Constraint Programming with Multisets

Zeynep Kiziltan! and Toby Walsh?

! Department of Information Science, Uppsala University, Uppsala, Sweden
Zeynep.Kiziltan@dis.uu.se
2 Cork Constraint Computation Center, University College Cork, Ireland
tw@4c.ucc.ie

Abstract. We propose extending constraint solvers with multiset vari-
ables. That is, variables whose values are multisets. Such an extension
can help prevent introducing unnecessary symmetry into a model. We
identify a number of different representations for multiset variables, and
suggest primitive and global constraints on multiset variables. Surpris-
ingly, unlike finite domain variables, decomposition of global constraints
on multiset variables often does not hinder constraint propagation. We
also study in detail the multiset ordering constraint. This constraint is
useful for breaking symmetry between multiset variables. We show how
it can be enforced using a simple lexicographical ordering constraint.

1 Introduction

Dealing efficiently and effectively with symmetry is one of the major difficul-
ties in constraint programming. Symmetry occurs in many scheduling, assign-
ment, routing and supply chain problems. In addition to the symmetry inher-
ently present in a problem, modelling may introduce additional and, in some
cases, unnecessary symmetry. Consider, for example, the template design prob-
lem (prob002 in CSPLib) in which we assign designs to printing templates. As
there are a fixed number of slots for designs on each template, we can model this
problem with a variable for each slot, whose value is the design assigned to this
slot. However, slots on a template are essentially indistinguishable. This model
therefore introduces an unnecessary symmetry, namely the permutations of the
slots. A “better” model would remove this symmetry by having a variable for
each template, whose value is the multiset of designs assigned to that template.
It is a multiset, not a set, as the designs on a template are often repeated. This
second model still introduces a symmetry as the templates are indistinguishable.
However, as we show in this paper, orderings on multisets can be used to break
such symmetries.

Set variables have been incorporated into all the major constraint solvers
(see, for example, [6,8]). It is therefore surprising that there is little if no work
on multiset variables in constraint programming. Our goal is to correct this im-
balance. The paper is structured as follows. We first introduce some notation and
formal background (Section 2). We then discuss how to represent multiset vari-
ables (Section 3) and constraints on them (Section 4). In Section 5 we introduce

the multiset ordering, and discuss how to enforce this as a constraint (Section
6). Such a constraint is useful for breaking symmetry in a range of problems.
Finally, we end with future work and conclusions.

2 Formal background

We will need vectors, sets and multisets. A vector is an ordered list of elements,
written (zg,...Zn—1). A set is an unordered list of elements without repeti-
tion, written {zo,...Zn—1}. A multiset is an unordered list of elements in which
repetition is allowed, written {zo,...x,—1}}. To simplify notation, we assume
that the elements of vectors, sets and multisets are integers drawn from some
finite domain [0, d). Basic operations on sets generalize to similar operations
on multisets. We let occ(z, M) be the number of occurrences of x in the mul-
tiset M. Multiset union, intersection, difference, and equality are defined by
the follow identities: occ(x, M U N) = oce(x, M) + occ(x, N), occ(x, M N N) =
min(oce(z, M), occ(x, N)), occ(x, M — N) = max (0, occ(x, M) — occ(z, N)), and
M = N iff oce(x, M) = occ(z,N) for all z. For example, if M = {0,1,1}
and N = {0,0,1,2} then M UN = {0,0,0,1,1,1,2}, M n N = {0,1},
M — N = {1}, and M # N. By ignoring the order of elements in a vector,
we can view a vector as a multiset. For example, the vector (0,1,0) can be
viewed as the multiset {0,0,1}. We will abuse notation and write {m}} for the
multiset view of the vector m.

We will need the strict lexicographical ordering relation on d-bit vectors.
Formally, m <jex n iff mg_1 < ng_1; mg—2 < ng_o when myg_1 = ng_1; ...;
mo < ng when mg_1 = ng_1, Mg_2 = N4g_o9, ..., and m; = ny. Note we are
treating the dth element of the vectors as the high bit.

3 Representing multisets

There are a number of ways we can represent variables whose values are multisets
of values. The most naive method would be to have a finite domain variable
whose values are all the possible multisets. However, this will be computationally
intractable as the number of possible multisets can in general be exponential.

3.1 Bounds representation

One type of representation for multiset variables generalizes the upper and lower
bound representation used for set variables in [6]. For each multiset variable, we
maintain two multisets: a least upper and a greatest lower bound. The least
upper bound is the smallest multiset containing all those values that can be in
the multiset, whilst the greatest lower bound is the largest multiset containing
all those values that must be in the multiset. Given a multiset variable M, we
write lub(M) and glb(M) for the least upper and greatest lower bound respec-
tively. For reasoning with such a representation, we can introduce the notion of

multiset bounds consistency (BC). Given a constraint C' over multiset variables
X1, ... X,, we write sol(X;) for the set of multiset values for X; which can be
extended to the other variables to satisfy the constraint. That is,

sol(X;) ={m; | C(m1,...,my) A Vj.glb(X;) CTm,; Club(X;)}

Definition 1. A constraint over multiset variables X1 ... X, is BC iff for each
1 <i<n, we have

lub(X;) = U m and glb(X;) = m m

mesol(X;) mesol(X;)
A set of constraints is BC iff each constraint in the set is BC.

The rules given in [6] for constructing bounds consistent upper and lower bounds
for set variables should easily adapt to multiset variables. This representation
is compact but carries the penalty of not being able to represent all forms of
disjunction. Consider, for example, a multiset variable M with two possible
multiset values: {0} or {1}}. To represent this, we would need lub(M) = {0, 1}
and glb(M) = {}}. However, this representation also permits M to take the
multiset values {} and {0,1}.

3.2 Occurrence representation

Set variables can also be represented by their characteristic function (a vector of
d Boolean variables, each of which indicates whether a particular value is in the
set or not). A straightforward generalization to multisets is the dual occurrence
vector. Each multiset variable M can be represented by a vector m of d finite
domain variables with m; = occ(i, M). For reasoning with such a representation,
we can apply consistency techniques like generalized arc consistency (GAC) or
bounds consistency (BC) to the variables in these vectors. This representation
is also compact but carries the penalty of not being able to represent all forms
of disjunction. Consider again the example of a multiset variable M with two
possible multiset values: {0} or {1}. To represent this, we would need an oc-
currence vector with mg = {0,1} (that is, the value 0 can occur zero times or
once) and my = {0,1} (that is, the value 1 can occur zero times or once). Like
the bounds representation, this also permits M to take the multiset values {}}

and {0,1}.

3.3 Fixed cardinality

Multiset variables of a fixed cardinality are common in a number of problems.
For example, the template design problem can be modelled as finding a multiset
of designs for each template which is of a fixed cardinality. In such situations, we
can represent each of the finite elements of the multiset with a variable whose
values are possible values for this multiset element. It may appear that this
representation introduces symmetry into the problem (via permutations of these

variables). This is not the case as we will be posting (non-binary) constraints
on these variables which ignore their permutation. Of course, this may make
it harder work to define and post constraints. To channel efficiently between
the occurrence vector representation and this representation, we can use Regin’s
global cardinality constraint [9]. In addition, we can post the constraint that the
sum of the values taken by the variables in the occurrence vector is the multiset
cardinality. This representation is also compact but again carries the penalty of
not being able to represent all forms of disjunction. Consider, for example, a
multiset variable M of cardinality 3 with two possible multiset values: {0,0,0}
or {1,1,1}. To represent this, we would need three variables: M; = {0,1},
My ={0,1} and M3 = {0,1}. Each finite domain variable represents one of the
possible elements of the multiset. However, this representation also permits M
to take the multiset values: {0,0,1}, and {0,1,1}.

If the multiset variables are not of a fixed cardinality but there are upper
bounds on their maximum cardinality, we can use a similar representation to the
fixed cardinality representation. We need, however, to introduce an additional
value which represents no value being assigned to a particular finite domain vari-
able. For example, suppose we have a multiset variable of maximum cardinality
n drawing elements from (0,d). We can represent this with n variables, each
with a finite domain [0,d). The additional value 0 represents no assignment.
With the multiset ordering constraint (see Section 6), this additional value will
be reasoned with transparently.

3.4 Comparing the representations

We can compare the expressivity of the different representations. We say that one
representation is as expressive than another if it can represent the same sets
of multiset values, more expressive if it is as expressive and there is one set of
multiset values that it can represent that the other cannot, and incomparable
if neither representation is as expressive as the other.

Theorem 1.

1. The occurrence representation is more expressive than the bounds represen-
tation.

2. The fized cardinality representation is incomparable to both the bounds and
the occurrence representation.

Proof. 1. Clearly the occurrence representation is as expressive as the bounds.
Consider a multiset variable M with two possible multiset values: {} or {0,0}.
This can be represented exactly with the occurrence variable mg = {0,2}. By
comparison, a bounds representation would need lub(M) = {} and glb(M) =
{0,0}, and this permits M to take the additional multiset value {0}}.

2. Consider a multiset variable M of cardinality 2 with six possible multiset

values: {0,1}, {0,2}}, {0,3}, {1,1%, {1,2}, or {1,3}. The fixed cardinality
representation can represent this exactly with two finite domain variables M; =

{0,1} and M> = {1,2,3}. Both the bounds and the occurrence representations
of this set of multiset values would also permit M to take the additional multiset
value {{2,3}.

Consider a multiset variable M of cardinality 2 with three possible multi-
set values: {{0,1}}, {0,2}, or {1,2}}. In the bounds representation, we need
lub(M) = {0,1,2} and ¢glb(M) = {}}. The only two element multisets between
these bounds are exactly {0,1}, €0,2}, or {1,2} as required. Similarly with
an occurrence representation, we need mg = mj; = mg = {0,1}. The only two
element multisets between these bounds are again the required ones. A fixed car-
dinality representation cannot, on the other hand, represent this set of multiset
values exactly. We would need two finite domain variables with, say, M; = {0,1}
and My = {1,2}. These would permit M to take the additional two element mut-
liset value {{1,1}. O

Note that if we restrict the occurrence representation to maintain just bounds
on the number of occurrences of a value in the multiset then we obtain a represen-
tation that is equally expressive as the original multiset bounds representation.
We can also compare the amount of pruning constraint propagation performs on
the different representations.

Theorem 2.

1. BC on the occurrence representation is equivalent to BC on the bounds rep-
resentation;

2. GAC on the occurrence representation is strictly stronger than BC on the
occurrence representation;

3. BC on the bounds or occurrence representation is incomparable to BC on the
fixed cardinality representation

4. GAC on the occurrence representation is incomparable to GAC on the fixed
cardinality representation;

Proof. 1. Suppose that a bounds representation of a constraint is BC. Consider
any multiset variable in this constraint, X with bounds lub(X) and ¢lb(X).
We can construct an equivalent occurrence representation. Suppose aGmax =
oce(a, lub(X)) and amin = occ(a, glb(X)). Then we let the finite domain variable
X, in the occurrence vector have a domain [@min, Gmax). Consider X, = amax.
Then, from the definition of BC of the bounds representation and the generalized
multiset union operator, there must be a satisfying solution to the constraint in
which oce(a, X)) = amax. If there are several, we choose one non-deterministically.
This solution is support for the bounds consistency of the occurrence represen-

tation. A similar argument holds for X, = aui,. Hence, BC of the bounds
representation implies BC of the occurrence representation. The proof reverses
directly.

2. It is clearly at least as strong. To show strictness, consider 3 multiset vari-
ables, M7 to Ms with domains containing the multiset values {{}, or {0,0}.
Suppose we have a constraint that distinct(My, Ma, Ms). This constraint is
not GAC (indeed, it has no solution). In the bounds representation, we have
lub(M;) = {0,0}} and glb(M;) = {}, and the constraint is BC.

3 & 4. Consider seven multiset variables M of cardinality 2, each with six
possible multiset values: {0,1}, 0,2}, 0,3}, {1,1}, {1,2}, or {1,3}. The
fixed cardinality representation can represent these values exactly. However, the
occurrence representation of these multiset values would also permit the addi-
tional multiset value {2,3}. Suppose that we have a constraint that all seven
multiset variables are distinct. The occurrence representation is GAC (and hence
BC) but the fixed cardinality representation is not BC (and hence not GAC).

Consider four multiset variables M of cardinality 2 with three possible multi-
set values: 0,1}, {0,2}, or {1,2}. The bounds and occurrence representations
can represent these values exactly. However, the fixed cardinality representation
would permit each multiset variable to take the additional mutliset value {1, 1}.
Suppose that we have a constraint that all four multiset variables are distinct.
The fixed cardinality representation is GAC (and hence BC) but the bounds and
occurrence representation are not BC (and hence the occurrence representation
is not GAC). O

Since BC on the bounds representation is equivalent to BC on the occurrence
representation, in the rest of this paper we will write BC without specifying which
representation is used. In addition, when we write GAC on multiset variables,
we will assume the occurrence representation unless otherwise indicated.

4 Multiset constraints

We need to support a number of different constraints on multiset variables.

4.1 Primitive constraints

Multiset expressions are made from multiset variables, ground multisets includ-
ing the empty multiset {}}, and the function symbols: U, N and —. Multiset
constraints are constructed from the inclusion relation, C and its negation, ¢.
Multiset equality, strict inclusion, and membership constraints can all be imple-
mented as defined relations:

M=N = MCN&NCM
MCN = MCN&NZM
zeM = {z}CM

Another interesting extension is to graded constraints [6]. An example of a graded
constraints is the multiset cardinality function |M|. A graded function, f is a
mapping onto the positive integers that satisfies the property M C N implies
f(M) < f(N). A graded constraint restricts f to be within some integer interval.

Such primitive constraints can be implemented via equality and inequality
constraints on the associated occurrence vectors as follows:

MCN — m; <n,; foralli
M ¢ N = m; > n; for some i

MUN = m;+n;

M NN = min(m;,n;)

M — N = max(0,m; —n;)
I<|IM|<u =

ngmigu
i

4.2 Global constraints

We can also define global (or non-binary) constraints on multiset variables.
An important question about such global constraints is whether decomposition
hurts. Consider a global constraint on finite domain variables like the all-different
constraint. This can be decomposed into binary not-equals constraints. However,
such decomposition tends to hinder constraint propagation. For instance, GAC
on an all-different constraint is strictly stronger than arc-consistency (AC) on
the decomposed binary not-equals constraints [5]. Surprisingly, similar results
often do not hold for a number of global constraints involving multiset variables.
This is good news. We can provide global constraints on multiset variables to
help users compactly specify models. However, we do not need to develop com-
plex algorithms for reasoning about them as is often the case with finite domain
variables. We can simply decompose such global constraints into primitive con-
straints. The following results also map over to global constraints on set vari-
ables, where sets are implemented either via characteristic functions, or upper
and lower bounds. Decomposition of global set constraints thus also often does
not hinder constraint propagation. In the rest of this section, we give results to
show that decomposition on the occurrence representation often does not hin-
der GAC. Very similar results can be given to show that decomposition on the
occurrence or bounds representation does not hinder BC.

Disjoint constraint The constraint disjoint([My,..., M,]) ensures that the
multiset variables are pairwise disjoint. This global constraint can be decomposed
into the binary constraints: M; N M; = {}} for all ¢ # j. Such decomposition
does not appear to hinder constraint propagation.

Theorem 3. GAC (resp. BC) on a disjoint constraint is equivalent to AC (resp.
BC) on the binary decomposition.

Proof. Clearly GAC (resp. BC) on a disjoint constraint is as strong as AC (resp.
BC) on the decomposition. To show the reverse, suppose that the binary decom-
position is AC (resp. BC). If the disjoint constraint is not GAC or BC then there
must be at least two multiset variables, M; and M; with a value k in common.
That is, m;; > 1 and m;; > 1. However, in such a situation, the decomposed
constraint min(m;x, m;;) = 0 would neither be AC nor BC. O

Partition constraint The constraint partition([M, ..., M,], M) ensures that
the multiset variables, M; are pairwise disjoint and union together to give M. By

introducing new auxiliary variables, it can be decomposed into binary and union
constraints of the form: M; N M; = {} for all ¢ # j, and M; U ...UM, = M.
Decomposition again causes no loss in pruning.

Theorem 4. GAC (resp. BC) on a partition constraint is equivalent to GAC
(resp. BC) on the decomposition.

Proof. Clearly GAC (resp. BC) on a partition constraint is as strong as GAC
(resp. BC) on the decomposition. To show the reverse, by Theorem 3, we need
focus just on the union constraints. Suppose that the decomposition is GAC
(resp. BC). If the partition constraint is not GAC or BC then there must be one
value k that does not occur frequently enough in the upper bounds of the multiset
variables. But, in this case, the decomposed constraint (which is equivalent to
i mix = my) would neither be GAC nor BC. O

This result continues to hold even if the union constraint is decomposed
into the set of ternary union constraints by introducing new auxiliary variables:
M1] Mg = Mlg, M12 U M3 =]\4137 . 7M1n—1 U Mn = M. We can also consider
the non-empty partition constraint which ensures we have a partition and that
each multiset variable is not the empty multiset. Decomposition now appears to
hinder constraint propagation.

Theorem 5. GAC (resp. BC) on a non-empty partition constraint is strictly
stronger than GAC (resp. BC) on the decomposition.

Proof. Clearly it is at least as strong. To show strictness, consider 3 multiset vari-
ables with glb(My) = glb(Ms) = glb(Ms3) = {}, lub(M;) = lub(My) = {1,2}
and lub(M3) = {1,2,3}}. The decomposition is both GAC and BC. However,
enforcing GAC or BC on the non-empty partition constraint gives glb(Ms) =
lub(Ms) = {3} O

Distinct constraint Consider the constraint distinct([M, ..., M,]) which en-
sures that all the multisets are distinct from each other. This decomposes into
pairwise not equals constraints: M; # M; for all i # j. Decomposition in this
case appears to hinder constraint propagation.

Theorem 6. GAC (resp. BC) on a distinct constraint is strictly stronger than
AC (resp. BC) on the decomposition.

Proof. Clearly it is at least as strong. To show strictness, consider a distinct
constraint on 3 multiset variables with glb(M;) = glb(M2) = {}}, lub(My) =
lub(Ms) = {0}, glb(M3) = {0}, and lub(M3) = {0,0}}. The decomposition is
both AC and BC. But enforcing GAC or BC on the distinct constraint gives
glb(M3) = lub(Ms3) = {0,0}. O

5 Ordering multisets

We will often want to order multiset variables. For example, in the template
design problem we can break the symmetry between templates by insisting that

their multiset values are ordered. Another application (suggested by Alan Frisch
and since also considered in [7]) is for breaking row and column symmetry in ma-
trix models [1]. Many problems can be modelled by matrices of decision variables
in which the rows and/or columns are indistinguishable and can be permuted.
Whilst in theory we can eliminate such symmetry using techniques like SBDS
[3], in practice there are often too many symmetries to deal with them exhaus-
tively. One strategy is to use SBDS to eliminate all column symmetry, and then
add symmetry breaking constraints to eliminate some (but perhaps not all) the
row symmetry. Since we can no longer freely permute the columns, whatever
symmetry breaking constraints we add must be invariant to column permuta-
tion. We can, for instance, insist that the row sums are non-decreasing [4]. A
stronger symmetry breaking constraint is to insist that the rows, when viewed
as multisets, are ordered. This is stronger because two vectors may have the
same sum, whereas two vectors treated as multisets are never equal unless they
are identical. For instance, the vectors (3,3,2,1) and (3,3,3,0) have the same
sum, but when viewed as multisets they are different. Ordering constraints on
multisets are therefore very useful.

We write max(M) for the maximum element of a multiset M. This presup-
pose a total ordering on elements of the multiset. Such an ordering induces a
total ordering on multisets. Formally, M <,, N iff z = max(M), y = max(N)
and:

z<y V (@=y A M—{a} <n N-{y})

That is, either the largest element in M is smaller than the largest element in N,
or they are the same and we eliminate this occurrence and recurse. This is called
the multiset ordering. We can derive almost identical results if we weaken the
ordering to include multiset equality (that is, for the ordering relation M <,, N
defined by M = N or M <,, N). As the following theorem shows, the multiset
ordering is equivalent to the lexicographical ordering on the associated occur-
rence vectors. As we have efficient algorithms for reasoning about occurrence
constraints [9] and about lexicographical ordering constraints [2], this may be
the most effective route to reasoning about multiset ordering constraints.

Theorem 7. M <, N iff m <jex 1.

Proof. Suppose M <,, N. There are two cases. In the first case, max(M) <
max(N). Then nyaxvy > 0 and for all i > max(N), we have m; = 0. Hence,
m <jex 1. In the second case, max(M) = max(N) = a. Then either occ(a, M) =
occ(a, N) or occ(a, M) < occ(a, N). In the first subcase, we can delete all occur-
rences of a from M and N and recurse. In the second subcase, m, < n, and for
all ¢ > a we have m; = n; = 0. Hence, m <jox n. The proof reverses easily. O

One special case that will concern us is ordering 0/1 vectors viewed as mul-
tisets. This occurs when we are dealing with row and column symmetry in a
matrix model of Boolean decision variables. As the following theorem demon-
strates, the multiset ordering then reduces to ordering the vector sum. As bounds
consistency techniques will reason about such sums quickly and effectively, we
need not consider multiset orderings when dealing with 0/1 vectors.

Theorem 8. On 0/1 vectors m and n, {m}} <, {n} iff >, m; <>, n.

Proof. Suppose {m}} <,, {n}. There are two cases. In the first case, 1 & {m}
and 1 € {n}. Then (3, m; =0) < (3>, n; > 0). In the second case, 1 € {m}
and 1 € {n}}. Then occ(1, {m}) < occ(1, {n}}) and >, m; <, n;. The proof
again reverses easily. a

6 Multiset ordering constraints

How do we enforce multiset ordering constraints? If multisets are being repre-
sented by occurrence vectors then by Theorem 7 we can simply post a lexico-
graphic ordering constraint on these occurrence vectors and use the linear GAC
algorithm given in [2]. If, however, multisets are being represented using the fixed
cardinality representation, we would first have to channel into occurrence vectors
with cardinality constraints. This would need to occur when, for example, we are
symmetry breaking in a matrix model by viewing rows or columns as fixed car-
dinality multisets. Such channeling can be done efficiently using the polynomial
GAC algorithm for cardinality constraints given in [9]. However, as the following
theorem demonstrates, such channelling hinders constraint propagation.

Theorem 9. GAC on a multiset ordering constraint represented using the fixed
cardinality representation is strictly stronger than GAC applied simultaneously to
a lexicographical ordering constraint on the occurrence vectors and to cardinality
constraints between the fixed cardinality and occurrence representations.

Proof. Clearly it is as strong. To show strictness, consider two multiset variables
in the fixed cardinality representation, each of which contains four elements:

M, = {{{1’2}7 {1a2}v {2}7 {2}}}
My = {{{172}7 {132}’ {0’ 1’2}7 {07 1}}}

A multiset ordering constraint, M; < My on this representation is not GAC
since the third finite domain variable in M needs to be reduced to give:

M, = {{{1’ 2}7 {1’ 2}7 {1> 2}5 {07 1}}}

The corresponding occurrence vectors are:

my = <{0}7 {07 172}7 {2a374}>
mo = <{0, 1, 2}, {0, 1,2, 3,4}, {0, 1,2, 3}>

Enforcing GAC on the lexicographical ordering constraint gives:

my = <{0}7 {07 1, 2}7 {2’ 3}>
Mo = <{0, 1, 2}, {0, 1,2,3, 4}, {2, 3}>

This does not allow us to prune any values from the multisets. GAC on the fixed
cardinality representation therefore does more pruning.

Note that we also know that the multisets are of cardinality 4. We could
therefore have a combined lexicographical and vector sum constraint to ensure
this. Enforcing GAC on such a combined constraint gives:

my = <{0}7{172}>{2’3}>
ma = <{Ov 1}7 {07 172}’ {273}>

Even though we now know that the value 0 can only occur at most once in Moy,
we cannot say where. We still therefore cannot do as much pruning as GAC on
the fixed cardinality representation. 0O

For multisets of fixed cardinality n, multiset ordering constraints M <,, N
can be enforced via the arithmetic constraint n™° +...n™n-1 < p"0 4. . ptn-1
[7]. It is not hard to show that BC on such a constraint is equivalent to GAC on
the original multiset ordering constraint. However, such an arithmetic constraint
is only feasible for small n.

7 Future work and conclusions

We have proposed that constraint solvers be extended with multiset variables.
That is, variables whose values are multisets. Such an extension will help prevent
introducing unnecessary symmetry into models. We have identified a number of
different representations for multiset variables, and suggested a set of primitive
and global constraints on multiset variables. Surprisingly, unlike finite domain
variables, decomposition of global constraints on multiset variables often does
not hinder constraint propagation. We also studied in detail the multiset order-
ing constraint. This constraint is useful for breaking symmetry between multiset
variables, and also breaking row and column symmetry in matrix models. We
have shown how a multiset ordering can be enforced by lexicographically order-
ing the associated vectors of value occurrences. Although channelling into the
occurrence representation hinders constraint propagation, we conjecture that the
impact will not be great, and that this will prove an effective way of enforcing
multiset ordering constraints. We are currently running experiments to test this
thesis.

References

1. P. Flener, A. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, J. Pearson, and T. Walsh.
Breaking row and column symmetry in matrix models. In Proc. of CP’2002.
Springer, 2002.

2. A. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, and T. Walsh. Global constraints for
lexicographic orderings. In Proc. of CP’2002. Springer, 2002.

3. 1. Gent and B. Smith. Symmetry breaking in constraint programming. In Proc. of
ECAI-2000, pp 599-603. I0OS Press, 2000.

4. 1. Gent and B. Smith. Reducing symmetry in matrix models: Sbds vs. constraints.
Technical Report APES-31-2001, APES Research Group, 2001. Available from
http://www.dcs.st-and.ac.uk/ apes/apesreports.html.

. L. Gent, K. Stergiou, and T. Walsh. Decomposable constraints. Artificial Intelligence
123:133-156, 2000.

. C. Gervet. Conjunto: constraint logic programming with finite set domains. In
Proc. of the 1994 International Symposium on Logic Programming, pp 339-358.
MIT Press, 1994.

. Z. Kiziltan and B.M. Smith. Symmetry-breaking constraints for matrix models. In
Proc. of SymCon’02, the CP’02 Workshop on Symmetry in Constraints, 2002.

. T. Miller and M. Miiller. Finite set constraints in Oz. In Proc. of 13th Logic
Programming Workshop, pp 104-115. Technische Universitdt Miinchen, 1997.

. J. Régin. Generalized arc consistency for global cardinality constraints. In Proc. of
AAATD96, pp 209-215. AAAT Press/The MIT Press, 1996.

