contradiction. Denote z = f(a′′, b′).
By Lemma 7.6, z = f(a′′, b′′) = x′′. Similarly, since x′ ≥ a′, z = f(a′, b′) = x′, in
contradiction to the assumption.

(ii) Suppose that x′ = x′′, b′ = b′′ − 1 (see Figure E.2(b)). In particular it must hold
that k is even and d(a′, b′) = k/2, i.e. k ≥ 14. We move agent 1 two steps from x′

counter clockwise, to x + 1. We denote this location of agent 1 by a∗. Since b′′ > b′,
f(a′, b′′) = x and thus by Lemma 7.6 f(a∗, b′′) = x as well.
We argue that y = f(a∗, b′) 6= x′. Suppose otherwise, then y = x′ is violating cycle-
Pareto. Moreover, d(a∗, b′) < k/2− 1 ≤ d(a, b) in contradiction to minimality. It thus
follows that y ∈ [b′, a∗]. We further argue that y ∈ [b′, x). Indeed, if y ∈ [x, a∗], then
d(a′, y) ≤ 3. On the other hand,

d(a′, x′) = d(a′, b′)− d(b′, x′) = k/2− (k/2− 5) = 5,

thus a′ → a∗ is a manipulation for agent 1 under b′.

• Finally, it follows that agent 2 has a manipulation by moving from b′′ to b′ under a∗. This is
since the facility moves from x = f(a∗, b′′) (where d(x, b′′) ≥ 2) to y = f(a∗, b′), where
y ∈ (x, b′] and thus d(y, b′′) < d(x, b′′).

E.2.2 Three agents

Lemma 7.12. Assume k ≥ 13, n = 3. Let f be a unanimous SP mechanism on Rk. Then either f
has a 1-dictator, or any pair is a 1-dictator. That is if there are two agents j, j′ s.t. aj = aj′ , then
d(f(a), aj) ≤ 1.

152 R. Meir

Proof. Let f be an SP unanimous rule for n = 3 agents. We define a two agent mechanism for
every pair j, j′ ∈ N by letting j be a duplicate of j′ (For ease of notation we’ll refer to the agents
of gj,j

′
by agent I and agent II, the third agent by j′′, and the original agents by agent 1, agent 2,

and agent 3),
g12(a, b)=f(a, a, b)
g23(a, b)=f(b, a, a)
g31(a, b)=f(a, b, a).

Clearly, the mechanism gj,j
′

is unanimous, since gj,j
′
(a, a) = f(a, a, a) = a for all j, j′.

We argue that gj,j
′

is SP. Indeed, otherwise there is a manipulation either for agent II (which is
also a manipulation in f , which is a contradiction to SP) or for agent I (say, a → a′). In the latter
case we can construct a manipulation in f by iteratively switching agents j, j′ from a to a′. Either
j or j′ strictly gains by this move and thus has a manipulation.

Since gj,j
′

is a unanimous and SP, by Theorem 7.11 it has a 1-dictator. If the dictator is agent II
then j′′ is also a 1-dictator of f . Otherwise, suppose that f(aj , aj′ , aj′′) = x, and d(x, aj′′) > 1.
However It the follows by Lemma 7.6 that f(x, x, aj′′) = x as well, which is a contradiction.

If agent I is a 1-dictator of g, then whenever aj = aj′ , d(f(a), aj) ≤ 1.

Lemma 7.13. Let f be an SP, unanimous rule for 3 agents on Rk for k ≥ 13. For all a, b, c ∈ Rk,
x = f(a, b, c), d(a, x) ≤ 1 or d(b, x) ≤ 1 or d(c, x) ≤ 1.

Proof. By Lemma 7.12, either there is a 1-dictator (in which case we are done), or every pair of
agents standing together serve as a 1-dictator.

Let u1, u2, u3, x = f(u1, u2, u3) s.t. x is at least 2 steps from all agents. We have that there
is a semi-cycle in which x and two other points are consequent, and thus x must be between them
(otherwise the more distant agent of the two has a manipulation, similarly to Lemma 7.8). W.l.o.g.
u1 + 1 < x < u2 − 1 (i.e., ordered that way on an arc). Now suppose that agent 3 moves to u1 or
u2, whichever closer to her (assume u1). Then y = f(u1, u2, u1) is close to u1. We thus have

d(u3, y) ≤ d(u3, u1) + d(u1, y) ≤ (d(u3, x)− 2) + 1 < d(u3, x),

i.e.,there is a manipulation for agent 3.

Theorem 7.14. Assume k ≥ 22, n = 3. Let f be an onto SP mechanism on Rk, then f is a
1-dictator.

Proof. Assume, toward a contradiction, that there is no 1-dictator.
We begin from a profile where a = 0, b′′ = 5. Let x = f(a, b′′, a). By Lemma 7.12, d(x, a) ≤

1. Moreover, we can assume w.l.o.g. that x = a = 0, since otherwise we can move all agents
toward x.

We also define an alternative profile, where b′ = b′′ + 3 = 8. See Figure E.3 for an illustration.
We now move agent 3 counterclockwise from a to b′ (i.e., along the long arc). Suppose c0 =

a− 3. Then the facility is either near a or near c0. If it is near c0, then it must follow agent 3 all the
way to b′ (otherwise he will have a manipulation). In particular, the facility must visit one of the
points b′ + 2, b′ + 3, b′ + 4. However since k ≥ 22, then all three points are at distance of at least
10 from a. This means that agent 1 can manipulate a → b′, bringing the facility (by Lemma 7.12)
to b′ ± 1.

Mechanisms for Stability and Welfare 153

cb′

cb′′

cb∗∗

x′′

x′

5 b′′
4
b∗3

b∗∗
0

a

x21
c0

18

12

8
b′

Figure E.3: An illustration of the profiles on R24. Note that cb′ must be roughly half way between
b′ and a (along the long arc), and likewise for cb′′ w.r.t. [b′′, a]. Moving along the dashed arrow,
agent 2 must change the critical point cb. Thus there is at least one step along this path that is a
manipulation for agent 2.

Therefore, f(a, b′, c) is either near a or near b′ for all c ∈ [b′, a]. Moreover, when it is near
a we can still assume it equals x = a (since otherwise we again move agents 1 and 2 toward the
facility).

We can now apply exactly the same argument on the initial profile (a, b′′, c0), thus f(a, b′′, c)
is either near a or near b′′ for all c ∈ [b′′, a].

Next, let c′b denote the last point on the long arc s.t. f(a, b′, cb′) = x, meaning that d(x′, b′) ≤ 1,
where x′ = f(a, b′, c) for all c ∈ (b, cb′+1]. Similarly, cb′′ will denote the critical switching point
when agent 2 is at b′′, and x′′ = b′′ ± 1 is the new location of the facility after the switch.

Our plan is as follows: First to show that cb′ , cb′′ are roughly on the middle of the long arc
[b′, a] and [b′′, a], respectively. It will then follow that cb′ > cb′′ , which will lead to a manipulation
of agent 2.

Let us study the constraints on cb (for any location b of agent 2). For convenience, we denote
rb = k − cb = d(cb, a). The location of the facility after the switch is denoted by z. Indeed,
rb = d(x, cb) ≤ d(z, cb), otherwise there is a manipulation cb → cb + 1 for agent 3. Thus,

rb = d(x, cb) ≤ d(z, cb) = d(b, cb) + d(b, z) ≤ d(b, cb) + 1 = k − b− rb + 1,

i.e., rb ≤ k−b+1
2 .

Similarly, d(cb + 1, z) ≤ d(cb + 1, x) = rb + 1 (otherwise cb + 1→ cb is a manipulation), thus

rb ≥ d(cb + 1, z)− 1 = d(cb, z)− 2 ≥ k − b− rb − 1− 2 = k − b− rb − 3,

i.e., rb ≥ k−b−3
2 .

Substituting b for the actual values b′, b′′, we get that

cb′ = k − rb′ ≥ k −
k − b′ + 1

2
= k − k − 8

2
=
k

2
+ 4,

whereas

cb′′ = k − rb′′ ≤ k −
k − b′′ − 3

2
= k − k − 9

2
=
k

2
+ 4

1

2
.

154 R. Meir

Thus either cb′ > cb′′ , or both are equal to
⌈
k
2 + 4

⌉
. In the first case, agent 2 can manipulate in

profile (a, b′′, cb′) by reporting b′. This will move the facility from x (where d(x, b′′) = 5) to b′±1,
which is at most 4 steps from b′′.

In the latter case, consider b∗ = 4 and b∗∗ = 3. Computing the critical point for b∗∗,

cb∗∗ = k − rb∗∗ ≤ k −
k − b∗∗ − 3

2
= k − k − 7

2
< cb′′ .

Thus either cb∗ < cb′′ , in which case agent 2 has a manipulation (a, b∗, cb′′)→ b′′, or cb∗∗ < cb∗ =
bb′′ , in which case agent 2 has a manipulation (a, b∗∗, cb∗)→ b∗.

Theorem 7.15. Let f be an onto and SP mechanism on Rk, where k ≥ 22, then f is 1-dictatorial.

Proof. We assume by induction for every m < n (we know it holds for n ≤ 3). Let f be an SP
unanimous rule for n ≥ 4 agents. We define two mechanisms for n− 1 agents:

g(a−1) = f(a1 = a2, a−1) ; h(a−3) = f(a3 = a4, a−3).

Now, similarly to the proof of Lemma 7.12, both g, h are unanimous and SP and therefore both are
1-dictator mechanisms.

Let i∗ ∈ N \ {1}, j∗ ∈ N \ {3} be the dictators of g and h, respectively. Suppose first that
i∗ 6= j∗. Take any profile where d(ai∗ , aj∗) > 2 (this is always possible for k > 4). Also, if
i∗ = 2 then set a1 = a2, and if j∗ = 3 then set a4 = a3. We then have that x = f(a) holds both
d(x, ai∗) ≤ 1 and d(x, aj∗) ≤ 1, i.e., d(ai∗ , aj∗) ≤ 2 in contradiction to the way we defined the
profile.

Thus i∗ = j∗. This means that i∗ acts as a 1-dictator of f whenever a1 = a2 or a3 = a4.
W.l.o.g. i∗ /∈ {1, 2} (in the symmetric case i∗ /∈ {3, 4}). For any profile b = b−{1,2,i∗}, consider
the mechanism

qb(a1, a2, ai∗) = f(a1, a2, ai∗ ,b).

Note that is is onto and SP, and thus has a 1-dictator. If i∗ is the dictator for any b then we are
done. Otherwise, w.l.o.g. agent 1 is the 1-dictator for some qb. Then, consider some profile where
a1 = a2, and d(a1, ai∗) > 2 to reach a contradiction.

E.2.3 Small cycles

Proposition 7.16. There are onto and anonymous SP mechanisms on Rk:

(a) for n = 2, and all k ≤ 12.

(b) for n = 3, and all k ≤ 14 or k = 16.

For n = 2, k ≤ 9, we can use the same “median-like” mechanism described next, adding a
third dummy agent at an arbitrary location. Tie-breaking is made in favor of the dummy agent, and
then clockwise. For k ∈ {10, 11, 12} we provide a tabular description of the mechanisms online.5

5http://tinyurl.com/mrqjcbt

http://tinyurl.com/mrqjcbt

Mechanisms for Stability and Welfare 155

Proof for n = 3, k ≤ 7. We define a “median-like” mechanism as follows: let (a3, a1] be the longest
clockwise arc between agents, then f(a) = a2. Break ties clockwise, if needed. An agent (say
a1) can try to manipulate. The current dictator (say a2) must be the one closer a1, as otherwise
|(a1, a2]| > |(a3, a1]|. Thus changing the identity of the dictator from 2 to 3 cannot benefit agent 1.
The only way to gain is to become the dictator, by moving away from a2, making the arc [a3, a

′
1]

smaller. For agent 1 to become the dictator, the size of (a2, a3] must be at least 3, otherwise there
is a longer arc (as the sum is k = 7). We have that |(a3, a1]| ≥ |(a2, a3]| ≥ 3, since agent 2
is the dictator for a. As a result, |(a1, a2]| ≤ 7 − 3 − 3 = 1, i.e. either a1 = a2 = f(a) (in
which case clearly there is no manipulation), or a1 = a2 − 1. In the latter case, we will have that
f(a′) = a′1 6= a1, so it is still not an improvement for agent 1.

It is easy to verify that the mechanism also works for smaller cycles.

For k ∈ {8− 14, 16} we provide mechanisms as three-dimensional arrays in Matlab format.

Corollary 7.18. Every SP mechanism on Rk for k ≥ 22 has an approximation ratio of at least
9
10n− 1. The ratio converges to n− 1 as k tends to infinity.

Proof. If the mechanism is not unanimous, it has an infinite approximation ratio. Otherwise it is
a 1-dictator, w.l.o.g. agent n is the 1-dictator. Let a1 = a2 = . . . = an−1 = k, and an = bk2 c.
Clearly, the optimal location is opt = a1, and the optimal total distance from all agents is bk2 c.
However, f(a) = bk2 c ± 1, and the total distance from the agents is at least (n− 1)

(
bk2 c − 1

)
(in

fact min{(n− 1)bk2 c, n
(
bk2 c − 1

)
}). Thus the approximation ratio for k ≥ 22 is

SC(f(a))

SC(opt(a))
≥ (n− 1)

bk2 c − 1

bk2 c
≥ 9

10
(n− 1) ≥≥ 9

10
n− 1,

thereby proving the assertion.

Corollary 7.19. Let G = (V,E) be a graph that contains some minimal cycle R ⊆ V that is
sufficiently large (according to Table 7.1). Then any SP onto mechanism on G has a “cycle 1-
dictator” i ∈ N . That is, if all agents lie on R then d(f(a), ai) ≤ 1.

Proof. Let f be an onto SP mechanism on G. We argue that whenever a ∈ (R)
n (i.e. all agents

are on the cycle R), then f(a) ∈ R as well.
Assume otherwise, i.e. f(a) /∈ R. Let y∗ ∈ argminy∈R d(y, x) and r = d(x, y∗). Let S ⊆ N

be the agents s.t. |(ai, y∗]| < |(y∗, ai]|, and T be the agents s.t. |(ai, y∗]| ≥ |(y∗, ai]|.6
If either S or T contains all agents then there is a manipulation by moving all agents to the

location of the agent closest to y∗.
We now iteratively move all S agents toward y∗ one step at a time. At each step we will move

the farthest agent from y∗ toward y∗.
In each step an agent takes, the facility can keep its location, move to a different location not

on R of the same distance from y∗ as f(a), or move to yS ∈ R, where yS = y∗+ r (otherwise this
is a manipulation to the moving agent in one of the directions).

At some step the location of the facility must change to a location on the cycle (i.e. the third
alternative occurs) , otherwise there is a manipulation by unanimity: when all agents of S reach y∗

and all the agents of T join them one by one (for each T agent joining, the facility cannot jump to
the arc since it will be a manipulation). Similarly, if we hold S and move all agents from T towards
y∗ then the facility must move to yT , where yT = y∗ − r.

6ai and y∗ all are on a cycle and the notation [a, b) notates the segments as we used for the cycle graphs.

156 R. Meir

W.l.o.g. the facility jumps to yS when agent 1 ∈ S moves from a1 to a1 + 1, and with agent
2 ∈ T when she moves from a2 to a2 − 1 and they are the farthest agents (counter-clockwise and
clockwise respectively).

We freeze all other agents s.t. if either agent 1 or agent 2 moves the facility jumps, and consider
the three profiles f(a1, a2, a−12) = f(a), f(a1 +1, a2, a−12) = yS and f(a1, a2−1, a−12) = yT .
Clearly yS cannot be farther from y∗ than a2 (and similarly for yT and a1) otherwise there is a
manipulation by unanimity when all agents join a2 one by one (for each agent joining, the facility
cannot jump to the arc since it will be a manipulation).

Then we get a contradiction as f(a1 + 1, a2 − 1, a−12) = f(a1 + 1, a2, a−12) = yS but also
f(a1 + 1, a2 − 1, a−12) = f(a1, a2 − 1, a−12) = yT 6= yS otherwise there is a manipulation.

E.3 Proofs for Section 7.5
Proposition E.5. The approximation ratio of the SRD mechanism is at least 2.4 on some instances
with three agents (i.e., strictly higher than

(
3− 2

n

)
= 2 1

3).

Example . Consider the line graph L2 (i.e., V = {0, 1, 2}), with the constraint V ′ = {0, 2}.
Assume w.l.o.g. that an agent placed in a = 1 (and is thus indifferent between the allowed locations)
reports her prefered location as 0.

We define three agents, where a1 = a2 = 2, and a3 = 1. We set agents’ weights as follows:
w1 = w2 = 0.29, and w3 = 0.42.

Observe first that SC(0,a) = 0.79, whereas d∗ = SC(2,a) = 0.21. However, the SRD
mechanism selects agent 3 (and thus the location 0) with probability of 0.422

0.292+0.292+0.422
∼= 0.511.

Therefore,

SC(SRD(a),a) > 0.51 · 0.79 + 0.49 · 0.21 = 0.5058 > 2.4 · 0.21 = 2.4 · d∗,

which proves the lower bound. ♦

Proposition E.6. The approximation ratio of the SRD mechanism is at least 1.39 on some uncon-
strained instances with three agents (i.e., strictly higher than

(
2− 2

n

)
= 1 1

3 .

Example . We use L1, i.e. V ′ = V = {0, 1}, and three agents, where a1 = a2 = 1, and a3 = 0.
We set agents’ weights as follows: w1 = w2 = 0.363, and w3 = 0.274.

We have that SC(0,a) = 0.763, and d∗ = SC(1,a) = 0.274. The SRD mechanism selects
agent 3 with probability of 0.2742

0.3632+0.3632+0.2742
∼= 0.222. Therefore,

SC(SRD(a),a) > 0.222 · 0.763 + 0.778 · 0.274 > 0.382 > 1.39 · 0.274 = 1.39 · d∗,

which proves the lower bound for the unconstrained case. ♦

Theorem 7.20. The following hold for Mechanism 2, w.r.t. any profile a:

(a) αw ≤ 2− 2
n .

(b) CRD has an approximation ratio of 1 + αw, i.e., at most 3− 2
n .

(c) for unconstrained instances, the approximation ratio is αw

2 + 1, i.e., at most 2− 1
n .

Mechanisms for Stability and Welfare 157

Proof. We first prove that αw ≤ 2− 2
n .

Let g(x) = 1
2−2x . Note that g is convex. Also, since

∑
i∈N wi = 1, we have that

1

n
≤
∑
i∈N

w2
i ≤ 1. (E.3)

(αw)−1 =
∑
i∈N

p′i =
∑
i∈N

wi
1

2− 2wi
=
∑
i∈N

wig(wi)

≥ g

(∑
i∈N

wi · wi

)
=

1

2− 2
∑
i∈N w

2
i

(from Jensen’s inequality)

≥ 1

2− 2(1/n)
, (from (E.3))

thus αw ≤ 2− 2
n , which proves (a).

Denote ci = opt(ai); c∗ = opt(a). Note that for all i, d(ci, c
∗) ≤ 2d(ai, c

∗), since otherwise
c∗ is closer to ai than ci.

SC(CRD(a),a) =
∑
i∈N

piSC(ci,a) =
∑
i∈N

pi
∑
j∈N

wjd(ci, aj)

=
∑
i∈N

piwid(ci, ai) +
∑
j 6=i

piwjd(ci, aj)

≤
∑
i∈N

piwid(c∗, ai) +
∑
j 6=i

piwj(d(ci, c
∗) + d(c∗, aj))

 (by triangle ineq.)

=
∑
i∈N

pid(ci, c
∗)
∑
j 6=i

wj +
∑
i∈N

∑
j∈N

piwjd(c∗, aj)

= αw

∑
i∈N

wi
2(1− wi)

d(ci, c
∗)(1− wi) +

∑
j∈N

wjd(c∗, aj)
∑
i∈N

pi

≤ αw

∑
i∈N

wi
2

2d(ai, c
∗) +

∑
j∈N

wjd(c∗, aj)

= (αw + 1)
∑
j∈N

wjd(c∗, aj) = (αw + 1)SC(c∗,a) ≤
(

3− 2

n

)
d∗

(from (a))

158 R. Meir

Now, in the unconstrained case, ai = ci for all i.

SC(CRD(a),a) =
∑
i∈N

piSC(ci,a) =
∑
i∈N

pi
∑
j∈N

wjd(ai, aj) =
∑
i∈N

pi
∑
j 6=i

wjd(ai, aj)

≤
∑
i∈N

∑
j 6=i

piwj(d(ai, c
∗) + d(aj , c

∗)) (T.I.)

=
∑
i∈N

pid(ai, c
∗)
∑
j 6=i

wj +
∑
i∈N

pi
∑
j 6=i

wjd(aj , c
∗)

=
∑
i∈N

pid(ai, c
∗)(1− wi) +

∑
i∈N

pi(r
∗(F)− wid(ai, c

∗))

= αw

∑
i∈N

wi
2(1− wi)

d(ai, c
∗)(1− wi) + r∗(F)−

∑
i∈N

piwid(ai, c
∗)

=
αw

2

∑
i∈N

wid(ai, c
∗) + r∗(F)−

∑
i∈N

piwid(ai, c
∗)

=
αw

2
r∗(F) + r∗(F)−

∑
i∈N

piwid(ai, c
∗)

≤
(αw

2
+ 1
)
r∗(F) ≤

(
2− 1

n

)
r∗(F),

which completes the proof.

Theorem 7.21. The following hold for Mechanism 3:

◦ βw ≤ 1− 2
n .

◦ RRD has an approximation ratio of at most 4, and at least 3 (in the worst case).

◦ for unconstrained instances, the approximation ratio is 1 + βw, i.e., at most 2− 2
n .

Proof. Let q(x) = 1
1−2x . Note that q is convex.

(βw)−1 =
∑
i∈N

p′i =
∑
i∈N

wi
1

1− 2wi
=
∑
i∈N

wiq(wi)

≥ q

(∑
i∈N

wi · wi

)
=

1

1− 2
∑
i∈N w

2
i

(from Jensen’s inequality)

≥ 1

1− 2(1/n)
, (from (E.3))

thus βw ≤ 1− 2
n .

For the upper bound, we will need the following.

Lemma E.7. For all i ∈ N , pi ≤ 2wi.

Mechanisms for Stability and Welfare 159

Proof. Let h(x) = x
1−2x . Note that h is convex. Thus by Jensen’s inequality

1

n− 1

∑
j 6=i

h(wj) ≥ h(
1

n− 1

∑
j 6=i

wj) = h(
1− wi
n− 1

). (E.4)

Next, ∑
j∈N

wj
1− 2wj

=
wi

1− 2wi
+
∑
j 6=i

wj
1− 2wj

=
wi

1− 2wi
+
∑
j 6=i

h(wj)

≥ wi
1− 2wi

+ (n− 1)h

(
1− wi
n− 1

)
(by Eq. (E.4))

=
wi

1− 2wi
+ (n− 1)

1−wi
n−1

1− 2 1−wi
n−1

=
wi

1− 2wi
+

1− wi
1− 2 1−wi

n−1

≥ wi
1− 2wi

+
1/2

1− 2 1/2
n−1

=
wi

1− 2wi
+

1

2n−2
n−1

>
wi

1− 2wi
+

1

2
.

Therefore,

pi = βwp
′
i =

∑
j∈N

wj
1− 2wj

−1

wi
1− 2wi

<
1

wi
1−2wi

+ 1
2

· wi
1− 2wi

=
wi

wi + 1−2wi
2

=
wi

wi − wi + 1
2

= 2wi.

We now bound the social cost of RRD. We skip some steps that are detailed in the upper bound
proof of the CRD mechanism.

SC(RRD(a),a) =
∑
i∈N

piSC(ci,a) =
∑
i∈N

pid(ci, c
∗)
∑
j 6=i

wj +
∑
i∈N

∑
j∈N

piwjd(c∗, aj)

= βw
∑
i∈N

wi
1− 2wi

d(ci, c
∗)(1− wi) +

∑
j∈N

wjd(c∗, aj)
∑
i∈N

pi

≤ βw
∑
i∈N

2wi(1− wi)
1− 2wi

d(ai, c
∗) + r∗(S)

= βw
∑
i∈N

(
wi(1− 2wi)

1− 2wi
d(ai, c

∗) +
wi

1− 2wi
d(ai, c

∗)

)
+ r∗(S)

= βw
∑
i∈N

wid(ai, c
∗) + βw

∑
i∈N

wi
1− 2wi

d(ai, c
∗) + r∗(S)

= βwr
∗(S) + βw

∑
i∈N

wi
1− 2wi

d(ai, c
∗) + r∗(S) ≤

∑
i∈N

pid(ai, c
∗) + 2r∗(S)

≤ 2
∑
i∈N

wid(ai, c
∗) + 2r∗(S) = 2r∗(S) + 2r∗(S) = 4r∗(S).

160 R. Meir

In the unconstrained case, recall that ai = ci for all i.

SC(RRD(a),a) =
∑
i∈N

piSC(ci,a) =
∑
i∈N

pi
∑
j∈N

wjd(ai, aj) =
∑
i∈N

pi
∑
j 6=i

wjd(ai, aj)

≤
∑
i∈N

∑
j 6=i

piwj(d(ai, c
∗) + d(aj , c

∗)) (T.I.)

=
∑
i∈N

pid(ai, c
∗)
∑
j 6=i

wj +
∑
i∈N

pi
∑
j 6=i

wjd(aj , c
∗)

=
∑
i∈N

pid(ai, c
∗)(1− wi) +

∑
i∈N

pi(r
∗(S)− wid(ai, c

∗))

= βw
∑
i∈N

wi
1− 2wi

d(ai, c
∗)(1− wi)− βw

∑
i∈N

wi
1− 2wi

wid(ai, c
∗) + r∗(S)

= βw
∑
i∈N

wi(1− 2wi)

1− 2wi
d(ai, c

∗) + r∗(S)

= βw
∑
i∈N

wid(ai, c
∗) + r∗(S) = βwr

∗(S) + r∗(S)

= (1 + βw) r∗(S) ≤
(

2− 2

n

)
r∗(S),

which proves the upper bound.

Mechanisms for Stability and Welfare 161

Appendix F

Proofs for Chapter 8

Theorem 8.3. Let 2k ≥ 18 (or 2k ≥ 12 for n = 2). An onto mechanism on the cycle R2k is SP if
and only if it is 1-dictatorial, Cube-monotone (CMON), and IDA.

Proof. For the first direction, we must prove that every onto SP mechanism must be IDA and
CMON (in addition to being 1-dictatorial). Suppose that some agent violates CMON on coordinate
i. This is either by crossing the location of the facility (i.e. x ∈ [aj , a

′
j]), or the antipodal point (i.e.

x + k ∈ [aj , a
′
j]). In the first case, this is clearly a manipulation, as shown in Lemma 7.3. In the

latter case, assume w.l.o.g. that x = 0 and j moved clockwise. By Lemma 7.6, the agent moved
along the longer arc [aj , x), thus |[x, aj)| ≤ k. By violation of CMON, the facility also moved
clockwise, thus getting closer to aj , which is a manipulation.

Now suppose IDA is violated by agent j (moving w.l.o.g. clockwise). This means that [aj , a
′
j]

does not contain neither x nor k + x. If j is the dictator, then this is clearly a violation (again,
as in Theorem 7.2). Otherwise, the facility can only move one or two steps. If the facility moves
clockwise, then aj → a′j is a manipulation. Otherwise, a′j → aj is a manipulation.

In the other direction, we show that if f is 1-dictatorial (where agent 1 is the dictator), IDA and
CMON, then it must be SP. Indeed, suppose that agent j moves from aj to a′j , thereby moving the
facility from x to x′, where w.l.o.g. x = 0. If j = 1, then the only way to gain is by moving one
step, bringing the facility to a1. However this would contradict IDA. Therefore assume that j is not
the dictator. By Lemma 7.6, j must move along the longer arc [aj , x]. Consider first a1 = x = 0.
Note that the facility can only move to x′ = 2k − 1 (if x′(k) 6= x(k)) or x′ = 1 (if x(1) 6= x′(1)).

(I) If j is not crossing neither x = 0 = 0k, nor k = 1k. Then by IDA coordinates 1 and k of the
facility cannot change. Since changing any other coordinate puts x′ at distance at least 2 from the
dictator, the facility cannot move.

(II) If aj = x, then j cannot gain.
(III) k ∈ [aj , a

′
j] (w.l.o.g. j is moving clockwise, from aj ∈ [1, k] to a′j ∈ [k, 2k− 1]). We part

the movement to aj → k, and k → a′j , and denote f(a−j , k) = y. In the first part, only coordinates
between 2 and k of aj change (from 0 to 1). Then by IDA y(1) = x(1) = 0, and the facility can
only move to y = 2k − 1. However this means that d(y, aj) > d(x, aj), i.e. that j does not gain.

Now, if y = 2k − 1, then by IDA x′ = 2k − 1 as well. Therefore suppose that y = x = 0.
Since only coordinates < k change between k and a′j , x

′(k) = y(k). On the other hand, a′j(1) =
0 < k(1), thus by CMON x′(1) ≤ x(1) = 0 as well. Therefore, x′ = x.

162 R. Meir

It is left to handle the case where a1 6= x. Since agent 1 is a 1-dictator d(a1, x) = 1, and
d(a1, x

′) ≤ 1. The only difference is that in case (III) it is possible that y = 2k−2 (if a1 = 2k−1).
However this is still not a manipulation, as d(y, aj) ≥ d(x, aj) (rather than strictly larger).

Theorem 8.6. There exist concept classes for which any deterministic SP mechanism has an ap-
proximation ratio of at least Ω(n), even if all the weights are equal.

Proof sketch. We explain how the results of [Meir et al., 2010] can be slightly altered to prove
Theorem 8.6.

The proof of Theorem 3.1 in [Meir et al., 2010] is using a scenario with two input point
X = {a, b}, and three classifiers C = {ca, cb, cab}, where each classifier classifies as positive
its corresponding point (or points). The proof then continued, showing that this scenario is equiv-
alent to voting over the set of candidates C, then applying the Gibbard-Satterthwaite theorem to
show that any SP mechanism must use a dictator. The reason we cannot apply the proof from [Meir
et al., 2010] directly, is that it used a scenario without shared inputs (i.e., the agents controlled dif-
ferent set of samples). To complete the proof, it is required to show that each agent can express all
possible 6 preference orders over the set of candidates C, even with shared inputs (this corresponds
to Table 1 in [Meir et al., 2010]).

To that end, we define S with k = 9 examples as follows. 4 examples on a, divided to the sets
|A1| = 1, |A2| = 3, and 5 examples on b, divided so that |B1| = 1, |B2| = 4 on b.1 For all agents
Xi = X = A1 ∪A2 ∪B1 ∪B2, thus we have shared inputs.

The following table can be used to easily verify that i can express any possible preference order
on C using labels.

Label given by agent i Number of errors on Si
Preference order Yi(A1) Yi(A2) Yi(B1) Yi(B2) ca cb cab

ca �i cab �i cb + + + - 1 8 4
ca �i cb �i cab - - - - 4 5 9
cab �i cb �i ca + + + + 5 4 0
cab �i ca �i cb + + - + 4 5 1
cb �i ca �i cab - - + - 6 3 7
cb �i cab �i ca + - + + 8 1 3

Finally, once we know that our mechanism must select a dictator, we can assume w.l.o.g. that
it always picks agent 1 (since all agents have equal weights). We define Y1(A2) = “-”, and all
other labels of all agents as “+”. Thus our dictator selects cb (with n/2 errors), while the optimal
classifier cab makes only 3 errors.

1The odd number is in order to avoid tie-breaking issues.

Mechanisms for Stability and Welfare 163

Appendix G

Proofs for Chapter 9

G.1 Proofs for Section 9.4

Proposition 9.11. Every online algorithm under Assumption UV has a worst-case approximation
ratio of at most 3

4 , even on an interval. If we relax Assumption UV, then the bound is at most 1
2 .

Proof. Consider the following two sequences of n agents, where n = m. The first n/2 agents
(denoted N ′) are of type (g1, n), with goal g1 and maximum distance to walk n. They can be
allocated any slot. Our two instances differ in the next n/2 agents (denoted N ′′). In H1, we have
n/2 agents of type (g2,

1
2n). In H2, we have n/2 agents of type (g1,

1
2n). Note that µ(H1) =

µ(H2) = n.
Let r1, r2 be the expected number of agents from N ′ that are allocated slots by the mechanism

in half of the interval that is closer to g1 and g2, respectively. Since r1 + r2 ≤ |N ′| = n/2, at least
one of them is at most n/4. We divide into two cases: (a) if r1 ≤ n/4, then on instance H1 all of
N ′′ are placed closer to g2; (b) if r2 ≤ n/4, then on instance H2 all of N ′′ are placed closer to g1.

In both cases, the total number of allocated slots is at most 1
2n + n/4 = 3

4n. Thus for any
mechanism M either SW (M,H1) ≤ 3

4n = 3
4 opt(H1), or SW (M,H2) ≤ 3

4n = 3
4 opt(H2).

Next, suppose that we drop Assumption UV, and set φ1 � φ2. Let N ′ contain n agents of type
(g2, n), and N ′′ contain n agents of type (g1, n). Once again we define two instances H1, H2. In
H1, only N ′ arrive. In H2, N ′ arrive and then N ′′.

Denote by r the expected number of agents from N ′ placed by the mechanism. If r ≤ n/2 we
are done since SW (M,H1) ≤ 1

2 |N
′| = 1

2 opt. Otherwise, consider the performance of M on H2.
Note that since φ1 � φ2, we can practically ignore the type 2 agents in the welfare computation.
However strictly less than n − r ≤ 1

2n of the type 1 agents are placed in expectation, so the
approximation is at most 1

2 .

Proposition 9.13. The THRESHOLD mechanism with the threshold t̂ = m/2 provides us with a
1
2 -approximation for two goals on the interval.

Proof. We will prove that running the THRESHOLD mechanism for the threshold t̂ = m/2 pro-
vides us with a 1

2 -approximation. Let t∗ be the minimal true optimal threshold. Let N1, N2 be

164 R. Meir

the sets of agents from each goal that are allocated in the optimal allocation. By the Lemma 9.8,
|N1| = t∗. We divide in two cases. Note that µ = α|N1|+ |N2|.

If t∗ < t̂, then our mechanism will allocate to all ofN1, as none of them is restricted by t̂. Also,
all of N2 will be allocated unless all top m/2 slots are full. Thus the total utility in our mechanism
is

α|N1|+ min{|N2|,m/2} ≥ α|N1|+ |N2|/2 ≥ opt/2.

If t∗ ≥ t̂, then |N1| ≥ m/2, and thus our mechanism allocates all of the bottom m/2 ≥ |N1|/2
lower slots to g1. Also, all of N2 are allocated. Thus the total utility is at least

α|N1|/2 + |N2| ≥
α|N1|+ |N2|

2
= opt/2.

Proposition 9.14. No online algorithm can guarantee an approximation ratio better than 1/α.

Proof. We start with a single goal g′ with a low value φ′, and for every slot s ∈ S add another goal
gs with a high value φs = αφ′. For every subset of slots T ⊆ S (including T = ∅), we define an
instance HT as follows. First, m agents of type (g′,∞) arrive (i.e. they can be placed anywhere).
Then for every s ∈ T , arrives an agent of type (gs, 0), where gs = s.

Suppose that after the first sequence of agents, some slots T ∗ 6= ∅ are allocated. Then on
instance HT∗ , we have SW = |T ∗|φ′ and µ = |T ∗|αφ′ + (m − |T ∗|)φ′ ≥ αSW. On the other
hand, if T ∗ = ∅, then on instance H∅ we have SW = 0 < µ/α.

Proposition 9.15. Setting fixed prices at 0 guarantees a 1/2α approximation.

Proof. By setting all prices to 0, we get a maximal cardinality matching of size t, whose welfare is
at least t · minj φj . By Observation 9.5, the maximum cardinality matching is of size at most 2t.
Thus the approximation is at least t·minj φj

2t·maxi φi
= 1

2α .

Proposition 9.16. Under Assumption KG, for any number of goals k, RANDOM-PARTITION is a
1
k -approximation mechanism. Moreover, it can be derandomized.

Proof. Let P = (N1, . . . , Nk) be the allocated agents in some optimal partition σ∗, where Nid ⊆
Ni is the set of agents s.t. mj ≤ d. Denote by S′i ⊆ Si the set of slots allocated by the mechanism
to agents following goal gi. We argue that in expectation at least |S′i| ≥ |Ni|/k.

Let Ri,d be the set of slots of distance at most d from gi. Consider some goal gi and let m′

be the smallest distance s.t. (Si \ S′i) ∩ Ri,m′ 6= ∅. That is, the smallest distance of an available
slot in our allocation. All agents of type (gi,mj) with mj ≥ m′ are allocated, as otherwise we
would assign j to an available slot. For every d < m′ (and in particular d = m′ − 1), we have
Si ∩ Ri,d = S′i ∩ Ri,d. By our random assignment, |S′i ∩ Ri,d| = |Si ∩ Ri,d| = |Ri,d|/k in
expectation. Clearly |Ni,d| ≤ |Ri,d|. Finally,

|S′i| = |S′i ∩Ri,d|+ |S′i \Ri,d| ≥ |Ni,d|/k + |Ni \Ni,d| ≥ |Ni|/k.

Mechanisms for Stability and Welfare 165

The total welfare at out allocation is thus∑
i≤k

φi|S′i| ≥
∑
i≤k

φi|Ni|/k =
1

k

∑
i≤k

φi|Ni| =
µ

k
.

If we want to de-randomize the allocation of Si and thus the mechanism, this is not too hard.
We sort the slots by their distance from each of the k goals. Thus we have k priority queues, each
containing all of the slots. We iteratively traverse all slots in a round-robin over goals, when in each
iteration t we take the next slot in queue i = t mod k + 1 and assign in to Si. We then remove
the assigned slot from all queues. Using the same notations as in the randomized algorithm, it now
holds that |S′i ∩ Ri,d| = |Si ∩ Ri,d| ≥ |Ri,d|/k − k, since all slots of distance at most d from gi
have been divided either equally (up to a rounding factor of k), or in favor of goal i. Thus it still
holds that

|S′i| = |S′i ∩Ri,d|+ |S′i \Ri,d| ≥ |Ni,d|/k − k + |Ni \Ni,d| ≥ |Ni|/k − k,

and thus ∑
i≤k

φi|S′i| ≥
∑
i≤k

φi(|Ni|/k − k) =
1

k

∑
i≤k

φi|Ni| − k2 =
µ

k
− k2.

As the number of agents increases as k remains constant, the additive factor is negligible.

Proposition 9.17. For the case of two goals on a line, under Assumption KP, there exists no optimal
SP mechanism.

Proof. We set φ1 = 2, φ2 = 1. Our proof shows that an adaptive adversary can force an approxi-
mation ratio of at least 5

6 . It follows that the approximation of any deterministic mechanism against
a static adversary is also at least 5

6 . While some randomized mechanisms might do better, clearly
none can guarantee a perfect performance (e.g. against an adversary that plays a random sequence).

Consider a line with 8 slots, {s1, . . . , s8}, where g1 = s4, g2 = s7. The vacant slots are
a = s1, b = s5, c = s6, and d = s8. All other slots are blocked. The population has five agents:
(g1, 1); (g1, 8); (g2, 1); (g2, 1); (g2, 8). Note that in the optimal solution σ∗ we can place both type 1
agents and two other agents, thus µ = 2φ1 + 2φ2 = 6.

We can model the arrival process as a zero-sum game in extensive form between the mechanism
(which is setting prices), and an adversary (which is setting the order of arrival). The goal of the
mechanism is to maximize the welfare. We will show that the adversary can coerce a situation such
that either not all slots are full, or only one high value agent is placed.

While the adversary has full information, the mechanism only observes its own actions and the
currently occupied slots. That is, if at a given pricing there are several agents that would pick s1,
then all states where one of these agents arrived and occupied s1 belong to the same information
set of the mechanism player. Crucially, the mechanism cannot condition the pricing in the next step
based on the identity of the agent occupying s1.

Therefore, for every sequence of prices, the adversary can choose (part of) the order in retro-
spect, as long as selections are consistent with the information sets. We denote by pix the price of
slot x ∈ {a, b, c, d} in step i. Note that agent (g1, 1) can only be placed in b. Thus if b is being
occupied by any other agent, the adversary wins. Thus we can assume that pa < pb as long as there
is at least one active agent with range m (and in particular in the first step).

166 R. Meir

Consider the first step. Case A: p1
a is strictly lower than all other prices. Then the adversary

sends either (g1, 8) or (g2, 8), which occupy slot a. Note that both states are in the same information
set, thus the next action of the mechanism must be the same for both.

Case A-A: Suppose p2
b is the cheapest price. Then the adversary places (g1, 8) in a (i.e. chooses

from the information set of case A), and sends (g2, 8), which occupies slot b (and thus wins).
Case A-B: Either p2

c ≥ p2
b , or p2

d ≥ p2
b . Then the adversary sends a (g2, 1) agent, which

occupies one of {c, d}. Note that the adversary does not select an option from the information set
yet.

In the 3rd step, then once again if b is cheapest, we are in case A-A. Otherwise, b remains the
only empty slot.

Case A-B-A: p4
b ≤ φ2. As in case A-A, the adversary sets (g1, 8) in a, and (g2, 8) in b.

Case A-B-B: p4
b > φ2. The adversary selects (g2, 8) from the information set, and sends (g1, 8),

which occupies b. In all cases b is occupied by an agent other than (g1, 1).
Case B: p1

x ≤ p1
a, for x ∈ {c, d}. Then the adversary sends either (g1, 8) or (g2, 1), which

occupy slot x. As in Case A, both states belong to the same information set. Denote by y the slot
from {c, d} that is not x.

Case B-A: p2
a < p2

y . The adversary selects (g2, 1) from the information set (which occupies x),
and continue as if we are in Case A (only with one less available slot). We saw that in Case A the
adversary wins.

Case B-B: p2
a ≥ p2

y . The adversary selects (g1, 8) from the information set (which occupies x),
and sends (g2, 8), which will occupy y. However, now there is no agent that can occupy slot a, and
thus the adversary wins again.

We saw that the adversary can always enforce a suboptimal outcome. We next compute the
attained approximation. In Case B-B, the welfare is at most 2φ1 + φ2 = 5. In all other cases, the
welfare is at most φ1 + 3φ2 = 5 as well. Thus any pricing mechanism has an approximation ratio
of at most 5

6 .

Proposition 9.18. Under Assumption KP, there is a 1
2 -approximation mechanism.

Proof. We enumerate the distinct values of goals s.t. φ1 > φ2 > · · · > φk′ . It is possible that
k′ < |G| if some goals have the same value. We compute an optimal partition σ∗ offline. Denote
by Si =

⋃
j:φj=φi

{σ∗(j)} the set of all slots allocated to goals with value φi. We set the price of

all slots in each Si to φi+φi+1

2 (thus no agent wants a slot that is allocated to higher types in σ∗).
Let Nj be all agents whose value is equal to φj (i.e. we merge groups with the same value).

Consider the set of allocated agents A ⊆ N , and denote by T ⊆ N the agents participating
in the original optimal (offline) allocation. Suppose we want to allocates slots to all of T . For
every j ∈ T \ A, j’s original slot is occupied by an agent with same or higher value. Denote
Ai =

⋃
j≤i(A ∩Nj), and Oi =

⋃
j≤i(T ∩Nj).

Thus
∑
j≤i |A ∩Nj | ≥

∑
j≤i |(T \A) ∩Nj | for all i, which means

|Ai| =
∑
j≤i

|A ∩Nj | ≥
1

2

∑
j≤i

|T ∩Nj | =
1

2
|Oi|.

Mechanisms for Stability and Welfare 167

Finally, let aj = |A ∩Nj |. Note that φj − φj+1 > 0.

SW (A) =
∑
i≤k′

aiφi =
∑
i≤k′

(|Ai| − |Ai−1|)φi

=
∑
i≤k′
|Ai|φi −

∑
i≤k′
|Ai−1|φi =

∑
i<k′

|Ai|(φi − φi+1) + |Ak′ |

≥
∑
i<k′

1

2
|Oi|(φi − φi+1) +

1

2
|Ok′ |

1

2

∑
i≤k′

(|Oi| − |Oi−1|)φi =
1

2
opt.

To see that the analysis of this mechanism is tight, consider an instance with two goals on the edges
of an internal, φ1 = φ2 + ε. There are m/2 agents of type (g1,m) (arriving first), and m/2 of type
(g2,m/2). While clearly µ = m(1 + ε

2), in this mechanism the first m/2 agents will occupy all
cheap slots of goal 2, and thus SW (A) = m

2 (1 + ε).

G.2 Proofs for Section 9.5
Suppose we optimally assign the m′ closest slots (ordered by non-decreasing distance) to the m′

lowest-cost agents (ordered by non-increasing cost), that is σ(i) = i. Let p = (p1, . . . , pm′) be
a vector of SNE prices for the first m′ slots, based on the first m′ agents (in the translated GSP
instance).

Lemma 9.19. By setting p(s) = psxs for all s ≤ m′, the agents’ utility is non-decreasing in the
distance from g. That is, uj(j) ≤ ui(i) for all j < i ≤ m′.

Proof. Suppose that slots are ordered by increasing distance ds = d(g, s), and the m′ agents are
sorted by decreasing cost ci. Then in the optimal allocation σ(i) = si.

In every SNE (see Equations (6.2) and (6.3), and [Varian, 2007]), we have pm′ = 0, and for
any i < m′,

p(i) = pixi = bi+1xi ∈ [bLi+1xi, b
U
i+1xi]

= bi+2xi+1 + [vi+1(xi − xi+1), vi(xi − xi+1)]

= p(i+ 1) + [ci+1(di+1 − di), ci(di+1 − di)].

Since xi > xi+1, this range is non-singleton whenever ci > ci+1. The utility of agent i is

ui(si) = φ− dici − p(i) ≤ φ− dici − (p(i+ 1) + (di+1 − di)ci)
= φ− di+1ci − p(i+ 1) ≤ φ− di+1ci+1 − p(i+ 1) = ui+1(si+1).

Theorem 9.20. Under Assumption KP, GSP-PARK is optimal for a single goal.

Proof. Let σ = σm∗ . We should show that on arrival of each agent j ≤ m, she will indeed select
σ(j) (or σ(j′) is cj′ = cj). Note that σ(j) = j for all j ≤ m∗.

168 R. Meir

Due to envy-freeness, we know that each agent j ≤ m∗ prefers the slot allocated to her over
any other slot at these prices. Indifference between slots might pose a problem in principle, since
j may select any slot maximizing her utility. Specifically: if we set p(j) equal to pLj xj , then agent
j + 1 might be indifferent between slots j, j + 1; if we set p(j) equal to pUj xj , then agent j might
be indifferent between slots j − 1, j.

Suppose that xj > xj+1 and cj < cj+1. Then vj < vj+1 and by Equations (6.2) and (6.3),

pUj xj = bUj+1xj = vj(xj − xj+1) + bUj+2xj

≥ vj(xj − xj+1) + bLj+2xj > vj+1(xj − xj+1) + bLj+2xj+1 = pLj xj

Thus we can set p(j) strictly between pLj xj and pUj xj (for all j ≤ m∗) in order to avoid indifference.
If xj = xj+1 or cj = cj+1, then agent j can take any of these slots without hurting efficiency.

Thus we known that any j ≤ m∗ prefers her own slot over all others (whenever it matters).
Suppose that all agents above m∗ (that should not be allocated, if exist) are sorted by non-

decreasing cost, so that

cn ≥ · · · ≥ cm∗+2 ≥ cm∗+1 ≥ c1 ≥ c2 ≥ · · · cm∗ .

The translation γ is required to prevent high-cost agents j > m∗. from selecting a slot on arrival.
Indeed, for every j s.t. cj > cm∗ ,

uj(s1, p
′(1)) = uj(s1, p(1))− γ = uj(s1, p(1))− u1(s1, p(1)) + ε < 0.

Thus no such agent will be interested in the first slot. Moreover, since agent 1 prefers the first slot
to any other, this must apply for any agent whose cost cj is higher. Thus at prices p′, any agent
with cj > c1 will avoid all slots. A slight complication is when cj = c1 for some j > m∗. It can
be similarly shown that these agents will forgo any slot assigned to agents of lower-cost types.

It remains to prove that the new mechanism is individually rational, i.e. all agents j ≤ m∗ want
their slot at the modified price p′. Indeed, since cm∗+1 > c1 (and the distance of every slot is non-
zero), u1(s1, p

′(1)) = u1(s1, p(1))−γ = ε > 0. By Lemma 9.19, uj(sj , p′(j)) ≥ u1(s1, p
′(1)) >

0 for all j ≤ m∗.

Mechanisms for Stability and Welfare 169

Bibliography

Aadithya, K. V., T. P. Michalak, and N. R. Jennings (2011). Representation of coalitional games
with algebraic decision diagrams. In Proceedings of the 10th International Joint Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS), pp. 1121–1122. 31

Abdulkadiroğlu, A., P. A. Pathak, A. E. Roth, and T. Sönmez (2005). The Boston public school
match. American Economic Review, 368–371. 111

Aggarwal, G., G. Goel, C. Karande, and A. Mehta (2011). Online vertex-weighted bipartite match-
ing and single-bid budgeted allocations. In Proceedings of the 22nd Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), pp. 1253–1264. 97

Airiau, S. and U. Endriss (2009). Iterated majority voting. In Proceedings of the 1st International
Conference on Algorithmic Decision Theory (ADT), pp. 38–49. Springer Verlag. 54

Alon, N., D. Falik, R. Meir, and M. Tennenholtz (2013). Bundling attacks in judgment aggregation.
In Proceedings of the 27th AAAI Conference on Artificial Intelligence (AAAI), pp. 39–45. 7

Alon, N., M. Feldman, A. D. Procaccia, and M. Tennenholtz (2010). Strategyproof approximation
of the minimax on networks. Mathematics of Operations Research 35(3), 513–526. 74

Alon, N., F. Fischer, A. Procaccia, and M. Tennenholtz (2011). Sum of us: Strategyproof selection
from the selectors. In Proceedings of the 13th Conference on Theoretical Aspects of Rationality
and Knowledge, pp. 101–110. ACM. 4

Alon, N., R. Meir, and M. Tennenholtz (2013). The value of ignorance about the number of players
(short paper). In Proceedings of the 27th AAAI Conference on Artificial Intelligence (AAAI). 7

Andelman, N., M. Feldman, and Y. Mansour (2007). Strong price of anarchy. In Proceedings of
the 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 189–198. 57

Arthur, W. B. (1994). Inductive reasoning and bounded rationality. The American Economic Re-
view 84(2), 406–411. 53

Ashlagi, I., F. Fischer, I. Kash, and A. D. Procaccia (2010). Mix and match. In Proceedings of the
11th ACM Conference on Electronic Commerce (ACM-EC), pp. 305–314. 4

Aumann, R. (1959). Acceptable points in general cooperative n-person games. In A. Tucker and
R. Luce (Eds.), Contribution to the Theory of Games, Vol. IV, Annals of Mathematical Studies,
Number 40, pp. 287–324. Princeton University Press. 57

170 R. Meir

Aumann, R. and J. Dréze (1974). Cooperative games with coalition structures. International
Journal of Game Theory 3(4), 217–237. 13, 29, 30, 35

Aumann, R. J. (1961). The core of a cooperative game without side payments. Transactions of the
American Mathematical Society 98(3), 539–552. 109

Aziz, H., F. Brandt, and P. Harrenstein (2010). Monotone cooperative games and their threshold
versions. In Proceedings of the 10th International Joint Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS), pp. 1017–1024. 31

Aziz, H., O. Lachish, M. Paterson, and R. Savani (2009). Power indices in spanning connectivity
games. In Algorithmic Aspects in Information and Management, pp. 55–67. Springer. 34

Bachrach, Y. (2010). Honor among thieves: collusion in multi-unit auctions. In Proceedings of the
9th International Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS),
pp. 617–624. 59

Bachrach, Y., E. Elkind, R. Meir, D. Pasechnik, M. Zuckerman, J. Rothe, and J. S. Rosenschein
(2009a). The cost of stability in coalitional games. In Proceedings of the 2nd International
Symposium on Algorithmic Game Theory (SAGT), pp. 122–134. 19, 20, 21, 22, 23, 30, 31, 32,
33, 42

Bachrach, Y., E. Elkind, R. Meir, D. Pasechnik, M. Zuckerman, J. Rothe, and J. S. Rosenschein
(2009b). The cost of stability in coalitional games. Technical report, arXiv:0907.4385 [cs.GT],
ACM Comp. Research Repository. 115

Bachrach, Y., O. Lev, S. Lovett, J. S. Rosenschein, and M. Zadimoghaddam (2013). Coopera-
tive weakest link games. In The 4th Workshop on Cooperative Games in Multiagent Systems
(CoopMAS @ AAMAS‘13). 31

Bachrach, Y., R. Meir, M. Feldman, and M. Tennenholtz (2011). Solving cooperative reliability
games. In Proceedings of the 27th Annual Conference on Uncertainty in Artificial Intelligence
(UAI), pp. 27–34. 7

Bachrach, Y., R. Meir, K. Jung, and P. Kohli (2010). Coalitional structure generation in skill games.
In Proceedings of the 25th AAAI Conference on Artificial Intelligence (AAAI), pp. 703–708. 34

Bachrach, Y., R. Meir, M. Zuckerman, J. Rothe, and J. S. Rosenschein (2009). The cost of stability
in weighted voting games (extended abstract). In Proceedings of the 8th International Joint
Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), pp. 1289–1290. 31

Bachrach, Y. and N. Shah (2013). Max games and agent failures. Manuscript. 31

Bajaj, C. (1986). Proving geometric algorithm non-solvability: An application of factoring poly-
nomials. Journal of Symbolic Computation 2(1), 99 – 102. 73

Barberà, S. and B. Peleg (1990). Strategy-proof voting schemes with continuous preferences. Social
Choice and Welfare 7, 31–38. 76

Barthèlemy, J.-P., B. Leclerc, and B. Monjardet (1986). On the use of ordered sets in problems of
comparison and consensus of classifications. Journal of Classification 3, 187–224. 88

Mechanisms for Stability and Welfare 171

Bejan, C. and J. Gómez (2009). Core extensions for non-balanced TU-games. International Journal
of Game Theory 38(1), 3–16. 26, 29, 31

Bernheim, B. D., B. Peleg, and M. D. Whinston (1987). Coalition-proof Nash equilibria I. Con-
cepts. Journal of Economic Theory 42(1), 1–12. 58

Bhawalkar, K. and T. Roughgarden (2011). Welfare guarantees for combinatorial auctions with
item bidding. In Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 700–709. SIAM. 3

Bilbao, J. M. (2000). Cooperative Games on Combinatorial Structures. Kluwer Publishers. 33, 41

Bodlaender, H. L. and T. Kloks (1996). Efficient and constructive algorithms for the pathwidth and
treewidth of graphs. Journal of Algorithms 21(2), 358–402. 35

Bodlaender, H. L. and B. van Antwerpen-de Fluiter (2001). Parallel algorithms for series parallel
graphs and graphs with treewidth two 1. Algorithmica 29(4), 534–559. 35

Border, K. and J. Jordan (1983). Straightforward elections, unanimity and phantom voters. Review
of Economic Studies 50, 153–170. 79

Borgers, T. (1993). Pure strategy dominance. Econometrica 61(2), 423–430. 47

Brandt, F., V. Conitzer, and U. Endriss (2012). Computational social choice. In G. Weiss (Ed.),
Multiagent Systems. Available from http://dare.uva.nl/document/354859. 3

Brânzei, S., I. Caragiannis, J. Morgenstern, and A. D. Procaccia (2013). How bad is selfish voting?
In Twenty-Seventh AAAI Conference on Artificial Intelligence. 54, 55

Brânzei, S. and K. Larson (2011). Social distance games. In Proceedings of the 22nd International
Joint Conference on Artificial Intelligence (IJCAI), pp. 91–96. 41

Breton, M., G. Owen, and S. Weber (1992). Strongly balanced cooperative games. International
Journal of Game Theory 20, 419–427. 34

Brooks, N. (2004). The Atlas rank report: How search engine rank impacts traffic. Atlas Institute.
PDF available from http://tinyurl.com/d9ueco9. 69

Budish, E. (2012). Matching “versus” mechanism design. SIGecom Excehanges 11(2), 4–15. 110

Camerer, C. F. (2003). Behavioral Game Theory: Experiments in Strategic Interaction. Princeton
university press. 111

Chalkiadakis, G., E. Markakis, and N. R. Jennings (2012). Coalitional stability in structured envi-
ronments. In Proceedings of the 11th International Joint Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS), pp. 779–786. 34

Chandrasekaran, R. and A. Tamir (1990). Algebraic optimization: the Fermat-Weber location
problem. Mathematical Programming 46(1-3), 219–224. 73

Chawla, S., J. D. Hartline, D. L. Malec, and B. Sivan (2010). Multi-parameter mechanism design
and sequential posted pricing. In Proceedings of the 42nd Annual ACM Symposium on the Theory
of Computing (STOC), pp. 311–320. 97

http://dare.uva.nl/document/354859
http://tinyurl.com/d9ueco9

172 R. Meir

Cheng, Y., W. Yu, and G. Zhang (2011). Strategy-proof approximation mechanisms for an obnox-
ious facility game on networks. Theoretical Computer Science. 74

Chopra, S., E. Pacuit, and R. Parikh (2004). Knowledge-theoretic properties of strategic voting. In
Logics in Artificial Intelligence, pp. 18–30. Springer. 53

Chvatal, V. (1979). A greedy heuristic for the set-covering problem. Mathematics of Operations
Research 4(3), 233–235. 25

Claus, A. and D. Kleitman (1973). Cost allocation for a spanning tree. Networks 3, 289–304. 31

Cohen, R. F., P. Eades, T. Lin, and F. Ruskey (1997). Three-dimensional graph drawing. Algorith-
mica 17(2), 199–208. 123

Conitzer, V. and T. Sandholm (2006). Complexity of constructing solutions in the core based on
synergies among coalitions. Artificial Intelligence 170(6–7), 607–619. 25, 41, 59

Courcelle, B. (1990). Graph rewriting: An algebraic and logic approach. In J. van Leeuwen (Ed.),
Handbook of Theoretical Computer Science, Volume B: Formal Models and Semantics, pp. 193–
242. Elsevier and MIT Press. 34

Dash, R. K., N. R. Jennings, and D. C. Parkes (2003). Computational-mechanism design: A call to
arms. Intelligent Systems, IEEE 18(6), 40–47. 2

de Borda, J.-C. (1781). Memoires sur les elections au scrutin. Paris: Histoire de l’Academie Royale
des Sciences. Translation in Alfred de Grazia, 1953, “Mathematical Derivation of an Election
System”. Isis 44:42-51. 3

de Condorcet, M. (1785). Essai sur l’application de l’analyse à la probabilité de décisions rendues
à la pluralité de voix. Imprimerie Royal. Facsimile published in 1972 by Chelsea Publishing
Company, New York. 3

Dekel, O., F. Fischer, and A. D. Procaccia (2008). Incentive compatible regression learning. In
Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.
277–286. 4

Demange, G. (2004). On group stability in hierarchies and networks. Journal of Political Econ-
omy 112(4), 754–778. 34, 37, 41, 42

Deng, X., T. Ibaraki, and H. Nagamochi (1999). Algorithmic aspects of the core of combinatorial
optimization games. Mathematics of Operations Research 24(3), 751–766. 25, 31, 41

Deng, X. and C. H. Papadimitriou (1994). On the complexity of cooperative solution concepts.
Mathematics of Operations Research 19(2), 257–266. 41

Desmedt, Y. and E. Elkind (2010). Equilibria of plurality voting with abstentions. In Proceedings
of the 11th ACM Conference on Electronic Commerce (ACM-EC), pp. 347–356. 53

Devanur, N., M. Mihail, and V. Vazirani (2005). Strategyproof cost-sharing mechanisms for set
cover and facility location games. Decision Support Systems 39, 11–22. 24

Devroye, L., L. Györfi, and G. Lugosi (1997). A Probabilistic Theory of Pattern Recognition.
Springer-Verlag New York, Inc. 87

Mechanisms for Stability and Welfare 173

Dhillon, A. and B. Lockwood (2004). When are plurality rule voting games dominance-solvable?
Games and Economic Behavior 46, 55–75. 53

Dietrich, F. (2007). Aggregation and the relevance of some issues for others. Research Memo-
randa 002, Maastricht : METEOR, Maastricht Research School of Economics of Technology
and Organization. 90

Dietrich, F. and C. List (2007). Arrow’s theorem in judgment aggregation. Social Choice and
Welfare 29(1), 19–33. 90

Dokow, E., M. Feldman, R. Meir, and I. Nehama (2012). Mechanism design on discrete lines and
cycles. In Proceedings of the 13th ACM Conference on Electronic Commerce (ACM-EC), pp.
423–440. 6

Dokow, E. and R. Holzman (2010). Aggregation of binary evaluations. Journal of Economic
Theory 145, 495–511. 88

Eckhardt, U. (1980). Weber’s problem and Weiszfeld’s algorithm in general spaces. Mathematical
Programming 18(1), 186–196. 73

Edelman, B., M. Ostrovsky, and M. Schwarz (2007). Internet advertising and the generalized
second price auction: Selling billions of dollars worth of keywords. American Economic Re-
view 97(1), 242–259. 3, 59

Edelman, B. and M. Schwarz (2010). Optimal auction design and equilibrium selection in spon-
sored search auctions. American Economic Review 100, 597–602. 59

Elliott, M. and B. Golub (2013). A network approach to public goods. In Proceedings of the
fourteenth ACM conference on Electronic commerce, pp. 377–378. ACM. 34

Falik, D., R. Meir, and M. Tennenholtz (2012). On coalitions and stable winners in plurality. In
Proceedings of the 8th International Workshop on Internet and Network Economics (WINE), pp.
256–269. Springer. 58, 68

Farquharson, R. (1969). Theory of Voting. Yale University Press. 53

Feldman, J., A. Mehta, V. Mirrokni, and S. Muthukrishnan (2009). Online stochastic matching:
Beating 1-1/e. In Proceedings of the 50th Symposium on Foundations of Computer Science
(FOCS), pp. 117–126. 96

Feldman, M., R. Meir, and M. Tennenholtz (2011). Revenue enhancement in ad auctions. In
Proceedings of the 7th International Workshop on Internet and Network Economics (WINE), pp.
391–398. 7

Feldman, M., R. Meir, and M. Tennenholtz (2012). Stability scores: Measuring coalitional stability.
In Proceedings of the 11th International Joint Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS), pp. 771–778. 6

Feldman, M., R. Meir, and M. Tennenholtz (2013). Competition in the presence of social networks:
How many service providers maximize welfare? In Web and Internet Economics, pp. 174–187.
Springer Berlin Heidelberg. 7

174 R. Meir

Feldman, M. and M. Tennenholtz (2009). Partition equilibrium. In Proceedings of the 2nd Inter-
national Symposium on Algorithmic Game Theory (SAGT), pp. 48–59. 57

Fishburn, P. and A. Rubinstein (1986). Aggregation of equivalence relations. Journal of Classifi-
cation 3, 61–65. 88

Forsythe, R., T. Rietz, R. Myerson, and R. Weber (1996). An experimental study of voting rules
and polls in three-candidate elections. International Journal of Game Theory 25(3), 355–83. 45

Freixas, J. and S. Kurz (2011). On α-roughly weighted games. arXiv preprint arXiv:1112.2861.
31

Friedgut, E., G. Kalai, and N. Nisan (2008). Elections can be manipulated often. In Proceedings of
the 49th Symposium on Foundations of Computer Science (FOCS), pp. 243–249. 45

Friedman, E. and D. Parkes (2003). Pricing wifi at starbucks: issues in online mechanism design.
In Proceedings of the 4th ACM Conference on Electronic Commerce (ACM-EC), pp. 240–241.
96

Garey, M. R. and D. S. Johnson (1979). Computers and Intractibility. W.H. Freeman and Company.
42, 127

Geng, Y. and C. G. Cassandras (2011). A new ÃŠsmart parkingÃŞ system based on optimal
resource allocation and reservations. In Proc. of 14th IEEE Intelligent Transportation Systems
Conf., pp. 979–984. 96

Gerding, E., V. Robu, S. Stein, D. Parkes, A. Rogers, and N. Jennings (2011). Online mechanism
design for electric vehicle charging. In Proceedings of the 10th International Joint Conference
on Autonomous Agents and Multi-Agent Systems (AAMAS). 95, 96

Gibbard, A. (1973). Manipulation of voting schemes. Econometrica 41, 587–602. 3, 12

Gibbard, A. (1977). Manipulation of schemes that mix voting with chance. Econometrica 45,
665–681. 93

Goemans, M. X. and M. Skutella (2004). Cooperative facility location games. Journal of Algo-
rithms 50(2), 194–214. 31

Gohar, N. (2012). Manipulative Voting Dynamics. Ph. D. thesis, University of Liverpool. 54, 110

Gottlob, G., N. Leone, and F. Scarcello (2001). Hypertree decompositions: A survey. In Proceed-
ings of the 26th International Symposium on Mathematical Foundations of Computer Science
(MFCS), pp. 37–57. 41, 42

Gottlob, G., N. Leone, and F. Scarcello (2003). Robbers, marshals, and guards: game theoretic and
logical characterizations of hypertree width. Journal of computer and system sciences 66(4),
775–808. 42

Grabisch, M. (2009). The core of games on ordered structures and graphs. 4OR: A Quarterly
Journal of Operations Research 7, 207–238. 34

Graham, D. A. and R. C. Marshall (1987). Collusive bidder behavior at single-object second-price
and english auctions. Journal of Political Economy 95, 579–599. 59

Mechanisms for Stability and Welfare 175

Grandi, U., A. Loreggia, F. Rossi, K. B. Venable, and T. Walsh (2013). Restricted manipulation
in iterative voting: Condorcet efficiency and borda score. In Algorithmic Decision Theory, pp.
181–192. Springer. 54, 110

Granot, D. and G. Huberman (1981). Minimum cost spanning tree games. Mathematical Program-
ming 21, 1–18. 31

Greco, G., E. Malizia, L. Palopoli, and F. Scarcello (2011a). On the complexity of core, kernel, and
bargaining set. Artificial Intelligence 175(12–13), 1877–1910. 34

Greco, G., E. Malizia, L. Palopoli, and F. Scarcello (2011b). On the complexity of the core over
coalition structures. In Proceedings of the 22nd International Joint Conference on Artificial
Intelligence (IJCAI), pp. 216–221. 31, 34, 42

Greco, G., E. Malizia, L. Palopoli, and F. Scarcello (2011c). On the complexity of the core over
coalition structures. In Proceedings of the 22nd International Joint Conference on Artificial
Intelligence (IJCAI), pp. 216–221. 31

Guo, M., V. Conitzer, and D. Reeves (2009). Competitive repeated allocation without payments.
In Proceedings of the 5th International Workshop on Internet and Network Economics (WINE),
pp. 244–255. 4

Hansen, P., D. Peeters, and J.-F. Thisse (1982). An algorithm for a constrained Weber problem.
Management Science, 1285–1295. 73

Harrenstein, B. P., M. M. de Weerdt, and V. Conitzer (2009). A qualitative vickrey auction. In
Proceedings of the 10th ACM Conference on Electronic Commerce (ACM-EC), pp. 197–206. 4

Hart, S. and N. Nisan (2012). Approximate revenue maximization with multiple items. arXiv
preprint arXiv:1204.1846. 3

Hartline, J. D. (2011). Approximation in economic design. Lecture Notes, http://www.isid.
ac.in/~dmishra/reading2013/amd.pdf. 2, 4

Holzman, R. and N. Law-Yone (1997). Strong equilibrium in congestion games. Games and
Economic Behavior 21, 85–101. 57, 60

Ieong, S. and Y. Shoham (2005). Marginal contribution nets: a compact representation scheme for
coalitional games. In Proceedings of the 6th ACM Conference on Electronic Commerce (ACM-
EC), pp. 193–202. 34, 41

Immorlica, N., M. Mahdian, and V. Mirrokni (2005). Limitations of cross-monotonic cost sharing
schemes. In Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 602–611. 32

Jain, K. and M. Mahdian (2007). Cost sharing. In N. Nisan, T. Roughgarden, E. Tardos, and V. V.
Vazirani (Eds.), Algorithmic Game Theory, pp. 385–410. Cambridge University Press. 24, 25,
32

Jain, K. and V. Vazirani (2001). Applications of approximation algorithms to cooperative games.
In Proceedings of the 33rd Annual ACM Symposium on the Theory of Computing (STOC), pp.
364–372. 32

http://www.isid.ac.in/~dmishra/reading2013/amd.pdf
http://www.isid.ac.in/~dmishra/reading2013/amd.pdf

176 R. Meir

Kahneman, D. and A. Tversky (1979). Prospect theory: An analysis of decision under risk. Econo-
metrica XLVII, 263–291. 111

Kalai, E. and E. Muller (1977). Characterization of domains admitting nondictatorial social welfare
functions and nonmanipulable voting procedures. Journal of Economic Theory 16, 457–469. 80

Kalyanasundaram, B. and K. Pruhs (1991). On-line weighted matching. In Proceedings of the 2nd
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 234–240. 97

Kalyanasundaram, B. and K. R. Pruhs (2000). An optimal deterministic algorithm for online b-
matching. Theoretical Computer Science 233(1), 319–325. 97

Karande, C., A. Mehta, and P. Tripathi (2011). Online bipartite matching with unknown distribu-
tions. In Proceedings of the 43rd Annual ACM Symposium on the Theory of Computing (STOC),
pp. 587–596. 96

Karp, R. M., U. V. Vazirani, and V. V. Vazirani (1990). An optimal algorithm for on-line bipartite
matching. In Proceedings of the 22nd Annual ACM Symposium on the Theory of Computing
(STOC), pp. 352–358. 96, 97, 99, 103, 105

Khmelnitskaya, A. B. (2010). Values for rooted-tree and sink-tree digraph games and sharing a
river. Theory and Decision 69(4), 657–669. 34

Koutsoupias, E. (2011). Scheduling without payments. In Proceedings of the 4th International
Symposium on Algorithmic Game Theory (SAGT), pp. 143–153. 4

Koutsoupias, E. and A. Nanavati (2004). The online matching problem on a line. In Approximation
and online algorithms, pp. 179–191. Springer. 96

Kuhn, H. W. (1973). A note on Fermat’s problem. Mathematical Programming 4(1), 98–107. 73

Kukushkin, N. S. (2011). Acyclicity of improvements in finite game forms. International Journal
of Game Theory 40(1), 147–177. 53

Kuminov, D. and M. Tennenholtz (2009). User modeling in position auctions: re-considering
the GSP and VCG mechanisms. In Proceedings of the 8th International Joint Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS), pp. 273–280. 59

Leclerc, B. (1984). Efficient and binary consensus functions on transitively valued relations. Math-
ematical Social Sciences 8, 45–61. 88

Lev, O. and J. S. Rosenschein (2012). Convergence of iterative voting. In Proceedings of the 11th
International Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), pp.
611–618. 54

Lewis, P. R., P. Marrow, and X. Yao (2010). Resource allocation in decentralised computational sys-
tems: an evolutionary market-based approach. Autonomous Agents and Multi-agent Systems 21,
143–171. 95

Li, L. and X. Li (2011). The covering values for acyclic digraph games. International Journal of
Game Theory 40(4), 697–718. 34

Mechanisms for Stability and Welfare 177

Likhodedov, A. and T. Sandholm (2005). Approximating revenue-maximizing combinatorial auc-
tions. In Proceedings of the 20th AAAI Conference on Artificial Intelligence (AAAI), Volume 20,
pp. 267–275. 3

Lu, P., X. Sun, Y. Wang, and Z. A. Zhu (2010). Asymptotically optimal strategy-proof mechanisms
for two-facility games. In Proceedings of the 11th ACM Conference on Electronic Commerce
(ACM-EC), pp. 315–324. 74

Lu, P., Y. Wang, and Y. Zhou (2009). Tighter bounds for facility games. In Proceedings of the 5th
International Workshop on Internet and Network Economics (WINE), pp. 137–148. 74

Lucier, B., R. Paes Leme, and É. Tardos (2012). On revenue in the generalized second price auction.
In Proceedings of the 21st International Conference on World Wide Web (WWW), pp. 361–370.
3, 59, 66

Maschler, M., B. Peleg, and L. S. Shapley (1979). Geometric properties of the kernel, nucleolus,
and related solution concepts. Mathematics of Operations Research 4(4), 303–338. 26, 28

Maschler, M., E. Solan, and S. Zamir (2013). Game Theory. Cambridge University Press. 9

Maskin, E. S. (2008). Mechanism design: How to implement social goals. The American Economic
Review 98(3), 567–576. 2

McAfee, R. P. and J. McMillan (1987). Auctions and bidding. Journal of Economic Literature 25,
699–738. 59

McKelvey, R. D. and R. Niemi (1978). A multistage representation of sophisticated voting for
binary procedures. Journal of Economic Theory 18, 1–22. 53

McLean, I. and A. B. Urken (1995). Classics of social choice. University of Michigan Press. 3

Megiddo, N. (1978). Cost allocation for Steiner trees. Networks 8, 1–6. 32

Mehta, A., A. Saberi, U. Vazirani, and V. Vazirani (2007). Adwords and generalized online match-
ing. Journal of the ACM 54(5). 96

Meir, R. (2008). Strategy proof classification. Master’s thesis, The Hebrew University of Jerusalem.
Available from: http://tinyurl.com/cpqlram. 6, 74, 75, 87, 88, 89

Meir, R., S. Almagor, A. Michaely, and J. S. Rosenschein (2011). Tight bounds for strategyproof
classification. In Proceedings of the 10th International Joint Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS), pp. 319–326. 84, 93, 94

Meir, R., Y. Bachrach, and J. S. Rosenschein (2010). Minimal subsidies in expense sharing games.
In Proceedings of the 3rd International Symposium on Algorithmic Game Theory (SAGT), pp.
347–358. 6, 31

Meir, R., Y. Chen, and M. Feldman (2013). Efficient parking allocation as online bipartite matching.
In Proceedings of the 12th International Joint Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS), pp. 303–310. 6, 97

http://tinyurl.com/cpqlram

178 R. Meir

Meir, R., T. Lu, M. Tennenholtz, and C. Boutilier (2013). On the value of using group discounts
under price competition. In Proceedings of the 27th AAAI Conference on Artificial Intelligence
(AAAI), pp. 683–689. 7

Meir, R., M. Polukarov, J. S. Rosenschein, and N. Jennings (2010). Convergence to equilibria of
plurality voting. In Proceedings of the 24th AAAI Conference on Artificial Intelligence (AAAI),
pp. 823–828. 6, 54

Meir, R., A. D. Procaccia, and J. S. Rosenschein (2008). Strategyproof classification under constant
hypotheses: A tale of two functions. In Proceedings of the 23rd AAAI Conference on Artificial
Intelligence (AAAI), pp. 126–131. 4, 88

Meir, R., A. D. Procaccia, and J. S. Rosenschein (2009). Strategyproof classification with shared
inputs. In Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJ-
CAI), pp. 220–225. 74, 84, 87, 88, 89, 94

Meir, R., A. D. Procaccia, and J. S. Rosenschein (2010). On the limits of dictatorial classification.
In Proceedings of the 9th International Joint Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS), pp. 609–616. 88, 89, 93, 162

Meir, R., A. D. Procaccia, and J. S. Rosenschein (2012). Algorithms for strategyproof classification.
Artificial Intelligence 186, 123–156. 6, 74, 93

Meir, R. and J. S. Rosenschein (2013). Avoid fixed pricing: Consume less, earn more, make clients
happy. In Proceedings of the 12th International Joint Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS), pp. 239–246. 7

Meir, R., J. S. Rosenschein, and E. Malizia (2011). Subsidies, stability, and restricted cooperation
in coalitional games. In Proceedings of the 22th International Joint Conference on Artificial
Intelligence (IJCAI), pp. 301–306. 6, 126

Meir, R. and M. Tennenholtz (2013). Equilibrium in labor markets with few firms. arXiv preprint
arXiv:1306.5855. 7

Meir, R., M. Tennenholtz, Y. Bachrach, and P. Key (2012). Congestion games with agent failures.
In Proceedings of the 26th AAAI Conference on Artificial Intelligence (AAAI), pp. 1401–1407. 7

Meir, R., Y. Zick, E. Elkind, and J. S. Rosenschein (2013). Bounding the cost of stability in games
over interaction networks. In Proceedings of the 27th AAAI Conference on Artificial Intelligence
(AAAI), pp. 690–696. 6

Meir, R., Y. Zick, and J. S. Rosenschein (2012). Optimization and stability in games with restricted
interactions. In The 3rd Workshop on Cooperative Games in Multiagent Systems (CoopMAS @
AAMAS‘12). 6, 41

Messner, M. and M. K. Polborn (2002). Robust political equilibria under plurality and runoff rule.
Mimeo, Bocconi University. 53

Mirkin, B. (1975). On the problem of reconciling partitions. In H. Blalock (Ed.), Quantitative so-
ciology: international perspectives on mathematical and statistical modeling. New York: Aca-
demic Press. 88

Mechanisms for Stability and Welfare 179

Mirrokni, V., M. Schapira, and J. Vondrák (2008). Tight information-theoretic lower bounds for
welfare maximization in combinatorial auctions. In Proceedings of the 9th ACM conference on
Electronic commerce, pp. 70–77. ACM. 3

Monderer, D. and L. S. Shapley (1996). Potential games. Games and Economic Behavior 14(1),
124–143. 53

Monderer, D. and M. Tennenholtz (2004). K-implementation. Journal of Artificial Intelligence
Research 21, 37–62. 4

Moulin, H. and S. Shenker (2001). Strategyproof sharing of submodular costs: Budget balance
versus efficiency. Economic Theory 18(3), 511–533. 32

Mullainathan, S. and R. H. Thaler (2000). Behavioral economics. Technical report, National
Bureau of Economic Research. 111

Myerson, R. B. (1977). Graphs and cooperation in games. Mathematics of Operations Re-
search 2(3), 225–229. 5, 33, 58

Myerson, R. B. (1981). Optimal auction design. Mathematics of Operations Research 6, 58–73. 3,
11

Myerson, R. B. and R. J. Weber (1993). A theory of voting equilibria. The American Political
Science Review 87(1), 102–114. 53, 55

Nash, J. F. (1950). Equilibrium points in N -person games. Proceedings of the National Academy
of Sciences of the United States of America 36, 48–49. 10

Nehama, I. (2011). Approximate judgement aggregation. In Proceedings of the 7th International
Workshop on Internet and Network Economics (WINE), pp. 302–313. 88

Nehring, K. and C. Puppe (2007). The structure of strategy-proof social choice – part I: General
characterization and possibility results on median spaces. Journal of Economic Theory 135(1),
269 – 305. 78

Nisan, N. (2007). Introduction to mechanism design (for computer scientists). In N. Nisan,
T. Roughgarden, E. Tardos, and V. Vazirani (Eds.), Algorithmic Game Theory, Chapter 9. Cam-
bridge University Press. 2, 3

Nisan, N., T. Roughgarden, E. Tardos, and V. Vazirani (Eds.) (2007). Algorithmic Game Theory.
Cambridge University Press. 3, 58

Obraztsova, S., E. Markakis, and D. R. Thompson (2013). Plurality voting with truth-biased agents.
In Algorithmic Game Theory, pp. 26–37. Springer. 54

Pál, M. and É. Tardos (2003). Group strategyproof mechanisms via primal-dual algorithms. In
Proceedings of the 44th Symposium on Foundations of Computer Science (FOCS), pp. 584–593.
32

Papadimitriou, C. (2001). Algorithms, games, and the internet. In Proceedings of the 33rd Annual
ACM Symposium on the Theory of Computing (STOC), pp. 749–753. 2

180 R. Meir

Papadimitriou, C. H. (2005). The interaction between algorithms and game theory. In Experimental
and Efficient Algorithms, pp. 1–3. Springer. 2

Peleg, B. and P. Sudhölter (2003). Introduction to the Theory of Cooperative Games. Kluwer
Publishers. 9, 22

Potters, J. and H. Reijnierse (1995). γ-component additive games. International Journal of Game
Theory 24(1), 49–56. 41

Povich, E. S. (2012). Mobile apps revolutionaize municipal parking. AolGovernment (Innovation),
http://tinyurl.com/dylyp3p. 95

Procaccia, A. D. and M. Tennenholtz (2009). Approximate mechanism design without money. In
Proceedings of the 10th ACM Conference on Electronic Commerce (ACM-EC), pp. 177–186. 4,
74

Rahwan, I. and K. Larson (2009). Argumentation and game theory. In Argumentation in Artificial
Intelligence, pp. 321–339. Springer. 2

Reijngoud, A. and U. Endriss (2012). Voter response to iterated poll information. In Proceed-
ings of the 11th International Joint Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS), pp. 635–644. 51, 54, 55, 110

Resnick, E., Y. Bachrach, R. Meir, and J. S. Rosenschein (2009). The cost of stability in network
flow games. In Proceedings of the 34th International Symposium on Mathematical Foundations
of Computer Science (MFCS), pp. 636–650. 31

Reyhani, R., M. C. Wilson, and J. Khazaei (2012). Coordination via polling in plurality voting
games under inertia. In Proceedings of the 20th European Conference on Artificial Intelligence
(ECAI). 54

Richtel, M. (2011). Now, to find a parking spot, drivers look on their phones. The New York Times
(Technology), http://tinyurl.com/d9nvcew. 95

Riley, J. G. (1989). Expected revenue from open and sealed bid auctions. The Journal of Economic
Perspectives 3(3), 41–50. 3

Roozbehani, M., M. A. Dahleh, and S. K. Mitter (2011). Volatility of power grids under real-time
pricing. CoRR abs/1106.1401. 95

Rosenschein, J. S. and G. Zlotkin (1994). Rules of Encounter: Designing Conventions for Auto-
mated Negotiation among Computers. the MIT Press. 2

Rosenthal, R. (1973). A class of games possessing pure-strategy nash equilibria. International
Journal of Game Theory 2, 65–67. 60

Roth, A. E. (2002). The economist as engineer: Game theory, experimentation, and computation
as tools for design economics. Econometrica 70(4), 1341–1378. 2

Roth, A. E., T. Sönmez, and M. U. Ünver (2004). Kidney exchange. The Quarterly Journal of
Economics 119(2), 457–488. 111

http://tinyurl.com/dylyp3p
http://tinyurl.com/d9nvcew

Mechanisms for Stability and Welfare 181

Rubinstein, A. (1991). Comments on the interpretation of game theory. Econometrica: Journal of
the Econometric Society, 909–924. 110

Saari, D. G. (1990). Susceptibility to manipulation. Public Choice 64, 21–41. 45

Satterthwaite, M. (1975). Strategy-proofness and Arrow’s conditions: Existence and correspon-
dence theorems for voting procedures and social welfare functions. Journal of Economic The-
ory 10, 187–217. 3, 12

Schmeidler, D. (1969). The nucleolus of a characteristic function game. SIAM Journal on Applied
Mathematics 17(6), 1163–1170. 26

Schummer, J. and R. V. Vohra (2004). Strategy-proof location on a network. Journal of Economic
Theory 104(2), 405–428. 74, 75, 79, 80, 82, 83, 84

Schummer, J. and R. V. Vohra (2007). Mechanism design without money. In N. Nisan, T. Rough-
garden, E. Tardos, and V. Vazirani (Eds.), Algorithmic Game Theory, Chapter 10. Cambridge
University Press. 4

Sertel, M. R. and M. R. Sanver (2004). Strong equilibrium outcomes of voting games are the
generalized Condorcet winners. Social Choice and Welfare 22, 331–347. 53, 68

Simon, H. (1957). A behavioral model of rational choice. In Models of Man, Social and Rational:
Mathematical Essays on Rational Human Behavior in a Social Setting. New York: Wiley. 111

Skorin-Kapov, D. (1995). On the core of the minimum cost Steiner tree game in networks. Annals
of Operations Research 57, 233–249. 32

Slavík, P. (1996). A tight analysis of the greedy algorithm for set cover. In Proceedings of the 28th
Annual ACM Symposium on the Theory of Computing (STOC), pp. 435–441. 25

Smith, A. (1776). An Inquiry into the Nature and Causes of the Wealth of Nations. W. Strahan and
T. Cadell, London. 1

Stein, S., E. Gerding, V. Robu, and N. Jennings (2012). A model-based online mechanism with
pre-commitment and its application to electric vehicle charging. In Proceedings of the 11th
International Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS). 95,
96

Svensson, L.-G. (1999). The proof of the Gibbard-Satterthwaite theorem revisited. Work-
ing Paper No. 1999:1, Department of Economics, Lund University. Available from:
http://www.nek.lu.se/NEKlgs/vote09.pdf. 80

Thang, N. K. (2010). On randomized strategy-proof mechanisms without payment for facility
location games. In Proceedings of the 6th International Workshop on Internet and Network
Economics (WINE), pp. 13–16. 74, 75

Thompson, D. R. M., O. Lev, K. Leyton-Brown, and J. S. Rosenschein (2013). Empirical analysis
of plurality election equilibria. In Proceedings of the 12th International Joint Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS), pp. 391–398. 54

182 R. Meir

Thompson, D. R. M. and K. Leyton-Brown (2009). Computational analysis of perfect-information
position auctions. In Proceedings of the 10th ACM Conference on Electronic Commerce (ACM-
EC), pp. 51–60. 59

Varian, H. R. (1995). Economic mechanism design for computerized agents. In First USENIX
Workshop on Electronic Commerce, pp. 13–21. 2

Varian, H. R. (2007). Position auctions. International Journal of Industrial Organization 25(6),
1163–1178. 3, 59, 62, 63, 105, 142, 167

Vickrey, W. (1961). Counter speculation, auctions, and competitive sealed tenders. Journal of
Finance 16(1), 8–37. 11

Voice, T., M. Polukarov, and N. R. Jennings (2012). Coalition structure generation over graphs.
Journal of Artificial Intelligence Research 45, 165–196. 34

von Neumann, J. and O. Morgenstern (1944). Theory of Games and Economic Behavior. Princeton
University Press. 2

Weber, A. (1929). Alfred Weber’s Theory of the Location of Industries. The University of Chicago
Press. 73

Wilson, R. (1975). On the theory of aggregation. Journal of Economic Theory 10, 89–99. 88

Wooldridge, M., U. Endriss, S. Kraus, and J. Lang (2012). Incentive engineering for Boolean
games. Artificial Intelligence, 418–439. 5

Xia, L. and V. Conitzer (2010). Stackelberg voting games: Computational aspects and paradoxes.
In Proceedings of the 24th AAAI Conference on Artificial Intelligence (AAAI), pp. 921–926. 53

Xia, L., J. Lang, and M. Ying (2007). Sequential voting rules and multiple elections paradoxes.
In Proceedings of the 11th Conference on Theoretical Aspects of Rationality and Knowledge
(TARK), pp. 279–288. 109

Xu, D. and D. Du (2006). The k-level facility location game. Operation Research Letters 34(4),
421–426. 21

Yildirim, M. B. (2001). Congestion toll pricing models and methods for variable demand networks.
Ph.D. thesis, University of Florida. 95

Zick, Y., M. Polukarov, and N. R. Jennings (2013). Taxation and stability in cooperative games. In
Proceedings of the 12th International Joint Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS), pp. 523–530. 31

	Contents
	Introduction
	Background
	Thesis Outline and Main Results
	Bibliographic Notes

	Preliminaries
	Non-cooperative Games
	Cooperative Games

	I Stability
	The Cost of Stability
	Introduction
	Preliminaries
	Bounds on the Cost of Stability
	The Cost of Stability and the Least Core
	The Cost of Stability in Games with Coalition Structures
	Related Work
	Conclusion

	Subsidies, Stability, and Restricted Cooperation
	Introduction
	Preliminaries
	Treewidth and the Cost of Stability
	Pathwidth and the Cost of Stability
	Implications for Games on Graphs
	Structure and Computational Complexity
	Conclusion

	Convergence of Iterative Voting
	Introduction
	Preliminaries
	Deterministic Tie-Breaking
	Randomized Tie-Breaking
	Truth-Biased Agents
	Related Work
	Conclusion

	Stability Scores
	Introduction
	Preliminaries
	Resource Selection Games
	Stability Scores in Ad Auctions
	Plurality Voting
	Conclusion

	II Welfare
	Mechanism Design without Money I
	Introduction
	Preliminaries
	Deterministic Mechanisms on a Line
	Deterministic Mechanisms on a Cycle
	Randomized Mechanisms for Metric Spaces

	Mechanism Design without Money II
	Introduction
	Preliminaries
	Embedding Line and Cycle Graphs in the Cube
	Binary Classification as Facility Location on a Cube
	Conclusion

	Parking Allocation and Online Matching
	Introduction
	Preliminaries
	General Observations
	Parking at a Fixed Cost within the Maximal Distance
	Parking at a Cost that is Linear in the Distance
	Conclusion

	Conclusions and Future Work

	III Appendices
	Proofs for Chapter 3
	Proofs for Section 3.3
	Proofs for Section 3.4
	Proofs for Section 3.5

	Proofs for Chapter 4
	Proofs for Section 4.3
	Proofs for Section 4.4
	Computational Complexity

	Proofs for Chapter 5
	Proofs for Chapter 6
	Proofs for Section 6.3
	Proofs for Section 6.4
	Eliminating Group Deviations

	Proofs for Chapter 7
	Proofs for Section 7.3
	Proofs for Section 7.4
	Proofs for Section 7.5

	Proofs for Chapter 8
	Proofs for Chapter 9
	Proofs for Section 9.4
	Proofs for Section 9.5

	Bibliography

